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This paper deals with Weyl-Euler-Lagrange equations of motion on flat manifold. It is well known that a Riemannian manifold is
said to be flat if its curvature is everywhere zero. Furthermore, a flat manifold is one Euclidean space in terms of distances. Weyl
introduced a metric with a conformal transformation for unified theory in 1918. Classical mechanics is one of the major subfields
of mechanics. Also, one way of solving problems in classical mechanics occurs with the help of the Euler-Lagrange equations. In
this study, partial differential equations have been obtained for movement of objects in space and solutions of these equations have
been generated by using the symbolic Algebra software. Additionally, the improvements, obtained in this study, will be presented.

1. Introduction

Euler-Lagrangian (analogues) mechanics are very important
tools for differential geometry and analyticalmechanics.They
have a simple method to describe the model for mechanical
systems. The models for mechanical systems are related.
Studies in the literature about the Weyl manifolds are given
as follows. Liu and Jun expand electronic origins, molecular
dynamics simulations, computational nanomechanics, and
multiscale modelling of materials fields [1]. Tekkoyun and
Yayli examined generalized-quaternionic Kählerian analogue
of Lagrangian and Hamiltonian mechanical systems [2]. The
study given in [3] has the particular purpose to examine
the discussion Weyl and Einstein had over Weyl’s 1918 uni-
fied field theory for reasons such as the epistemological
implications. Kasap and Tekkoyun investigated Lagrangian
and Hamiltonian formalism for mechanical systems using
para-/pseudo-Kähler manifolds, representing an interesting
multidisciplinary field of research [4]. Kasap obtained the
Weyl-Euler-Lagrange and the Weyl-Hamilton equations on
R2𝑛
𝑛

which is a model of tangent manifolds of constant 𝑊-
sectional curvature [5]. Kapovich demonstrated an existence
theorem for flat conformal structures on finite-sheeted cov-
erings over a wide class of Haken manifolds [6]. Schwartz
accepted asymptotically Riemannian manifolds with non-
negative scalar curvature [7]. Kulkarni identified some
new examples of conformally flat manifolds [8]. Dotti and

Miatello intend to find out the real cohomology ring of low
dimensional compact flat manifolds endowed with one of
these special structures [9]. Szczepanski presented a list of six-
dimensional Kähler manifolds and he submitted an example
of eight-dimensional Kähler manifold with finite group [10].
Bartnik showed that the mass of an asymptotically flat 𝑛-
manifold is a geometric invariant [11]. González considered
complete, locally conformally flat metrics defined on a
domain Ω ⊂ 𝑆

𝑛 [12]. Akbulut and Kalafat established infinite
families of nonsimply connected locally conformally flat
(LCF) 4-manifold realizing rich topological types [13]. Zhu
suggested that it is to give a classification of complete locally
conformally flat manifolds of nonnegative Ricci curvature
[14]. Abood studied this tensor on general class almost Her-
mitian manifold by using a newmethodology which is called
an adjoint 𝐺-structure space [15]. K. Olszak and Z. Olszak
proposed paraquaternionic analogy of these ideas applied to
conformally flat almost pseudo-Kählerian as well as almost
para-Kählerian manifolds [16]. Upadhyay studied bounding
question for almost manifolds by looking at the equivalent
description of them as infranil manifolds Γ \ 𝐿 ⋊ 𝐺/𝐺 [17].

2. Preliminaries

Definition 1. With respect to tangent space given any point
𝑝 ∈ 𝑀, it has a tangent space 𝑇

𝑝
𝑀 isometric toR𝑛. If one has

a metric (inner-product) in this space ⟨, ⟩
𝑝
: 𝑇
𝑝
𝑀× 𝑇

𝑝
𝑀 →
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R defined on every point 𝑝 ∈ 𝑀,𝑀 is called a Riemannian
manifold.

Definition 2. A manifold with a Riemannian metric is a flat
manifold such that it has zero curvature.

Definition 3. A differentiable manifold 𝑀 is said to be an
almost complex manifold if there exists a linear map 𝐽 :

𝑇𝑀 → 𝑇𝑀 satisfying 𝐽2 = −𝑖𝑑 and 𝐽 is said to be an almost
complex structure of𝑀, where 𝑖 is the identity (unit) operator
on 𝑉 such that 𝑉 is the vector space and 𝐽2 = 𝐽 ∘ 𝐽.

Theorem 4. The integrability of the almost complex structure
implies a relation in the curvature. Let {𝑥1, 𝑦1, 𝑥2, 𝑦2, 𝑥3, 𝑦3} be
coordinates on R6 with the standard flat metric:

𝑑𝑠
2
=

3
∑

𝑖=1
(𝑑𝑥

2
𝑖
+𝑑𝑦

2
𝑖
) (1)

(see [18]).

Definition 5. A (pseudo-)Riemannian manifold is confor-
mally flat manifold if each point has a neighborhood that can
be mapped to flat space by a conformal transformation. Let
(𝑀, 𝑔) be a pseudo-Riemannian manifold.

Theorem 6. Let (𝑀, 𝑔) be conformally flat if, for each point 𝑥
in𝑀, there exists a neighborhood𝑈 of 𝑥 and a smooth function
𝑓 defined on 𝑈 such that (𝑈, 𝑒2𝑓𝑔) is flat. The function 𝑓 need
not be defined on all of𝑀. Some authors use locally conformally
flat to describe the above notion and reserve conformally flat for
the case in which the function 𝑓 is defined on all of𝑀 [19].

Definition 7. A pseudo-𝐽-holomorphic curve is a smooth
map from a Riemannian surface into an almost complex
manifold such that it satisfies the Cauchy-Riemann equation
[20].

Definition 8. A conformal map is a function which preserves
angles as the most common case where the function is
between domains in the complex plane. Conformal maps can
be defined betweendomains in higher dimensional Euclidean
spaces andmore generally on a (semi-)Riemannianmanifold.

Definition 9. Conformal geometry is the study of the set
of angle-preserving (conformal) transformations on a space.
In two real dimensions, conformal geometry is precisely
the geometry of Riemannian surfaces. In more than two
dimensions, conformal geometry may refer either to the
study of conformal transformations of flat spaces (such as
Euclidean spaces or spheres) or to the study of conformal
manifolds which are Riemannian or pseudo-Riemannian
manifolds with a class of metrics defined up to scale.

Definition 10. A conformal manifold is a differentiable mani-
fold equippedwith an equivalence class of (pseudo-)Riemann
metric tensors, in which two metrics 𝑔 and 𝑔 are equivalent
if and only if

𝑔


= Ψ
2
𝑔, (2)

where Ψ > 0 is a smooth positive function. An equivalence
class of such metrics is known as a conformal metric or
conformal class and a manifold with a conformal structure
is called a conformal manifold [21].

3. Weyl Geometry

Conformal transformation for use in curved lengths has been
revealed. The linear distance between two points can be
found easily by Riemann metric. Many scientists have used
the Riemann metric. Einstein was one of the first to study
this field. Einstein discovered the Riemannian geometry and
successfully used it to describe general relativity in the 1910
that is actually a classical theory for gravitation. But the
universe is really completely not like Riemannian geometry.
Each path between two points is not always linear. Also,
orbits of moving objects may change during movement. So,
each two points in space may not be linear geodesic. Then,
a method is required for converting nonlinear distance to
linear distance. Weyl introduced a metric with a conformal
transformation in 1918.The basic concepts related to the topic
are listed below [22–24].

Definition 11. Two Riemann metrics 𝑔1 and 𝑔2 on𝑀 are said
to be conformally equivalent iff there exists a smooth function
𝑓 : 𝑀 → R with

𝑒
𝑓

𝑔1 = 𝑔2. (3)

In this case, 𝑔1 ∼ 𝑔2.

Definition 12. Let𝑀 be an 𝑛-dimensional smooth manifold.
A pair (𝑀,𝐺), where a conformal structure on 𝑀 is an
equivalence class 𝐺 of Riemann metrics on 𝑀, is called a
conformal structure.

