Journal of Physics: Conference Series

PAPER « OPEN ACCESS Related content
e - The pseudo-Boolean optimization
Classification of voting algorithms for N-version Snarbach iy form the peversian Sofuare
Softwa re ISt\r/ulggjvr:dev, D | Kovalev, P V Zelenkov et
al.

- The mathematical statement for the
solving of the problem of N-version
software system design
1V Kovalev, D | Kovalev, P V Zelenkov et
al.

To cite this article: R Yu Tsarev et al 2018 J. Phys.: Conf. Ser. 1015 042060

- Application of majority voting and
consensus voting algorithms in N-version
software
R Yu Tsarev, M S Durmu, | Ustoglu et al.

View the article online for updates and enhancements.

Bringing you innovative digital publishing with leading voices

to create your essential collection of books in STEM research.

This content was downloaded from IP address 193.255.53.203 on 21/10/2019 at 08:07

https://doi.org/10.1088/1742-6596/1015/4/042060
http://iopscience.iop.org/article/10.1088/1757-899X/94/1/012013
http://iopscience.iop.org/article/10.1088/1757-899X/94/1/012013
http://iopscience.iop.org/article/10.1088/1757-899X/94/1/012013
http://iopscience.iop.org/article/10.1088/1757-899X/94/1/012012
http://iopscience.iop.org/article/10.1088/1757-899X/94/1/012012
http://iopscience.iop.org/article/10.1088/1757-899X/94/1/012012
http://iopscience.iop.org/article/10.1088/1742-6596/1015/4/042059
http://iopscience.iop.org/article/10.1088/1742-6596/1015/4/042059
http://iopscience.iop.org/article/10.1088/1742-6596/1015/4/042059
http://googleads.g.doubleclick.net/pcs/click?xai=AKAOjssGnKMhPOztzlYnnxsbFerG_ryIddSrcbTxkbgWnQFMncvny0WQqqWZ6lcVgCqU8_HHTj6cpNUKG6bbazFDxjMVUM3aFQ_d9f-LWfzKywd9gAOLh06Segf-IdXP_MKiQE3XSIykdeMZTiQT1p2Ck6lS3u6hPdDfsk3pDr-1rnQpGgTNXdcYcLWoESaKG7siciIPSWda1RXUTNlmDF-WIb7N915UPMWit7TWqoEGTgeAX3sQ4PW2&sig=Cg0ArKJSzAuIkYWtAYUu&adurl=http://iopscience.org/books

International Conference Information Technologies in Business and Industry 2018 IOP Publishing
IOP Conlf. Series: Journal of Physics: Conf. Series 1015 (2018) 042060 doi:10.1088/1742-6596/1015/4/042060

Classification of voting algorithms for N-version software

R Yu Tsarev', M S Durmus?, | Ustoglu®, V A Morozov*

! Siberian Federal University, 79, Svobodny pr., Krasnoyarsk, 660041, Russia
2 pamukkale University, Kinikli Campus, Denizli, 20070, Turkey
3 Yildiz Technical University, Davutga Mah., Esenler, Istanbul, 34220, Turkey

E-mail: tsarev.sfu@mail.ru

Abstract. A voting algorithm in N-version software is a crucial component that evaluates the
execution of each of the N versions and determines the correct result. Obviously, the result of
the voting algorithm determines the outcome of the N-version software in general. Thus, the
choice of the voting algorithm is a vital issue. A lot of voting algorithms were already
developed and they may be selected for implementation based on the specifics of the analysis
of input data. However, the voting algorithms applied in N-version software are not classified.
This article presents an overview of classic and recent voting algorithms used in N-version
software and the authors' classification of the voting algorithms. Moreover, the steps of the
voting algorithms are presented and the distinctive features of the voting algorithms in N-
version software are defined.

1. Introduction

One of the main approaches for the development of highly reliable and fault-tolerant software is the N-
version programming (NVP) method. This method was proposed in 1977 by Avizienis and Chen [1].
According to the idea of the N-version programmim,different software versions should be
developed. These versions have the same input-output specifications and they are functionally
equivalent, i.e. they solve the same task. However, the methods for task solving are different.

The main advantage of this method is to provide software fault tolerance [2]. Even in the case of
failure of any individual version, the rest of the running versions will produce their results, and the
system will continue to function. In this case, the usual functioning of the system is also insured
against residual errors that were not identified in the testing phase [1].

