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1. Introduction
The products of explosive eruptions in the form of 
volcanic ash (tephra), after being transported for long 
distances by wind, are settled and altered to bentonites 
(smectite-rich volcanogenic clay rocks) in early diagenesis. 
In late diagenesis, these bentonites are transformed into 
K-bentonites by chemical modification and K-fixation with 
progressive illitization and then finally into metabentonites 
by low-grade metamorphism (Fortey et al., 1996). During 
diagenesis and very low-grade metamorphism, due to 
potassium enrichment, smectite transforms to mixed-layer 
illite-smectite (I-S) and then illite in K-bentonites (Weaver, 
1953; Nadeau et al., 1985; Merriman and Roberts, 1990).

The discovery of K-bentonites dates back as early 
as the 1920s. Since then, their geologic importance has 
been revealed and proven by ongoing interdisciplinary 

research. Nelson (1921, 1922) originally denoted the 
pyroclastic nature of some rocks in the Paleozoic rock 
system in the eastern part of the United States. Following 
Nelson’s original remarks, Allen (1932), based on the 
crescent-shaped shard structures and the presence of 
sanidine, apatite, and euhedral zircon crystals, evidenced 
the volcanic origin of those deposits. Rosenkrans (1934) 
and Kay (1944a, 1944b) were the first to use bentonites for 
stratigraphic correlations. The significance of K-bentonites 
as widespread marker beds has been recognized recently 
since they are also datable using fission track and U/Pb 
dating of zircons, K/Ar, and Ar/Ar of amphibole, biotite, 
and sanidine (Kolata et al., 1996).

Worldwide research activities on K-bentonites 
have diversified aims such as discovering localities 
and studying their mineralogical, petrographic, and 
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chemical properties and stratigraphic descriptions; using 
K-bentonite beds having event-stratigraphic significance 
for regional correlations; allowing the determination of 
paleogeographic, tectonic, and magmatic setting of source 
volcanoes in the studied regions; and using K-bentonites 
for understanding the illitization mechanism and age of 
illitization of smectite during burial diagenesis.

Previous investigations showed that for the 
explanation of the tectonic setting and genesis of 
K-bentonites magmatic and tectonic discrimination 
diagrams can be utilized (Winchester and Floyd, 1977; 
Floyd and Winchester, 1978; Huff and Türkmenoğlu, 1981; 
Merriman and Roberts, 1990; Huff et al., 1992). Although 
extensive research results have been published worldwide 
on K-bentonites of volcanic origin, only a few short 
reports on the occurrence of them in Turkey have been 
published recently (Türkmenoğlu, 2001; Türkmenoğlu 
et al., 2009). Those authors reported greenish-gray clay 
beds of 2–50 cm thick alternating with platform-type 
limestones and dolomitic limestones of Middle Devonian-
Lower Carboniferous age in the Yılanlı Formation, which 
is exposed in the Zonguldak-Bartın area of the western 
Black Sea region. The purposes of this present study are 
to document the geographic and stratigraphic features 
of a set of K-bentonite beds in the Bartın-Zonguldak 
area, to summarize their clay mineralogy to help in the 
understanding of the diagenetic processes controlling 
their formation, to summarize their chemical composition 
to reveal original chemical characteristics of the volcanic 
ash from which these K-bentonites were derived, and, 
finally, to correlate the studied K-bentonites with data 
from coeval tephra worldwide. 

2. Regional geological setting
The study area is located in the Bartın-Zonguldak area, 
in northwestern Anatolia (Figure 1a), where a set of 
K-bentonite beds were detected for the first time in Turkey. 
A set of thin K-bentonite beds were found to intercalate 
with the limestone and dolomitic limestone succession 
of the Middle Devonian-Early Carboniferous Yılanlı 
formation. Göncüoğlu and Kozur (1998, 1999), Göncüoğlu 
and Kozlu (2000), and Yanev et al. (2006) suggested that 
the northwestern Black Sea region comprises a terrane 
assemblage and consists of two different Gondwanan 
microplates (e.g., Göncüoğlu et al., 1997), the İstanbul 
terrane (İT) in the west and the Zonguldak terrane (ZT) in 
the east (Figure 1b). The main difference between the ZT 
and İT was explained by stratigraphic variations between 
the two and the presence of a Caledonian time thermal 
event in the ZT (Bozkaya et al., 2012). In the ZT, Paleozoic 
successions include a low-grade angular unconformity 
(Figures 1c and 2) between Wenlock graptolitic shales 
(Sachanski et al., 2010) and late Early Devonian (Emsian) 

(Göncüoğlu et al., 2004) carbonates, whereas in the İT, the 
deposition is continuous during the same time interval.

Equivalents of the studied K-bentonites were not yet 
described from the other parts of the İstanbul-Zonguldak 
terranes or their equivalents in the surrounding Paleozoic 
terranes such as Moesia, the Balkans, or the Caucasus. 
However, it may be suggested that these tephra layers were 
formed in relation with arc-volcanism, generated by the 
closure of the Variscan Rheic Ocean (Nzegge et al., 2006; 
Okay et al., 2010; Bozkaya et al., 2012). 

