
Journal of Physics: Conference Series

PAPER • OPEN ACCESS

Classification of voting algorithms for N-version
software
To cite this article: R Yu Tsarev et al 2018 J. Phys.: Conf. Ser. 1015 042060

View the article online for updates and enhancements.

Related content
The pseudo-Boolean optimization
approach to form the n-version software
structure
I V Kovalev, D I Kovalev, P V Zelenkov et
al.

-

The mathematical statement for the
solving of the problem of N-version
software system design
I V Kovalev, D I Kovalev, P V Zelenkov et
al.

-

Application of majority voting and
consensus voting algorithms in N-version
software
R Yu Tsarev, M S Durmu, I Üstoglu et al.

-

This content was downloaded from IP address 193.255.53.203 on 21/10/2019 at 08:07

https://doi.org/10.1088/1742-6596/1015/4/042060
http://iopscience.iop.org/article/10.1088/1757-899X/94/1/012013
http://iopscience.iop.org/article/10.1088/1757-899X/94/1/012013
http://iopscience.iop.org/article/10.1088/1757-899X/94/1/012013
http://iopscience.iop.org/article/10.1088/1757-899X/94/1/012012
http://iopscience.iop.org/article/10.1088/1757-899X/94/1/012012
http://iopscience.iop.org/article/10.1088/1757-899X/94/1/012012
http://iopscience.iop.org/article/10.1088/1742-6596/1015/4/042059
http://iopscience.iop.org/article/10.1088/1742-6596/1015/4/042059
http://iopscience.iop.org/article/10.1088/1742-6596/1015/4/042059
http://googleads.g.doubleclick.net/pcs/click?xai=AKAOjssGnKMhPOztzlYnnxsbFerG_ryIddSrcbTxkbgWnQFMncvny0WQqqWZ6lcVgCqU8_HHTj6cpNUKG6bbazFDxjMVUM3aFQ_d9f-LWfzKywd9gAOLh06Segf-IdXP_MKiQE3XSIykdeMZTiQT1p2Ck6lS3u6hPdDfsk3pDr-1rnQpGgTNXdcYcLWoESaKG7siciIPSWda1RXUTNlmDF-WIb7N915UPMWit7TWqoEGTgeAX3sQ4PW2&sig=Cg0ArKJSzAuIkYWtAYUu&adurl=http://iopscience.org/books

1

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

1234567890 ‘’“”

International Conference Information Technologies in Business and Industry 2018 IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 1015 (2018) 042060 doi :10.1088/1742-6596/1015/4/042060

Classification of voting algorithms for N-version software

R Yu Tsarev1, M S Durmuş2, I Üstoglu3, V A Morozov1

1 Siberian Federal University, 79, Svobodny pr., Krasnoyarsk, 660041, Russia
2 Pamukkale University, Kinikli Campus, Denizli, 20070, Turkey
3 Yıldız Technical University, Davutpaşa Mah., Esenler, Istanbul, 34220, Turkey

E-mail: tsarev.sfu@mail.ru

Abstract. A voting algorithm in N-version software is a crucial component that evaluates the
execution of each of the N versions and determines the correct result. Obviously, the result of
the voting algorithm determines the outcome of the N-version software in general. Thus, the
choice of the voting algorithm is a vital issue. A lot of voting algorithms were already
developed and they may be selected for implementation based on the specifics of the analysis
of input data. However, the voting algorithms applied in N-version software are not classified.
This article presents an overview of classic and recent voting algorithms used in N-version
software and the authors' classification of the voting algorithms. Moreover, the steps of the
voting algorithms are presented and the distinctive features of the voting algorithms in N-
version software are defined.

1. Introduction
One of the main approaches for the development of highly reliable and fault-tolerant software is the N-
version programming (NVP) method. This method was proposed in 1977 by Avizienis and Chen [1].
According to the idea of the N-version programming, N different software versions should be
developed. These versions have the same input-output specifications and they are functionally
equivalent, i.e. they solve the same task. However, the methods for task solving are different.

The main advantage of this method is to provide software fault tolerance [2]. Even in the case of
failure of any individual version, the rest of the running versions will produce their results, and the
system will continue to function. In this case, the usual functioning of the system is also insured
against residual errors that were not identified in the testing phase [1].

