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PERIODIC BOUNDARY VALUE PROBLEMS WITH DELTA RIEMANN-LIOUVILLE
FRACTIONAL DERIVATIVE ON TIME SCALES
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Abstract. In this paper, we investigate the existence and the uniqueness of solutions of a periodic boundary value problem for
a class of fractional differential equations on time scales. Some fixed point theorems are applied to obtain some new existence
results. An illustrative example is also provided.
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1. INTRODUCTION

Fractional differential equations appear naturally in various fields of science and engineering, and con-
stitute an important research field. It should be noted that this kind of equations can provide an excellent
tool for the description of memory and hereditary properties of various materials and processes. With
this advantage, the fractional-order models become more realistic and practical than the classical integer-
order models, in which such effects are not taken into account. Recently, the study of the boundary value
problems for fractional differential equations has received considerable attention; see [1, 2, 3, 4, 5, 6]
and references therein.

A pioneering work in discrete fractional calculus has been done by Miller and Ross [7]. Especially,
Atici and Eloe [8, 9, 10] contributed to the improvement of the discrete fractional calculus. The existence
problems of discrete fractional difference equations have been investigated by many authors; see [9, 10,
11, 12, 13, 14] and references therein. And, fractional calculus on time scales was used to unify the
fractional differential equations with both continuous and discrete forms; see [15, 16, 17, 18, 19] and
the references therein. Some basic definitions and theorems on time scales can be found in the books
[20, 21]. Recently, existence problems of boundary value problems of fractional differential equations
on time scales have been studied recently; see [22, 23, 24].

In this paper, we consider the following nonlinear periodic boundary value problem with delta Riemann-
Liouville fractional derivative on time scales of order α−1:
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{
∆

α−1
a∗ x(t) = f (t,x(t)), t ∈ J := [a,b]∩T, 2 < α < 3

x(a) = x(b) = 0, x∆(a) = x∆(b),
(1.1)

where T is any time scale, f ∈C ([a,b]×R,R) and ∆
α−1
a∗ denotes the delta fractional derivative on time

scale T of order α−1 which will be defined later.
The organization of this the paper is as follows. In Section 2, we will give some definitions of delta

Riemann-Liouville type fractional integral and delta fractional derivative on time scales and auxiliary
lemmas which are needed later. In Section 3, by using the contraction mapping theorem (Banach fixed
point theorem) we show that there is a unique solution of BVP (1.1) if f (t,x) satisfies a Lipschitz con-
dition. In the last section, by using some known fixed point theorems, we obtained sufficient conditions
for the existence of solutions without the implication of the uniqueness of solutions.

2. PRELIMINARIES

To state the main results of this paper, we will need some basic definitions and lemmas.
Let us consider the rd-continuous functions hα : T×T→ R, α ≥ 0 such that

hα+1(t,s) =
t∫

s

hα(τ,s)∆τ, h0(t,s) = 1, ∀s, t ∈ T, (2.1)

where T is a time scale such that Tk = T. Also, we suppose

t∫
σ(u)

hα−1(t,σ(τ))hβ−1(τ,σ(u))∆τ = hα+β−1(t,σ(u)), α,β > 1, u < t, u, t ∈ T, (2.2)

where σ is the forward jump operator.
If T= R, then σ(t) = t and hk(t,s) =

(t−s)k

k! , ∀k ∈ N0 = N∪{0}. We define

hα(t,s) =
(t− s)α

Γ(α +1)
, α > 0

which satisfies the properties in (2.1) and (2.2) (see [19]).

If T=Z, then σ(t) = t+1 and hk(t,s) =
(t−s)(k)

k! , ∀k ∈N0, where t(0) = 1, t(k) =
k−1
∏
i=0

(t− i). We define

hα(t,s) =
(t− s)(α)

Γ(α +1)
, α > 0,

where t(α) = Γ(t+1)
Γ(t−α+1) which satisfies the properties in (2.1) and (2.2) (see [19]).

Definition 2.1. [19] For α ≥ 1, a time scale delta Riemann-Liouville type fractional integral is defined
by

Kα
a f (t) =

t∫
a

hα−1(t,σ(τ)) f (τ)∆τ,K0
a f = f ,

where f ∈ L1([a,b]∩T) and t ∈ [a,b]∩T.