Theorem 13. Let ∇ be a connection on𝑀 and 𝑔 ∈ 𝐺 a fixed
metric. ∇ is compatible with (𝑀,𝐺) ⇔; there exists a 1-form 𝜔

with ∇
𝑋
𝑔 + 𝜔(𝑋)𝑔 = 0.

Definition 14. A compatible torsion-free connection is called
a Weyl connection. The triple (𝑀,𝐺,∇) is a Weyl structure.

Theorem 15. To each metric 𝑔 ∈ 𝐺 and 1-form 𝜔, there corre-
sponds a unique Weyl connection ∇ satisfying ∇

𝑋
𝑔 +𝜔(𝑋)𝑔 =

0.

Definition 16. Define a function 𝐹 : {1-forms on 𝑀} × 𝐺 →

{Weyl connections} by 𝐹(𝑔, 𝜔) = ∇, where ∇ is the connec-
tion guaranteed by Theorem 6. One says that ∇ corresponds
to (𝑔, 𝜔).

Proposition 17. (1) 𝐹 is surjective.

Proof. 𝐹 is surjective byTheorem 13.

(2) 𝐹(𝑔, 𝜔) = 𝐹(𝑒𝑓𝑔, 𝜂) iff 𝜂 = 𝜔 − 𝑑𝑓. So

𝐹 (𝑒
𝑓

𝑔) = 𝐹 (𝑔) − 𝑑𝑓, (4)

where 𝐺 is a conformal structure. Note that a Riemann metric
𝑔 and a one-form 𝜔 determine a Weyl structure; namely, 𝐹 :
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𝐺 → ∧
1
𝑀, where𝐺 is the equivalence class of 𝑔 and𝐹(𝑒𝑓𝑔) =

𝜔 − 𝑑𝑓.

Proof. Suppose that 𝐹(𝑔, 𝜔) = 𝐹(𝑒𝑓𝑔, 𝜂) = ∇. We have

∇
𝑋
(𝑒
𝑓

𝑔) + 𝜂 (𝑋) 𝑒
𝑓

𝑔

= 𝑋(𝑒
𝑓

) 𝑔 + 𝑒
𝑓

∇
𝑋
𝑔+ 𝜂 (𝑋) 𝑒

𝑓

𝑔

= 𝑑𝑓 (𝑋) 𝑒
𝑓

𝑔+ 𝑒
𝑓

∇
𝑋
𝑔+ 𝜂 (𝑋) 𝑒

𝑓

𝑔 = 0.

(5)

Therefore,∇
𝑋
𝑔 = −(𝑑𝑓(𝑋)+𝜂(𝑋)). On the other hand,∇

𝑋
𝑔+

𝜔(𝑋)𝑔 = 0.Therefore, 𝜔 = 𝜂 + 𝑑𝑓. Set ∇ = 𝐹(𝑔, 𝜔). To show,
∇ = 𝐹(𝑒

𝑓

𝑔, 𝜂) and ∇
𝑋
(𝑒
𝑓

𝑔) + 𝜂(𝑋)𝑒
𝑓

𝑔 = 0. To calculate

∇
𝑋
(𝑒
𝑓

𝑔) + 𝜂 (𝑋) 𝑒
𝑓

𝑔

= 𝑒
𝑓

𝑑𝑓 (𝑋) 𝑔 + 𝑒
𝑓

∇
𝑋
𝑔+ (𝜔 (𝑋) − 𝑑𝑓 (𝑋)) 𝑒

𝑓

𝑔

= 𝑒
𝑓

(∇
𝑋
𝑔+𝜔 (𝑋) 𝑔) = 0.

(6)

Theorem 18. A connection on the metric bundle 𝜔 of a
conformalmanifold𝑀naturally induces amap𝐹 : 𝐺 → ∧

1
𝑀

and (4) and conversely. Parallel translation of points in𝜔 by the
connection is the same as their translation by 𝐹.

Theorem 19. Let ∇ be a torsion-free connection on the tangent
bundle of 𝑀 and 𝑚 ≥ 6. If (𝑀, 𝑔, ∇, 𝐽) is a Kähler-Weyl
structure, then the associated Weyl structure is trivial; that is,
there is a conformally equivalent metric 𝑔 = 𝑒

2𝑓
𝑔 so that

(𝑀, 𝑔, 𝐽) is Kähler and so that ∇ = ∇𝑔 [25–27].

Definition 20. Weyl curvature tensor is a measure of the
curvature of spacetime or a pseudo-Riemannian manifold.
Like the Riemannian curvature tensor, the Weyl tensor
expresses the tidal force that a body feels when moving along
a geodesic.

Definition 21. Weyl transformation is a local rescaling of
the metric tensor: 𝑔

𝑎𝑏
(𝑥) → 𝑒

−2𝜔(𝑥)

𝑔
𝑎𝑏
(𝑥) which produces

another metric in the same conformal class. A theory or
an expression invariant under this transformation is called
conformally invariant, or is said to possess Weyl symmetry.
TheWeyl symmetry is an important symmetry in conformal
field theory.

4. Complex Structures on Conformally
Flat Manifold

In this section,Weyl structures on flatmanifoldswill be trans-
ferred to the mechanical system. Thus, the time-dependent
Euler-Lagrange partial equations of motion of the dynamic
systemwill be found. A flatmanifold is something that locally
looks like Euclidean space in terms of distances and angles.
The basic example is Euclidean space with the usual metric
𝑑𝑠

2
= ∑
𝑖
𝑑𝑥

2
𝑖
. Any point on a flat manifold has a neighbor-

hood isometric to a neighborhood in Euclidean space. A flat
manifold is locally Euclidean in terms of distances and angles
and merely topologically locally Euclidean, as all manifolds

are. The simplest nontrivial examples occur as surfaces in
four-dimensional space as the flat torus is a flat manifold. It
is the image of 𝑓(𝑥, 𝑦) = (cos𝑥, sin𝑥, cos𝑦, sin𝑦).

Example 22. It vanishes if and only if 𝐽 is an integrable almost
complex structure; that is, given any point 𝑃 ∈ 𝑀, there exist
local coordinates (𝑥

𝑖
, 𝑦
𝑖
), 𝑖 = 1, 2, 3, centered at 𝑃, following

structures taken from

𝐽𝜕𝑥1 = cos (𝑥3) 𝜕𝑦1 + sin (𝑥3) 𝜕𝑦2,

𝐽𝜕𝑥2 = − sin (𝑥3) 𝜕𝑦1 + cos (𝑥3) 𝜕𝑦2,

𝐽𝜕𝑥3 = 𝜕𝑦3,

𝐽𝜕𝑦1 = − cos (𝑥3) 𝜕𝑥1 + sin (𝑥3) 𝜕𝑥2,

𝐽𝜕𝑦2 = − sin (𝑥3) 𝜕𝑥1 − cos (𝑥3) 𝜕𝑥2,

𝐽𝜕𝑦3 = − 𝜕𝑥3.

(7)

The above structures (7) have been taken from [28]. We will
use 𝜕𝑥

𝑖
= 𝜕/𝜕𝑥

𝑖
and 𝜕𝑦

𝑖
= 𝜕/𝜕𝑦

𝑖
.

The Weyl tensor differs from the Riemannian curvature
tensor in that it does not convey information on how the
volume of the body changes. In dimensions 2 and 3 the
Weyl curvature tensor vanishes identically. Also, the Weyl
curvature is generally nonzero for dimensions ≥4. If theWeyl
tensor vanishes in dimension ≥4, then the metric is locally
conformally flat: there exists a local coordinate system in
which the metric tensor is proportional to a constant tensor.
This fact was a key component for gravitation and general
relativity [29].