The N-version programming has shown its efficientcy in a variety of control and information
processing systems in such safety-critical areas as space systems, message passing systems, railway
interlocking systems, plagiarism detection, web services, see e.g., [2-7].

As mentioned before, the N-version programming method involves the generation of independent
and parallel execution of several versions of the same software module. All versions of the module
obtain the same input data. Since there is a possibility that the versions will produce different results of
calculations due to design diversity, an important problem which is the determination of the valid and
the wrong results arises. The outputs of N different software versions are sent to another unit which is
known as the voter. The voter collect the outputs of N different software versions and produces the
final decision depending on a voting algorithm. The voting algorithm determines which result is true,
and transmit its decision to the input of the next module or return its decision to the user. Thus, voting
algorithm is the most important component of N-version software.

http://creativecommons.org/licenses/by/3.0

2

1234567890 ‘’“”

International Conference Information Technologies in Business and Industry 2018 IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 1015 (2018) 042060 doi :10.1088/1742-6596/1015/4/042060

There are many algorithms for voting, which differ in schemes of work and the requirements of the
original data, see e.g., [8-13]. Each algorithm has its own advantages and disadvantages, and there are
certain conditions for its successful application. Furthermore, depending on the provided set of data by
the versions, some algorithms may be ineffective or may not provide an opportunity to make a
decision on the correctness of outputs. Among the entire set of voting algorithms there is a series of
algorithms that have common features. The aim of this study is to provide a general classification of
voting algorithms that can be applied in the N-version software. An overview and classification of the
voting algorithms used in N-version software is given below.

2. Voting algorithms which are based on the comparison of the output data
Before proceeding to the consideration of this class of algorithms, the main features of their
application are noted as follows:

1) The heart of the application of the algorithms relies on the assumption that the probability of
identical-and-wrong answers is negligible [9]. Identical-and-wrong answers are those which arise
when multiple versions produce erroneous results.

2) The whole set of the results, returned by the versions, is divided into a subset of “correct” and a
subset of “incorrect” outputs. Selection of a set of “correct” answers is based on a comparison of the
entire set of results.

3) When comparing the results of the versions, the concept of the equivalence of the outputs is
used. Thus, the output of one version is equivalent to the output of another version, if the output values
differ by no more than some fixed number which is called as the tolerance value.

4) As a rule, a set of equivalent outputs is accepted as a correct result. This set is selected from the
entire set of the results of the versions.

5) Choosing the correct set of the results of the versions is done either by using agreement matrix
or by using subsets of agreeing versions.

Voting algorithms, based on the comparison of the output data, can be divided into two subclasses:
formalized and non-formalized voting algorithms.

2.1. Non-Formalized voting algorithms
Non-formalized voting algorithms differ from formalized in the following feature: during the analysis,
the whole set of the output data (results) of the versions is divided into disjoint subsets.

It is convenient to consider the algorithms of this subclass by dividing them into several groups:
1. Classic algorithms.
2. Fuzzy algorithms.
3. Minimization algorithms.

Classic voting algorithms include the N-version programming with the majority voting algorithm

(NPV-MV) and N-version programming with the consensus voting algorithm (NVP-CV). These
algorithms are discussed in a veriety of papers such as [7], [8], [12-18].

Fuzzy voting algorithms are based on the application of the theory of fuzzy logic. The fuzzy voting

algorithms in N-version software are studied in papers [16], [19-22]. The fuzzy consensus voting
algorithm (Fuzzy CV) and the fuzzy majority voting algorithm (Fuzzy MV) belong to this group.

Since the first two groups of the voting algorithms are well-known, there is no need to discuss them

in detailed in this paper. The peculiarity of the 3rd group – the voting algorithms with minimization –
is that the multitude of the outputs is divided into disjoint subsets of equivalent elements without using
the compositions and the achieved subsets cannot intersect. As long as an output is inside of any
subsets, it is no longer counted and only the remaining multitude of outputs is considered. Voting
algorithms with minimization are described in papers [8], [13], [16].