A generalized lithostratigraphic section of the 
Zonguldak terrain is shown in Figure 2. The basement 
rocks are composed of a crystalline series covering 
continental crust-originated gneisses; an oceanic set 
of gabbros, basalts, and ultramafics; and an island-arc 
complex of pyroclastics, granites, and felsic volcanic rocks. 
This Cadomian basement is overlain unconformably 
by Lower Ordovician (Göncüoğlu et al., 2014) units, 
comprising greenish gray siltstones and mudstones 
(Bakacak Formation) and dark-red conglomerates and 
sandstones (Kurtköy and Aydos formations). A successive 
thick Upper Ordovician to Middle Silurian package is 
represented by the Karadere, Ketencikdere, and Fındıklı 
formations including graptolitic black and gray shales 
and siltstones with limestone interlayers (Dean et al., 
1997). The Upper Silurian strata are eroded. The Fındıklı 
Formation is unconformably overlain by the Middle 
Devonian Bıçkı and Ferizli formations consisting of red 
sandstones-mudstones and shales-siltstones, respectively. 
The Late Middle Devonian-Late Early Carboniferous 
(Sephukovian) Yılanlı Formation, including shallow-
marine dolomites and limestones, succeeds the Ferizli 
Formation (Aydın et al., 1987; Derman, 1997; Yalçın and 
Yılmaz, 2010; Bozkaya et al., 2012). The Yılanlı Formation 
is composed of gray, dark gray, and black medium to thick-
bedded limestones, dolomitic limestones, and dolomites 
alternating with thin-bedded, black, calcareous shales. 
The approximate thickness of the Yılanlı Formation is 800 
m. The transitional boundaries of the Yılanlı Formation 
with the Ferizli and Madendere formations were reported 
by Gedik et al. (2005). The fossil findings (Dil, 1976) 
indicate Eifelian-Visean age (Middle Devonian-Early 
Carboniferous) for the Yılanlı Formation. The deposition 
of the Yılanlı Formation continued from the Middle 
Devonian to Early Carboniferous in an epeiric carbonate 
platform/shelf (Yalçın and Yılmaz, 2010) that was 
covering waste areas during this time interval (Harries, 
2009; Kabanov et al., 2010). The formation is overlain 
by a sequence of more than 500 m thick of alternating 
limestones and shales (Figures 1c and 2, Madendere and 
Karadon formations), followed by flood-plain deposits 
with numerous coal-stems of Westphalian age (Kerey, 
1984). 
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Figure 1. (a) The main tectonic units of Turkey and the location of the İstanbul and Zonguldak terranes (Göncüoğlu 
et al., 1997). NAFZ: North Anatolian Fault Zone, EAFZ: East Anatolian Fault Zone. Symbols: 1: Tertiary cover: 2: 
Istranca Terrane, 3: İstanbul-Zonguldak Terrane, 4: Sakarya Composite Terrane, 5: ophiolites and ophiolitic mélanges 
of Neotethyan Suture Belts, 6: Kütahya-Bolkardağ Belt (Anatolides), 7: Menderes and Central Anatolian Crystalline 
Complexes (Anatolides), 8: Taurides, 9: Bitlis-Pötürge Metamorphics (SE Anatolian Autochthon), 10: SE Anatolian 
Autochthon. (b) The distribution of the Paleozoic outcrops in the İstanbul and Zonguldak terranes (modified from 
Bozkaya et al., 2012). (c) Geological map of the study area and geographic settings of sampling quarries (modified 
from Akbaş et al., 2002).
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Figure 2. Generalized lithostratigraphic section of the Zonguldak terrain (modified form Bozkaya et al., 2012).
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The oldest cover of the Variscan units of the Zonguldak 
Terrane are the Upper Permian (Tatarian) lagoonal 
sediments (Göncüoğlu et al., 2011) to Upper Triassic 
continental red beds of the Çakraz Formation (Alişan and 
Derman, 1995). 

3. Stratigraphy of the K-bentonite beds
The studied K-bentonite beds are found in the upper 
part of the Yılanlı Formation in the ZT. K-bentonites 
outcrop mainly at two areas to the north of Bartın. The 
first outcrop, the Gavurpınarı limestone quarry, is located 
around Gavurpınarı, to the north of Bartın (Figure 1c). It 
is included within the 1:25,000-scale E28c1 map of Turkey, 
with the coordinates of 41°42’04.39’N, 32°1’41.88’E. 
The second outcrop is at the Yılanlı Burnu quarry to the 
northwest of Bartın Çayı, on the Black Sea coast. This 
area is located within the 1:25,000-scale E28d2 map at 
41°41’05.10’N, 32°14’49.60’E.

At the Gavurpınarı quarry, a 40-m-thick package of 
the Yılanlı formation is exposed (Figure 3). The layering of 
the limestones in the quarry is almost vertical. The studied 
section is at the northernmost edge of the third quarry 
level. Here, the section starts at a fault within the Yılanlı 
formation. Towards the south, it comprises massive, gray-
brown limestone-dolomitic limestone layers, interbedded 
with a set of K-bentonite beds with thicknesses 
varying between 2 and 60 cm (Figure 3). K-bentonites 
characteristically have blue-green colors when fresh but 
they became yellowish brown in color due to weathering. 
When wet, they have a waxy, slippery texture due to their 
clay-rich composition.

At the Yılanlı Burnu quarry, the Yılanlı formation 
is 46 m thick and exposed as alternations of limestone, 
dolomitic limestone, marl layers, and thin clay beds (Figure 
4). Limestones are cream-gray in color and have bioclastic, 
peloidal, and fossiliferous textures. They are highly 
dolomitized and affected by intensive folding and faulting. 
A number of green-gray K-bentonite beds are exposed, 
intercalated with carbonate rocks at the lowermost part of 
the sequence (Figure 4). 

