T.C. PAMUKKALE ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ İNŞAAT MÜHENDİSLİĞİ ANABİLİM DALI

ÇOK KATLI ÇELİK YAPILARDA YAPI GEOMETRİSİNİN TAŞIYICI SİSTEM DAVRANIŞINA ETKİSİ VE İDEAL GEOMETRİK FORMUN BELİRLENMESİ

YÜKSEK LİSANS TEZİ

BURAK ÇIRPAN

DENİZLİ, ŞUBAT - 2017

T.C. PAMUKKALE ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ İNŞAAT MÜHENDİSLİĞİ ANABİLİM DALI

ÇOK KATLI ÇELİK YAPILARDA YAPI GEOMETRİSİNİN TAŞIYICI SİSTEM DAVRANIŞINA ETKİSİ VE İDEAL GEOMETRİK FORMUN BELİRLENMESİ

YÜKSEK LİSANS TEZİ

BURAK ÇIRPAN

DENİZLİ, ŞUBAT - 2017

KABUL VE ONAY SAYFASI

BURAK ÇIRPAN tarafından hazırlanan "ÇOK KATLI ÇELİK YAPILARDA YAPI GEOMETRİSİNİN TAŞIYICI SİSTEM DAVRANIŞINA ETKİSİ VE İDEAL GEOMETRİK FORMUN BELİRLENMESİ" adlı tez çalışmasının savunma sınavı 10.02.2017 tarihinde yapılmış olup aşağıda verilen jüri tarafından oy birliği / oy çokluğu ile Pamukkale Üniversitesi Fen Bilimleri Enstitüsü İnşaat Mühendisliği Anabilim Dalı Yüksek Lisans Tezi olarak kabul edilmiştir.

Jüri Üyeleri

İmza

Danışman Yrd. Doç. Dr. Fatih CETİŞLİ

Üye

Doç. Dr. Şevket Murat ŞENEL

Üye

Yrd. Doç. Dr. Selçuk SAATÇİ

Prof. Dr. Uğur YÜCEL

Fen Bilimleri Enstitüsü Müdürü

Bu tezin tasarımı, hazırlanması, yürütülmesi, araştırmalarının yapılması ve bulgularının analizlerinde bilimsel etiğe ve akademik kurallara özenle riayet edildiğini; bu çalışmanın doğrudan birincil ürünü olmayan bulguların, verilerin ve materyallerin bilimsel etiğe uygun olarak kaynak gösterildiğini ve alıntı yapılan çalışmalara atfedildiğine beyan ederim.

BURAK ÇIRPAN

ÖZET

ÇOK KATLI ÇELİK YAPILARDA YAPI GEOMETRİSİNİN TAŞIYICI SİSTEM DAVRANIŞINA ETKİSİ VE İDEAL GEOMETRİK FORMUN BELİRLENMESİ

YÜKSEK LİSANS TEZİ BURAK ÇIRPAN PAMUKKALE ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ İNŞAAT MÜHENDİSLİĞİ ANABİLİM DALI

(TEZ DANIŞMANI:YRD. DOÇ. DR. FATİH CETİŞLİ)

DENİZLİ, ŞUBAT - 2017

Bu çalışmada, 40 katlı kare, dikdörtgen, altıgen ve dairesel forma sahip çelik yüksek yapıların analizi yapılmış ve en ideal geometrik form belirlenmiştir. Modellerde ilk 3 katta alışveriş merkezi, mağazalar ve yaşam alanları diğer 37 katta ise konut veya işyerleri bulunmaktadır. İlk 3 katta kat yüksekliği 4.4 m diğer 37 katta ise 3.3 m olacak şekilde tasarlanmıştır. Yapılar 1.derece deprem bölgesinde yer almaktadır ve zemin sınıfı Z1 olarak belirlenmiştir. Binalarda taban alanları, kat yükseklikleri, yapı kullanım amaçları 4 model için de aynı değerler alınmıştır. Kolon, kiriş ve diyagonal elemanlarda Histar kalitesindeki çelik profiller döşeme betonlarında ise C30 kalitesinde beton kullanılmıştır. Yapılarda merkezi çelik çapraz perde sistemi tercih edilmiştir.

Sonuç olarak, statik analizleri yapılan 4 farklı çelik yapı arasında en iyi ve ideal sonuçları dairesel forma sahip yapının verdiği gözlemlenmiştir. En kötü analiz sonuçlarını ise dikdörtgen forma sahip model vermiştir. Öneriler kısmında elde edilen sonuçlar değerlendirilmiş ve birbirleriyle karşılaştırılmıştır.

ANAHTAR KELİMELER: Çok Katlı Yapılar, Çelik Yüksek Yapılar, Geometrik Form, Yapı Davranışı, İdeal Form

ABSTRACT

STRUCTURE GEOMETRY OF MULTI-STOREY STEEL STRUCTURES EFFECT ON THE BEHAVIOR OF FRAME SYSTEM AND DETERMINATION OF IDEAL GEOMETRIC FORM

MSC THESIS BURAK ÇIRPAN PAMUKKALE UNIVERSITY INSTITUTE OF SCIENCE CİVİL ENGİNEERİNG

(SUPERVISOR:YRD. DOÇ. DR. DR. FATİH CETİŞLİ) DENİZLİ, FEBRUARY 2017

In this study, 40 storey steel high rise buildings which are having square, rectangle, hexagon and circular plans are analyzed and optimum geometric form is determined. In the models thereare shopping centers, shops and living spaces in the first three floors; other 37 floors are chosen to be residental or business locations. The first three floors are having a storey height of 4.4. meters while the other 37 floors are having a storey height of 3.3 meters. The buldings are located on the first degree seismic zone and ground class are designated as Z1. In the buildings the floor area, heights of the building and the purposes of the use were same for all of the four models. Columns, beams and diagonal members were chosen as Histar grade steel profiles. For the concrete floors concrete quality of C30 was preferred. In the buildings were having steel centrally braced moment resisting frames.

As a result, among the four steel structures which were in different plans, circular plan was the most appropriate and economical. Rectangular formed model gave the worst analysis results. In the suggestions section, obtained results were evaluated and compared to each other

KEYWORDS : Multi-Story Structures, Steel Structure, Geometric Form Structure Behavior, Ideal Form

İÇİNDEKİLER

ÖZET	i
ABSTRACT	ii
İÇİNDEKİLER	iii
ŞEKİL LİSTESİ	v
TABLO LİSTESİ	vi
SEMBOL LİSTESİ	vii
ÖNSÖZ	.viii
1. GİRİŞ	9
1.1 Tezin Organizasyonu	10
1.2 Konu	10
1.2.1 Amaç	11
1.2.2 Kapsam	11
1.3 Önceki Çalışmalar	12
1.4 Çok Katlı Çelik Yapılar	14
1.4.1 Çelik Yapıların Depreme Karşı Avantajları	14
1.4.2 Çelik Yapılarda Taşıyıcı Sistem Elemanları	15
1.4.2.1 Kolonlar	16
1.4.2.2 Kirişler	17
1.4.2.3 Döşemeler	18
1.4.3 Çok Katlı Çelik Taşıyıcı Sistemler	19
1.4.3.1 Rijit Çerçeve Sistemler	20
1.4.3.2 Çaprazlı Çerçeve Sistemler	20
1.4.3.3 Çerçeveli Tüp Sistemler	21
1.4.3.4 Kafesli Tüp Sistemler	22
1.4.3.5 Demet (Modüler) Tüp Sistemler	22
1.4.3.6 Yatay Kafes Kirişli ve Kuşaklı Yapılar	22
2. MATERYAL VE YÖNTEM	24
2.1 MATERYAL	24
2.1.1 Histar Profilleri	24
2.2 YÖNTEM	26
2.2.1 Hesap Yöntemleri	26
2.2.1.1 Mod Birleştirme	26
2.2.1.2 Tasarım İvme Spektrumu	27
2.2.1.3 Göz Önüne Alınacak Dinamik Serbestlik Dereceleri	27
2.2.1.4 Hesaba Katılacak Yeterli Titreşim Modu Sayısı	27
2.2.2 SAP2000 Programi Île Îlgili Bilgiler	28
2.2.2.1 Boyutlama ve Kesit Kontrol Noktaları	30
2.2.2.2 P-Δ Etkilerinin Dikkate Alınması	30
2.2.2.3 Elemanların Mesnetlenmemiş Boyları	31
2.2.2.4 AISC-ASD89'a Göre Boyutlama	33
3. YAPI MODELLERİ	35
3.1 Modellerin Tanıtımı	35

3.1.1 Kare Model	35
3.1.2 Altıgen Model	
3.1.3 Dairesel Model	42
3.1.4 Dikdörtgen Model	45
3.2 Modellerde Tercih Edilen Taşıyıcı Sistemler	49
3.2.1 Çelik Çaprazlı Sistemler	49
3.2.2 Merkezi Çaprazlı Sistemler	50
3.3 Yük Analizi	52
3.3.1 Düşey Yükler	52
3.3.1.1 Sabit Yükler	52
3.3.1.2 Hareketli Yük	53
3.3.2 Yatay Yükler	53
3.3.2.1 Rüzgar Yükü	53
3.3.2.2 Deprem Yükü	59
3.4 Yük Kombinasyonları	62
4. ANALİZ SONUÇLARI	63
4.1 Yapısal Düzensizliklerin İncelenmesi	63
4.1.1 Planda Düzensizlik Durumları	63
4.1.1.1 Burulma Düzensizliği (A1)	63
4.1.1.2 Döşeme Süreksizliği (A2)	68
4.1.1.3 Planda Çıkıntılar Bulunması (A3)	68
4.1.2 Düşey Doğrultuda Düzensizlik Durumları	68
4.1.2.1 Komşu Katlar Arasında Dayanım Düzensizliği (Zayıf	`kat)68
4.1.2.2 Komşu Katlar Arasında Rijitlik Düzensizliği (Yumuş	ak kat)69
4.1.2.3 Taşıyıcı Sistemin Düşey Elemanlarının Düzensizliği	74
4.2 Deplasman Kontrolleri	74
4.2.1 Etkin Göreli Kat Ötelenmeleri	74
4.3 Kat Deplasmanları	79
4.4 Yapı Titreşim Periyotları	85
4.5 Kat Kesme Kuvvetleri	
5. SONUÇ VE DEĞERLENDİRME	92
6. KAYNAKLAR	96
7. EKLER	99
8. ÖZGEÇMİŞ	104