Proposition 23. If we extend (7) by means of conformal
structure [19, 30], Theorem 19 and Definition 21, we can give
equations as follows:

𝐽
𝜕

𝜕𝑥1
= 𝑒

2𝑓 cos (𝑥3)
𝜕

𝜕𝑦1
+ 𝑒

2𝑓 sin (𝑥3)
𝜕

𝜕𝑦2
,

𝐽
𝜕

𝜕𝑥2
= − 𝑒

2𝑓 sin (𝑥3)
𝜕

𝜕𝑦1
+ 𝑒

2𝑓 cos (𝑥3)
𝜕

𝜕𝑦2
,

𝐽
𝜕

𝜕𝑥3
= 𝑒

2𝑓 𝜕

𝜕𝑦3
,

𝐽
𝜕

𝜕𝑦1
= − 𝑒
−2𝑓 cos (𝑥3)

𝜕

𝜕𝑥1
+ 𝑒
−2𝑓 sin (𝑥3)

𝜕

𝜕𝑥2
,

𝐽
𝜕

𝜕𝑦2
= − 𝑒
−2𝑓 sin (𝑥3)

𝜕

𝜕𝑥1
− 𝑒
−2𝑓 cos (𝑥3)

𝜕

𝜕𝑥2
,

𝐽
𝜕

𝜕𝑦3
= − 𝑒
−2𝑓 𝜕

𝜕𝑥3
,

(8)

such that they are base structures for Weyl-Euler-Lagrange
equations, where 𝐽 is a conformal complex structure to be simi-
lar to an integrable almost complex 𝐽 given in (7). Fromnow on,
we continue our studies thinking of the (𝑇𝑀, 𝑔, ∇, 𝐽) instead of
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Weyl manifolds (𝑇𝑀, 𝑔, ∇, 𝐽). Now, 𝐽 denotes the structure of
the holomorphic property:

𝐽
2 𝜕

𝜕𝑥1
= 𝐽 ∘ 𝐽

𝜕

𝜕𝑥1
= 𝑒

2𝑓 cos (𝑥3) 𝐽
𝜕

𝜕𝑦1
+ 𝑒

2𝑓 sin (𝑥3) 𝐽

⋅
𝜕

𝜕𝑦2
= 𝑒

2𝑓 cos (𝑥3)

⋅ [−𝑒
−2𝑓 cos (𝑥3)

𝜕

𝜕𝑥1
+ 𝑒
−2𝑓 sin (𝑥3)

𝜕

𝜕𝑥2
]+ 𝑒

2𝑓

⋅ sin (𝑥3) [−𝑒
−2𝑓 sin (𝑥3)

𝜕

𝜕𝑥1
− 𝑒
−2𝑓 cos (𝑥3)

𝜕

𝜕𝑥2
]

= − cos2 (𝑥3)
𝜕

𝜕𝑥1
+ cos (𝑥3) sin (𝑥3)

𝜕

𝜕𝑥2

− sin2 (𝑥3)
𝜕

𝜕𝑥1
− sin (𝑥3) cos (𝑥3)

𝜕

𝜕𝑥2

= − [cos2 (𝑥3) + sin
2
(𝑥3)]

𝜕

𝜕𝑥1
= −

𝜕

𝜕𝑥1
,

(9)

and in similar manner it is shown that

𝐽
2 𝜕

𝜕𝑥
𝑖

= −
𝜕

𝜕𝑥
𝑖

,

𝐽
2 𝜕

𝜕𝑦
𝑖

= −
𝜕

𝜕𝑦
𝑖

,

𝑖 = 1, 2, 3.

(10)

As can be seen from (9) and (10) 𝐽2 = −𝐼 are the complex
structures.

5. Euler-Lagrange Dynamics Equations

Definition 24 (see [31–33]). Let𝑀 be an 𝑛-dimensional man-
ifold and 𝑇𝑀 its tangent bundle with canonical projection
𝜏
𝑀
: 𝑇𝑀 → 𝑀. 𝑇𝑀 is called the phase space of velocities of

the base manifold𝑀. Let 𝐿 : 𝑇𝑀 → R be a differentiable
function on 𝑇𝑀 and it is called the Lagrangian function. We
consider closed 2-form on 𝑇𝑀 and Φ

𝐿
= −𝑑d

𝐽
𝐿. Consider

the equation

i
𝑉
Φ
𝐿
= 𝑑𝐸
𝐿
, (11)

where the semispray 𝑉 is a vector field. Also, i is a reducing
function and i

𝑉
Φ
𝐿
= Φ
𝐿
(𝑉). We will see that, for motion in

a potential, 𝐸
𝐿
= V(𝐿) − 𝐿 is an energy function (𝐿 = 𝑇−𝑃 =

(1/2)𝑚V2 − 𝑚𝑔ℎ, kinetic-potential energies) and V = 𝐽𝑉

a Liouville vector field. Here, 𝑑𝐸
𝐿
denotes the differential

of 𝐸. We will see that (11) under a certain condition on 𝑉
is the intrinsic expression of the Euler-Lagrange equations
of motion. This equation is named Euler-Lagrange dynam-
ical equation. The triple (𝑇𝑀,Φ

𝐿
, 𝑉) is known as Euler-

Lagrangian systemon the tangent bundle𝑇𝑀.Theoperations
run on (11) for any coordinate system (𝑞

𝑖

(𝑡), 𝑝
𝑖
(𝑡)). Infinite

dimension Lagrangian’s equation is obtained in the form
below:

𝑑

𝑑𝑡
(
𝜕𝐿

𝜕 ̇𝑞𝑖
)−

𝜕𝐿

𝜕𝑞𝑖
= 0,

𝑑𝑞
𝑖

𝑑𝑡
= ̇𝑞
𝑖

,

𝑖 = 1, . . . , 𝑛.

(12)

6. Conformal Weyl-Euler-Lagrangian
Equations

Here, we, using (11), obtain Weyl-Euler-Lagrange equations
for classical and quantum mechanics on conformally flat
manifold and it is shown by (𝑇𝑀, 𝑔, ∇, 𝐽).

Proposition 25. Let (𝑥
𝑖
, 𝑦
𝑖
) be coordinate functions. Also, on

(𝑇𝑀, 𝑔, ∇, 𝐽), let 𝑉 be the vector field determined by 𝑉 =

∑
3
𝑖=1(𝑋
𝑖

(𝜕/𝜕𝑥
𝑖
) + 𝑌
𝑖

(𝜕/𝜕𝑦
𝑖
)). Then the vector field defined by

V = 𝐽𝑉

= 𝑋
1
(𝑒

2𝑓 cos (𝑥3)
𝜕

𝜕𝑦1
+ 𝑒

2𝑓 sin (𝑥3)
𝜕

𝜕𝑦2
)

+𝑋
2
(−𝑒

2𝑓 sin (𝑥3)
𝜕

𝜕𝑦1
+ 𝑒

2𝑓 cos (𝑥3)
𝜕

𝜕𝑦2
)

+𝑋
3
𝑒
2𝑓 𝜕

𝜕𝑦3

+𝑌
1
(−𝑒
−2𝑓 cos (𝑥3)

𝜕

𝜕𝑥1
+ 𝑒
−2𝑓 sin (𝑥3)

𝜕

𝜕𝑥2
)

+𝑌
2
(−𝑒
−2𝑓 sin (𝑥3)

𝜕

𝜕𝑥1
− 𝑒
−2𝑓 cos (𝑥3)

𝜕

𝜕𝑥2
)

−𝑌
3
𝑒
−2𝑓 𝜕

𝜕𝑥3

(13)

is thought to be Weyl-Liouville vector field on conformally flat
manifold (𝑇𝑀, 𝑔, ∇, 𝐽). Φ

𝐿
= −𝑑d

𝐽
𝐿 is the closed 2-form

given by (11) such that d = ∑
3
𝑖=1((𝜕/𝜕𝑥𝑖)𝑑𝑥𝑖 + (𝜕/𝜕𝑦𝑖)𝑑𝑦𝑖),

d
𝐽
: 𝐹(𝑀) → ∧

1
𝑀, d
𝐽
= 𝑖
𝐽
d − d𝑖

𝐽
, and d

𝐽
= 𝐽(d) =

∑
3
𝑖=1(𝑋
𝑖

𝐽(𝜕/𝜕𝑥
𝑖
)+𝑌
𝑖

𝐽(𝜕/𝜕𝑦
𝑖
)). Also, the vertical differentiation

d
𝐽
is given where 𝑑 is the usual exterior derivation.Then, there

is the following result. We can obtain Weyl-Euler-Lagrange
equations for classical and quantummechanics on conformally
flat manifold (𝑇𝑀, 𝑔, ∇, 𝐽). We get the equations given by

d
𝐽
= [𝑒

2𝑓 cos (𝑥3)
𝜕

𝜕𝑦1
+ 𝑒

2𝑓 sin (𝑥3)
𝜕

𝜕𝑦2
] 𝑑𝑥1

+[−𝑒
2𝑓 sin (𝑥3)

𝜕

𝜕𝑦1
+ 𝑒

2𝑓 cos (𝑥3)
𝜕

𝜕𝑦2
] 𝑑𝑥2

+ 𝑒
2𝑓 𝜕

𝜕𝑦3
𝑑𝑥3
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+[−𝑒
−2𝑓 cos (𝑥3)

𝜕

𝜕𝑥1
+ 𝑒
−2𝑓 sin (𝑥3)

𝜕

𝜕𝑥2
] 𝑑𝑦1

+[−𝑒
−2𝑓 sin (𝑥3)

𝜕

𝜕𝑥1
− 𝑒
−2𝑓 cos (𝑥3)

𝜕

𝜕𝑥2
] 𝑑𝑦2

− 𝑒
−2𝑓 𝜕

𝜕𝑥3
𝑑𝑦3.