The N-version programming has shown its efficientcy in a variety of control and information
processing systems in such safety-critical areas as space systems, message passing systems, railway
interlocking systems, plagiarism detection, web services, see e.g., [2-7].

As mentioned before, the N-version programming method involves the generation of independent
and parallel execution of several versions of the same software module. All versions of the module
obtain the same input data. Since there is a possibility that the versions will produce different results of
calculations due to design diversity, an important problem which is the determination of the valid and
the wrong results arises. The outputdNalifferent software versions are sent to another unit which is
known as the voter. The voter collect the outputd afifferent software versions and produces the
final decision depending on a voting algorithm. The voting algorithm determines which result is true,
and transmit its decision to the input of the next module or return its decision to the user. Thus, voting
algorithm is the most important component of N-version software.

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
BY of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
Published under licence by IOP Publishing Ltd 1

http://creativecommons.org/licenses/by/3.0

International Conference Information Technologies in Business and Industry 2018 IOP Publishing
IOP Conlf. Series: Journal of Physics: Conf. Series 1015 (2018) 042060 doi:10.1088/1742-6596/1015/4/042060

There are many algorithms for voting, which difieischemes of work and the requirements of the
original data, see e.g., [8-13]. Each algorithmiteewn advantages and disadvantages, and there ar
certain conditions for its successful applicatibarthermore, depending on the provided set of biata
the versions, some algorithms may be ineffectivemary not provide an opportunity to make a
decision on the correctness of outputs. Among ttieeeset of voting algorithms there is a series of
algorithms that have common features. The aim isfgtudy is to provide a general classification of
voting algorithms that can be applied in the N-i@rsoftware. An overview and classification of the
voting algorithms used in N-version software isegi\below.

2. Voting algorithms which are based on the comp#on of the output data
Before proceeding to the consideration of this <laé algorithms, the main features of their
application are noted as follows:

1) The heart of the application of the algorithreBes on the assumption that the probability of
identical-and-wrong answers is negligible [9]. Ideal-and-wrong answers are those which arise
when multiple versions produce erroneous results.

2) The whole set of the results, returned by thsiwas, is divided into a subset of “correct” and a
subset of “incorrect” outputs. Selection of a detcorrect” answers is based on a comparison of the
entire set of results.

3) When comparing the results of the versions,direcept of the equivalence of the outputs is
used. Thus, the output of one version is equivatetite output of another version, if the outputiea
differ by no more than some fixed number whichabed as the tolerance value.

4) As a rule, a set of equivalent outputs is a@mjps a correct result. This set is selected flmm t
entire set of the results of the versions.

5) Choosing the correct set of the results of thesions is done either by using agreement matrix
or by using subsets of agreeing versions.

Voting algorithms, based on the comparison of tiput data, can be divided into two subclasses:
formalized and non-formalized voting algorithms.

2.1. Non-Formalized voting algorithms
Non-formalized voting algorithms differ from fornzéd in the following feature: during the analysis,
the whole set of the output data (results) of thesions is divided into disjoint subsets.

It is convenient to consider the algorithms of gubclass by dividing them into several groups:

1. Classic algorithms.

2. Fuzzy algorithms.

3. Minimization algorithms.

Classic voting algorithms include the N-versiongyeonming with the majority voting algorithm
(NPV-MV) and N-version programming with the consemsvoting algorithm (NVP-CV). These
algorithms are discussed in a veriety of paperk asd7], [8], [12-18].

Fuzzy voting algorithms are based on the applinatifcthe theory of fuzzy logic. The fuzzy voting
algorithms in N-version software are studied in grap[16], [19-22]. The fuzzy consensus voting
algorithm (Fuzzy CV) and the fuzzy majority votialgorithm (Fuzzy MV) belong to this group.

Since the first two groups of the voting algorithane well-known, there is no need to discuss them
in detailed in this paper. The peculiarity of tirel §roup — the voting algorithms with minimizatien
is that the multitude of the outputs is dividedidisjoint subsets of equivalent elements withaing
the compositions and the achieved subsets cantersé@tt. As long as an output is inside of any
subsets, it is no longer counted and only the meimgimultitude of outputs is considered. Voting
algorithms with minimization are described in pap@], [13], [16].