ŞEKİL LİSTESİ

<u>Sayfa</u>

Şekil 1.1: Kolon Kesitleri	.16
Şekil 1.2: Kiriş Kiriş Birleşimleri	.17
Şekil 1.3: Çelik Taşıyıcı Sistemler	. 19
Şekil 2.1: HISTAR ve EN 10113- 3: 1993'e göre yapısal çelik kaliteleri	
karşılaştırılması	.25
Şekil 2.2: Eğilmede Kuvvetli ve Zayıf Eksenler	.32
Şekil 2.3: Sap2000 ve Yönetmeliklerdeki Kuvvetli ve Zayıf Eksen Tanımı	.33
Şekil 2.4: Mesnetsiz Boylar Aradaki Düğüm Noktaları Tarafından Etkilenir	.33
Şekil 3.1: Kare Model Kalıp Planı	.36
Şekil 3.2: Kare Model Çerçeve Görünümü	.37
Şekil 3.3: Kare Yapı Üç Boyulu Modeli	.38
Şekil 3.4: Altıgen Model Kalıp Planı	. 39
Şekil 3.5: Altıgen Model Çerçeve Görünümü	.40
Şekil 3.6: Altıgen Yapı Üç Boyutlu Modeli	.41
Şekil 3.7: Dairesel Model Kalıp Planı	.42
Şekil 3.8: Dairesel Model Çerçeve Görünümü	.43
Şekil 3.9: Dairesel Yapı Üç Boyutlu Modeli	.44
Şekil 3.10: Dikdörtgen Model Kalıp Planı	.45
Şekil 3.11: Dikdörtgen Model Çerçeve Görünümü (x yönü)	.46
Şekil 3.12: Dikdörtgen Model Çerçeve Görünümü (y yönü)	.47
Şekil 3.13: Dikdörtgen Yapı Üç Boyutlu Modeli	.48
Şekil 3.14: Merkezi Çapraz Çeşitleri	.51
Şekil 3.15: Merkezi Çapraz Çeşitleri	.51
Şekil 4.1: Kare Model Deplasman Eğrisi	.79
Şekil 4.2: Dairesel Model Deplasman Eğrisi	.80
Şekil 4.3: Altıgen Model Deplasman Eğrisi	.80
Şekil 4.4: Dikdörtgen Model Deplasman Eğrisi (x yönü)	.81
Şekil 4.5: Dikdörtgen Model Deplasman Eğrisi (y yönü)	.81
Şekil 4.6: Kare Model Deplasman Eğrisi (Wx ve Wy yönü)	.82
Şekil 4.7: Daire Model Deplasman Eğrisi (Wx ve Wy yönü	.83
Şekil 4.8: Altıgen Model Deplasman Eğrisi (Wx ve Wy yönü)	.83
Şekil 4.9: Dikdörtgen Model Deplasman Eğrisi (Wx yönü)	.84
Şekil 4.10: Dikdörtgen Model Deplasman Eğrisi (Wy yönü)	.84
Şekil 5.1: Deprem Yükü Sonucu Oluan Kat Deplasmanları	.92
Şekil 5.2: Rüzgar Yükü Sonucu Oluşan Kat Deplasmanları	.93
Şekil 5.3: Modellerin Periyot Mod Sayısı Grafiği	.93

TABLO LÍSTESÍ

Tablo 2.1: Malzeme Özellikleri Tablosu	24
Tablo 3.1: Hesaplarda Kullanılan Aks Arası Mesafeler Tablosu	54
Tablo 3.2: Yüksekliğe Bağlı Bölge Faktörü Katsayısı Tablosu	55
Tablo 3.3: Kare Model RüzgarYükü Değerleri Tablosu	58
Tablo 3.4: Dairesel Model RüzgarYükü Değerleri Tablosu	58
Tablo 3.5: Dikdörtgen Model RüzgarYükü Değerleri Tablosu	58
Tablo 3.6: Altıgen Model RüzgarYükü Değerleri Tablosu	58
Tablo 3.7: Karşılaştırmalı Rüzgar Yükü Değerleri Tablosu	59
Tablo 3.8: Etkin Yer İvmesi Katsayısı Tablosu	60
Tablo 3.9: Hareketli Yük Katılım Katsayısı Tablosu	60
Tablo 3.10: Spektrum Karakteristik Periyotları Tablosu	60
Tablo 3.11: Tasarım İvme Spektrumu Tablosu	60
Tablo 3.12: Bina Önem Katsayısı Tablosu	61
Tablo 4.1: Kare Model Burulma Düzensizliği Tablosu	64
Tablo 4.2: Dikdörtgen Model Burulma Düzensizliği Tablosu	65
Tablo 4.3: Dairesel Model Burulma Düzensizliği Tablosu	66
Tablo 4.4: Altıgen Model Burulma Düzensizliği Tablosu	67
Tablo 4.5: Kare Model Kat Rijitlikleri Tablosu	70
Tablo 4.6: Dairesel Model Kat Rijitlikleri Tablosu	71
Tablo 4.7: Altıgen Model Kat Rijitlikleri Tablosu	72
Tablo 4.8: Dikdörtgen Model Kat Rijitlikleri Tablosu	73
Tablo 4.9: Kare Model Göreli Kat Ötelenmesi Tablosu	75
Tablo 4.10: Dairesel Model Göreli Kat Ötelenmesi Tablou	76
Tablo 4.11: Altıgen Model Göreli Kat Ötelenmesi Tablosu	77
Tablo 4.12: Dikdörtgen Model Göreli Kat Ötelenmesi Tablosu	78
Tablo 4.13: Kare Model Periyot Değerleri Tablosu	85
Tablo 4.14: Dikdörtgen Model Periyot Değerleri Tablosu	86
Tablo 4.15: Dairesel Model Periyot Değerleri Tablosu	87
Tablo 4.16: Altıgen Model Periyot DeğerleriTablosu	88
Tablo 4.17: Dairesel Model Kat Kesme Kuvvetleri Tablosu	89
Tablo 4.18: Kare Model Kat Kesme Kuvvetleri Tablosu	89
Tablo 4.19: Altıgen Model Kat Kesme Kuvvetleri Tablosu	90
Tablo 4.20: Dikdörtgen Model (x) Kat Kesme Kuvvetleri Tablosu	90
Tablo 4.21: Dikdörtgen Model (y) Kat Kesme Kuvvetleri Tablosu	91
Tablo 5.1: Modellerde Optimizasyon için Kullanılan Kesit Aralıkları	94
Tablo 5.2: Modeller İçin Seçilen En Ekonomik Malzemeler	94
Tablo 5.3: Taşıyıcı Sistem Çelik Profil Ağırlıkları	95

SEMBOL LİSTESİ

- Р : Rüzgar basıncı
- Ortalama hızdan meydana gelen rüzgar yükleri : : :
- Bölge faktörü
- q Ce Cg Cp Bora faktörü
- Dış basınç katsayısı
- Kolonlara etkiyen rüzgar yükü : qr
- Yapının tepe noktasındaki bölge faktörü : : Ceh
- Yapının en üst noktasındaki ortalama rüzgar hızı V_H
- Türbülans faktörü : B
- Doğal frekans : n₀
- Enerji oranı F :
- Süneklik katsayısı R :
- Deplasman Δ :

ÖNSÖZ

Tez çalışması kapsamında ülkemizde çelik yapılara olan ilginin arttırılmasının yanı sıra daha ekonomik, estetik, ideal ve dayanımı yüksek taşıyıcı sistem modellerinin belirlenmesi amaçlanmıştır. Ülkemiz deprem bölgesinde yer aldığı için son yıllarda meydana gelen depremlerde birçok can ve mal kaybı meydana gelmiştir. Gerek düşük dayanımlı malzeme kullanımı gerek işçilik hataları bu kayıplarda büyük rol oynamaktadır. Günümüzde birçok gelişmiş ülkede yapı malzemesi olarak çelik tercih edilmektedir. Özellikle çok katlı yapı tasarımında yapı elemanları yüksek dayanımlı çelik malzemesi kullanılarak tasarlanmıştır. Ülkemizde de son yıllarda bu tip yapılar tasarlanmakta ve yapılmaktadır. Yapılacak olan bu çalışma ile; dayanımı yüksek yapılar oluşturmak, çelik yapıların kullanımını arttırmak, minimum malzeme ile maksimum alan elde etmek, tasarımcılara yeni bakış açıları kazandırmak hedeflenmektedir.

Yüksek lisans eğitimim ve tez çalışmam boyunca benden yardımlarını esirgemeyen ve yol gösteren başta ailem olmak üzere danışmanım Yrd. Doç. Dr Fatih CETİŞLİ hocama teşekkür ederim. Ayrıca tez çalışmam boyunca benden esirgemediği yardımlarından dolayı Araş. Gör. İbrahim ÖZ, İnş. Müh. Burak İLEM ve İnş. Müh. Osman BAŞ'a teşekkür ederim.

Şubat 2017

Burak ÇIRPAN

1. GİRİŞ

Yüksek yapıların projelendirilmesinde yapı mühendisliği bakımından, deprem ve rüzgâr gibi yatay etkiler daha çok önem kazanmaktadır. Bu nedenle yüksek binalara özgü yatay yük taşıyıcı sistemler geliştirilmiştir. Çeliğin öz ağırlığının toplam yük içindeki payının küçük olması nedeniyle, hafif yapılar inşa edilebilmektedir. Aynı zamanda, yüksek dayanımlı malzeme olması daha ekonomik kesitler kullanılmasına olanak sağlamakta ve bunların sonucunda, temele intikal eden yükler azalmaktadır. Deprem etkileri kütlelerle orantılı olduğundan, çelik yapılarda deprem yükleri eşdeğer betonarme yapılara nispeten daha az olup, yapı yüksekliği arttıkça bu avantaj daha da belirginleşmektedir. Bu hususlar göz önünde tutulduğunda, yapı malzemesi olarak çeliğin, deprem bölgelerine uygunluğu, getirdiği güvenlik ve deprem sonrası onarımındaki kolaylıklar nedeniyle, büyük bir kısmı birinci ve ikinci derece deprem bölgesinde bulunan ülkemizde, en azından bir depremden sonra mutlaka ayakta kalması gerekli görülen yapılarda kullanılmasının kaçınılmaz bir gerçek olduğu açıkça görülmektedir.

Yapıların yatay ve düşey yükler altındaki davranışı ile yapım maliyetleri taşıyıcı sistem formuna bağlı olarak değişmektedir. Yapı yüksekliği arttıkça çok katlı yapılarda rüzgar ve deprem yüklerinin etkisi fazladır. Bu yüklere karşı koyabilecek en uygun yapı formunun belirlenmesi ve taşıyıcı sistem elemanlarının minimum boyutlarda seçilmesi ile kat alanlarında tasarruf elde edilecektir. Bu sayede hem ekonomik bir yapı oluşturulacak hem de minimum malzeme ile maksimum alan elde edilecektir.