3

1234567890 ‘’“”

International Conference Information Technologies in Business and Industry 2018 IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 1015 (2018) 042060 doi :10.1088/1742-6596/1015/4/042060

2.1.1. The majority voting algorithm with minimization (minMV).
Let us assume that the number of version of a module of N-version software is equal to N and the

multitude of the outputs of the versions are denoted by the set X = (x1, x2, …, xN). After setting
tolerance value ε, the majority voting algorithm with minimization consists of the following steps:

Step 1. Partition of multitude set X into subsets. This step implies the following operations:
Step 1a. Select random xi value from set X and put this value into subset Ci. Then, put all the other

values from multitude set X into subset Ci which are consistent with the previously chosen xi value, or
in other words, the other multitude values with a difference from multitude value xi as ε.

Step 1b. Remove all elements of subset Ci from multitude set X.
Step 1c. If multitude set X contains at least one element, then go to Step 1a. Otherwise, proceed to

Step 2.
Step 2. Determine the correct set of outputs.
At this step, the obtained subsets are considered where the number of elements is counted for each

subset. Let us denote the number of elements in i-subsets as Yci. If there is subset Ci for which

 +≥
2

1N
Yсi (1)

is satisfied, then the number of correct outputs is defined as subset Ci. If a subset which satisfies the
inequality (1) does not exist, then making a decision by using the minMV algorithm is impossible.

2.1.2. The consensus voting algorithm with minimization (minCV).
Let us consider the same initial problem statement, where N versions’ results represented by the set

of outputs X = (x1, x2, …, xN). The consensus voting algorithm with minimization consists of the
following steps.

Step 1 is equvalent to step 1 of the majority voting algorithm with minimization.
Step 2. Determine the correct set of outputs.
At this step, the obtained subsets are considered where the number of elements is counted for each

subset. Let us denote the number of elements in i-subsets as Yci. Then, the subdivision with maximum
Yci value is selected and the set of outputs is defined as subdivision Ci. If there are several subdivisions
with the maximal number of elements, a random multitude (one of those with the maximal number of
items) is selected as the set of correct outputs.

Nevertheless, the minCV algorithm produces a result even if there are no consistent versions and
the minCV algorithm returns the randomly selected output.

2.2. Formalized voting algorithms
Formalized voting algorithms have particular importance since they allow splitting the set of the

multitude of the outputs into subdivisions during the voting process. Those subdivisions may intersect,
which indicate that in the classification, some outputs can be included into more than one subdivision
[16], [19]. The FMV and the FCV algorithms belong to this class of algorithms.

2.2.1. The formalized majority voting algorithm (FMV).
Let us assume that the number of version of any module of N-version software is equal to N where

x1, x2, …, xN are the values of outputs. After setting tolerance value ε, the FMV algorithm consists of
the following steps:

Step 1. Partition of the multitude of outputs into subdivisions.
The multitude of versions is split into N subdivisions. Each output is characterized with its

subdivision. Subdivision Ci is developed for output i (i = 1, …, N) as follows:
.,...,1},||,|{ NjxxjxC jiji =ε≤−∀=

In this case each output belongs to at least one subdivision.
Step 2. Determine the correct set of outputs.
At this step, the obtained subsets are considered where the number of elements is counted for each

4

1234567890 ‘’“”

International Conference Information Technologies in Business and Industry 2018 IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 1015 (2018) 042060 doi :10.1088/1742-6596/1015/4/042060

subset. Let us denote the number of elements in i-subsets as Yci. If there is subdivision Ci for which (1)
is satisfied, the set of correct outputs is defined as subdivision Ci. If there is no subdivision which
satisfies requirements (1), making a decision with the FMV algorithm is impossible.

2.2.2. The formalized consensus voting algorithm (FCV).
Let us consider the same initial problem statement, where N versions’ results are represented by the

set of outputs X = (x1, x2, …, xN). The FCV algorithm consists of the following steps:
Step 1 is equvalent to step 1 of the FMV algorithm.
Step 2. Determine the correct set of outputs.
At this step the obtained subsets are considered where the number of elements is counted for each

subset. Let us denote the number of elements in i-subsets as Yci. Then, the subdivision with maximum
Yci value is selected and the set of outputs is defined as subdivision Ci. If there are several subdivisions
with the maximal number of elements, a random multitude is selected as the set of correct outputs.