(14)

Also,

Φ
𝐿
= −𝑑d

𝐽
𝐿

= −𝑑([𝑒
2𝑓 cos (𝑥3)

𝜕

𝜕𝑦1
+ 𝑒

2𝑓 sin (𝑥3)
𝜕

𝜕𝑦2
] 𝑑𝑥1

+[−𝑒
2𝑓 sin (𝑥3)

𝜕

𝜕𝑦1
+ 𝑒

2𝑓 cos (𝑥3)
𝜕

𝜕𝑦2
] 𝑑𝑥2

+ 𝑒
2𝑓 𝜕𝐿

𝜕𝑦3
𝑑𝑥3

+[−𝑒
−2𝑓 cos (𝑥3)

𝜕

𝜕𝑥1
+ 𝑒
−2𝑓 sin (𝑥3)

𝜕

𝜕𝑥2
] 𝑑𝑦1

+[−𝑒
−2𝑓 sin (𝑥3)

𝜕

𝜕𝑥1
− 𝑒
−2𝑓 cos (𝑥3)

𝜕

𝜕𝑥2
] 𝑑𝑦2

− 𝑒
−2𝑓 𝜕𝐿

𝜕𝑥3
𝑑𝑦3)

(15)

and then we find

i
𝑉
Φ
𝐿
= Φ
𝐿
(𝑉) = Φ

𝐿
(

3
∑

𝑖=1
(𝑋
𝑖
𝜕

𝜕𝑥
𝑖

+𝑌
𝑖
𝜕

𝜕𝑦
𝑖

)) . (16)

Moreover, the energy function of system is

𝐸
𝐿
= 𝑋

1
[𝑒

2𝑓 cos (𝑥3)
𝜕𝐿

𝜕𝑦1
+ 𝑒

2𝑓 sin (𝑥3)
𝜕𝐿

𝜕𝑦2
]

+𝑋
2
[−𝑒

2𝑓 sin (𝑥3)
𝜕𝐿

𝜕𝑦1
+ 𝑒

2𝑓 cos (𝑥3)
𝜕𝐿

𝜕𝑦2
]

+𝑋
3
𝑒
2𝑓 𝜕𝐿

𝜕𝑦3

+𝑌
1
[−𝑒
−2𝑓 cos (𝑥3)

𝜕𝐿

𝜕𝑥1
+ 𝑒
−2𝑓 sin (𝑥3)

𝜕𝐿

𝜕𝑥2
]

+𝑌
2
[−𝑒
−2𝑓 sin (𝑥3)

𝜕𝐿

𝜕𝑥1
− 𝑒
−2𝑓 cos (𝑥3)

𝜕𝐿

𝜕𝑥2
]

−𝑌
3
𝑒
−2𝑓 𝜕𝐿

𝜕𝑥3
−𝐿

(17)

and the differential of 𝐸
𝐿
is

𝑑𝐸
𝐿
= 𝑋

1
(𝑒

2𝑓 cos (𝑥3)
𝜕
2
𝐿

𝜕𝑥1𝜕𝑦1
𝑑𝑥1

+ 2𝑒2𝑓 cos (𝑥3)
𝜕𝑓

𝜕𝑥1

𝜕𝐿

𝜕𝑦1
𝑑𝑥1

+ 𝑒
2𝑓 sin (𝑥3)

𝜕
2
𝐿

𝜕𝑥1𝜕𝑦2
𝑑𝑥1

+ 2𝑒2𝑓 sin (𝑥3)
𝜕𝑓

𝜕𝑥1

𝜕𝐿

𝜕𝑦2
𝑑𝑥1)

+𝑋
2
(−𝑒

2𝑓 sin (𝑥3)
𝜕
2
𝐿

𝜕𝑥1𝜕𝑦1
𝑑𝑥1

− 2𝑒2𝑓 sin (𝑥3)
𝜕𝑓

𝜕𝑥1

𝜕𝐿

𝜕𝑦1
𝑑𝑥1

+ 𝑒
2𝑓 cos (𝑥3)

𝜕
2
𝐿

𝜕𝑥1𝜕𝑦2
𝑑𝑥1

+ 2𝑒2𝑓 cos (𝑥3)
𝜕𝑓

𝜕𝑥1

𝜕𝐿

𝜕𝑦2
𝑑𝑥1)

+𝑋
3
(𝑒

2𝑓 𝜕
2
𝐿

𝜕𝑥1𝜕𝑦3
𝑑𝑥1 + 2𝑒

2𝑓 𝜕𝑓

𝜕𝑥1

𝜕𝐿

𝜕𝑦3
𝑑𝑥1)

+𝑌
1
(−𝑒
−2𝑓 cos (𝑥3)

𝜕
2
𝐿

𝜕𝑥
2
1
𝑑𝑥1

+ 2𝑒−2𝑓 cos (𝑥3)
𝜕𝑓

𝜕𝑥1

𝜕𝐿

𝜕𝑥1
𝑑𝑥1

+ 𝑒
−2𝑓 sin (𝑥3)

𝜕
2
𝐿

𝜕𝑥1𝜕𝑥2
𝑑𝑥1

− 2𝑒−2𝑓 sin (𝑥3)
𝜕𝑓

𝜕𝑥1

𝜕𝐿

𝜕𝑥2
𝑑𝑥1)

+𝑌
2
(−𝑒
−2𝑓 sin (𝑥3)

𝜕
2
𝐿

𝜕𝑥
2
1
𝑑𝑥1

+ 2𝑒−2𝑓 sin (𝑥3)
𝜕𝑓

𝜕𝑥1

𝜕𝐿

𝜕𝑥1
𝑑𝑥1

− 𝑒
−2𝑓 cos (𝑥3)

𝜕
2
𝐿

𝜕𝑥1𝜕𝑥2
𝑑𝑥1

+ 2𝑒−2𝑓 cos (𝑥3)
𝜕𝑓

𝜕𝑥1

𝜕𝐿

𝜕𝑥2
𝑑𝑥1)

+𝑌
3
(−

𝜕
2
𝐿

𝜕𝑥1𝜕𝑥3
𝑑𝑥1 + 2𝑒

−2𝑓 𝜕𝑓

𝜕𝑥1

𝜕

𝜕𝑥3
𝑑𝑥1)

−
𝜕𝐿

𝜕𝑥1
𝑑𝑥1 +𝑋

1
(𝑒

2𝑓 cos (𝑥3)
𝜕
2
𝐿

𝜕𝑥2𝜕𝑦1
𝑑𝑥2
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+ 2𝑒2𝑓 cos (𝑥3)
𝜕𝑓

𝜕𝑥2

𝜕𝐿

𝜕𝑦1
𝑑𝑥2

+ 𝑒
2𝑓 sin (𝑥3)

𝜕
2
𝐿

𝜕𝑥2𝜕𝑦2
𝑑𝑥2

+ 2𝑒2𝑓 sin (𝑥3)
𝜕𝑓

𝜕𝑥2

𝜕𝐿

𝜕𝑦2
𝑑𝑥2)