Önerilen bu çalışmanın amacı, çok katlı çelik yapılarda en uygun taşıyıcı sistem geometrisinin ortaya konulmasıdır.

Değişik geometriye sahip dört adet çelik yüksek yapının deprem, rüzgar ve düşey yükler altındaki davranışlarının incelenmesi ve birbirleriyle karşılaştırılmasıdır. Çalışmada 40 katlı, yaklaşık 1024 m² oturma alanına sahip modeller tasarlanmıştır. İlk üç kat yüksekliği 4.4 m diğer tüm katlar ise 3.3 m olarak tasarlanan modeller çelik perdeli taşıyıcı sistemler olarak çözülmüştür.

1.1 Tezin Organizasyonu

Tez çalışmasının;

1. bölümünde genel bilgiler verilerek, tezin amacı, kapsamı, daha önce yapılmış olan çalışmalar ve çelik yapıların depreme karşı avantajları ile çelik yapılarda taşıyıcı sistemler hakkındaki bilgi özetlenmiştir.

2. bölümde çalışmada kullanılan çelik profillerin özellikleri, analiz yöntemleri ve kullanılan statik program ile ilgili detaylar verilmiştir.

3. bölümde modeller ve taşıyıcı sistem hakkında genel bilgiler açıklanmıştır. Yükleme ile ilgili hesaplar hakkında bilgiler verilmiştir.

4. bölümde analiz sonuçları şekil ve tablolar ile verilmiştir.

5. ve tezin son bölümünde, elde edilen sonuçlar değerlendirilmiş ve birbirleriyle karşılaştırılmıştır.

1.2 Konu

Çalışma, çok katlı çelik yapılarda taşıyıcı sistem modellemesinde ideal geometrik formun ortaya konulmasıyla daha ekonomik daha estetik yapıların ortaya çıkmasını sağlamaktır. Bu kapsamda değişik geometrik formlarda yapı sistemlerinin taşıyıcı sistem davranışına etkisi ile tasarlanan farklı taşıyıcı sistemlerin yükler altındaki davranışları ile yapım maliyetleri karşılaştırılarak sistemlerin avantaj ve dezavantajları ortaya konulacaktır.

Tez çalışması kapsamında aynı taban alanına, aynı kat yüksekliğine, sahip, aynı zemin sınıfı ve deprem bölgesine yer alan farklı geometrideki dört adet yapı modellenmiştir. Bu yapıların yer değiştirme, periyot, taban kesme kuvvetleri, katlardaki göreli ötelenmeler ve burulma düzensizliği sonuçları araştırılmış ve toplam bina ağırlıkları ile yapım maliyetleri karşılaştırılmıştır.

1.2.1 Amaç

Son yıllarda çelik; çok katlı binaların, geniş açıklıklı yapıların, ve köprülerin inşasında tercih edilmektedir. Ülkemiz koşullarında deprem riski taşıyan bir bölgede olmamız nedeniyle çeliğin yaygın bir şekilde kullanılması gerekmektedir. Yapılması hedeflenen çalışmanın amacı, çok katlı çelik yapılarda taşıyıcı sistem modellemesinde ideal geometrik formun ortaya konulmasıyla daha ekonomik daha estetik yapıların ortaya çıkmasını sağlamaktır. Bu kapsamda değişik geometrik formlarda yapı sistemlerinin taşıyıcı sistem davranışına etkisi ile tasarlanan farklı taşıyıcı sistemlerin yapım maliyetleri karşılaştırılarak sistemlerin avantaj ve dezavantajları ortaya konulacaktır.

1.2.2 Kapsam

Çeliğin öz ağırlığının toplam yük içindeki payının küçük olması nedeniyle, hafif yapılar inşa edilebilmektedir. Aynı zamanda, yüksek dayanımı da daha ekonomik kesitler kullanılmasına imkan vermekte ve bunların sonucunda, temele intikal eden yükler azalmaktadır. Deprem etkileri kütlelerle orantılı olduğundan çelik yapılarda deprem yükleri daha az olup, yapı yüksekliği arttıkça bu avantaj daha da belirginleşmektedir. Bu hususlar göz önünde tutulduğunda, yapı malzemesi olarak çeliğin, deprem bölgelerine uygunluğu, getirdiği güvenlik ve deprem sonrası onarımındaki kolaylıklar nedeniyle, büyük bir kısmı birinci ve ikinci derece deprem bölgesinde bulunan ülkemizde, en azından, bir depremden sonra mutlaka ayakta kalması gerekli görülen yapılarda kullanılmasının kaçınılmaz bir gerçek olduğu açıkça görülmektedir.

Çalışma kapsamında hazırlanan farklı geometrik oturma planına sahip çelik taşıyıcı sistem modelleri ile çelik malzemesinin önemi ortaya konulacaktır. Bilindiği üzere yapıların deprem ve diğer yatay yükler altındaki davranışı ile yapım maliyetleri taşıyıcı sistem formuna bağlı olarak değişmektedir. Özellikle çok katlı yapılarda rüzgar ve yatay yüklerin etkisi fazladır. Bu yüklere karşı koyabilecek en uygun yapı formunun belirlenmesi ve taşıyıcı sistem elemanlarının minimum boyutlarda seçilmesi kat aralarında tasarruf meydana getirecektir. Bu sayede daha ekonomik maliyetli bir yapı elde etmek mümkün olacaktır.

Önerilen bu çalışma ile verilen bu hususlar çok katlı yapıların tasarımında tasarımcılara yeni bir bakış açısı kazandırmayı hedeflemektedir.

1.3 Önceki Çalışmalar

Çok katlı çelik yapı tasarımı ile ilgili ülkemizde ve dünyada birçok çalışma yapılmıştır. Üniversitelerimizde çelik yapılar ile ilgili yapılmış olan pek çok çalışma bulunmaktadır. Bunlardan bir kısmı aşağıda verilmiştir.

E. AKHOUNDOV (2000), Yüksek çelik yapıların yapım amacı, sistem özellikleri, ekonomik taşıyıcı sistemlerin seçimi, yapıya etkiyen yükler, yapının stabilitesi, rijitliği, temelleri ve bu yapılar için otomasyon kavramını incelemiştir.

S. Kocabaş (2005), Tek ve çok açıklıklı endüstri yapıları ile çok katlı çelik yapıların analizi, tasarımı ve kesit ve birleşim hesapları ayrıntılı olarak adım adım yapmış ve uygulama projeleri oluşturmuştur.

F. Güner (2006), Çok katlı çelik yapıların deprem performansının belirlenmesi ve doğrusal olmayan davranışın incelenmesine yönelik bir çalışma yapmıştır.

İ. Şirikçi (2006), Çelik taşıyıcılı bir sisteminin elastik ve plastik hesap yöntemlerine göre analizlerini yapıp karşılaştırmıştır. Ayrıca aynı sistemi betonarme olarak da modelleyip maliyet karşılaştırmaları yapmıştır.

E. Çağatay (2006), İstanbul da bulunan ve betonarme olarak inşa edilmiş olan Metrocity binasını, süneklik düzeyi yüksek dış merkez güçlendirilmiş çerçeveli çelik yapı olarak tasarlamış, yapım süresi, maliyet ve yatırımın geri dönüşü bakımından çelik yapının daha avantajlı olduğunu ispatlamıştır.

A. Ateş (2006), Çelik yapıların analiz ve tasarım kurallarını 1997 ve 2006 deprem yönetmeliklerini karşılaştırarak irdelemiştir.

M. Kabil (2006), Tek ve çift yönde rijit çerçeve sistemler tasarlamış, analiz sonuçlarını karşılaştırmıştır.

12

G. Şen (2006), Çok katlı çelik yapıların performansa dayalı tasarım yöntemleri üzerinde durmuş, kapasite spektrum metodu ve deplasman katsayıları metodunu kullanarak performans değerlendirilmesi yapmıştır.

Ç. Gözüaçık (2006), Düzensiz bir yapıyı merkezi ve dışmerkezi güçlendirilmiş çerçeve sistem olarak tasarlayıp analiz yaparak, metraj ve maliyet sonuçlarını karşılaştırmıştır.

E. Çileli (2008), 20 katlı merkezi ve dışmerkezi çapraz düzenleri ile tasarladığı yapıları çözümlenerek tasarım koşulları ve süneklik düzeylerini karşılaştırmıştır.

B. Aslangiray (2008), Çelik yapılar için kullanılan en önemli uluslararası standartlar ve ülkemizde kullanılan standartlar arasında karşılaştırmalar yapmış, örnek yapı üzerinde çözüm yaparak sonuçları irdelemiştir.

M. Bulut (2008), Çaprazlı çok katlı çelik yapıların doğrusal olmayan davranışını Eurocode 1,3,4 ve 8 yönetmeliklerine göre incelemiş, dizayn ve süneklik düzeylerini karşılaştırmıştır.

E. Özer (2009), Deprem Bölgelerinde Yapılacak Yapılar Hakkındaki Yönetmelik açıklamalar ve örnekler kitabını Bayındırlık Ve İskan Bakanlığını adına hazırlamışlardır.

A. Zervent (2009), farklı ülkelerde inşa edilmiş fakat aynı geometriye, malzemeye ve zemin koşullarına sahip olan çelik yapıları malzeme sarfiyatları bakımından karşılaştırmıştır. Aynı çelik yapı farklı kat varyasyonları (2, 4, 6, 8, 10) için TS 648, AISC-LRFD ve Eurocode 3'e göre dizayn edilmiştir.

Ö. Özel (2009), Çok katlı bir çelik yapının rüzgar ve deprem yüklerine altında en uygun sistem ile tasarlanmasını amaçlamıştır. Tez kapsamında sadece birkaç tanesi anlatılan birçok sistem denenmiş, moment aktaran çerçeveli, merkezi V çaprazlı ve çelik çapraz çekirdekli sistem en uygun sistem olarak bulmuştur. Seçilen sisteme etkiyen deprem ve rüzgar yükleri ve bu yüklerin oluşturduğu deplasmanları karşılaştırmıştır.

M. Tansel (2010), Çok katlı birbirinden farklı çelik yapıların eşdeğer deprem yükü yöntemi kullanılarak deprem yükleri altındaki davranışlarını 2007 deprem yönetmeliğine

göre incelemiştir.

O. Civelek (2010), New York'da yapılmış yüksek bir çelik yapıyı, İstanbul koşullarına uygun olarak süneklik düzeyi yüksek olarak yeniden tasarlamış ve her iki modelin karşılaştırmasını yapmıştır.