If α = 1, then we have K1
a f (t) =

t∫
a

f (τ)∆τ .



PERIODIC BVP WITH FRACTIONAL DERIVATIVE ON TIME SCALES 3

Definition 2.2. [19] For α ≥ 2, m−1<α ≤m∈N, i.e., m= pαq (ceiling of the number) and v=m−α ,
the ∆− fractional derivative on time scale T of order α−1 is defined by

∆
α−1
a∗ f (t) = (Kv+1

a f ∆m
)(t) =

t∫
a

hv(t,σ(τ)) f ∆m
(τ)∆τ,∀t ∈ [a,b]∩T,

where f ∈Cm
rd([a,b]∩T) and f ∆m

is a Lebesgue ∆− integrable function.

If we take α = m, then we have ∆α−1
a∗ f (t) = (K1

a f ∆m
)(t) = f ∆m−1

.

Lemma 2.3. [19] Let α > 2, m− 1 < α < m ∈ N, v = m−α , f ∈Cm
rd(T), a,b ∈ T, Tk = T. Suppose

that hα−2(s,σ(t)), hv(s,σ(t)) is continuous on ([a,b]∩T)2. Then, we have

Kα−1
a ∆

α−1
a∗ f (t) = f (t)+E( f ∆m

,α−1,v+1,T, t)−
m−1

∑
k=0

hk(t,a) f ∆k
(a),

where E( f ∆m
,α−1,v+1,T, t) =

t∫
a

f ∆m
(u)µ(u)hα−2(t,σ(u))hv(u,σ(u))∆u and µ(t) = σ(t)− t.

Lemma 2.4. Assume that 2 < α < 3 , β = 3−α , x∈C3
rd(T), g∈Crd ([a,b]∩T), a,b∈T, a < b, Tk =T,

and hα−1(t,σ(s)) is continuous on J×J. Then, a function x ∈C3
rd(T) is a solution of the boundary value

problem

{
∆

α−1
a∗ x(t) = g(t), t ∈ [a,b]∩T, 2 < α < 3,

x(a) = x(b) = 0, x∆(a) = x∆(b),
(2.3)

if and only if x is a solution of the following integral equation

x(t) =

t∫
a

hα−2 (t,σ(τ))
(

g(τ)− x∆3
(τ)µ(τ)hβ (τ,σ(τ))

)
∆τ

+

b∫
a

[(
t−a

(b−a)2 h2(b,a)−
h2(t,a)
b−a

)
h∆

α−2(b,σ(τ))− t−a
b−a

hα−2 (b,σ(τ))

]
(

g(τ)− x∆3
(τ)µ(τ)hβ (τ,σ(τ))

)
∆τ. (2.4)

Proof. Let x be a solution of BVP (2.3). By Lemma 2.3, we have

Kα−1
a g(t) = Kα−1

a ∆
α−1
a∗ x(t)

= x(t)+
t∫

a

x∆3
(τ)µ(τ)hα−2(t,σ(τ))hβ (τ,σ(τ))∆τ−

2

∑
k=0

hk(t,a)x∆k
(a).

Then, we obtain

x(t) =

t∫
a

hα−2(t,σ(τ))g(τ)∆τ−
t∫

a

hα−2(t,σ(τ))x∆3
(τ)µ(τ)hβ (τ,σ(τ))∆τ + x(a)

+ h1(t,a)x∆(a)+h2(t,a)x∆2
(a). (2.5)
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Using the differentiation formula [21, Theorem 1.117], we have

x∆(t) =

t∫
a

h∆
α−2(t,σ(τ))

(
g(τ)− x∆3

(τ)µ(τ)hβ (τ,σ(τ))
)

∆τ + x∆(a)+(t−a)x∆2
(a).

By using the second boundary condition, we get

x∆2
(a) =− 1

b−a

b∫
a

h∆
α−2(b,σ(τ))

(
g(τ)− x∆3

(τ)µ(τ)hβ (τ,σ(τ))
)

∆τ.

From the first boundary condition, we find

x∆(a) = − 1
b−a

b∫
a

[
hα−2(b,σ(τ))−

h2(b,a)h∆
α−2(b,σ(τ))

b−a

]
(

g(τ)− x∆3
(τ)µ(τ)hβ (τ,σ(τ))

)
∆τ.