K-bentonite beds do not include any organic material 
and hence they were dated indirectly by the fossils found 
within the limestones underlying and overlying them. The 
marly limestones below the bentonitic beds include bands 
of a few millimeters in thickness, very rich in ostracods. 
The ostracods and the very few conodonts that we found 
were not enough to yield reliable ages. However, the pure 
limestones between the K-bentonites in the Gavurpınarı 
limestone quarry (see Figure 3) included foraminifera 
such as Parathurammina elegans Poyarkov, 1969; Bisphaera 
elegans Vissarionova, 1950; Radiosphaera spp.; Tubeporina 
sp.; Elenella sp.; Irregularina spp.; Eogeinitzina sp.; and 
Eogeinitzina (?) spp. From these, the age-diagnostic taxon 

is Eogeinitzina sp., which is indicative for the Frasnian and 
mainly the late Frasnian (Dil, 1976; Vachard, 1991, 1994; 
Vachard et al., 1994; Racki and Sobon-Podgorska, 1993; 
Kalvoda, 2001; Sabirov, 2004).

4. Materials and methods
A total of 46 samples were collected from the Gavurpınarı 
and Yılanlı Burnu quarries for laboratory analysis. 
Mineralogical properties were investigated by polarizing 
microscope, scanning electron microscope equipped 
with energy dispersive X-ray spectrometry (SEM-EDX), 
X-ray powder diffractometer (XRD), and high-resolution 
transmission electron microscopy (HR-TEM) in the 
Central Laboratory of Middle East Technical University. 
Chemical analyses of the samples were conducted by 
inductively coupled plasma-mass spectrometry (ICP-
MS) by ACME Analytical Laboratories Ltd. (Vancouver, 
Canada). 

The bulk and clay mineralogy and the crystal-chemical 
data of illites were studied for 14 samples by XRD using a 
Rigaku Miniflex II diffractometer with Ni-filtered CuKα 
radiation and a graphite monochromator. The X-ray tube 
was operated at 35 kV and 15 mA with a scanning speed of 
2° 2θ/min for mineral identification and 1° 2θ/min for illite 
crystal-chemical characteristics (e.g., illite crystallinity; 
Kisch, 1991; Histon et al., 2007). Clay fractions (grain size 
of <2 µm) were separated by dispersing the bulk sample in 
distilled water after acid treatment to eliminate carbonate 
minerals, followed by sedimentation and centrifugation. 
Oriented mounts were obtained by thin-smeared clay 
paste on glass slides. Similar procedures were used to 
further fractionate the clay fractions into finer grain sizes 
(1–2 µm, 0.5–1 µm, 0.25–0.5 µm, <0.25 µm). XRD patterns 
were obtained for air-dried, ethylene-glycolated samples 
that were heated at 350 and 550 °C. For the determination 
of clay minerals from XRD patterns, the data of Hoffman 
and Hower (1979) and Moore and Reynolds (1997) were 
used. Illite “crystallinity” (Kübler index, KI; Kübler, 1968; 
Guggenheim et al., 2002) was determined by measuring 
the full width at half maximum (FWHM) at the first basal 
illite reflection near 10 Å in air-dried samples. Crystallinity 
index standards (CIS; Warr and Rice, 1994) were used for 
calibration of FWHM values to KI with the linear equation 
of ICCIS = 1.18 × ICODTU – 0.015, r2 = 0.999. Narrowing of 
the peak width suggests an increase in crystallinity due 
to a decrease of the scattering domain of illite by collapse 
of interlayers and conversion of smectite to illite under 
increasing temperature and pressure conditions. A broad 
peak indicates interstratification of expandable clays, 
interlayer hydration, and small crystal size (Weaver, 1961; 
Kübler, 1968). Three main zones, a low- and high-grade 
diagenetic zone (0.42), anchizone (0.42-0.25), and epizone 
(< 0.25), were distinguished for KI values (e.g., Frey, 1987; 
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Merriman and Frey, 1999). The intensity ratio [Ir = (I001)/
(I003)air-dried / (I001)/(I003)ethylene-glycolated)] measurements 
were realized for the relative abundance of expandable 
(smectite) layers (Środoń, 1984). The d060 values of illite 
were identified for estimating the octahedral Fe+Mg 
content (atoms per formula unit, a.p.f.u.) of illites by using 
the equation of Hunziker et al. (1986). Illite crystallite size 
(domain size) values were estimated on the KI-Ir diagram 
of Eberl and Velde (1989) and checked by data obtained 
from the WINFIT computer program (Krumm, 1996). The 
deconvolution of XRD patterns was also performed using 
this computer program. Illite polytypes were identified 
at characteristic peaks (2θ = 16°–36°) for unoriented 
preparations (Bailey, 1988). I(2.80) / I(2.58) and I(3.07) / I(2.58) 
peak area ratios, proposed by Grathoff and Moore (1996), 
were used in order to identify polytype ratios.

The SEM-EDX studies were performed using a Quanta 
400F field emission instrument in order to determine 
the particle morphologies and textural relationships. 
Operating conditions were arranged as 32 s counting 
time and 20 kV accelerating voltage. Additionally, the 
chemical data were obtained by EDX. HR-TEM was used 
to observe the clay mineral structures in detail. For this 
purpose, clay fractions of <0.1 µm were separated by a 
high-speed centrifuge and then examined with HR-TEM 
using a JEOL JEM 2100F instrument operating at 80–200 
kV on samples precipitated from a dilute suspension onto 
a carbon-coated grid in order to examine lattice images 
and thickness distribution of illites.