O. K. Bingöl (2010), 40 katlı çelik bir yapının düşey ve yatay yükler altında statik analizini yapmıştır. Bir doğrultuda süneklik düzeyi yüksek merkezi çelik çaprazlı perdeler ve diğer doğrultuda süneklik düzeyi yüksek dış merkez çelik çaprazlı perdeler kullanılarak ortaya çıkan farkları incelemiştir.

Ö. Zeybek (2011), Çok katlı çelik yapıların geometri bakımından doğrusal olmayan davranışını artımsal ve pratik 2. mertebe analiz yöntemleri ile incelemiştir. Çeşitli geometrik formlarda teşkil edilen merkezi çelik çaprazlı sistemlerin, moment aktaran çerçeve sistemine göre tepe noktası yatay yer değiştirmesini, kat ötelenmelerini ve yapı salınım faktörü değerlerini etkin bir şekilde sınırlandırdığını tespit etmiştir.

M. Rashid (2015), 10, 20 ve 30 katlı dörtgen ve dairesel kat planlarına sahip yüksek çelik yapıların dinamik davranışını inceleyip yanal deplasmanları düşük seviyelerde tutmak için en iyi çelik çapraz çeşidini araştırmıştır.

1.4 Çok Katlı Çelik Yapılar

1.4.1 Çelik Yapıların Depreme Karşı Avantajları

Çelik çerçeveli yapılar hem yüksek dayanımlı hem de hafiftir. Bu özellik, öz ağırlığının taşıdığı yüke oranı çok küçük olmasından dolayı yapının toplam ağırlığını azaltmakta ve daha ekonomik yapıların ortaya çıkmasını sağlamaktadır.

Elastisite modülü, diğer yapı malzemeleriyle karşılaştırıldığında, çok yüksektir. Bu nedenle, stabilite sorunlarına, dinamik yüklere, titreşimlere uygun bir davranış göstermekte ve sehim problemi olan taşıyıcı sistemlerin boyutlandırılmasında daha ekonomik kesitler elde edilmektedir.

Yapısal çelik elastik olmayan sınıra kadar tekrarlayan yüklere karşı değişmeyen bir davranış gösterir. Bu süneklik ya da tekrarlayan yüklere kırılmadan dayanma yeteneği, çelik çerçeveli yapıların yatay ve düşey tasarım yüklerine büyük deformasyonlar ile dayanmasını sağlar.

Basit ve yarı rijit çelik eleman birleşimlerinin dönebilir olması ve sünekliği; dinamik enerjiyi azaltarak, düşey yük taşıyan çelik çerçevelerin yatay kuvvetleri karşılayan asıl sisteme güçlü ve güvenilir bir destek olmasını sağlar.

Depremlerde ağır hasar gören betonarme çerçeveli ve yığma yapıların aksine çelik çerçeveli yapıların hasar gören elemanları, geniş çaplı yıkım veya sökme işlemine gerek duyulmadan kısa sürede ve ekonomik olarak onarılabilir veya değiştirilebilir.

Çelik dünyanın en çok ve tam olarak geri dönüştürülen malzemesidir. Çelik hurda %100 çeliğe dönüşür ve doğru yapılırsa kalite ve güvenirlik kaybı olmaz.

1.4.2 Çelik Yapılarda Taşıyıcı Sistem Elemanları

Taşıyıcı sistemi incelerken önce taşımayı incelememiz gerekir. Taşımayı meydana getiren, yerçekimi adı verilen güçtür. Bu güç, bütün cisimleri dünya merkezine doğru çeker. Her yapı yapım şekli, boyutları ne olursa olsun başta yerçekimi olmak üzere çeşitli yüklerin etkisi altındadır. Yapıya etkiyen bu kuvvetleri taşıyan ve zemine aktaran elamanlara "taşıyıcı elemanlar" denir.

Taşıyıcı elamanlar bazen köprü ve asansörlerde olduğu gibi iki noktayı birleştirmek, ya da baraj ve istinat duvarlarında olduğu gibi doğal kuvvetlere karşı koymak için yapılırlarsa da, esas amacı bir hacmi belirlemektir. Özellikle mimarlıkta kullanılan taşıyıcı elamanlar bir hacmi özel bir fonksiyon için yararlı kılmak üzere örterler ve belirlerler. Bu yararlılık belirlenmiş hacmin dış hava koşullarından tamamen ya da kısmen ayrılmasıyla sağlanır ve tam kapalı olmayı gerektirmez.

1.4.2.1 Kolonlar

Kolonlar, yapıya etkiyen yükleri zemine aktaran düşey elamanlardır. Basınca ve eğilmeye çalışan çubuklardır. Tek parçalı kolonlarda IP profilleri kullanılır. Yükler arttıkça, profiller veya lamalar kullanılanarak çok kesitli kolon enkesitleri oluşturulabilir. Ayrıca, dikdörtgen veya yuvarlak enkesitli boru profilleri de kolon olarak kullanılmaktadır (Özgen ve Bayramoğlu, 2002).

Çok katlı çelik yapıya etkiyen düşey yükler çelik kolonlar ve bazen betonarme perdelerle temele aktarılır. Çoğunlukla kolonlar, kirişlerin kesişme noktalarına yerleştirilirler.

Şekil 1.1:Kolon Kesitleri (Özgen, A. Sev, A. 2000, Çok Katlı Yüksek Yapılarda Taşıyıcı Sistemler, İstanbul)

1.4.2.2 Kirişler

Döşemeden gelen yükleri düşey taşıyıcılara aktaran, eğilmeye ve kesme kuvvetlerine dayanıklı taşıyıcı sistem elamanlarıdır. Petek, kafes ve uzay kafes kirişler olarak sınıflandırılabilirler.

Yüksek yapılarda döşeme sistemini taşıyan yatay düzlemde düzenlenmiş kirişler ya rijit çerçeveye ya da çekirdek elemanına bağlıdır. Rijit çerçeve sistemlerinde kirişler, yapıda tek doğrultuda ya da iki doğrultuda düzenlenen çerçevelerin yatay elemanlarıdır. Mekanlarda geniş alanları, kolonlar arasını, çelik kirişlerle geçmek iç düzenlemede esneklik sağlar (Özgen ve Bayramoğlu, 2002).

Şekil 1.2: Kiriş-kiriş Birleşimleri (Özgen, A. Sev, A. 2000, Çok Katlı Yüksek Yapılarda Taşıyıcı Sistemler, İstanbul)

1.4.2.3 Döşemeler

Çok katlı yapılarda yatay düzlem elemanlar, kiriş ve plaklardan oluşan kat döşemeleridir. Döşemeler yalnızca katlardaki yükleri, düşey düzlemlerdeki yapı elemanlarına aktarmakla kalmayıp, yatay yüklerin zemine aktarılmasında, düzlemleri içindeki yüklerin iletilmesinde sonsuz rijit elemanlar olarak "diyafram" görevi de yaparlar.

Döşeme sistemlerinin doğru seçimi çok önemlidir. Bu seçim rüzgar ve düşey kuvvetlerin akış yönünü belirleyerek yapı iskeletinin geometrisini biçimlendirir. Ayrıca döşemeden tavana yüksekliğin sabit olduğu kabul edilirse, döşeme kalınlığı da tüm yapı yüksekliğini etkiler. Yapı yüksekliğindeki her artış mimari, mekanik ve taşıyıcı sistem maliyetini arttıracağından döşeme kalınlığı optimize edilmelidir. Kalınlık, kanallarla taşıyıcı döşeme içinde (örneğin boşluklu gövdeli kirişler ya da kafesler) ya da altında yer alan düzenlemelere de bağlıdır. Çelik döşeme sistemi, kiriş ve kuşaklar içeren bir çerçeveye oturtulmuş, bir döşeme tablası ile karakterize edilebilir. Bu döşemenin kalınlığı 10 cm ve 18 cm arasında değişebildiği gibi, metal bir tabliyenin üzerine oturtulmuş, değişik kesitlere sahip olabilir. Bu durumda döşemenin kalınlığı 6 cm'ye kadar indirilebilir. Döşemenin ağırlığı, çelik çerçevenin ağırlık ve maliyetine yansımaktadır.

Çelik döşemelerin, ağırlığının az olması, çabuk yapımı, kalıp gerekmemesi montajdan hemen sonra üzerinde yürünmesi gibi avantajları vardır. En önemli mahsuru ise, taşıyıcı olarak kullanıldığı durumlarda yangına karşı aşağıdan korunma gereksinimidir (Özgen ve Bayramoğlu, 2002). Çelik yapı döşeme tasarımında yangına karşı koruma önemlidir. Asma tavan sistemleri hem yangına karşı koruma hem de diğer fonksiyonları yerine getirir. Asma tavanla taşıyıcı döşeme arasındaki boşluk çeşitli servislerin yerleştirilmesinde kullanılabilir. Çok katlı yüksek yapılarda döşemeler yapının tasarlanan fonksiyonu ve dolayısıyla plan durumuna bağlı olarak çeşitli türlerde yapılmaktadır (Özgen ve Sev, 2000).

Tek yönde kiriş döşeme sistemi : Bu sistemde dikdörtgen bir ızgaraya bağlı kolonlar, bir dizi büyük açıklık geçen paralel kirişi taşımaktadırlar. Döşeme bu dikdörtgenin kısa kenarı doğrultusundaki açıklığı geçmektedir. Diğer doğrultuda yalnız bağ kirişi vardır.

İki Yönde Kiriş Döşeme Sistemi : Kiriş açıklıklarının birbirine dik iki yönde olduğu döşeme sistemlerinde iki yönlü çerçeve oluşturacak şekilde kiriş ve kuşaklar

kullanılmaktadır. Döşeme bu iki yöndeki kirişlerin arasını geçmektedir. Toplam strüktürel yüksekliği azaltmak için küçük açıklığı geçen kiriş yüksekliği fazla, büyük açıklık geçen kiriş yüksekliği ise daha az tutulabilir.

Üç Yönde Kiriş Döşeme Sistemi : Kolon açıklıklarının çok fazla olduğu yapılarda üç yönde kiriş sistemi uygulanmaktadır, Diğerlerinden daha fazla yüksekliği olan bir kafes kiriş, ikinci ve üçüncü yönlerdeki kirişleri taşır. Bu kiriş sayesinde diğer iki yöndeki kirişlerin yüksekliği daha az olabilir. Böylece döşeme bunların arasındaki küçük açıklığı geçer (Özgen ve Sev, 2000).