International Conference Information Technologies in Business and Industry 2018 IOP Publishing
IOP Conlf. Series: Journal of Physics: Conf. Series 1015 (2018) 042060 doi:10.1088/1742-6596/1015/4/042060

2.1.1. The majority voting algorithm with minimizet (minMV).

Let us assume that the number of version of a neodfiN-version software is equal kband the
multitude of the outputs of the versions are demdig the setX = (X, X, ..., Xv). After setting
tolerance value, the majority voting algorithm with minimizatioruasists of the following steps:

Step 1. Partition of multitude s¥tinto subsets. This step implies the following @iens:

Step la. Select randoxnvalue from seX and put this value into subg@t Then, put all the other
values from multitude sef into subseC; which are consistent with the previously chogeralue, or
in other words, the other multitude values withffecence from multitude valug ase.

Step 1b. Remove all elements of suligdtom multitude sek.

Step 1c. If multitude set contains at least one element, then go to StePtheerwise, proceed to
Step 2.

Step 2. Determine the correct set of outputs.

At this step, the obtained subsets are considehegierthe number of elements is counted for each
subset. Let us denote the number of elementsubsets a¥¢. If there is subse; for which

YCiZ’VN +1—|

(1)

is satisfied, then the number of correct outputdeiined as subs&l;. If a subset which satisfies the
inequality (1) does not exist, then making a decidiy using the minMV algorithm is impossible.

2.1.2. The consensus voting algorithm with miniteza(minCV).

Let us consider the same initial problem statem&hgreN versions’ results represented by the set
of outputsX = (X;, X2, ..., Xn). The consensus voting algorithm with minimizatioonsists of the
following steps.

Step 1 is equvalent to step 1 of the majority \@ailgorithm with minimization.

Step 2. Determine the correct set of outputs.

At this step, the obtained subsets are considehetesthe number of elements is counted for each
subset. Let us denote the number of elemenitsifsets a¥G. Then, the subdivision with maximum
Y¢ value is selected and the set of outputs is defasesubdivisior;. If there are several subdivisions
with the maximal number of elements, a random rudé (one of those with the maximal number of
items) is selected as the set of correct outputs.

Nevertheless, the minCV algorithm produces a resegh if there are no consistent versions and
the minCV algorithm returns the randomly selectatpot.

2.2. Formalized voting algorithms

Formalized voting algorithms have particular impaite since they allow splitting the set of the
multitude of the outputs into subdivisions durihg tvoting process. Those subdivisions may intersect
which indicate that in the classification, someput$ can be included into more than one subdivision
[16], [19]. The FMV and the FCV algorithms belomgthis class of algorithms.

2.2.1. The formalized majority voting algorithm (VM

Let us assume that the number of version of anyuteodf N-version software is equal kbwhere
X1, Xo, ..., Xy @re the values of outputs. After setting toleravaleies, the FMV algorithm consists of
the following steps:

Step 1. Partition of the multitude of outputs istddivisions.

The multitude of versions is split intM subdivisions. Each output is characterized with it
subdivision. Subdivisio€;is developed for output(i = 1, ...,N) as follows:

C ={x; |0j,|% -x; k¢, j=1.,N.

In this case each output belongs to at least obéiagion.

Step 2. Determine the correct set of outputs.

At this step, the obtained subsets are considehetesthe number of elements is counted for each

International Conference Information Technologies in Business and Industry 2018 IOP Publishing
IOP Conlf. Series: Journal of Physics: Conf. Series 1015 (2018) 042060 doi:10.1088/1742-6596/1015/4/042060

subset. Let us denote the number of elemernitsubsets a¥¢. If there is subdivisior€; for which (1)
is satisfied, the set of correct outputs is defiasdsubdivisiorC;. If there is no subdivision which
satisfies requirements (1), making a decision #ithFMV algorithm is impossible.

2.2.2. The formalized consensus voting algorith@\W

Let us consider the same initial problem statemehéreN versions’ results are represented by the
set of outputsX = (Xq, X2, ..., Xv). The FCV algorithm consists of the following sdep

Step 1 is equvalent to step 1 of the FMV algorithm.

Step 2. Determine the correct set of outputs.