+𝑋
2
(−𝑒

2𝑓 sin (𝑥3)
𝜕
2
𝐿

𝜕𝑥2𝜕𝑦1
𝑑𝑥2

− 2𝑒2𝑓 sin (𝑥3)
𝜕𝑓

𝜕𝑥2

𝜕𝐿

𝜕𝑦1
𝑑𝑥2

+ 𝑒
2𝑓 cos (𝑥3)

𝜕
2
𝐿

𝜕𝑥2𝜕𝑦2
𝑑𝑥2

+ 2𝑒2𝑓 cos (𝑥3)
𝜕𝑓

𝜕𝑥2

𝜕𝐿

𝜕𝑦2
𝑑𝑥2)

+𝑋
3
(𝑒

2𝑓 𝜕
2
𝐿

𝜕𝑥2𝜕𝑦3
𝑑𝑥2 + 2𝑒

2𝑓 𝜕𝑓

𝜕𝑥2

𝜕𝐿

𝜕𝑦3
𝑑𝑥2)

+𝑌
1
(−𝑒
−2𝑓 cos (𝑥3)

𝜕
2
𝐿

𝜕𝑥2𝜕𝑥1
𝑑𝑥2

+ 2𝑒−2𝑓 cos (𝑥3)
𝜕𝑓

𝜕𝑥2

𝜕𝐿

𝜕𝑥1
𝑑𝑥2

+ 𝑒
−2𝑓 sin (𝑥3)

𝜕
2
𝐿

𝜕𝑥
2
2
𝑑𝑥2

− 2𝑒−2𝑓 sin (𝑥3)
𝜕𝑓

𝜕𝑥2

𝜕𝐿

𝜕𝑥2
𝑑𝑥2)

+𝑌
2
(−𝑒
−2𝑓 sin (𝑥3)

𝜕
2
𝐿

𝜕𝑥2𝜕𝑥1
𝑑𝑥2

+ 2𝑒−2𝑓 sin (𝑥3)
𝜕𝑓

𝜕𝑥2

𝜕𝐿

𝜕𝑥1
𝑑𝑥2

− 𝑒
−2𝑓 cos (𝑥3)

𝜕
2
𝐿

𝜕𝑥
2
2
𝑑𝑥2

+ 2𝑒−2𝑓 cos (𝑥3)
𝜕𝑓

𝜕𝑥2

𝜕𝐿

𝜕𝑥2
𝑑𝑥2)

+𝑌
3
(−

𝜕
2
𝐿

𝜕𝑥2𝜕𝑥3
𝑑𝑥2 + 2𝑒

−2𝑓 𝜕𝑓

𝜕𝑥2

𝜕

𝜕𝑥3
𝑑𝑥2)

−
𝜕𝐿

𝜕𝑥2
𝑑𝑥2 +𝑋

1
(𝑒

2𝑓 cos (𝑥3)
𝜕
2
𝐿

𝜕𝑥3𝜕𝑦1
𝑑𝑥3

+ 2𝑒2𝑓 cos (𝑥3)
𝜕𝑓

𝜕𝑥3

𝜕𝐿

𝜕𝑦1
𝑑𝑥3 − 𝑒

2𝑓 sin (𝑥3)
𝜕𝐿

𝜕𝑦1
𝑑𝑥3

+ 𝑒
2𝑓 sin (𝑥3)

𝜕
2
𝐿

𝜕𝑥3𝜕𝑦2
𝑑𝑥3

+ 2𝑒2𝑓 sin (𝑥3)
𝜕𝑓

𝜕𝑥3

𝜕𝐿

𝜕𝑦2
𝑑𝑥3

+ 𝑒
2𝑓 cos (𝑥3)

𝜕𝐿

𝜕𝑦2
𝑑𝑥3)

+𝑋
2
(−𝑒

2𝑓 sin (𝑥3)
𝜕
2
𝐿

𝜕𝑥3𝜕𝑦1
𝑑𝑥3

− 2𝑒2𝑓 sin (𝑥3)
𝜕𝑓

𝜕𝑥3

𝜕𝐿

𝜕𝑦1
𝑑𝑥3 − 𝑒

2𝑓 cos (𝑥3)
𝜕𝐿

𝜕𝑦1
𝑑𝑥3

+ 𝑒
2𝑓 cos (𝑥3)

𝜕
2
𝐿

𝜕𝑥3𝜕𝑦2
𝑑𝑥3

+ 2𝑒2𝑓 cos (𝑥3)
𝜕𝑓

𝜕𝑥3

𝜕𝐿

𝜕𝑦2
𝑑𝑥3

− 𝑒
2𝑓 sin (𝑥3)

𝜕𝐿

𝜕𝑦2
𝑑𝑥3)+𝑋

3
(𝑒

2𝑓 𝜕
2
𝐿

𝜕𝑥3𝜕𝑦3
𝑑𝑥3

+ 2𝑒2𝑓
𝜕𝑓

𝜕𝑥3

𝜕𝐿

𝜕𝑦3
𝑑𝑥3)

+𝑌
1
(−𝑒
−2𝑓 cos (𝑥3)

𝜕
2
𝐿

𝜕𝑥3𝜕𝑥1
𝑑𝑥3

+ 2𝑒−2𝑓 cos (𝑥3)
𝜕𝑓

𝜕𝑥3

𝜕𝐿

𝜕𝑥1
𝑑𝑥3

− 𝑒
−2𝑓 sin (𝑥3)

𝜕𝐿

𝜕𝑥1
𝑑𝑥3 + 𝑒

−2𝑓 sin (𝑥3)
𝜕
2
𝐿

𝜕𝑥3𝜕𝑥2
𝑑𝑥3

− 2𝑒−2𝑓 sin (𝑥3)
𝜕𝑓

𝜕𝑥3

𝜕𝐿

𝜕𝑥2
𝑑𝑥3

+ 𝑒
−2𝑓 cos (𝑥3)

𝜕𝐿

𝜕𝑥2
𝑑𝑥3)

+𝑌
2
(−𝑒
−2𝑓 sin (𝑥3)

𝜕
2
𝐿

𝜕𝑥3𝜕𝑥1
𝑑𝑥3

+ 2𝑒−2𝑓 sin (𝑥3)
𝜕𝑓

𝜕𝑥3

𝜕𝐿

𝜕𝑥1
𝑑𝑥3

− 𝑒
−2𝑓 cos (𝑥3)

𝜕𝐿

𝜕𝑥1
𝑑𝑥3

− 𝑒
−2𝑓 cos (𝑥3)

𝜕
2
𝐿

𝜕𝑥3𝜕𝑥2
𝑑𝑥3

+ 2𝑒−2𝑓 cos (𝑥3)
𝜕𝑓

𝜕𝑥3

𝜕𝐿

𝜕𝑥2
𝑑𝑥3

+ 𝑒
−2𝑓 sin (𝑥3)

𝜕𝐿

𝜕𝑥2
𝑑𝑥3)+𝑌

3
(−

𝜕
2
𝐿

𝜕𝑥
2
3
𝑑𝑥3

+ 2𝑒−2𝑓
𝜕𝑓

𝜕𝑥3

𝜕

𝜕𝑥3
𝑑𝑥3)−

𝜕𝐿

𝜕𝑥3
𝑑𝑥3
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+𝑋
1
(𝑒

2𝑓 cos (𝑥3)
𝜕
2
𝐿

𝜕𝑦
2
1
𝑑𝑦1

+ 2𝑒2𝑓 cos (𝑥3)
𝜕𝑓

𝜕𝑦1

𝜕𝐿

𝜕𝑦1
𝑑𝑦1

+ 𝑒
2𝑓 sin (𝑥3)

𝜕
2
𝐿

𝜕𝑦1𝜕𝑦2
𝑑𝑦1

+ 2𝑒2𝑓 sin (𝑥3)
𝜕𝑓

𝜕𝑦1

𝜕𝐿

𝜕𝑦2
𝑑𝑦1)