1.4.3 Çok Katlı Çelik Taşıyıcı Sistemler

Çok katlı çelik yapılarda kat sayısı artıkça, taşıyıcı sistemin boyutlandırılmasında rüzgar ve deprem gibi yatay yükler düşey yüklere göre daha etkili olmaya başlar. Yapı yüksekliğine bağlı olarak farklı taşıyıcı sistemler kullanılmaktadır. (Eşsiz, 2005)

Şekil 1.3: Çelik Taşıyıcı Sistemler (Fazlur, 1974)

1.4.3.1 Rijit Çerçeve Sistemler

Rijit çerçeve sistemler birbirlerine rijit olarak bağlanmış kolon ve kiriş elemanlarının bir araya gelmesiyle oluşmaktadır. Bir çerçevenin rijit olabilmesi için birbirine dik yönde bağlanan kolon ve kirişlerin yük etkisi altında, aralarındaki açıyı korumaları gerekmektedir

Rijit çerçeve sistemlerden, yüksek bina tasarımında, gerek yanal yüklere gerekse düşey yüklere dayanım amacıyla uzun zamandır yararlanılmaktadır. Rijit çerçeve sistemler, birbirine bağlanan kolon ve kirişlerin yük etkisi altında, aralarındaki açının değişmeyecek bir konumda tutulabilmesi prensibi üzerine kurulmuştur. Çelik binalar için rijit çerçeveleme, kolon ve kiriş birleşimlerinin takviye edilerek sağlamlaştırılması sonucunda elde edilir.

Duvar ve çerçevelerin birlikte davrandıkları bu sistem özellikle binanın üst noktalarında daha rijit bir yapı oluştururlar. 40-60 kat yükseklikler için uygun olan bu yapılar çapraz kuşaklarla desteklenen çelik çerçeveler için de uygun olabilmektedir (Smith ve Coull, 1991).

1.4.3.2 Çaprazlı Çerçeve Sistemler

Rijit ya da mafsallı bir çerçeve, düşey bir kafes eklenmesi yoluyla, mukavemeti ve rijitliği artırılan yapının strüktürel tasarımı, rijit çerçeve ve çekirdek sistemlerde olduğu gibi, çerçevelerin düşey yükleri, çaprazların yatay yükleri karşılayacağı varsayımına göre yapılmaktadır (Schueller, 1977).

Rijit ya da mafsallı çerçeve yapılarda yatay yükler çapraz elemanlar tarafından karşılanır. Bu sistemde kolonlar kafes kiriş gibi davranmaktadır. Binaya gelen yatay yükler yatay bileşenler tarafından karşılanır. Çünkü çaprazlı çerçeve sistemler, yatay yük altında yüksek dayanım gösterebilmektedir.

Çaprazlı çerçeveler, geometrik özelliklerine göre: ortak merkezli ve ayrık merkezli olmak üzere iki grupta toplanabilirler. Ortak merkezli çerçeveler; X, Pratt, diyagonal K ve V formlarını alabilirler. X şeklindeki çaprazlamalar K ve V çaprazlamalara göre daha yüksek

yatay dayanım/ağırlık göstermektedir (Beedle ve Rice, 1995).

Kapı, pencere gibi açıklıklara daha fazla esneklik tanımalarından dolayı ayrık merkezli çaprazlamalar daha yaygın olarak kullanılmaktadır.

Çaprazlı çerçeveler, yatay yüklere dayanım gösteren, düşey konsol makaslardır. Yatay yük altında kolonlar yaklaşık %80 kadar eksenel uzama ve kısalma göstermektedir.

Çaprazlı çerçeveler, yapım kolaylığı açısından daha çok strüktürel çelikten yapılmaktadır. Çelik diyagonaller, kuvvete, uzunluğa, istenen rijitliğe ve diğer faktörlere bağlı olarak, çift açılı, kanallı, T kesitli veya geniş başlıklardan oluşan putreller şeklinde olabilmektedir. Performansın yanı sıra, diyagonal elemanın şekli, bağlantı kabullerine de bağlıdır (Beedle ve Rice, 1995).

1.4.3.3 Çerçeveli Tüp Sistemler

Cephede sık aralıklı kolonlar ve yüksek parapet kirişlerinden oluşan tüp sistem, delikli dikdörtgen ya da benzeri bir boru şeklinde davranan bu çerçeveli tüp, yüksek binalar için oldukça etkin bir sistemdir. Bunlar 110 katlı Sears Tower, 110 katlı World Trade Center ve 83 katlı Amoco Binası'dır.

Tüp sistemlerin ilk uygulaması Dr. Fazlur Khan ve Skidmore, Owings & Meril Mühendislik Mimarlık firması tarafından 43 katlı konut binası olarak Chicago da yapılmıştır. Genel olarak çerçeveli tüp sistemler yapının en iyi çözümünü elde edebilmek için çeşitli kolon aralıklarında ve kolon özelliklerinde uygulanmaktadır. Uygulamalarda çerçeveli tüp sistemlerde tüp davranışı 3 m den 6 m ye kadar değişen kolon aralıklarında ve 0.90 cm ile 1.5 m yüksekliğine kadar değişen çevre kiriş yüksekliklerinde elde edilebilmektedir. Tüp sistemler betonarme yapı sistemi, yapısal çelik kullanarak veya bu iki yapı elemanı beraber kompozit olarak kullanılarak yapılmaktadır.

1.4.3.4 Kafesli Tüp Sistemler

Kafesli tüp sistemler, çerçeve tüp sistemlerin geliştirilmesiyle ortaya çıkan bir sistemdir. 1970'li yıllardan itibaren yapıların hızla yükselmesi ve çerçeve tüp sistemlerin yetersiz kalması nedeniyle yapılarda kafesli tüp sistemler uygulanmaya başlamıştır. Bina yüksekliklerinin çerçeveli tüplerin etkin olamayacağı kadar yükselmesi durumunda çerçeveli tüpün cephesine diyagonal elemanların eklenmesi yoluyla sistemin daha fazla yükseklikler için yatay yük karşısındaki etkinliği arttırılmış ve cephedeki kolonlar daha geniş açıklıklı olarak tasarlanabilmiştir. Bu sistem tüpün başlıklarındaki ve diğer tüp elemanlardaki kesme etkisini de ortadan kaldırmaktadır. Kafeslerin eklenmesi, çerçeveli tüpün konsol şeklinde davranmasını sağlamak için en etkin yöntemdir. Bu şekilde oluşturulan kafesli tüp sistem ilk olarak Chicago'da 100 katlı John Hancock Center'de (1969) uygulanmıştır.

1.4.3.5 Demet (Modüler) Tüp Sistemler

Bina yüksekliği ve kat alanı arttıkça, yapısal etkinliğin arttırılması amacıyla, geniş kolon aralıklarına olanak tanıyan demet tüp sistemi tercih edilebilir. Demet tüp sistemi, tekli tüplerin birleştirilmesi sonucu ortaya çıkan tüpler kümesi olup yapısal etkinlikten ödün verilmeksizin tüplerin istenen yüksekliklerde sonlandırılmasıyla farklı boyutlarda tasarıma imkan verir. Demet tüp sistemler, 30 kattan çok yüksek binalara kadar geniş bir alanda uygulanabilmektedir. Bu sistemde yatay yüke paralel çerçeveler kesme kuvvetlerini karşılarken, diğer çerçeveler eğilme momentlerini karşılamaktadır. En ünlü demet tüp uygulama Chicago'daki Sears Towers Binası'dır.

1.4.3.6 Yatay Kafes Kirişli ve Kuşaklı Yapılar

40 katın üzerindeki binalarda yalnızca düşey bir kafes ve çerçeveden oluşan taşıyıcı sistemler rüzgar ve deprem yükleri karşısında yetersiz kalmaktadır. Ayrıca bu sistemlerin belli bir yüksekliğin üzerinde etkin olabilmesi için kullanılan çelik miktarı ekonomiklik sınırını geçmektedir. Bu durumda sisteme yatay kafes kirişlerin (ara kuşakların) eklenmesiyle iki yönlü yarar sağlamaktadır. Birinci sistemin devrilme momentlerine karşı devrilme rijitliği

arttırılmakta, ikincisi kullanılan çelik miktarından tasarruf sağlanmaktadır. Bu taşıyıcı sistem çaprazlı bir çekirdek ve bu çekirdekle dış kolonları birbirine bağlayan yatay kafes kirişlerden oluşabilmektedir. Yatay kafes kirişler, eğilme ve kesme kuvvetlerine karşı etkinliği arttırmak için, genellikle bir veya iki kat yükseklikte tasarlanmaktadır. Aynı amaca yönelik olarak katlar arasına diyagonaller yerleştirmek de olası bir çözümdür. Sonuç olarak her kattaki ana kirişler moment bağlantılarıyla çekirdeğe veya dış kolonlara bağlanarak yatay kafes kirişlere dönüştürülebilmektedir. Bütün bu durumlarda yatay kafes kirişler taşıyıcı sistemin eğilme dayanımın arttırsa da, kesme kuvvetlerine karşı dayanımı arttırmazlar; bu kuvvetlerin çekirdek tarafından karşılanması belirlenir.

2. MATERYAL VE YÖNTEM

Bu bölümde çalışmada kullanılan malzeme özellikleri, izlenen yol ve çalışmanın aşamaları hakkında bilgi verilmiştir.

2.1 MATERYAL

Tasarlanan modellerde kolon, kiriş ve diyagonal elemanlarda HISTAR 355 ve HISTAR 460 (High-Strength–ARBED) kalitesindeki profiller kullanılmıştır. Döşeme elemanlarında ise C30 sınıfı beton kullanılmıştır.

Malzeme	R _{EH} min (Mpa)	R _M min (Mpa)	Uzama min (%)
HISTAR 355	355	450	22
HISTAR 460	460	530	17

2.1.1 Histar Profilleri

Histar çelik kalitesinde üretilen çelik profiller, geniş açıklıklı uzay çatıların çelik elemanları, yüksek binaların ağır yük taşıyan "jumbo" kesit çelik kolonları, kompozit köprülerin derin çelik kirişleri, derin temellerin çelik zemin kazıkları gibi özellikli uygulamalarda kullanılmaktadır.

Deprem yönetmeliklerinde tavsiye edilen minimum tokluk değerlerini sağlayan histar profilleri günümüzde yüksek binaların tasarımında en ekonomik biçimde "güçlü kolon – zayıf kiriş" prensibini elde etmek için kullanılmaktadır. Bu, kolonlarda yüksek dayanımlı, kirişlerde daha düşük dayanımlı çelik kullanarak veya moment aktaran çerçeve birleşimlerindeki plastik mafsalların kiriş-kolon düğüm noktasından uzakta, tasarlanan yerde, oluşmasını garanti etmek için geliştirilmiştir.