5. Results
5.1. Optical microscopy
K-bentonites collected from different beds at the 
Gavurpınarı and Yılanlı Burnu quarries display similar 
mineralogical and petrographic features (Figure 5). The 
relict primary minerals characterizing the volcanic origin 
of those K-bentonites are biotite, zircon, quartz, feldspar, 
amphibole, and apatite. Biotite and zircon crystals display 
euhedral to anhedral crystal outlines. The vitroclastic 
pyroclastic texture including completely sericitized 
(illitized) volcanic matrix, volcanic glass, and/or pumice 
shards (Figures 5a and 5b) and the presence of euhedral 
zircon and biotite crystals indicate volcanic origin for 
K-bentonites. However, some zircon crystals are slightly 
rounded (Figures 5c and 5d), which is attributed to their 
detrital origin. The crystal size of idiomorphic zircons is 
about 100 µm, which indicates a distal volcanic source 
for parent tephra. Pyrite, dolomite, gypsum, and calcite 
formed as diagenetic minerals. Pyrites are mostly oxidized 
to limonite, which resulted in the yellowish-brown colors 
of K-bentonites in field exposure. At Yılanlı Burnu quarry, 
dolomite and very fine-grained sericitized materials are 
found together, and therefore K-bentonites exhibit some 

differences as tuffite or dolomitic marls (Figures 5e and 
5f).

The carbonate rocks at the Gavurpınarı quarry consist 
of stromatolite-bearing dolomitic limestones, ostracod-
bearing peloidal micritic limestones, ostracod-bearing 
clayey limestones, ostracod- and intraclast-bearing 
peloidal micritic limestones, polygenic calcareous breccia, 
and clayey limestone/marl. At the Yılanlı Burnu quarry, the 
main lithologies are composed of limestones or dolostones, 
where dolomitization is more intensive compared to the 
Gavurpınarı samples. Rhombohedral dolomite crystals can 
be observed as replacing calcite. Dolomitized stromatolite, 
bivalve-bearing dolostone, peloidal dolostone, organic 
dolostone, and ostracod-bearing clayey limestone/marl 
facies are common at this location.

Both field observations and microfacies distribution 
demonstrate the abundance of stromatolite- and ostracod-
bearing facies contrary to the absence of any pelagic 
and/or sedimentary structures indicating a high-energy 
environment characteristic of a shallow intraplatform 
sedimentation environment. Additional supporting 
evidence is the presence of microbreccia and the absence 
of coral/crinoid/echinoid/foraminifera/algae fossils. All 
together the successive intercalation of marl and mudstone 
(or tephra) and limestone and dolostone indicates that 
the sedimentation environment should be an ‘epeiric’ 
platform.
5.2. Clay mineralogy
Illite is the major clay mineral in the K-bentonite samples 
from the two quarry locations (Figure 6). In a few 
samples, kaolinite and mixed-layer illite/smectite are also 
identified. Trace quantities of imogolite could be detected 
by its 18 Å peak in the very-fine size fraction (<0.5 µm) of 
samples OCB-2 and YBA-19A from the Gavurpınarı and 
Yılanlı Burnu quarries, respectively (Figures 7 and 8). This 
mineral is known from modern soils that have formed 
from volcanic tephra, and it is generally not preserved in 
sedimentary deposits. The existence of negligible amounts 
of imogolites should be related to soil formation processes. 
Illites have typical sharp peaks at 10 Å (001), 5 Å (002), 
and 3.33 Å (003) indicating pure illite. However, the 
deconvolution of asymmetric peaks as performed by the 
WINFIT program shows the presence of phases of well-
crystallized illite (WCI), poorly crystallized illite (PCI), and 
lesser amounts of mixed-layer illite-smectite (I-S) (Figure 
9). Together with the increasing crystal sizes from <0.25 
µm to >2 µm, the PCI and WCI peaks relatively sharpen 
and become narrower, in accordance with a progressive 
diagenetic process. During progressive diagenesis, the 
percentage of the mixed-layer I-S subpopulation decreases, 
while the abundance of PCI and especially WCI increases 
(Lanson et al., 1998; Bozkaya et al., 2011).

The KI values of illites range from 0.69 to 0.77 (average: 
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Figure 5. Photomicrographs of K-bentonite samples. (a, b) Pyroclastic (vitroclastic) textured K-bentonite 
sample from Gavurpınarı quarry with sericitized volcanic matrix and shards of glass (or pumices) of a- 
crossed nicols-cn, b- plain polarized light-ppl. (c, d) Sub- to anhedral and slightly rounded subhedral 
zircon crystals within the sericitized volcanic matrix of K-bentonite sample from Gavurpınarı quarry, c- 
cn, d- ppl. (e) Very-fine-grained sericitized materials and fine-grained dolomites in the dolomitic tephra 
(tuffite) in the Yılanlı Burnu quarry (cn). (f) Dolomite-rich tephra with low amounts of sericitized 
volcanic materials in the dolomitic marl in the Yılanlı Burnu quarry (cn).

0.72 Δ°2θ) for Gavurpınarı quarry samples and 0.47 and 
0.93 (average: 0.71 Δ°2θ) for Yılanlı Burnu quarry samples, 
indicating high diagenetic grade (Table 1; Figure 10). 
Although these values are similar for both quarries, illites 
in the Yılanlı Burnu quarry reflect a somewhat higher 
grade than the Gavurpınarı area. In terms of phyllosilicate 
reaction series in clayey rocks, KI values reflect progressive 
reactions such as the depletion in smectite layers, a decrease 

in compositional heterogeneity of series members, and 
polytypic transformations during the illitization process. 
It is primarily controlled by parameters such as disorder in 
crystal structure, crystal thickness, crystal size, expandable 
mineral presence, precursor volcanic glass composition, 
and stage of diagenesis during illitization (Altaner and 
Ylagan, 1997).

The Ir values (1.26–1.53, an average of 1.42 for the 
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Figure 6. XRD patterns of bulk and oriented clay fractions of samples from Yılanlı Burnu (YBA-19A 
and YB-4) and Gavurpınarı (KRD-B3, OCB-2A) quarries.
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Figure 7. The variations of XRD patterns of clay fraction according to different sizes in OCB-2A sample from Gavurpınarı quarry.