Hence, it follows from (2.5) that (2.4). The converse of the lemma follows by a direct computation. This
completes the proof. �

C3
rd(T) is a Banach space with the norm ‖x‖ = max

t∈J
|x(t)|+max

t∈J
|x∆3

(t)| (see [25]). The solutions of

BVP (1.1) are the fixed points of the operator A : C3
rd(T)→C3

rd(T) defined by

Ax(t) =

t∫
a

hα−2 (t,σ(τ))
(

f (τ,x(τ))− x∆3
(τ)µ(τ)hβ (τ,σ(τ))

)
∆τ

+

b∫
a

k(t,τ)
(

f (τ,x(τ))− x∆3
(τ)µ(τ)hβ (τ,σ(τ))

)
∆τ, (2.6)

where k(t,τ) =
(

t−a
(b−a)2 h2(b,a)− h2(t,a)

b−a

)
h∆

α−2(b,σ(τ))− t−a
b−a hα−2(b,σ(τ)).

For the sake of convenience, we set

M = max
t∈J

( t∫
a

|hα−2(t,σ(τ))|∆τ +

b∫
a

|k(t,τ)|∆τ

)
+max

t∈J

t∫
a

|h∆3

α−2(t,σ(τ))|∆τ (2.7)

and

N = max
t∈J

( t∫
a

|hα−2(t,σ(τ))µ(τ)hβ (τ,σ(τ))|∆τ +

b∫
a

|k(t,τ)µ(τ)hβ (τ,σ(τ))|∆τ

)

+ max
t∈J

t∫
a

|h∆3

α−2(t,σ(τ))µ(τ)hβ (τ,σ(τ))|∆τ. (2.8)

Lemma 2.5. Assume the following two conditions hold:
(H1) | f (t,x)| ≤ φ(t)ψ(|x|) for all t ∈ J, x ∈ C3

rd(T), where φ : J → [0,∞) and ψ : [0,∞)→ [0,∞) are
continuous and nondecreasing.
(H2) The functions hα−2(t,σ(τ)), h∆3

α−2(t,σ(τ)), h2(t,a) and µ(t)hβ (t,σ(t)) are continuous for t ∈ J
and τ ∈ J.
Then, A : C3

rd(T)→C3
rd(T) is completely continuous.
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Proof. We divide the proof into two steps.
Step 1: We show that A is continuous. Let xn be a sequence such that xn → x ∈ C3

rd(T). Then, we
obtain that

|(Axn)(t)− (Ax)(t)| ≤
t∫

a

|hα−2(t,σ(τ))| | f (τ,xn(τ))− f (τ,x(τ))|∆τ

+

t∫
a

∣∣hα−2(t,σ(τ))µ(τ)hβ (τ,σ(τ))
∣∣ ∣∣∣x∆3

n (τ)− x∆3
(τ)
∣∣∣∆τ

+

b∫
a

|k(t,τ)| | f (τ,xn(τ))− f (τ,x(τ))|∆τ

+

b∫
a

∣∣k(t,τ)µ(τ)hβ (τ,σ(τ))
∣∣ ∣∣∣x∆3

n (τ)− x∆3
(τ)
∣∣∣∆τ

and ∣∣∣(Axn)
∆3
(t)− (Ax)∆3

(t)
∣∣∣ ≤ t∫

a

∣∣∣h∆3

α−2(t,σ(τ))
∣∣∣ | f (τ,xn(τ))− f (τ,x(τ))|∆τ

+

t∫
a

∣∣∣h∆3

α−2(t,σ(τ))µ(τ)hβ (τ,σ(τ))
∣∣∣ ∣∣∣x∆3

n (τ)− x∆3
(τ)
∣∣∣∆τ.

From f ∈C ([a,b]×R,R), (H2) and ‖xn− x‖ → 0 as n→ ∞, it follows that ‖Axn−Ax‖ → 0 as n→ ∞.