Şekil 2.1: HISTAR ve EN 10113- 3: 1993'e göre Yapısal Çelik Kaliteleri Karşılaştırılması (İnşaat Mühendisleri Odası 3.Ulusal Çelik Yapılar Sempozyumu)

Yeni nesil histar profilleri binalarda kolon, derin kirişlerde veya çatı makaslarında çekme elemanı olarak kullanıldıklarında;

- yapısal ağırlık
- malzeme maliyetleri,
- üretim maliyetleri,
- ulaştırma ve montaj maliyetleri
- temel maliyetlerini azaltarak önemli kazançlar sağlar.

S355 kalitesi ile karşılaştırıldığında histar 460'ın ekstra maliyeti sadece +%5'tir. Yüksek akma dayanımından tam olarak faydalanıldığı takdirde histar 460 kalitesinde kiriş, S355 kalitesinde bir kirişten %25 daha hafif olmakta ve sadece malzeme olarak ekonomik avantaj yaklaşık %15-20 civarındadır. S235 yerine histar 460 kullanıldığı takdirde tasarruf çok daha fazla olacaktır.

2.2 YÖNTEM

Geometrik formun yapı davranışına etkisinin incelenmesi ve ideal geometrik tasarımın belirlenmesi konusunda önem arz eden bu çalışmada yapıların statik analizleri karşılaştıralarak sonuçlar değerlendirilmiştir. Planları birbirinden farklı 4 çelik yüksek yapının statik analizi SAP2000 programı kullanılarak yapılmıştır.

Çalışmanın ilk aşamasında yaklaşık olarak aynı taban alanına sahip daire, kare, dikdörtgen ve altıgen formunda yapıların kalıp planları oluşturulmuştur. Oluşturulan kalıp planlarına bağlı kalınarak SAP2000 programına aktarılmış modellerin kat sayıları, kat yükseklikleri, malzeme özellikleri ve yükleme değerleri belirlenmiş ve modellerin ön tasarımı tamamlanmıştır. Daha sonraki aşamada ise her bir model için en ekonomik kesitlerin belirlenmesi ve en ideal yapı formunun belirlenmesi amacıyla çalışmalar yapılmıştır.

2.2.1 Hesap Yöntemleri

Binaların ve bina türü yapıların deprem hesabında kullanılacak yöntemler, Deprem Yönetmeliği Bölüm 2.7'de verilen Eşdeğer Deprem Yükü Yöntemi, Bölüm 2.8'de verilen Mod Birleştirme Yöntemi ve Bölüm 2.9'da verilen Zaman Tanım Alanında Hesap Yöntemleri'dir. Bölüm 2.8 ve Bölüm 2.9'da verilen yöntemler, tüm binaların ve bina türü yapıların deprem hesabında kullanılabilir.

Modellerin tüm analizleri SAP2000 programında yapılmıştır ve hesap yöntemi olarak Mod Birleştirme Yöntemi tercih edilmiştir.

2.2.1.1 Mod Birleştirme

Bu yöntemde maksimum iç kuvvetler ve yer değiştirmeler, binada yeterli sayıda doğal titreşim modunun her biri için hesaplanan maksimum katkıların istatistiksel olarak birleştirilmesi ile elde edilir.

2.2.1.2 Tasarım İvme Spektrumu

Herhangi bir n'inci titreşim modunda göz önüne alınacak azaltılmış ivme spektrumu ordinatı Deprem Yönetmeliği Denk.(2.13) ile belirlenecektir.

$$S_{aR}(T_a) = S_{ae}(T_n)/R_a(T_n)$$
(2.13)

Elastik tasarım ivme spektrumunun Deprem Yönetmeliği 2.4.4'e göre özel olarak belirlenmesi durumunda, Denk.(2.13)'te S_{ae} (T_n) yerine, ilgili özel spektrum ordinatı göz önüne alınacaktır.

2.2.1.3 Göz Önüne Alınacak Dinamik Serbestlik Dereceleri

Döşemelerin yatay düzlemde rijit diyafram olarak çalıştığı binalarda, her bir katta, birbirine dik doğrultularda iki yatay serbestlik derecesi ile kütle merkezinden geçen düşey eksen etrafındaki dönme serbestlik derecesi göz önüne alınacaktır. Her katta modal deprem yükleri bu serbestlik dereceleri için hesaplanacak, ancak ek dış merkezlik etkisinin hesaba katılabilmesi amacı ile, deprem doğrultusuna dik doğrultudaki kat boyutunun +%5'i ve -%5'i kadar kaydırılması ile belirlenen noktalara ve ek bir yükleme olarak kat kütle merkezine uygulanacaktır.

2.2.1.4 Hesaba Katılacak Yeterli Titreşim Modu Sayısı

Hesaba katılması gereken yeterli titreşim modu sayısı, Y, göz önüne alınan birbirine dik x ve y yatay deprem doğrultularının her birinde, her bir mod için hesaplanan etkin kütlelerin toplamının hiçbir zaman bina toplam kütlesinin %90'ından daha az olmaması kuralına göre belirlenecektir.

$$\sum_{n=1}^{Y} Mxn = \sum_{n=1}^{Y} \frac{L^2 xn}{Mn} \ge 0.90 \sum_{i=1}^{N} mi$$

$$\sum_{n=1}^{Y} Myn = \sum_{n=1}^{Y} \frac{L^2 yn}{Mn} \ge 0.90 \sum_{i=1}^{N} mi$$
(2.14)

Denk.(2.14)'te yer alan Lxn ve Lyn ile modal kütle Mn'nin ifadeleri, kat döşemelerinin rijit diyafram olarak çalıştığı binalar için aşağıda verilmiştir.

$$Lxn = \sum_{i=1}^{N} mi \, \emptyset xin \quad ; \quad Lyn = \sum_{i=1}^{N} mi \, \emptyset yin$$

$$Mn = \sum_{i=1}^{N} (mi \emptyset^2 xin + mi \emptyset^2 yin + m_{\emptyset i} \, \emptyset^2)$$
(2.15)

2.2.2 SAP2000 Programı İle İlgili Bilgiler

SAP2000 hem çelik hem de betonarme yapıların boyutlandırılması için güçlü ve tümüyle bütünleştirilmiş program modülleri sunmaktadır. Program kullanıcıya tümü aynı kullanıcı ana birimi içinde olmak üzere yapısal modeller oluşturma, değiştirme, çözümleme ve boyutlama seçenekleri sağlar. Program aynı anabilim içinden başlangıç elemanlarının boyutlama ve optimize etme kabiliyetine sahiptir.

Program, kullanıcının gerilme durumlarını inceleyebildiği, örneğin kesit büyüklüklerinin yeniden düzenlenmesi gibi uygun değişiklikleri yapabildiği ve yapıyı yeniden çözümlemeksizin boyutlamayı geliştirebildiği etkileşimli bir çevre sağlar. Bir eleman üzerine fare ile bir tıklama ayrıntılı boyutlama bilgisini ekrana getirir. Boyutlama amacı ile elemanlar gruplandırılabilir. Sonuçlar hem grafik hem de tablo düzeninde görüntülenebilir ve basılabilir.

Program betonarme ve çelik çerçeve elemanlarının otomatik boyutlaması için çok sayıda en yeni ulusal ve uluslararası yönetmeliği destekleyebilen bir yapıya sahiptir. Programın desteklediği Çelik Dizayn Yönetmelikleri'nden bazıları şunlardır:

A.B.D. AISC/ASD(1989)

A.B.D AISC/LRFD(1994)

A.B.D AASHTO LRFD(1997)

Kanada CAN/ CSA-S16.1-94(1994)

İngiliz BS 5950(1990), ve

Avrupa EC3 (ENV 1993-1-1)

Bu çalışmada Deprem Yönetmeliği 2007 ve TS648'e en uygun olduğu daha önceki çalışmalarla ifade edilmiş olan Amerikan Çelik Yapılar Enstitüsünün "Yapısal çelik binalar için müsaade edilebilir gerilme dizaynı ve Plastik dizayn şartnamesi", A.B.D. AISC/ASD (1989) seçilmiştir.

Boyutlama, kullanıcının belirlediği bir grup yükleme kombinasyonlarına göre uygulanır. Bununla birlikte program, SAP2000'in desteklediği her bir yönetmeliğe uygun önceden hazırlanmış bir kombinasyonu veri takımı sağlar. Bu varsayımdaki yük kombinasyonları kabul edilebiliyorsa hiçbir ek yük kombinasyonu tanımlamaya gerek yoktur.

Program tasarım sürecinde kullanıcının belirlediği kesit grubu içinden boyutlama yapabilmek için her elemanın dayanımı için en hafif kesitleri seçer. Sağlanmış farklı kesit grupları, farklı eleman grupları için belirtilebilir. Aynı zamanda farklı elemanlar aynı kesit olarak dizayn edilmek için gruplanabilirler.

Program kontrol sürecinde eksenel yük ve çift eksenli moment etkileşimleri ve kesme için istenen/sağlanan kapasite oranlarını üretir. İstenen/sağlanan kapasite oranları, limit durum dizayn için çarpanlarla arttırılmış yüklere ve kapasitelere, müsaade edilebilir gerilme dizaynı için eleman gerilmesine ve müsaade edilebilir gerilmeye dayanır.

Kontroller her kullanıcının belirlediği (veya önceden belirlenen) yük kombinasyonları için ve eleman uzunluğu boyunca çeşitli kullanıcı kontrol noktalarında yapılır. Daha sonra maksimum istenen/sağlanan kapasite oranları boyutlama optimizasyonu için kaydedilir ve kullanılır.

Eksenel, eğilme ve kesme tesirleri için izin edilebilir bütün gerilme değerleri veya tasarım kapasite değerleri program tarafından hesaplanır. Moment aktaran çerçeve tipi yapılarda kolonlar için etkili boy çarpanlarının hesabıyla ilgili hesaplar programın algoritmasında otomatik olarak yapılır. Sonuçların sunuluşu açık ve özeldir. Çıkış bilgileri mühendise elemanın gerilme sınırlarını aşması durumunda uygun önlemler alma olanağı verecek formdadır. Programın ürettiği boyutlama bilgileri de sonuçları kolayca gerçekleşmek için hazırlayıp saklanır. Model geometrisini tanımlama ve boyutlama parametrelerini belirtmede İngiliz birimleri kullanılabildiği gibi SI ve MKS metrik birimleri de kullanılabilir.