Nevertheless, the FCV algorithm produces a result even if there are no consistent versions and the
FCV algorithm returns the randomly selected output.

3. Voting algorithms in which the decision making does not depend on the similarity of the
output data
The main characteristic feature of these algorithms is that the result of their evaluation does not
depend on how the outputs of the versions are compromised. The maximum likelihood voting
algorithms (MLV) and the average voting algorithms are included in this class of algorithms.

3.1. The maximum likelihood voting algorithm (MLV)
The MVL algorithm is proved to be the one of the most reliable ways of decision making in N-

version software, see e.g., [9], [23], [24].
In consideration of the MLV algorithm, the following mathematical notations will be used:
• N – the number of functionally equivalent versions;
• m – the potency of outputs set;
• pi – probability that version i return a correct result;
• Vi – variable that represents output of ith version;
• vi – value of Vi for each output (one of m possible);
• Vcor – correct output; Pr{x} – probability of event x.
The following assumptions lie in the basis of the MLV algorithm [9]:
• Failures of functionally equivalent version of N-version software are not statistically dependent.
• Potency of the multitude of possible answers is defined prior to the voting and is equal to m.
• There is no multitude of correct answers. Only one output from the out of the entire multitude

set is correct.
• In case of version failure, the version produces one of m – 1 erroneous results.
Let version i has single correct state (produces correct output) and m – 1 erroneous states. Let us

assume that the probability of the erroneous state of the version is equal to (1 – pi) / (m – 1). With jζ ,

we denote the event in which output j is correct. Then there are m mutually exclusive events (j = 1, …,
m). Probability of realization of a separate multitude from N outputs may be represented as follows:

[],}{Pr...}{Pr}{Pr},...,,Pr{
1

22112211 ∑
=

=××=×=====
m

j
NNjjjNN vVvVvVvVvVvV

where Prj{ Vi = vi} is defined as follows:

≠
−

−
=

==
. when,

1

1
, when,

}{Pr
jv

m

p
jvp

vV
i

i

ii

iij (2)

Equation (2) defines the probabilities of two possible events: a) probability that j (one of the

5

1234567890 ‘’“”

International Conference Information Technologies in Business and Industry 2018 IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 1015 (2018) 042060 doi :10.1088/1742-6596/1015/4/042060

possible outcomes) is a correct answer and the output of version i is equal to j; b) probability that j is a
correct answer and the output of version i is equal to one of m – 1 possible outcomes. Now it is
possible to figure out the conditional probability that output j is a correct answer for this multitude of
outcomes:

1 1 2 2
1 1 2 2

1 1 2 2
1

Pr { } Pr { } ... Pr { }
Pr{ | , ,..., } .

Pr { } Pr { } ... Pr { }

j j j N N
cor N N m

j j j N N
j

V v V v V v
V j V v V v V v

V v V v V v
=

= × = × × =
= = = = =

 = × = × × = ∑

(3)

The MLV algorithm implies the selection of the output which has the greatest conditional
probability according to (3). If maximal probability corresponds to more than one output, the selection
is done randomly.

3.2. The averaged voting algorithm
With the use of the averaged voting, the average value from the whole multitude set of the outputs

is taken as a result [16]. This algorithm has one fundamental difference from all the others where
“correctness” and “failure” notions are not considered and the output data are simply averaged. The
algorithm may be used only in exceptional cases when the comparison of the outputs of the versions is
impossible.

4. Classification of the voting algorithms
Having been analysed, the voting algorithms described above were divided into several classes. Figure
1 demonstrates the classification of the voting algorithms used in the N-version software.

Figure 1. Classification of voting algorithms in N-version software.

Figure 1 shows that the classification is based on the decision making principle of the voting

algorithms, on the classification of the output data and the particular characteristics of the output data
classification.