So, A is continuous.
Step 2: We show that the image of any bounded subset Ω of C3

rd(T) under A is relatively compact in
C3

rd(T). For each x ∈Ω =
{

x ∈C3
rd(T) : ‖x‖ ≤ r

}
, we obtain

|(Ax)(t)| ≤
t∫

a

|hα−2(t,σ(τ))| | f (τ,x(τ))|∆τ

+

t∫
a

∣∣hα−2(t,σ(τ))µ(τ)hβ (τ,σ(τ))
∣∣ ∣∣∣x∆3

(τ)
∣∣∣∆τ

+

b∫
a

|k(t,τ)| | f (τ,x(τ))|∆τ

+

b∫
a

∣∣k(t,τ)µ(τ)hβ (τ,σ(τ))
∣∣ ∣∣∣x∆3

(τ)
∣∣∣∆τ

≤ φ(b)ψ(r)
t∫

a

|hα−2(t,σ(τ))|∆τ +‖x‖
t∫

a

∣∣hα−2(t,σ(τ))µ(τ)hβ (τ,σ(τ))
∣∣∆τ

+ φ(b)ψ(r)
b∫

a

|k(t,τ)|∆τ +‖x‖
b∫

a

∣∣k(t,τ)µ(τ)hβ (τ,σ(τ))
∣∣∆τ
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and

∣∣∣(Ax)∆3
(t)
∣∣∣ ≤ t∫

a

∣∣∣h∆3

α−2(t,σ(τ))
∣∣∣ | f (τ,x(τ))|∆τ

+

t∫
a

∣∣∣h∆3

α−2(t,σ(τ))µ(τ)hβ (τ,σ(τ))
∣∣∣ ∣∣∣x∆3

(τ))
∣∣∣∆τ

≤ φ(b)ψ(r)
t∫

a

∣∣∣h∆3

α−2(t,σ(τ))
∣∣∣∆τ

+ ‖x‖
t∫

a

∣∣∣h∆3

α−2(t,σ(τ))µ(τ)hβ (τ,σ(τ))
∣∣∣∆τ.

Therefore,

‖Ax‖ ≤ φ(b)ψ(r)M+‖x‖N (2.9)

≤ φ(b)ψ(r)M+ rN,

that is, AΩ is a bounded set.
Now we show that AΩ is equicontinuous on J. For each t1, t2 ∈ J, without loss of generality, we may

assume that t1 < t2. For all x ∈Ω, one can see that

|Ax(t2)−Ax(t1)|

≤
∣∣∣∣ t2∫

a

hα−2(t2,σ(τ))
(

f (τ,x(τ))− x∆3
(τ)µ(τ)hβ (τ,σ(τ))

)
∆τ

−
t1∫

a

hα−2(t1,σ(τ))
(

f (τ,x(τ))− x∆3
(τ)µ(τ)hβ (τ,σ(τ))

)
∆τ

∣∣∣∣
+

∣∣∣∣ b∫
a

k(t2,τ)
(

f (τ,x(τ))− x∆3
(τ)µ(τ)hβ (τ,σ(τ))

)
∆τ

−
b∫

a

k(t1,τ)
(

f (τ,x(τ))− x∆3
(τ)µ(τ)hβ (τ,σ(τ))

)
∆τ

∣∣∣∣
≤

t1∫
a

|hα−2(t2,σ(τ))−hα−2(t1,σ(τ))|
∣∣∣ f (τ,x(τ))− x∆3

(τ)µ(τ)hβ (τ,σ(τ))
∣∣∣∆τ

+

t2∫
t1

|hα−2(t2,σ(τ))|
∣∣∣ f (τ,x(τ))− x∆3

(τ)µ(τ)hβ (τ,σ(τ))
∣∣∣∆τ

+

b∫
a

|k(t2,τ)− k(t1,τ)|
∣∣∣ f (τ,x(τ))− x∆3

(τ)µ(τ)hβ (τ,σ(τ))
∣∣∣∆τ
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and ∣∣∣(Ax)∆3
(t2)− (Ax)∆3

(t1)
∣∣∣ ≤ ∣∣∣∣ t2∫

a

h∆3

α−2(t2,σ(τ))
(

f (τ,x(τ))− x∆3
(τ)µ(τ)hβ (τ,σ(τ))

)
∆τ

−
t1∫

a

h∆3

α−2(t1,σ(τ))
(

f (τ,x(τ))− x∆3
(τ)µ(τ)hβ (τ,σ(τ))

)
∆τ

∣∣∣∣
≤

t1∫
a

∣∣∣h∆3

α−2(t2,σ(τ))−h∆3

α−2(t1,σ(τ))
∣∣∣∣∣∣ f (τ,x(τ))− x∆3

(τ)µ(τ)hβ (τ,σ(τ))
∣∣∣∆τ

+

t2∫
t1

∣∣∣h∆3

α−2(t2,σ(τ))
∣∣∣ ∣∣∣ f (τ,x(τ))− x∆3

(τ)µ(τ)hβ (τ,σ(τ))
∣∣∣∆τ.