+𝑋
2
(−𝑒

2𝑓 sin (𝑥3)
𝜕
2
𝐿

𝜕𝑦
2
1
𝑑𝑦1

− 2𝑒2𝑓 sin (𝑥3)
𝜕𝑓

𝜕𝑦1

𝜕𝐿

𝜕𝑦1
𝑑𝑦1

+ 𝑒
2𝑓 cos (𝑥3)

𝜕
2
𝐿

𝜕𝑦1𝜕𝑦2
𝑑𝑦1

+ 2𝑒2𝑓 cos (𝑥3)
𝜕𝑓

𝑦1

𝜕𝐿

𝜕𝑦2
𝑑𝑦1)+𝑋

3
(𝑒

2𝑓 𝜕
2
𝐿

𝜕𝑦1𝜕𝑦3
𝑑𝑦1

+ 2𝑒2𝑓
𝜕𝑓

𝜕𝑦1

𝜕𝐿

𝜕𝑦3
𝑑𝑦1)

+𝑌
1
(−𝑒
−2𝑓 cos (𝑥3)

𝜕
2
𝐿

𝜕𝑦1𝜕𝑥1
𝑑𝑦1

+ 2𝑒−2𝑓 cos (𝑥3)
𝜕𝑓

𝜕𝑦1

𝜕𝐿

𝜕𝑥1
𝑑𝑦1

+ 𝑒
−2𝑓 sin (𝑥3)

𝜕
2
𝐿

𝜕𝑦1𝜕𝑥2
𝑑𝑦1

− 2𝑒−2𝑓 sin (𝑥3)
𝜕𝑓

𝜕𝑦1

𝜕𝐿

𝜕𝑥2
𝑑𝑦1)

+𝑌
2
(−𝑒
−2𝑓 sin (𝑥3)

𝜕
2
𝐿

𝜕𝑦1𝜕𝑥1
𝑑𝑦1

+ 2𝑒−2𝑓 sin (𝑥3)
𝜕𝑓

𝜕𝑦1

𝜕𝐿

𝜕𝑥1
𝑑𝑦1

− 𝑒
−2𝑓 cos (𝑥3)

𝜕
2
𝐿

𝜕𝑦1𝜕𝑥2
𝑑𝑦1

+ 2𝑒−2𝑓 cos (𝑥3)
𝜕𝑓

𝜕𝑦1

𝜕𝐿

𝜕𝑥2
𝑑𝑦1)+𝑌

3
(−

𝜕
2
𝐿

𝜕𝑦1𝜕𝑥3
𝑑𝑦1

+ 2𝑒−2𝑓
𝜕𝑓

𝜕𝑦1

𝜕

𝜕𝑥3
𝑑𝑦1)−

𝜕𝐿

𝜕𝑦1
𝑑𝑦1

+𝑋
1
(𝑒

2𝑓 cos (𝑥3)
𝜕
2
𝐿

𝜕𝑦2𝜕𝑦1
𝑑𝑦2

+ 2𝑒2𝑓 cos (𝑥3)
𝜕𝑓

𝜕𝑦2

𝜕𝐿

𝜕𝑦1
𝑑𝑦2 + 𝑒

2𝑓 sin (𝑥3)
𝜕
2
𝐿

𝜕𝑦
2
2
𝑑𝑦2

+ 2𝑒2𝑓 sin (𝑥3)
𝜕𝑓

𝜕𝑦2

𝜕𝐿

𝜕𝑦2
𝑑𝑦2)

+𝑋
2
(−𝑒

2𝑓 sin (𝑥3)
𝜕
2
𝐿

𝜕𝑦2𝜕𝑦1
𝑑𝑦2

− 2𝑒2𝑓 sin (𝑥3)
𝜕𝑓

𝜕𝑦2

𝜕𝐿

𝜕𝑦1
𝑑𝑦2 + 𝑒

2𝑓 cos (𝑥3)
𝜕
2
𝐿

𝜕𝑦
2
2
𝑑𝑦2

+ 2𝑒2𝑓 cos (𝑥3)
𝜕𝑓

𝜕𝑦2

𝜕𝐿

𝜕𝑦2
𝑑𝑦2)

+𝑋
3
(𝑒

2𝑓 𝜕
2
𝐿

𝜕𝑦2𝜕𝑦3
𝑑𝑦2 + 2𝑒

2𝑓 𝜕𝑓

𝜕𝑦2

𝜕𝐿

𝜕𝑦3
𝑑𝑦2)

+𝑌
1
(−𝑒
−2𝑓 cos (𝑥3)

𝜕
2
𝐿

𝜕𝑦2𝜕𝑥1
𝑑𝑦2

+ 2𝑒−2𝑓 cos (𝑥3)
𝜕𝑓

𝜕𝑦2

𝜕𝐿

𝜕𝑥1
𝑑𝑦2

+ 𝑒
−2𝑓 sin (𝑥3)

𝜕
2
𝐿

𝜕𝑦2𝜕𝑥2
𝑑𝑦2

− 2𝑒−2𝑓 sin (𝑥3)
𝜕𝑓

𝜕𝑦2

𝜕𝐿

𝜕𝑥2
𝑑𝑦2)

+𝑌
2
(−𝑒
−2𝑓 sin (𝑥3)

𝜕
2
𝐿

𝜕𝑦2𝜕𝑥1
𝑑𝑦2

+ 2𝑒−2𝑓 sin (𝑥3)
𝜕𝑓

𝜕𝑦2

𝜕𝐿

𝜕𝑥1
𝑑𝑦2

− 𝑒
−2𝑓 cos (𝑥3)

𝜕
2
𝐿

𝜕𝑦2𝜕𝑥2
𝑑𝑦2

+ 2𝑒−2𝑓 cos (𝑥3)
𝜕𝑓

𝜕𝑦2

𝜕𝐿

𝜕𝑥2
𝑑𝑦2)+𝑌

3
(−

𝜕
2
𝐿

𝜕𝑦2𝜕𝑥3
𝑑𝑦2

+ 2𝑒−2𝑓
𝜕𝑓

𝜕𝑦2

𝜕

𝜕𝑥3
𝑑𝑦2)−

𝜕𝐿

𝜕𝑦2
𝑑𝑦2

+𝑋
1
(𝑒

2𝑓 cos (𝑥3)
𝜕
2
𝐿

𝜕𝑦3𝜕𝑦1
𝑑𝑦3

+ 2𝑒2𝑓 cos (𝑥3)
𝜕𝑓

𝜕𝑦3

𝜕𝐿

𝜕𝑦1
𝑑𝑦3

+ 𝑒
2𝑓 sin (𝑥3)

𝜕
2
𝐿

𝜕𝑦3𝜕𝑦2
𝑑𝑦3

+ 2𝑒2𝑓 sin (𝑥3)
𝜕𝑓

𝜕𝑦3

𝜕𝐿

𝜕𝑦2
𝑑𝑦3)

+𝑋
2
(−𝑒

2𝑓 sin (𝑥3)
𝜕
2
𝐿

𝜕𝑦3𝜕𝑦1
𝑑𝑦3

− 2𝑒2𝑓 sin (𝑥3)
𝜕𝑓

𝜕𝑦3

𝜕𝐿

𝜕𝑦1
𝑑𝑦3
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+ 𝑒
2𝑓 cos (𝑥3)

𝜕
2
𝐿

𝜕𝑦3𝜕𝑦2
𝑑𝑦3

+ 2𝑒2𝑓 cos (𝑥3)
𝜕𝑓

𝜕𝑦3

𝜕𝐿

𝜕𝑦2
𝑑𝑦3)+𝑋

3
(𝑒

2𝑓 𝜕
2
𝐿

𝜕𝑦
2
3
𝑑𝑦3

+ 2𝑒2𝑓
𝜕𝑓

𝜕𝑦3

𝜕𝐿

𝜕𝑦3
𝑑𝑦3)

+𝑌
1
(−𝑒
−2𝑓 cos (𝑥3)

𝜕
2
𝐿

𝜕𝑦3𝜕𝑥1
𝑑𝑦3

+ 2𝑒−2𝑓 cos (𝑥3)
𝜕𝑓

𝜕𝑦3

𝜕𝐿

𝜕𝑥1
𝑑𝑦3

+ 𝑒
−2𝑓 sin (𝑥3)