Gavurpınarı quarry, and 1.13–1.44, an average of 1.32 for 
the Yılanlı Burnu quarry) point to the presence of swelling 
layers (smectite) in illites. Thus, Ir values of Gavurpınarı 
illites display higher values than Yılanlı Burnu quarry 
illites, which can be explained by relatively higher smectite 
contents and lower diagenetic conditions. The comparison 
of KI and Ir values of illites indicates that the content of 
swelling (or smectite) component and crystallite sizes (N) 
of illites are 2%–5% and 10–25 nm, respectively (Figure 10). 
The determined illite polytypes in K-bentonites are 2M1 
and 1Md (Figure 11). The 2M1/(2M1 + 1Md) ratios (%) are 
more or less similar (20%–50%, an average of 37%) for the 
two quarries; however, illites of the Yılanlı Burnu quarry 
have more 2M1 than illites of the Gavurpınarı quarry 
(Table 1). Based on the d060 reflections (1.4991–1.5033 Å), 
the octahedral Mg+Fe contents of illites are between 0.27 
and 0.48 a.p.f.u., showing the dioctahedral composition 
between end-member muscovite and phengite.
5.3. Micromorphology and crystal structures of illites
Illites belonging to K-bentonites from the Gavurpınarı and 
Yılanlı Burnu quarries exhibit a platy habit with curved 
edges (Figure 12a). Nadaeu et al. (1985), Inoue et al. (1990), 

and Altaner and Ylagan (1997) stated that this kind of platy 
morphology with anhedral flakes is a common feature for 
illites from K-bentonites. By increasing the proportion 
of illite layers in mixed-layer I-S, the morphology of 
illite changes from sponge-like or cellular to platy or 
ribbon-like as a result of a change in layer stacking from 
turbostratic (randomly distributed layers in any direction) 
to rotational ordering of the 1Md type during burial 
diagenesis. This rotationally ordered structure results in a 
plate or sheet-like crystal habit by means of the contiguity 
of quasihexagonal oxygen surfaces from adjacent layers, 
which allows more crystalline regularity in the direction 
of the a-b plane (Keller et al., 1986).

The <0.1 µm size fractions of the clay illite from 
K-bentonite samples from two different locations were 
investigated by HR-TEM. Regular stacking sequences of 
illites could be observed (Figure 12b). It is suggested that 
the illite mineral can be a long-range ordered (≥R3) mixed-
layer illite-smectite on the basis of change from random 
(R0) to short-range (R1) ordered, and then to long-range 
(R3) ordered I-S during progressive illitization of smectite 
(e.g., Bethke et al., 1986; Lindgreen and Hansen, 1991). 
Illite crystals exhibit anhedral lamellar micromorphologies 
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Figure 8. The variations of XRD patterns of clay fraction according to different sizes in YBA-19A sample from Yılanlı Burnu quarry.

and ordered lattice fringe images with T-O-T layers 
(Figure 12b). This kind of ordered structure without any 
defects demonstrates an effect of the advanced stage of 
diagenetic evolution on the studied illites (Merriman and 
Peacor, 1999). The crystallite sizes of illite particles reach 
up to 20 nm, compatible with data obtained from the KI-Ir 
diagram (see Figure 10).
5.4. Chemical composition of tephras
Depending on the composition of the precursor tephra 
and the water/rock ratio in a marine system, the chemical 
composition of the initial ash is modified through 
gains and losses of elements with respect to the altering 
solutions (Christidis, 1998). During diagenesis, by 
homogenization of tephra with marine and pore water, 
volcanic glass progressively alters or transforms into 
smectite, then mixed-layer illite-smectite, and finally illite. 
Thus, in this study, the major elements are not considered 
in determination of original volcanic ash composition due 
to modification of their relative proportions by alteration 
processes. Thus, only the less mobile trace element- 
and rare earth element-based chemical classification 
(Winchester and Floyd, 1977) are utilized in order to 

reveal the original compositions of the precursor tephras. 
The geochemical properties of K-bentonites also provide 
information on the tectonomagmatic settings of eruption 
centers as the sources of these tephras.

In Tables 2 and 3, the bulk chemical analysis results 
of K-bentonites and K-bentonite-bearing carbonate rock 
samples from the Gavurpınarı and Yılanlı Burnu quarries 
are listed, respectively. In general, as the CaO and MgO 
values increase due to the presence of calcite and dolomite, 
the SiO2 and Al2O3 concentrations decrease. High Fe2O3 
contents occur because of abundant pyrite of secondary 
origin. The K2O values, which reach up to 6%, indicate the 
dominancy of illite in K-bentonites. 

The Zr/TiO2 - Nb/Y immobile trace element diagram 
(Figure 13) is useful to determine the source characteristics 
of the tephra (Floyd and Winchester, 1978). Plotting of 
eight K-bentonite samples on this diagram demonstrates 
that the precursor volcanic ash(es) had an alkali-basaltic 
character (Chalot-Prat et al., 2007).

The samples from both the Gavurpınarı and the Yılanlı 
Burnu quarries display similar geochemical trends based on 
chondrite-normalized trace and REE diagrams. However, 
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Figure 9. Decomposition of first basal illite peaks near 10 Å for 
different size fractions and variations in peak widths in OCB-
2A sample from Gavurpınarı quarry (WCI = well-crystallized 
illite, PCI = poorly crystallized illite, I-S = illite-smectite).

Table 1. The crystal chemical properties of illites.