Since the functions f , hα−2(t,σ(τ)), h∆3

α−2(t,σ(τ)), h2(t,a) and µ(t)hβ (t,σ(t)) are continuous from

(H2), we have |Ax(t2)−Ax(t1)| → 0 and
∣∣∣(Ax)∆3

(t2)− (Ax)∆3
(t1)
∣∣∣→ 0 for t1→ t2. It yields that AΩ is

equicontinuous in C3
rd(T).

As a consequence of those steps, we obtain that A is completely continuous operator. This completes
the proof. �

3. THE LIPSCHITZ CASE

In this section, we will use the well-known contraction mapping theorem named also as the Banach
fixed point theorem.

Theorem 3.1. Assume that (H2) holds. In addition, we suppose that
(H3) Let the function f (t,x) satisfy the following Lipschitz condition: there is a constant L > 0 such that

| f (t,x)− f (t,y)| ≤ L|x− y|, for each t ∈ J, (3.1)

for all x and y in C3
rd(T). In addition, LM +N < 1, where M and N are defined in (2.7) and (2.8),

respectively. Then, BVP (1.1) has a unique solution in C3
rd(T).

Proof. For x,y ∈C3
rd(T) and t ∈ J, by using (3.1) we have

|(Ax)(t)− (Ay)(t)| ≤
t∫

a

|hα−2(t,σ(τ))( f (τ,x(τ))− f (τ,y(τ)))|∆τ

+

t∫
a

∣∣∣hα−2(t,σ(τ))µ(τ)hβ (τ,σ(τ))
(

x∆3
(τ)− y∆3

(τ)
)∣∣∣∆τ

+

b∫
a

|k(t,τ)( f (τ,x(τ))− f (τ,y(τ)))|∆τ

+

b∫
a

∣∣∣k(t,τ)µ(τ)hβ (τ,σ(τ))
(

x∆3
(τ)− y∆3

(τ)
)∣∣∣∆τ
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≤ L
t∫

a

|hα−2(t,σ(τ))| |x(τ)− y(τ)|∆τ

+

t∫
a

∣∣hα−2(t,σ(τ))µ(τ)hβ (τ,σ(τ))
∣∣ ∣∣∣x∆3

(τ)− y∆3
(τ)
∣∣∣∆τ

+ L
b∫

a

|k(t,τ)| |x(τ)− y(τ)|∆τ

+

b∫
a

∣∣k(t,τ)µ(τ)hβ (τ,σ(τ))
∣∣ ∣∣∣(x∆3

(τ)− y∆3
(τ))

∣∣∣∆τ

≤ L‖x− y‖

 t∫
a

|hα−2(t,σ(τ))|∆τ +

b∫
a

|k(t,τ)|∆τ


+ ‖x− y‖

( t∫
a

∣∣hα−2(t,σ(τ))µ(τ)hβ (τ,σ(τ))
∣∣∆τ

+

b∫
a

∣∣k(t,τ)µ(τ)hβ (τ,σ(τ))
∣∣∆τ

)
and ∣∣∣(Ax)∆3

(t)− (Ay)∆3
(t)
∣∣∣ ≤ t∫

a

∣∣∣h∆3

α−2(t,σ(τ))( f (τ,x(τ))− f (τ,y(τ)))
∣∣∣∆τ

+

t∫
a

∣∣∣h∆3

α−2(t,σ(τ))µ(τ)hβ (τ,σ(τ))
(

x∆3
(τ)− y∆3

(τ)
)∣∣∣∆τ

≤ L
t∫

a

∣∣∣h∆3

α−2(t,σ(τ))
∣∣∣ |x(τ)− y(τ)|∆τ

+

t∫
a

∣∣∣h∆3

α−2(t,σ(τ))µ(τ)hβ (τ,σ(τ))
∣∣∣ ∣∣∣x∆3

(τ)− y∆3
(τ)
∣∣∣∆τ

≤ L‖x− y‖
t∫

a

∣∣∣h∆3

α−2(t,σ(τ))
∣∣∣∆τ

+ ‖x− y‖
t∫

a

∣∣∣h∆3

α−2(t,σ(τ))µ(τ)hβ (τ,σ(τ))
∣∣∣∆τ.