𝜕
2
𝐿

𝜕𝑦3𝜕𝑥2
𝑑𝑦3

− 2𝑒−2𝑓 sin (𝑥3)
𝜕𝑓

𝜕𝑦3

𝜕𝐿

𝜕𝑥2
𝑑𝑦3)

+𝑌
2
(−𝑒
−2𝑓 sin (𝑥3)

𝜕
2
𝐿

𝜕𝑦3𝜕𝑥1
𝑑𝑦3

+ 2𝑒−2𝑓 sin (𝑥3)
𝜕𝑓

𝜕𝑦3

𝜕𝐿

𝜕𝑥1
𝑑𝑦3

− 𝑒
−2𝑓 cos (𝑥3)

𝜕
2
𝐿

𝜕𝑦3𝜕𝑥2
𝑑𝑦3

+ 2𝑒−2𝑓 cos (𝑥3)
𝜕𝑓

𝜕𝑦3

𝜕𝐿

𝜕𝑥2
𝑑𝑦3)+𝑌

3
(−

𝜕
2
𝐿

𝜕𝑦3𝜕𝑥3
𝑑𝑦3

+ 2𝑒−2𝑓
𝜕𝑓

𝜕𝑦3

𝜕

𝜕𝑥3
𝑑𝑦3)−

𝜕𝐿

𝜕𝑦3
𝑑𝑦3.

(18)

Using (11), we get first equations as follows:

𝑋
1
[−𝑒

2𝑓 cos (𝑥3)
𝜕
2
𝐿

𝜕𝑥1𝜕𝑦1
𝑑𝑥1

− 𝑒
2𝑓2

𝜕𝑓

𝜕𝑥1
cos (𝑥3)

𝜕𝐿

𝜕𝑦1
𝑑𝑥1

− 𝑒
2𝑓 sin (𝑥3)

𝜕
2
𝐿

𝜕𝑥1𝜕𝑦2
𝑑𝑥1

− 𝑒
2𝑓2

𝜕𝑓

𝜕𝑥1
sin (𝑥3)

𝜕𝐿

𝜕𝑦2
𝑑𝑥1]

+𝑋
2
[−𝑒

2𝑓 cos (𝑥3)
𝜕
2
𝐿

𝜕𝑥2𝜕𝑦1
𝑑𝑥1

− 𝑒
2𝑓2

𝜕𝑓

𝜕𝑥2
cos (𝑥3)

𝜕𝐿

𝜕𝑦1
𝑑𝑥1

− 𝑒
2𝑓 sin (𝑥3)

𝜕
2
𝐿

𝜕𝑥2𝜕𝑦2
𝑑𝑥1

− 𝑒
2𝑓2

𝜕𝑓

𝜕𝑥2
sin (𝑥3)

𝜕𝐿

𝜕𝑦2
𝑑𝑥1]

+𝑋
3
[−𝑒

2𝑓 cos (𝑥3)
𝜕
2
𝐿

𝜕𝑥3𝜕𝑦1
𝑑𝑥1

− 𝑒
2𝑓2

𝜕𝑓

𝜕𝑥3
cos (𝑥3)

𝜕𝐿

𝜕𝑦1
𝑑𝑥1

− 𝑒
2𝑓 sin (𝑥3)

𝜕
2
𝐿

𝜕𝑥3𝜕𝑦2
𝑑𝑥1

− 𝑒
2𝑓2

𝜕𝑓

𝜕𝑥3
sin (𝑥3)

𝜕𝐿

𝜕𝑦2
𝑑𝑥1]

+𝑌
1
[−𝑒

2𝑓 cos (𝑥3)
𝜕
2
𝐿

𝜕𝑦
2
1
𝑑𝑥1

− 𝑒
2𝑓2

𝜕𝑓

𝜕𝑦1
cos (𝑥3)

𝜕𝐿

𝜕𝑦1
𝑑𝑥1

− 𝑒
2𝑓 sin (𝑥3)

𝜕
2
𝐿

𝜕𝑦1𝜕𝑦2
𝑑𝑥1

− 𝑒
2𝑓2

𝜕𝑓

𝜕𝑦1
sin (𝑥3)

𝜕𝐿

𝜕𝑦2
𝑑𝑥1]

+𝑌
2
[−𝑒

2𝑓 cos (𝑥3)
𝜕
2
𝐿

𝜕𝑦2𝜕𝑦1
𝑑𝑥1

− 𝑒
2𝑓2

𝜕𝑓

𝜕𝑦2
cos (𝑥3)

𝜕𝐿

𝜕𝑦1
𝑑𝑥1 − 𝑒

2𝑓 sin (𝑥3)
𝜕
2
𝐿

𝜕𝑦
2
2
𝑑𝑥1

− 𝑒
2𝑓2

𝜕𝑓

𝜕𝑦2
sin (𝑥3)

𝜕𝐿

𝜕𝑦2
𝑑𝑥1]

+𝑌
3
[−𝑒

2𝑓 cos (𝑥3)
𝜕
2
𝐿

𝜕𝑦3𝜕𝑦1
𝑑𝑥1

− 𝑒
2𝑓2

𝜕𝑓

𝜕𝑦3
cos (𝑥3)

𝜕𝐿

𝜕𝑦1
𝑑𝑥1

− 𝑒
2𝑓 sin (𝑥3)

𝜕
2
𝐿

𝜕𝑦3𝜕𝑦2
𝑑𝑥1

− 𝑒
2𝑓2

𝜕𝑓

𝜕𝑦3
sin (𝑥3)

𝜕𝐿

𝜕𝑦2
𝑑𝑥1] = −

𝜕𝐿

𝜕𝑥1
𝑑𝑥1.

(19)

From here

− cos (𝑥3) 𝑉(𝑒
2𝑓 𝜕𝐿

𝜕𝑦1
)− sin (𝑥3) 𝑉(𝑒

2𝑓 𝜕𝐿

𝜕𝑦2
)+

𝜕𝐿

𝜕𝑥1

= 0.

(20)
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If we think of the curve 𝛼, for all equations, as an integral
curve of 𝑉, that is, 𝑉(𝛼) = (𝜕/𝜕𝑡)(𝛼), we find the following
equations:

(PDE1) − cos (𝑥3)
𝜕

𝜕𝑡
(𝑒

2𝑓 𝜕𝐿

𝜕𝑦1
)

− sin (𝑥3)
𝜕

𝜕𝑡
(𝑒

2𝑓 𝜕𝐿

𝜕𝑦2
)+

𝜕𝐿

𝜕𝑥1
= 0,

(PDE2) sin (𝑥3)
𝜕

𝜕𝑡
(𝑒

2𝑓 𝜕𝐿

𝜕𝑦1
)

− cos (𝑥3)
𝜕

𝜕𝑡
(𝑒

2𝑓 𝜕𝐿

𝜕𝑦2
)+

𝜕𝐿

𝜕𝑥2
= 0,

(PDE3) −
𝜕

𝜕𝑡
(𝑒

2𝑓 𝜕𝐿

𝜕𝑦3
)+

𝜕𝐿

𝜕𝑥3
= 0,

(PDE4) cos (𝑥3)
𝜕

𝜕𝑡
(𝑒
−2𝑓 𝜕𝐿

𝜕𝑥1
)

− sin (𝑥3)
𝜕

𝜕𝑡
(𝑒
−2𝑓 𝜕𝐿

𝜕𝑥2
)+

𝜕𝐿

𝜕𝑦1
= 0,

(PDE5) sin (𝑥3)
𝜕

𝜕𝑡
(𝑒
−2𝑓 𝜕𝐿

𝜕𝑥1
)

+ cos (𝑥3)
𝜕

𝜕𝑡
(𝑒
−2𝑓 𝜕𝐿

𝜕𝑥2
)+

𝜕𝐿

𝜕𝑦2
= 0,

(PDE6) 𝜕

𝜕𝑡
(𝑒
−2𝑓 𝜕𝐿

𝜕𝑥3
)+

𝜕𝐿

𝜕𝑦3
= 0,

(21)

such that the differential equations (21) are named conformal
Euler-Lagrange equations on conformally flat manifold which
is shown in the form of (𝑇𝑀, 𝑔, ∇, 𝐽). Also, therefore, the triple
(𝑇𝑀,Φ

𝐿
, 𝑉) is called a conformal-Lagrangian mechanical

system on (𝑇𝑀, 𝑔, ∇, 𝐽).