2.2.2.1 Boyutlama ve Kesit Kontrol Noktaları

Her elemanda her yük kombinasyonu için eleman boyunca belli sayıdaki yerde çelik kesit hesabı veya kesit kontrolü yapılır. Bu yerler elemanın serbest açıklığının eşit aralıklı parçaları ile oluşur. Elemandaki parça sayısı çözümlemeden önce kullanıcı tarafından belirtilir. Kullanıcı eleman boyunca boyutlama hesaplarını daha incelikli kalmak üzere daha çok sayıda parça tanımı isteyebilir.

Eksenel yük etkileşim oranları da kayma gerilme oranları gibi her bir yükleme kombinasyonu için eleman uzunluğu boyunca her bir noktada hesaplanır. Gerçek eleman gerilme bileşenleri ve bunlara uyumlu müsaade edilebilir gerilmeler hesaplanır. Daha sonra gerilme oranları yönetmeliklere göre belirlenir. Kontroller için, yönetmelik eşitliklerine, yükleme kombinasyonlarına ve noktanın tanımına uygun olarak basınç veya çekme gerilme oranları elde edilir. Gerilme oranının 1'den büyük olması, bir limit durumun aşıldığını veya bir aşırı gerilmeyi gösterir.

2.2.2.2 P- Δ Etkilerinin Dikkate Alınması

SAP2000 boyutlama algoritmaları, çözümleme sonuçlarını P- Δ etkilerini içermesini gerektirir. P- Δ etkileri yanal öteleme yapmayan (çaprazlı çerçeveler) veya yanal öteleme yapan (çaprazsız çerçeveler) için farklı biçimde dikkate alınır. Çaprazlı çerçeveler için P- Δ etkisi "münferit eleman stabilitesi" ile sınırlıdır. Çaprazsız çerçeveler için "yanal ötelenme etkileri" de eleman stabilitesi etkisine ek olarak göz önüne alınmalıdır.

SAP2000'de çaprazlı çerçevelerdeki momentlerin sabit veya hareketli yüklerden oluştuğu varsayılmıştır. Çaprazsız çerçevelerdeki momentlerin de diğer tip yüklerden oluştuğu varsayılmıştır. Münferit eleman stabilite etkileri için momentler AISC-LRFD ve AASHTO-LRFD yönetmeliklerinde olduğu gibi moment büyütme katsayıları ile büyütülür ya da Kanada, İngiliz ve Avrupa yönetmeliklerinde olduğu gibi ek momentlerle büyütülür. Moment büyütme AISC-ASD yönetmeliğinde kullanılmaz. Yanal öteleme yapan çaprazsız çerçevelerde yanal ötelenme etkisi için P-∆ etkileri AISC-ASD yönetmeliği hariç göz önüne alındığından, SAP2000, büyütmenin sonuçlara katılmış olduğunu varsayar.

SAP2000 kullanıcıları önceden hazır olan (default) çözümlemede SAP2000'nin P- Δ etkileri için kapalı durumda olduğunu bilmeleri gerekir. P- Δ çözümlemesi için iterasyon sayısı önceden hazır (default) olarak 1'dir. Kullanıcı P- Δ çözümlemesini açık duruma getirmeli ve çözümleme için maksimum iterasyon sayısını girmelidir. AISC-ASD yönetmeliği için P- Δ çözümlemesine gerek yoktur.

SAP2000'nin mevcut durumda sadece çerçeve elemanlarında eksenel yük nedeniyle P- Δ etkilerini göz önüne aldığına dikkat edilmelidir. Diğer tip elemanlardaki kuvvetler bu etkiye katkıda bulunmazlar. Eğer diğer tip elemanlarda önemli kuvvetler mevcutsa, örneğin kabuk elemanlar olarak modellenmiş perdelerde çok büyük eksenel kuvvetler varsa, P- Δ çözümlemesi ile bulunan ek kuvvetler gereken doğrulukta hesaplanmış olmayacaktır.

2.2.2.3 Elemanların Mesnetlenmemiş Boyları

Kolon narinlik etkilerinin hesaba katılması için mesnetlenmemiş kolon boylarına gerek vardır. İki mesnetlenmemiş boy vardır; I33 ve I22 (Bkz. Şekil 4.). Bunlar karşı gelen doğrultularda elemanın mesnet noktaları arasındaki boyudur. I33 boyu 3-3 ekseni (kuvvetli eksen) doğrultusundaki kararsızlığa, I22 boyu 2-2 ekseni (zayıf eksen) doğrultusunda kararsızlığa karşı gelir. Ayrıca I22 boyu kuvvetli eksen doğrultusundaki eğilmeden (yani 3-3 ekseni etrafında) dolayı yanal-burkulmalı burkulma içinde kullanılır. SAP2000 eksenleri ile tasarım yönetmeliklerindeki eksenler arasındaki uyumluluk için Şekil 5.'e bakınız.

Normal olarak elemanın mesnetlenmemiş boyu, eleman boyuna yani END-I (I ucu) ve END-

J (J ucu) arasındaki uzaklığa eşittir. Şekil 4'e bakınız. Bununla beraber program, çok sayıda elemandan meydana gelen bir elemanı, dizayn yaparken tek eleman olarak dikkate almak üzere kullanıcıya olanak yaratır. Bu, kuvvetli eksen ve zayıf eksen etrafında eğilmeli durumlarda farklı uygulanabilir. Böylece Şekil 6'da gösterilen ara noktalar, elemanın mesnetlenmemiş boyu hesabında otomatik olarak dikkate alınır.

Şekil 2.2: Eğilmede Kuvvetli ve Zayıf Eksenler (SAP2000 Çelik Yapı Boyutlama Kılavuzu)

I22ve I33 değerlerinin türetilmesinde program bu boya etkiyecek çeşitli parametreleri dikkate alır. Bunlar örneğin; eleman uç bağıntı şekli, kat diyafram bağımlılığı ve mesnet noktaları sınır şartları olabilir. Program otomatik olarak mesnet noktalarını bulur ve mesnetlenmemiş eleman uzunluğu türetir. Bu nedenle, bir kolonun burkulma boyu gerçek boyundan daha büyük olabilir. Eğer kiriş, kolonu sadece bir yönde çerçeve olarak tutuyorsa, kirişin sadece o yönde kolonu mesnetlediği kabul edilir. Kullanıcı isterse element mesnetlenmemiş boylarını tek tek de tanımlayabilir.

Şekil 2.3: SAP2000 ve Yönetmeliklerdeki Kuvvetli Ve Zayıf Eksen Tanımının Karşılaştırılması (SAP2000 Çelik Yapı Boyutlama Kılavuzu)

Şekil 2.4: Mesnetsiz Boylar Aralardaki Düğüm Noktaları Tarafından Etkilenir (SAP2000 Çelik Yapı Boyutlama Kılavuzu)

2.2.2.4 AISC-ASD89'a Göre Boyutlama

Orijinal ASD Yönetmeliğinin ilgili bölüm ve denklemlerine baktığımızda ön ek olarak "ASD" atandığı görülür. Ancak "Tek köşebent elemanlarının emniyet gerilmesi yöntemine göre boyutlanması şartnamesi" ne atıfta bulunulduğunda ön ek "ASD SAM" dır. Boyutlama kullanıcı tarafından belirlenen yük kombinasyonlarına dayanır. Fakat program birçok bina tipi yapının boyutlama gereklerini karşılayan önceden hazır olan bir yük kombinasyonu grubu sağlar.

Eleman boyunca bir noktada (eksenel kuvvet)/(çift eksenli moment) kapasite oranlarının hesabında ilk olarak her yük kombinasyonunda gerçek eleman kuvvet/moment bileşkeleri ve karşı gelen kapasiteler hesaplanır. Daha sonra dizayn yük kombinasyonlarının etkisi altında tanımlanan ilgili denklemleri kullanarak, her bölümdeki kapasite oranları bulunur. Kontrol eden kapasite oranı da elde edilir. 1.0 den büyük bir kapasite oranı gerilme fazlasını ifade eder. Benzer şekilde bir kayma kapasitesi oranı da hesaplanır.

3. YAPI MODELLERİ

3.1 Modellerin Tanıtımı

Toplamda 135.3 m yüksekliğe ve 40 kata sahip olan çelik yüksek yapıların kat yükseklikleri ilk 3 katta 4.40 m diğer 37 katta ise 3.30 m'dir. Yapıların ilk 3 katı alışveriş merkezi, mağazalar ve yaşam alanları olarak üstte bulunan 37 kat ise konut ve ofis amaçlı kullanılacaktır.

Tüm modeller yaklaşık olarak 1000 m² oturma alanına sahiptir. Modellerin zemine oturduğu alan, kullanım amaçları, zemin sınıfı, deprem bölgeleri, kat ve toplam bina yükseklikleri ile yapı tasarımında kullanılacak olan çelik profil kaliteleri aynı olup S355 ve S460 kalitesindeki histar profilleri kullanılmıştır. Modellerin birbirleri arasındaki tek fark ise planlarının geometrik değişkenlik göstermesidir. Bu kapsamda dairesel, dikdörtgen, altıgen ve kare şeklindeki geometrik forma sahip 4 adet çelik yüksek yapı analiz edilmiştir.

3.1.1 Kare Model

Yapı geometrisi planda 32 m genişlik ve 32 m uzunluğa sahiptir ve kare şeklindeki geometrik forma sahiptir.

Toplam taban alanı : 1024 m 2

Toplam yükseklik : 135.3 m

Toplam kat sayısı : 40

1-3 katlar : yaşam merkezleri, alışveriş merkezleri, mağazalar vb.

4-40 katlar : konut ve ofis olarak kullanılmak üzere tasarlanmıştır.

Kat yüksekliği : 1-3. katlar arası 4.4 m

4-40. katlar arası 3.3 m

Şekil 3.1: Kare Model Kalıp Planı

Şekil 3.2: Kare Model Çerçeve Görünümü

Yapı, süneklik düzeyi yüksek merkezi çelik çapraz perdeli sistem olarak tasarlanmıştır.

Şekil 3.3:Kare Yapı 3 Boyutlu Modeli

3.1.2 Altıgen Model

Yapı, bir kenarının uzunluğu 20 m olan altıgen forma sahiptir.

Şekil 3.4: Altıgen Model Kalıp Planı

Toplam taban alanı : 1039 m 2

Toplam yükseklik : 135.3 m

Toplam kat sayısı : 40

1-3 katlar : yaşam merkezleri, alışveriş merkezleri, mağazalar vb.

4-40 katlar : konut ve ofis olarak kullanılmak üzere tasarlanmıştır.