Then, we obtain

‖Ax−Ay‖ = max
t∈J
|(Ax)(t)− (Ay)(t)|+max

t∈J

∣∣∣(Ax)∆3
(t)− (Ay)∆3

(t)
∣∣∣

≤ (LM+N)‖x− y‖

= λ‖x− y‖,
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where λ = LM+N ∈ (0,1). So, A is a contraction mapping and the theorem is proved. �

In the next theorem, the function f (t,x) satisfies a Lipschitz condition not on the whole C3
rd(T) but on

a subset.

Theorem 3.2. Assume that (H2) holds. Also, we suppose that
(H4) There exists a number r > 0 such that

| f (t,x)− f (t,y)| ≤ L|x− y| for each t ∈ J,

for all x and y in S = {x ∈ C3
rd(T) : ‖x‖ ≤ r}, where L > 0 is a constant which may depend on r. In

addition, LM+N < 1, where M and N are defined in (2.7) and (2.8), respectively..
(H5) lim

x→0

f (t,x)
x = 0.

Then, BVP (1.1) has a unique solution x ∈C3
rd(T) with max

t∈J
|x(t)|+max

t∈J
|x∆3

(t)| ≤ r.

Proof. From (H5), we find that there exists a constant r > 0 such that | f (t,x)| ≤ δ |x| for 0 < |x| ≤ r,
where δ > 0 is a constant satisfying δM +N ≤ 1. Let us take S = {x ∈C3

rd(T) : ‖x‖ ≤ r}. Obviously,
S is a closed subset of C3

rd(T). Let A : C3
rd(T)→ C3

rd(T) be the operator defined in (2.6). For x and
y in S, taking into account (H4), in exactly the same way as in the proof of Theorem 3.1 we can get
‖Ax−Ay‖ ≤ λ‖x− y‖, where 0 < λ < 1.

It remains to show that A maps S into itself. If x ∈ S, then we obtain

|(Ax)(t)| ≤
t∫

a

|hα−2(t,σ(τ))| | f (τ,x(τ))|∆τ

+

t∫
a

∣∣hα−2(t,σ(τ))µ(τ)hβ (τ,σ(τ))
∣∣ ∣∣∣x∆3

(τ)
∣∣∣∆τ

+

b∫
a

|k(t,τ)| | f (τ,x(τ))|∆τ

+

b∫
a

∣∣k(t,τ)µ(τ)hβ (τ,σ(τ))
∣∣ ∣∣∣x∆3

(τ)
∣∣∣∆τ

≤ δ‖x‖

 t∫
a

|hα−2(t,σ(τ))|∆τ +

b∫
a

|k(t,τ)|∆τ


+ ‖x‖

( t∫
a

∣∣hα−2(t,σ(τ))µ(τ)hβ (τ,σ(τ))
∣∣∆τ

+

b∫
a

∣∣k(t,τ)µ(τ)hβ (τ,σ(τ))
∣∣∆τ

)

and
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|(Ax)∆3
(t)| ≤

t∫
a

∣∣∣h∆3

α−2(t,σ(τ))
∣∣∣ | f (τ,x(τ))|∆τ

+

t∫
a

∣∣∣h∆3

α−2(t,σ(τ))µ(τ)hβ (τ,σ(τ))
∣∣∣ ∣∣∣x∆3

(τ))
∣∣∣∆τ

≤ δ‖x‖

 t∫
a

∣∣∣h∆3

α−2(t,σ(τ))
∣∣∣∆τ


+ ‖x‖

 t∫
a

∣∣∣h∆3

α−2(t,σ(τ))µ(τ)hβ (τ,σ(τ))
∣∣∣∆τ

 .