Sample no. Quarry KI(Δ°2q) I002/I001 Ir d060 b 1Md 2M1 Mg/Fe

OCB1-S Gavurpınarı 0.69 0.38 1.53 1.5015 9.0090 55 45 0.39

OCB2-A Gavurpınarı 0.69 0.38 1.26 1.5000 8.9990 60 40 0.32

OC2B-B Gavurpınarı 0.77 0.40 1.48 1.4991 8.9946 75 25 0.27

KRD-B6 Gavurpınarı 0.74 0.49 1.42 1.4996 8.9976 35 65 0.30

YB-1 Yılanlı Burnu 0.47 0.37 1.43 1.5013 9.0078 60 40 0.38

YB-2 Yılanlı Burnu 0.78 0.41 1.13 1.4995 8.9970 80 20 0.30

YBA-5 Yılanlı Burnu 0.53 0.43 1.20 1.5039 9.0234 50 50 0.51

YBA-8 Yılanlı Burnu 0.93 0.48 1.44 1.4992 8.9952 80 20 0.28

YBA-10 Yılanlı Burnu 0.84 0.40 1.38 1.5013 9.0078 55 45 0.38

YBA-19A Yılanlı Burnu 0.69 0.32 1.32 1.5033 9.0198 60 40 0.48
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the tephras of the Gavurpınarı quarry are relatively more 
enriched than tephras of the Yılanlı Burnu quarry (Figures 
14 and 15). The lack of negative anomalies of Ta and Nb 
elements and the REE diagram indicate a possible mantle 

source for the tephras. The relative negative anomaly 
of Sr can be explained by alteration of the bentonites. 
The negative Eu anomaly is commonly attributed to the 
removal of Eu by plagioclase during fractionation of the 
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melt. This anomaly is typical of evolved magmas (Calarge 
et al., 2006). K in illite compositions could be sourced from 
K-bearing primary igneous minerals such as feldspars or 
micas. However, for the original composition of volcanic 
material generating those studied K-bentonites (tephras), 
the geochemical discrimination analyses suggest an alkali-
basaltic magma source (Figure 13), and an anorthite-rich 
feldspar composition will be expected for this magma 
composition. Thus, the possible source of the high K 
content of illites remains a question.

6. Discussion
6.1. Mineralogy and depositional environment
K-bentonites intercalated with the carbonate rocks of the 
Late Devonian-Early Carboniferous Yılanlı formation 
exposed at the Gavurpınarı and Yılanlı Burnu quarries 
consist mainly of illite, although some kaolinite and mixed-
layer illite-smectite is also present. The major nonclay 
minerals of primary volcanic origin are quartz, feldspar, 
biotite, zircon, and apatite. This assemblage of nonclay 
minerals detected in K-bentonites is a strong indication of 
parent volcanic ashes (tephra), which are probably from 
a distal volcanic source as suggested by very small crystal 
size of around 100 m. 

New minerals, which are foreign to the original tephras, 
are the clay minerals illite, kaolinite, and mixed-layer I-S. 
They owe their origin to the diagenetic processes. Pyrite, 
calcite, dolomite, and gypsum, on the other hand, are 
the new nonclay minerals, formed also due to diagenetic 
processes. Pyrite is present abundantly in some of the 
K-bentonite samples. They were oxidized when exposed to 
air so that the original grayish-green colors of K-bentonite 

beds turned to brownish. This property provides a quick 
identification of K-bentonites beds in the field.

The petrographic examination of carbonate rocks, 
mainly limestones and dolomitic limestones, from the 
studied quarries indicated that the original volcanic 
ashes were settled in a shallow intraplatform depositional 
environment. Intercalating mudstone and marl with 
limestone and dolostone lithologies in the studied quarries 
defines an “epeiric” platform character for the sedimentary 
depositional environment. In such an environment, 
interaction between deposited ash and seawater should 
cause very early diagenesis of ash (halmyrolysis) on the 
sea bottom and should cause elemental gains and losses, 
especially in the major elemental compositions of the 
original tephras.
6.2. Illitization process and degree of diagenesis
Crystal-chemical data (KI, polytypes, d060), SEM 
observations, SEM-EDX data, and HR-TEM studies 
of K-bentonites reveal similar characteristics for both 
quarries. The polytype ratios, the Mg+Fe content of 
dioctahedral layers, the platy morphology of illites, the 
presence of zircon and biotite minerals, and the ordered 
layer structures of illites support the idea that K-bentonites 
formed as a consequence of illitization of tephras under 
high-grade diagenetic conditions (100–150 °C). Very 
low (5%) smectite content of the clay mineral fraction of 
K-bentonites indicates the alteration of volcanic glass to 
smectite at early stages of diagenesis and with progressive 
diagenetic transformation; thus, illite became dominant in 
K-bentonites. Polytype identification of the illites from the 
Gavurpınarı and Yılanlı Burnu K-bentonites indicated that 
no significant differences exist between the two locations, 
and so the diagenetic conditions affecting both areas 
of deposition are similar. Illite polytypes identified for 
different size fractions showed that K-bentonites formed 
by progressive diagenetic maturation: with increasing 
crystallite size of illites, 1Md polytypes were replaced by 
the 2M1 polytype due to increasing grade of diagenesis. 
6.3. Chemistry of K-bentonites and source of volcanism
The parental ash compositions of K-bentonites are 
deduced from trace and REE data by means of chemical 
discrimination diagrams. The results obtained from 
them indicate that the original ashes had alkali basaltic 
compositions, close to the field of trachyandesite in the Zr/
TiO2 - Nb/Y diagram. This may partially explain the origin 
of K for illitization of smectite, which took place during 
diagenesis of tephras. However, the origin of potassium 
is still not known for the studied K-bentonites. Possible 
sources of K might be volcanogenic minerals like biotite 
or feldspars that were existing in the original ash or the 
seawater. In the REE diagrams, the lack of Ta and Nb 
negative anomalies are characteristic of a mantle origin 
of the original volcanic ashes forming K-bentonites by 
diagenetic evolution.
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Figure 10. Diagenetic grade, smectite contents, and crystallite size 
of illites on KI versus Ir diagram of Eberl and Velde (1989).
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Table 2. Geochemical compositions of K-bentonite bulk samples from Gavurpınarı quarry.