6

1234567890 ‘’“”

International Conference Information Technologies in Business and Industry 2018 IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 1015 (2018) 042060 doi :10.1088/1742-6596/1015/4/042060

5. Conclusion
N-version programming is an efficient and promising approach to increase the reliability and
availability of the software. It strongly demands precise determination which versions returned correct
results and which ones are failed. For this purpose, while the voting algorithms are being used,
selecting the correct answer from the whole multitude set of the computation results is required.

Comparative analysis of the currently used algorithms showed that the most spread and versatile
algorithms possess a number of common properties, which allowed putting them into a classification
according to their characteristics. In the classification, proposed algorithms are divided according to
their characteristics such as similarity tracking of the outputs, classification principle of the outputs
and particular characteristics of the outputs.

Some algorithms produce a result anyway (MLV and NVP-CV), but some are used only in
particular conditions (minMV and NVP-NV). Algorithms based on the comparison of versions output
data are efficient and intuitive.

Analysis of the algorithms, conditions of their usage and the proposed classification in this paper
tend to help practitioners, design engineers and software developers for N-version programming to
choose and implement the algorithm that best fits the tasks they have during software development.

References
[1] Avizienis A and Chen L 1977 Proc. Int. Conf. COMPSAC'77 (Chicago, IL) 149–155
[2] Avizienis A 2004 Proc. 10th IEEE Pacific Rim Int. Symp. Depend. Comput. (Papeete Tahiti,
French Polynesia) 336
[3] Chernigovskiy A S, Tsarev R Y and Knyazkov A N 2015 Proc. Int. Siberian Conf. on Control
and Communications, SIBCON 2015 (Omsk, Russian Federation)
[4] Chitsaz B and Razzazi M 2012 Proc. MIPRO 2012 (Opatija, Croatia) 345–348
[5] Eriş O, Yildirim U, Durmuş M S, Söylemez M T and Kurtulan S 2012 Proc. CTS 2012 (Sofia,
Bulgaria) 177–180
[6] Zhang F, Jhi Y-C, Wu D, Liu P and Zhu S 2012 Proc. ISSTA 2012 (Minneapolis, MN) 111–121
[7] Looker N, Munro M and Xu J 2005 Proc. COMPSAC 2005 (Edinburgh, Scotland, UK) 66–69
[8] Akhil K and Kavindra M 1991 IEEE Trans. Reliab. 40(5) 593–600
[9] Kim K, Vouk M A and McAllister D F 1996 Proc. ISSRE'96 (White Plains, NY) 330–339
[10] Latif-Shabgahi G, Bennett S and Bass J M 2003 Microprocess. Microsyst. 27(7) 303–313
[11] Lin X, Yacoub S M, Burns J and Simske S J 2003 Pattern Recogn. Lett. 24(12) 1959–1969
[12] Mohamed A and Zulkernine M 2007 Proc. IEEE Int. Symp. High Assurance Systems
Engineering (Dallas, TX) 267–274
[13] Yacoub S 2003 Reliab. Eng. Syst. Safe. 81(2) 133-145
[14] Ahamad M and Ammar M H 1989 IEEE Trans. Softw. Eng. 15(4) 492–496
[15] Levitin G and Lisnianski A 2001 Reliab. Eng. Syst. Safe. 71(2) 131–138
[16] Parhami B 1994 IEEE Trans. Reliab. 43(4) 617–629
[17] Xie M and Pham H 2005 Reliab. Eng. Syst. Safe. 87(1) 53–63
[18] Aghajan Z and Azgomi M A 2009 Proc. IIT '09 (Al-Ain, United Arab Emirates) 304–308
[19] Kim K, Vouk M A and McAllister D F 1998 Proc. IEEE Aerospace Conf. (Aspen, CO) 5–19
[20] Hsu H-M and Chen C-T 1996 Fuzzy Sets Syst. 79(3) 279–285
[21] Manic M and Frincke D 2001 Proc. IECON'2001 (Denver, CO) 84–89
[22] Wang P 2007 Proc. ICEMI’07 (Xi'an, China) 2666–2669
[23] Tamura S, Higuchi S andTanaka K 1971 IEEE Trans. Syst. Man Cybern. 1(1) 61–66
[24] Leung Y-W 1995 IEEE Trans. Reliab. 44(3) 419–427