Since ‖Ax‖ ≤ ‖x‖(δM+N)≤ ‖x‖ ≤ r, we have A : S→ S.
Now the contraction mapping theorem can be applied to obtain a unique solution of (2.4) in S, and the

proof is complete.
�

Example 3.3. Let T= 2Z= {2k : k ∈ Z} and define

hα(t,s) =
2α
( t−s

2

)(α)

Γ(α +1)
,

where t(α) = Γ(t+1)
Γ(t−α+1) which satisfies the properties in (2.1) and (2.2). Consider the following boundary

value problem {
∆

3
2
0∗x(t) =

t
40
|x(t)|

1+|x(t)| , t ∈ J := [0,20]∩T,
x(0) = x(20) = 0, x∆(0) = x∆(20).

(3.2)

Then, we have M ≈ 0.6232, N ≈ 0.4532, | f (t,x)− f (t,y)| ≤ 1
2 |x− y| and LM+N ≈ 0.7648 < 1. Since

all the conditions of Theorem 3.1 are satisfied, BVP (3.2) has a unique solution in C3
rd(T).

4. EXISTENCE OF SOLUTIONS

Theorem 4.1. [26, 27] Let E be a Banach space. Assume that A : E → E is completely continuous
operator and the set V = {u ∈ E : u = λAu,0 < λ < 1} is bounded. Then A has a fixed point in E.

Theorem 4.2. If the conditions (H1) and (H2) hold, then BVP (1.1) has at least one solution in C3
rd(T).

Proof. From Lemma 2.5, A : C3
rd(T)→ C3

rd(T) is completely continuous operator. Now, we will show
that the set V =

{
x ∈C3

rd(T) : x = λAx for some 0 < λ < 1
}

is bounded. For all x ∈V , we have

‖x‖ = ‖λAx‖

≤ λφ(b)ψ(r)M+λ‖x‖N

thanks to (2.9). Then we obtain ‖x‖ ≤ λφ(b)ψ(r)M
1−λN , which yields that the set V is bounded. As a conse-

quence of Theorem 4.1, BVP (1.1) has at least one solution. This completes the proof. �
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Theorem 4.3. [26, 27] Let E be a Banach space. Assume that Ω is an open bounded subset of E with
0 ∈Ω and let A : Ω→ E be a completely continuous operator such that

‖Au‖ ≤ ‖u‖, ∀x ∈ ∂Ω.

Then A has a fixed point in Ω.

Theorem 4.4. If conditions (H2) and (H5) hold, then BVP (1.1) has at least one solution.

Proof. Since lim
x→0

f (t,x)
x = 0, there exists a constant r > 0 such that | f (t,x)| ≤ δ |x| for 0 < |x|< r, where

δ > 0 is a constant satisfying δM+N < 1. Let us take Ω =
{

x ∈C3
rd(T) : ‖x‖< r

}
. Since the function

f satisfies condition (H1) by taking φ(t) = δ and ψ(|x|) = |x|, A : Ω→C3
rd(T) is completely continuous

operator from Lemma 2.5. If we take x ∈ ∂Ω, then we obtain ‖Ax‖ ≤ r as in the proof of Theorem 3.2. It
follows that ‖Ax‖ ≤ ‖x‖,∀x ∈ ∂Ω. Therefore, by means of Theorem 4.3 the operator A has at least one
fixed point in Ω. Thus, BVP (1.1) has at least one solution u ∈Ω.

�

Corollary 4.5. Suppose that (H1) and (H2) hold. If φ(b)M +N ≤ 1 and ψ(z) ≤ z, ∀z ∈ [0,∞), then
BVP (1.1) has at least one solution.

Example 4.6. Let T= qZ= {qk : k ∈ Z} and define

hα(t,s) =
qα

(
t−s

q

)(α)

Γ(α +1)
,

where t(α) = Γ(t+1)
Γ(t−α+1) which satisfies the properties in (2.1) and (2.2). Consider the following boundary

value problem {
∆

α−1
0∗ x(t) = x(1−cos(tx))

1+x2 , t ∈ J := [0,5]∩T, 2 < α < 3,
x(0) = x(5) = 0, x∆(0) = x∆(5).

(4.1)

Since f (t,x) = x(1−cos(tx))
1+x2 ∈C ([0,5]×R,R) satisfies (H5) and condition (H2) is satisfied, we see that

BVP (4.1) has at least one solution by using Theorem 4.4.
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12 İ. YASLAN, O. LİCELİ
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