Element OC1 OCB2A OCB2B OCB1G OCB1S OCB3 OC2 KRDB6 KRDB7
In weight %
SiO2 58.64 23.35 25.93 42.18 52.85 32.33 28.65 47.75 35.91
Al2O3 21.5 8.93 9.76 13.71 18.53 12.27 10.93 17.99 15.26
Fe2O3 2.45 3.22 3.89 5.61 8.76 5.43 2.83 3.74 4.69
MgO 0.9 1.43 1.57 2 2.65 1.72 1.69 5.06 2.18
CaO 0.83 31.23 28.33 14.76 1.28 21.51 27.1 5.27 16.83
Na2O 0.11 0.05 0.05 0.08 0.1 0.06 0.05 0.10 0.08
K2O 2.66 2.96 3.2 4.47 6.01 3.82 3.54 5.74 4.88
TiO2 1.2 0.45 0.5 0.68 0.94 0.57 0.57 0.88 0.78
P2O5 0.05 0.09 0.09 0.17 0.28 0.22 0.13 0.23 0.20
MnO <0.01 0.01 0.01 0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Cr2O3 0.021 0.008 0.009 0.011 0.016 0.011 0.01 0.016 0.014
LOI 11.5 28.1 26.6 16.2 8.4 21.9 24.4 13.0 19.0
Total 99.86 99.87 99.88 99.85 99.82 99.82 99.87 99.76 99.81
In ppm
Ni 26 30 23 122 50 35 23 30 45
Sc 20 8 8 12 16 9 10 15 14
Ba 385 133 143 214 258 164 148 265 210
Be 5 2 4 4 4 2 <1 3 3
Co 2.7 9.1 4 40.4 10.8 10.1 4.3 8.2 8.2
Cs 23.1 6.6 6.6 10.4 13 6.9 7.5 12.1 17.6
Ga 24.9 9.7 11.6 16.2 23.4 13.8 13.3 22.5 17.3
Hf 6.2 2.6 2.7 3 4.6 2.3 3 4.7 4.1
Nb 21.8 10.7 12 14.8 20.6 11.8 13.2 23.8 17.5
Rb 120.2 107.2 129.5 153.3 210.1 127.7 134.7 193.5 173.2
Sn 4 2 2 2 3 2 2 3 5
Sr 75.4 377.3 267.6 197.5 171.5 733.3 330.6 268.8 502.1
Ta 1.4 0.7 0.8 0.9 1.3 0.7 0.6 1.3 1.2
Th 12.2 7.7 8.5 10.9 14.2 8.6 8.9 17.0 14.3
U 4.2 3.7 2.4 24.5 8.8 5.1 3.1 9.6 6.1
V 198 68 78 94 148 136 82 152.0 173.0
W 3.2 1.5 2.2 2.2 3.2 2.7 3.6 5.4 5.0
Zr 216.5 84.3 95.4 117.5 172.8 94.6 113.9 177.1 148.1
Y 18.7 12.4 11.3 15.4 21.6 8.1 14.5 13.3 14
La 32.3 20.1 19.2 27.1 35.6 20.4 24.1 30.3 26.8
Ce 55.2 40 40.9 56.8 76.1 39 51 66.5 60.4
Pr 6.03 4.74 4.53 6.92 9.1 4.35 6.07 6.85 6.45
Nd 21.8 16.1 15.8 25.5 33.3 15.3 22.7 24.1 22.7
Sm 3.43 3.05 2.8 4.74 6.34 2.56 4.22 4.15 4.13
Eu 0.67 0.57 0.52 0.93 1.19 0.46 0.87 0.75 0.76
Gd 2.61 2.46 2.19 3.65 5.01 1.72 3.36 3.03 3.03
Tb 0.45 0.38 0.35 0.55 0.75 0.28 0.52 0.50 0.53
Dy 3.01 2.24 2.09 2.83 4.42 1.58 2.82 2.79 2.79
Ho 0.66 0.42 0.41 0.58 0.79 0.33 0.55 0.58 0.57
Er 2.32 1.32 1.24 1.67 2.24 0.98 1.68 1.68 1.71
Tm 0.37 0.2 0.21 0.25 0.35 0.15 0.23 0.28 0.28
Yb 2.66 1.37 1.39 1.72 2.39 1.12 1.58 1.96 1.80
Lu 0.4 0.2 0.2 0.23 0.34 0.16 0.24 0.29 0.25
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Table 3. Geochemical compositions of K-bentonite bulk samples from Yılanlı Burnu quarry.