At this step the obtained subsets are consideredeanthe number of elements is counted for each
subset. Let us denote the number of elementsimsets a¥G. Then, the subdivision with maximum
Y¢ value is selected and the set of outputs is defasesubdivisiol€;. If there are several subdivisions
with the maximal number of elements, a random tudé is selected as the set of correct outputs.

Nevertheless, the FCV algorithm produces a resalh éf there are no consistent versions and the
FCV algorithm returns the randomly selected output.

3. Voting algorithms in which the decision makingdoes not depend on the similarity of the
output data

The main characteristic feature of these algorithenghat the result of their evaluation does not
depend on how the outputs of the versions are comiped. The maximum likelihood voting
algorithms (MLV) and the average voting algorithane included in this class of algorithms.

3.1. The maximum likelihood voting algorithm (MLV)

The MVL algorithm is proved to be the one of thesmeliable ways of decision making in N-
version software, see e.g., [9], [23], [24].

In consideration of the MLV algorithm, the follovgrmathematical notations will be used:

¢ N - the number of functionally equivalent versions;

* m- the potency of outputs set;

* p — probability that versionreturn a correct result;

* V; —variable that represents outpuitbfversion;

* v, —value ofV; for each output (one of m possible);

* Vo — correct output; P&} — probability of evenk.

The following assumptions lie in the basis of the\Walgorithm [9]:

» Failures of functionally equivalent version of Nrsi®n software are not statistically dependent.

» Potency of the multitude of possible answers ign@elfprior to the voting and is equalrto

» There is no multitude of correct answers. Only oogut from the out of the entire multitude

set is correct.

« In case of version failure, the version produces @im— 1 erroneous results.

Let versioni has single correct state (produces correct ougnd)n — 1 erroneous states. Let us
assume that the probability of the erroneous statiee version is equal to (1pyp / (m— 1). With {;,

we denote the event in which outpuis correct. Then there anemutually exclusive event € 1, ...,
m). Probability of realization of a separate mutigufromN outputs may be represented as follows:

m
PHV, V3V, = VoV 2V} = Y [PriV, = v} x PV, =v,} X xPriVy = v, })

=1

where P{V; = vi} is defined as follows:
pi, Wwheny, =j,

Pr{V,=vi}=:1-p
m-1
Equation (2) defines the probabilities of two pbbsievents: a) probability that(one of the

)

, whenvy, # j.

International Conference Information Technologies in Business and Industry 2018 IOP Publishing
IOP Conlf. Series: Journal of Physics: Conf. Series 1015 (2018) 042060 doi:10.1088/1742-6596/1015/4/042060

possible outcomes) is a correct answer and theaibafprersion is equal tg; b) probability thaf is a
correct answer and the output of versiois equal to one o — 1 possible outcomes. Now it is
possible to figure out the conditional probabilitvat output is a correct answer for this multitude of
outcomes:
_ PriVi=v}xPr{V,=v} x.Pr{\ =\
PVi = IV =WV = % Y = Y} J . (3
2IPE =PV, = x. Pr{\ = i]

=

The MLV algorithm implies the selection of the outpwhich has the greatest conditional
probability according to (3). If maximal probabjlitorresponds to more than one output, the sefectio
is done randomly.

3.2. The averaged voting algorithm

With the use of the averaged voting, the averagigeMfaom the whole multitude set of the outputs
is taken as a result [16]. This algorithm has ameddmental difference from all the others where
“correctness” and “failure” notions are not consatkand the output data are simply averaged. The
algorithm may be used only in exceptional caseswthe comparison of the outputs of the versions is
impossible.

4. Classification of the voting algorithms
Having been analysed, the voting algorithms deedrdibove were divided into several classes. Figure
1 demonstrates the classification of the votingadilgms used in the N-version software.

[Voting algorithms in N-version software]

| According to basis of decision making

[]

Algorithms in which decision making
Voting algorithms which are based does not depend on the similarity of
on comparison of the output data output data
(MLYV, Averaged Voting)

I/According to outputs classification

Formalized voting algorithms
(FMV, ECV)

Non-formalized voting algorithms

I According to particular characteristics of the outputs classification

| |]

Minimization

Classic algorithms Fuzzy algorithms algorithms
NVP-CV, NVP-MV
(CV,) (Fuzzy CV, Fuzzy MV) (minCV, minMV)

Figure 1. Classification of voting algorithms in N-versioofsvare.