7. Weyl-Euler-Lagrangian Equations for
Conservative Dynamical Systems

Proposition 26. We choose 𝐹 = i
𝑉
, 𝑔 = Φ

𝐿
, and 𝜆 = 2𝑓

at (11) and, by considering (4), we can write Weyl-Lagrangian
dynamic equation as follows:

i
𝑉
(𝑒
2𝑓

Φ
𝐿
) = i
𝑉
(Φ
𝐿
) − 𝑑 (2𝑓) . (22)

The second part (11), according to the law of conservation of
energy [32], will not change for conservative dynamical systems
and i
𝑉
(Φ
𝐿
) = Φ

𝐿
(𝑉),

Φ
𝐿
(𝑉) − 2𝑑𝑓 = 𝑑𝐸

𝐿
,

Φ
𝐿
(𝑉) = 𝑑𝐸

𝐿
+ 2𝑑𝑓 = 𝑑 (𝐸

𝐿
+ 2𝑓) .

(23)

From (21) above 𝐿 → 𝐿 + 2𝑓. So, we can write

(PDE7) − cos (𝑥3)
𝜕

𝜕𝑡
(𝑒

2𝑓 𝜕 (𝐿 + 2𝑓)
𝜕𝑦1

)

− sin (𝑥
3
)
𝜕

𝜕𝑡
(𝑒

2𝑓 𝜕 (𝐿 + 2𝑓)
𝜕𝑦2

)

+
𝜕 (𝐿 + 2𝑓)

𝜕𝑥1
= 0,

(PDE8) sin (𝑥3)
𝜕

𝜕𝑡
(𝑒

2𝑓 𝜕 (𝐿 + 2𝑓)
𝜕𝑦1

)

− cos (𝑥3)
𝜕

𝜕𝑡
(𝑒

2𝑓 𝜕 (𝐿 + 2𝑓)
𝜕𝑦2

)

+
𝜕 (𝐿 + 2𝑓)

𝜕𝑥2
= 0,

(PDE9) −
𝜕

𝜕𝑡
(𝑒

2𝑓 𝜕 (𝐿 + 2𝑓)
𝜕𝑦3

)+
𝜕 (𝐿 + 2𝑓)

𝜕𝑥3
= 0,

(PDE10) cos (𝑥3)
𝜕

𝜕𝑡
(𝑒
−2𝑓 𝜕 (𝐿 + 2𝑓)

𝜕𝑥1
)

− sin (𝑥3)
𝜕

𝜕𝑡
(𝑒
−2𝑓 𝜕 (𝐿 + 2𝑓)

𝜕𝑥2
)

+
𝜕 (𝐿 + 2𝑓)

𝜕𝑦1
= 0,

(PDE11) sin (𝑥3)
𝜕

𝜕𝑡
(𝑒
−2𝑓 𝜕 (𝐿 + 2𝑓)

𝜕𝑥1
)

+ cos (𝑥3)
𝜕

𝜕𝑡
(𝑒
−2𝑓 𝜕 (𝐿 + 2𝑓)

𝜕𝑥2
)

+
𝜕 (𝐿 + 2𝑓)

𝜕𝑦2
= 0,

(PDE12) 𝜕

𝜕𝑡
(𝑒
−2𝑓 𝜕 (𝐿 + 2𝑓)

𝜕𝑥3
)+

𝜕 (𝐿 + 2𝑓)
𝜕𝑦3

= 0,

(24)

and these differential equations (24) are named Weyl-Euler-
Lagrange equations for conservative dynamical systems which
are constructed on conformally flat manifold (𝑇𝑀, 𝑔, ∇, 𝐽, 𝐹)

and therefore the triple (𝑇𝑀,Φ
𝐿
, 𝑉) is called a Weyl-

Lagrangian mechanical system.

8. Equations Solving with Computer

Theequations systems (21) and (24) have been solved by using
the symbolic Algebra software and implicit solution is below:

𝐿 (𝑥1, 𝑥2, 𝑥3, 𝑦1, 𝑦2, 𝑦3, 𝑡)

= exp (−𝑖 ∗ 𝑡) ∗ 𝐹1 (𝑦3 − 𝑖 ∗ 𝑥3) + 𝐹2 (𝑡)

+ exp (𝑡 ∗ 𝑖) ∗ 𝐹3 (𝑦3 +𝑥3 ∗ 𝑖) for 𝑓 = 0.

(25)
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Figure 1

It is well known that an electromagnetic field is a physical field
produced by electrically charged objects. The movement of
objects in electrical, magnetic, and gravitational fields force is
very important. For instance, on a weather map, the surface
wind velocity is defined by assigning a vector to each point
on a map. So, each vector represents the speed and direction
of the movement of air at that point.

The location of each object in space is represented by
three dimensions in physical space. The dimensions, which
are represented by higher dimensions, are time, position,
mass, and so forth. The number of dimensions of (25) will be
reduced to three and behind the graphics will be drawn. First,
implicit function at (25) will be selected as special. After the
figure of (25) has been drawn for the route of the movement
of objects in the electromagnetic field.

Example 27. Consider

𝐿 (𝑥1, 𝑥2, 𝑥3, 𝑦1, 𝑦2, 𝑦3, 𝑡) = exp (−𝑖 ∗ 𝑡) + exp (𝑡 ∗ 𝑖) ∗ 𝑡 − 𝑡2, (26)

(see Figure 1).

9. Discussion

A classical field theory explains the study of how one or more
physical fields interact with matter which is used in quantum
and classical mechanics of physics branches. In this study, the
Euler-Lagrange mechanical equations (21) and (24) derived
on a generalized on flat manifolds may be suggested to deal
with problems in electrical, magnetic, and gravitational fields
force for the path of movement (26) of defined space moving
objects [24].
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[12] M. D. M. González, “Singular sets of a class of locally confor-
mally flat manifolds,” Duke Mathematical Journal, vol. 129, no.
3, pp. 551–572, 2005.

[13] S. Akbulut and M. Kalafat, “A class of locally conformally flat
4-manifolds,”NewYork Journal of Mathematics, vol. 18, pp. 733–
763, 2012.

[14] S.-H. Zhu, “The classification of complete locally conformally
flat manifolds of nonnegative Ricci curvature,” Pacific Journal
of Mathematics, vol. 163, no. 1, pp. 189–199, 1994.

[15] H. M. Abood, “Almost Hermitian manifold with flat Bochner
tensor,” European Journal of Pure and Applied Mathematics, vol.
3, no. 4, pp. 730–736, 2010.

[16] K. Olszak and Z. Olszak, “On 4-dimensional, conformally flat,
almost 𝜀-Kählerianmanifolds,” Journal of Geometry and Physics,
vol. 62, no. 5, pp. 1108–1113, 2012.

[17] S. Upadhyay, “A bounding question for almost flat manifolds,”
Transactions of the AmericanMathematical Society, vol. 353, no.
3, pp. 963–972, 2001.

[18] 2015, http://mathworld.wolfram.com/FlatManifold.html.
[19] 2015, http://en.wikipedia.org/wiki/Conformally flat manifold.
[20] D. McDu and D. Salamon, J-Holomorphic Curves and Quantum

Cohomology, AMS, 1995.
[21] 2015, http://en.wikipedia.org/wiki/Conformal class.
[22] G. B. Folland, “Weyl manifolds,” Journal of Differential Geome-

try, vol. 4, pp. 145–153, 1970.
[23] L. Kadosh, Topics in weyl geometry [Ph.D. thesis], University of

California, Berkeley, Calif, USA, 1996.
[24] H. Weyl, Space-Time-Matter, Dover Publications, 1922, Trans-

lated from the 4th German edition by H. Brose, Methuen,
London, UK; Dover Publications, New York, NY, USA, 1952.
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