Element YB4 YBA5 YBA19A YB1 YB2
In weight %
SiO2 42.4 12.41 38.74 6.82 44.26
Al2O3 14.32 4.09 14.35 2.04 15
Fe2O3 3.6 1.44 4.79 0.92 3.95
MgO 9.16 16.51 8.53 18.56 8.12
CaO 6.93 23.42 8.62 27.01 6.05
Na2O 0.05 0.04 0.08 0.04 0.06
K2O 5.8 1.81 5.91 0.73 5.81
TiO2 0.44 0.19 0.42 0.11 0.62
P2O5 0.04 0.04 0.1 0.13 0.06
MnO 0.02 0.01 0.02 0.01 0.01
Cr2O3 0.01 0.004 0.011 0.003 0.012
LOI 17 39.7 18.2 43.3 15.8
Total 99.8 99.69 99.77 99.64 99.79
In ppm
Ni 28 <20 41 <20 29
Sc 10 4 13 2 10
Ba 81 64 159 44 93
Be 3 <1 <1 <1 2
Co 8.9 2.8 10.9 2.2 6
Cs 11.5 1.8 8.5 0.8 12.6
Ga 18 4.7 17.9 2.1 21.9
Hf 2.5 1.1 1.1 0.7 3.2
Nb 9.4 3.1 7.3 1.7 12
Rb 197.2 43.6 163.8 16.8 198.7
Sn 2 <1 2 <1 3
Sr 68.1 104.6 241.6 299.7 162.6
Ta 0.6 0.2 0.5 0.2 0.9
Th 9.3 2.9 6.5 1.5 12.3
U 3.6 3.7 10.3 3.6 6.6
V 90 31 97 22 98
W 1.2 0.5 1 0.8 1.6
Zr 79.5 32.1 38.8 22.2 112.5
Y 5.4 4.2 9.7 3.9 6.1
La 14.2 6.8 20.2 4.2 20.4
Ce 23.1 14 35 8 31.8
Pr 2.46 1.62 3.94 1.01 3.24
Nd 8.4 6.1 12.9 3.6 9.7
Sm 1.28 1.23 2.64 0.71 1.52
Eu 0.2 0.23 0.53 0.14 0.24
Gd 0.87 0.91 2.25 0.61 0.95
Tb 0.14 0.15 0.34 0.1 0.17
Dy 0.82 0.81 2.04 0.66 1.27
Ho 0.2 0.16 0.38 0.12 0.22
Er 0.61 0.5 0.99 0.33 0.78
Tm 0.1 0.07 0.16 0.05 0.13
Yb 0.69 0.46 1.11 0.38 1.08
Lu 0.11 0.07 0.16 0.05 0.14
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6.4. Correlation with coeval occurrences and evaluation 
of the source area 
A detailed correlation of the NW Anatolian K-bentonite 
levels with the globally recognized tephra chronological 
unit is hampered by the exact dating of the Turkish material. 
The currently available preliminary paleontological 

findings allow dating the tephra-formation in the 
Gavurpınarı area to the late Frasnian.

The closest locality known with Late Devonian tephra 
occurrences is in the southern Urals (Mizens, 2004; 
Vehrmarn et al., 2010). In the East Magnitogorsk zone 
in the central Urals, the late Frasnian is represented by 
porphyritic pyroxene and pyroxene-plagioclase basalt, and 
less often by andesite-basalt, trachybasalt, trachyandesite-
basalt, associated lava breccias, tuff, tuffite, tephroid, 
tuffaceous conglomerate, and tuffaceous sandstone, 
occasionally with layers of rhyodacite tuff, siliceous rocks, 
and limestone. The thickness of the unit is 150–800 m. In 
the trachybasalt, anomalously high contents of Rb, K, Sr, 
Ba, Th, and light REEs, as well as raised contents of Nb, Ta, 
P, Hf, Zr Eu, Ti, and heavy REEs, were measured. Similar 
occurrences are reported from Siberia, Kazakhstan, and S 
China, ascribed to the closure of a number of small oceanic 
basins during the Altaid tectonic collage (e.g. Şengör and 
Natal’in, 1996).

Another candidate for the source of the NW Anatolian 
K-bentonites is the rift-related alkali basalts within the 
Donbas Basin on the eastern margin of the East European 
Craton. Radiometric age data indicate that the major 
stage of this volcanic activity was Late Devonian (380–
355 Ma) in age (Alexandre et al., 2004). The geochemical 
composition and the age of this magmatic activity also 
correlate with the studied K-bentonites.
6.5. Concluding remarks
The analytical results have demonstrated that illitic clay 
beds, K-bentonites, intercalated with the limestones 
and dolomitic limestones of the Late Devonian Yılanlı 
formation in the Zonguldak-Bartın area were derived 
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Figure 11. Unoriented powder diffraction patterns of the illite 
polytypes from Yılanlı Burnu (YB-4) and Gavurpınarı (KRD-B6) 
quarries.

Figure 12. (a) SEM photomicrograph displays compacted, platy, and juxtaposed structure of illites in OC1-B3 sample from 
Gavurpınarı quarry. (b) HR-TEM microphotograph shows regular stacking sequence of illites (10 Å) in sample YBA-19A from 
Yılanlı Burnu quarry.
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from tephras deposited in a shallow marine environment 
by chemical modification and progressive illitization of 
smectite during the course until late diagenesis. These 
K-bentonites include volcanogenic nonclay minerals, 
zircon, biotite, feldspar, and quartz as another indicator of 
their volcanic origin.

The illite is the dominant clay mineral in the 
K-bentonites. Based on crystallo-chemical analyses, the 

degree of diagenesis has been determined as late diagenesis, 
which also resulted in regular stacking sequences (R > 
3) for illite crystals because of illitization under high 
diagenetic conditions.

The studied K-bentonites were derived from a parent 
rock (tephra) with alkali-basaltic composition based on 
trace element discrimination. Their REE compositions 
point out that the parent tephras had a mantle source. The 
location of a volcanic source of K-bentonites observed in 
the Zonguldak-Bartın area might be in the northern part 
of the southern Urals, Siberia, or the Donbas Basin in 
the Scythian Platform and in East Europe, areas affected 
by Late Devonian volcanism having similar geochemical 
characteristics. 

This study indicates the importance of K-bentonites 
from the western Black Sea region in terms of providing 
significant data about thermal maturation and subsidence 
history of the Zonguldak basin and their potential for 
long-distance stratigraphic correlations of Late Devonian 
strata.
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