Figure 1 shows that the classification is basedhandecision making principle of the voting
algorithms, on the classification of the outputadand the particular characteristics of the outizua
classification.

International Conference Information Technologies in Business and Industry 2018 IOP Publishing
IOP Conlf. Series: Journal of Physics: Conf. Series 1015 (2018) 042060 doi:10.1088/1742-6596/1015/4/042060

5. Conclusion

N-version programming is an efficient and promisiagproach to increase the reliability and
availability of the software. It strongly demandggse determination which versions returned correc
results and which ones are failed. For this purpeddle the voting algorithms are being used,
selecting the correct answer from the whole mudgtset of the computation results is required.

Comparative analysis of the currently used algorilshowed that the most spread and versatile
algorithms possess a number of common propertiesvallowed putting them into a classification
according to their characteristics. In the clasatfon, proposed algorithms are divided accordng t
their characteristics such as similarity trackirfgttee outputs, classification principle of the autfp
and particular characteristics of the outputs.

Some algorithms produce a result anyway (MLV andPNSV), but some are used only in
particular conditions (minMV and NVP-NV). Algoritisrbased on the comparison of versions output
data are efficient and intuitive.

Analysis of the algorithms, conditions of their geaand the proposed classification in this paper
tend to help practitioners, design engineers arfifvace developers for N-version programming to
choose and implement the algorithm that bestHigstasks they have during software development.

References

[1] Auvizienis A and Chen L 197/Proc. Int. Conf. COMPSAC'7/(Chicago, IL) 149-155

[2] Avizienis A 2004Proc. 10th IEEE Pacific Rim Int. Symp. Depend. Camf{Papeete Tahiti,
French Polynesia) 336

[3] Chernigovskiy A S, Tsarev R Y and Knyazkov A N 2(Arec. Int. Siberian Conf. on Control
and Communications, SIBCON 20I@msk, Russian Federation)

[4] Chitsaz B and Razzazi M 20F2oc. MIPRO 201Z0Opatija, Croatia) 345-348

[5] Eris O, Yildirim U, Durmwy M S, Sdylemez M T and Kurtulan S 20RPoc. CTS 2012ZSofia,
Bulgaria) 177-180

[6] Zhang F, Jhi Y-C, Wu D, Liu P and Zhu S 2@rc. ISSTA 2012Minneapolis, MN) 111-121
[71 Looker N, Munro M and Xu J 2008roc. COMPSAC 200&dinburgh, Scotland, UK) 66—69
[8] Akhil K and Kavindra M 1991EEE Trans. Reliab40(5)593-600

[9] Kim K, Vouk M A and McAllister D F 199€roc. ISSRE'"9§White Plains, NY) 330-339

[10] Latif-Shabgahi G, Bennett S and Bass J M 2003 oprocess. MicrosysR7(7)303—-313

[11] Lin X, Yacoub S M, Burns J and Simske S J 2B@8&ern Recogn. Let24(12)1959-1969

[12] Mohamed A and Zulkernine M 200Proc. IEEE Int. Symp. High Assurance Systems
Engineering(Dallas, TX) 267-274

[13] Yacoub S 200Reliab. Eng. Syst. Saf1(2)133-145

[14] Ahamad M and Ammar M H 198%EE Trans. Softw. End.5(4) 492—-496

[15] Levitin G and Lisnianski A 200Reliab. Eng. Syst. Safél(2)131-138

[16] Parhami B 1994EEE Trans. Reliab43(4)617-629

[17] Xie M and Pham H 200Reliab. Eng. Syst. Saf¢7(1)53—-63

[18] Aghajan Z and Azgomi M A 200Broc. lIT '09(Al-Ain, United Arab Emirates) 304-308

[19] Kim K, Vouk M A and McAllister D F 199&roc. IEEE Aerospace Cor(fAspen, CO) 5-19
[20] Hsu H-M and Chen C-T 199uzzy Sets Sys§t9(3) 279285

[21] Manic M and Frincke D 200Rroc. IECON'200XDenver, CO) 84-89

[22] Wang P 200Proc. ICEMI'07 (Xi'an, China) 2666—2669

[23] Tamura S, Higuchi S andTanaka K 19EEE Trans. Syst. Man Cyberi(l) 61-66

[24] Leung Y-W 1999EEE Trans. Reliab44(3)419-427