Kat yüksekliği : 1-3. katlar arası 4.4 m

4-40. katlar arası 3.3 m

Şekil 3.5: Altıgen Model Çerçeve Görünüm

Yapı, süneklik düzeyi yüksek merkezi çelik çapraz perdeli sistem olarak tasarlanmıştır.

Şekil 3.6: Altıgen Yapı 3 Boyutlu Modeli

3.1.3 Dairesel Model

Yapı, yarıçapı 18 m olan daire formunda oluşturulmuştur.

Şekil 3.7: Dairesel Model Kalıp Planı

Toplam taban alanı : 1020 m 2

Toplam yükseklik : 135.3 m

Toplam kat sayısı : 40

1-3 katlar : yaşam merkezleri, alışveriş merkezleri, mağazalar vb.

4-40 katlar : konut ve ofis olarak kullanılmak üzere tasarlanmıştır.

Kat yüksekliği : 1-3. katlar arası 4.4 m

4-40. katlar arası 3.3 m

Şekil 3.8: Dairesel Model Çerçeve Görünümü

Yapı, süneklik düzeyi yüksek merkezi çelik çapraz perdeli sistem olarak tasarlanmıştır.

Şekil 3.9: Dairesel Yapı 3 Boyutlu Modeli

3.1.4 Dikdörtgen Model

Yapı, 44 m uzunluğa ve 22 m genişliğe sahip dikdörtgen formunda tasarlanmıştır.

Şekil 3.10: Dikdörtgen Model Kalıp Planı

Toplam taban alanı : 968 m 2

Toplam yükseklik : 135.3 m

Toplam kat sayısı : 40

1-3 katlar : yaşam merkezleri, alışveriş merkezleri, mağazalar vb.

4-40 katlar : konut ve ofis olarak kullanılmak üzere tasarlanmıştır.

Kat yüksekliği : 1-3. katlar arası 4.4 m

4-40. katlar arası 3.3 m

Şekil 3.11: Dikdörtgen Model Çerçeve Görünümü (x yönü)

Şekil 3.12: Dikdörtgen Model Çerçeve Görünümü (y yönü)

Yapı, süneklik düzeyi yüksek merkezi çelik çapraz perdeli sistem olarak tasarlanmıştır.

Şekil 3.13: Dikdörtgen Yapı 3 Boyutlu Modeli

3.2 Modellerde Tercih Edilen Taşıyıcı Sistemler

Yapılarda süneklik düzeyi yüksek merkezi çelik çapraz perdeli sistem tercih edilmiştir. Modellerde düşey rijitliği sağlamak amacıyla kolon elemanlarda artı şeklinde iki adet HEB profilin birleştirilmesiyle oluşmuş profiller, merkezi çelik çapraz perdelerde ise boru profilden teşkil edilmiş elemanlar kullanılmıştır. Yapılarda tercih edilen merkezi çelik çaprazlı perdeler iki katta bir tekrarlayacak şekilde oluşturulmuştur.

Binalar her iki doğrultuda kolonlara rijit birleşen ana kirişlerden oluşmakla birlikte yatay düzlemde rijit diyafram oluşturan kompozit basit kiriş döşeme sistemlerinden oluşmaktadır. Ana kirişlerde ve ikincil kirişlerde HISTAR 355 kalitesindeki IPE profilleri tercih edilmiştir.

Yapılarda, taşıyıcı sistemi ve taşıyıcı sistemi oluşturan elemanların her biri, bina boyutlandırılmasında en etkili iki faktör olan rüzgar ve deprem yüklerini temel zeminine kadar sürekli bir şekilde ve güvenli olarak aktarılmasını sağlayacak yeterli rijitlik, kararlılık ve dayanıma sahip olarak tasarlanmıştır.

3.2.1 Çelik Çaprazlı Sistemler

Çaprazlı taşıyıcı sistemlerde yatay yük, diyagonal elemanlarda meydana gelen yüksek eksenel gerilmeler ile taşınır. Bu sistemler, moment aktaran rijit çerçeve sistemlere göre iki önemli avantaja sahiptir;

- 1. Malzeme tasarrufu
- 2. Kat ötelenmelerinin daha etkili bir şekilde kontrol altına alınabilmesi

Çaprazlı çerçevelerin yapısal fonksiyonları;

- 1. Yatay yüklere (Deprem ve Rüzgar) karşı koymak,
- 2. Kat kolonları için yanal destek sağlamak

3. Bu sistemlerde, tüm birleşimler kesme türü mafsallı birleşimdir.

4. Yatay yükler sadece diyagonel çapraz elemanların olduğu çerçevelerdeki Kolon, Kiriş ve Çapraz elemanlar tarafından taşınır. Diğer tüm elemanlar sadece düşey yük aktarır.

5. Yatay yükler altında sadece diyagonel elemanlar hasar görür, diğer tüm elemanlar elastik sınırlar içerisinde kalır.

Çaprazlı çerçevelerin özellikleri;

Moment aktaran çerçevelerden daha rijittirler.

Mafsallı birleşimler ve potansiyel daha hafif kolonlar sebebiyle moment aktaran çerçevelerden daha ucuza mal olabilirler.

Çaprazların bulunduğu açıklıklar bazen probleme yol açabilir.

Gevrek göçme modları nedeniyle moment çerçevelerden daha az sünektirler.

Çapraz tipinin seçiminde çaprazlar ve birleşimlerin maliyetine, açıklık şartlarına ve yükleme şartlarına dikkat edilmelidir.

3.2.2 Merkezi Çaprazlı Sistemler

Merkezi çaprazlı sistemler, çapraz elemanların eksen çizgileri, ana çerçevenin birleşim noktaları ile birleşerek, düşey taşıyıcı sistem içinde bir tür düşey kafes oluşturan sistemlerdir.

Şekil 3.14: Merkezi Çapraz Çeşitleri

Deprem ve rüzgar yükleri bu düşey kafes sistem ile taşınır. Diyagonal elemanlarda; I, [, L, 2L profilleri, boru, kare veya dikdörtgen kesitli kutu profiller ve çok parçalı kesitler kullanmak mümkündür.

Şekil 3.15: Merkezi Çapraz Çeşitleri

Bu tip sistemlerin elastik yatay rijitliği, çaprazlı olmayan çerçeve sistemlere göre oldukça fazladır. Merkezi çapraz sistemin sünek davranış sergileyebilmesi için, diyagonal (çapraz) elemanların tekrarlı inelastik (elastik ötesi) yükleme süresince dayanım ve rijitliklerini önemli ölçüde kaybetmeden büyük deformasyon yapabilmesi gerekir.

Çapraz elemanının bu davranışında etkili üç önemli faktör;

- 1. Çapraz elemanın narinliği (λ=k.L/r- eleman burkulması kritik)
- 2. Mesnet koşulları (tekrarlı inelastik yüklemede birleşimler kritik)
- 3. Kesit (yerel burkulma kritik)

Merkezi çelik çaprazlı sistemlerde, kirişler, kolonlar ve çaprazlar düşey bir kafes oluşturacak şekilde düzenlenir. Yatay kuvvetlere kafes hareketiyle karşı koyulur. Süneklik ise çaprazlardaki elastik olmayan hareket ile gerçekleşir. Buna bağlı olarak çaprazlar çekmede akma davranışı basınçta ise burkulma davranışı gösterir.

Bu bilgiler dahilinde 4 model için bu sistem daha uygun görülmüş ve tez çalışması kapsamında kullanılmıştır.

3.3 Yük Analizi

3.3.1 Düşey Yükler

3.3.1.1 Sabit Yükler

Sabit yükler TS498 yönetmeliği uyarınca belirlenmiştir. Yönetmeliğe göre, sabit yükler yapı içerisindeki tüm elemanların ağırlıklarının oluşturduğu statik kuvvetler olarak tanımlanmıştır. Hesaplanan bu yükler döşemelere etkitilmiştir.

İç kısımlardaki döşemelerde

Kaplama, asma tavan ve sıva ağırlığı	0.95 kN/m ²
Kompozit betonarme döşeme (11 cm)	2.125 kN/m ²
Bölme duvar ağırlığı	0.50 kN/m ²
Tesisat ağırlığı	0.15 kN/m ²
Dış kısımlardaki döşemelerde	
Kaplama, asma tavan ve sıva ağırlığı	0.90 kN/m ²
Kompozit betonarme döşeme (11 cm)	2.125 kN/m ²

Bölme duvar ağırlığı	0.50 kN/m ²
Cephe kaplaması ağırlığı	0.50 kN/m^2
Tesisat ağırlığı	0.15 kN/m ²

3.3.1.2 Hareketli Yük

Tüm modellerin ilk 3 katı alışveriş merkezleri, mağazalar ve lokantalar, üstteki 37 kat ise konut ve ofis amaçlı kullanılacak şekilde tasarlanmıştır. Bu sebeple;

İlk 3 kat için q = 5.00 kN/m^2

Üstteki 37 kat için q = 2.00 kN/m^2 alınmıştır.

3.3.2 Yatay Yükler

3.3.2.1 Rüzgar Yükü

Yapılara etkitilecek rüzgâr yüklerinin belirlenmesinde National Building Code of Canada şartnamesinden yararlanılmıştır. Bu şartnamede, daha hafif ve sünek olan günümüz yüksek yapılarının şiddetli rüzgar etkilerine karşı davranışlarını da göz önüne alarak yapılmış hesap yaklaşımları bulunmaktadır. Bu tez çalışmasında tasarlanan yapılarda olduğu gibi, (yükseklik)/(etkin genişlik) oranı olan (h/w) değerinin 4'den büyük ve/veya etkin yüksekliğin 120 m.'den büyük olduğu yapılarda, şiddetli rüzgar yüklemeleri sonucu yapı doğal frekansı, rüzgar frekansına ulaşarak büyük rezonans ötelemelerine maruz kalabilmektedir.

Bu bölümde kare model için rüzgar yükünün hesabı gösterilmiştir. Yapıların toplam yükseklikleri ve bölge faktörleri için aynı değerler kullanılmıştır. Yapıların akslar arası mesafeleri farklı olduğu için her modelin yük değerleri farklıdır.

Tablo 3.1: Hesap	larda Kullanı	lan Aks Arası	Mesafeler
------------------	---------------	---------------	-----------

Model	Kolonun yük aldığı aks aralığı L (m)	Orta kolon(m)	Köşe kolon(m)
Altıgen	10	10	5
Kare	8	8	4
Dairesel	9	9	4,5
Dikdörtgen	7,33	7,33	3,66

$$\mathbf{P} = \mathbf{q} \times \mathbf{C}_{\mathbf{g}} \times \mathbf{C}_{\mathbf{g}} \times \mathbf{C}_{\mathbf{p}} \tag{3.1}$$

P : Rüzgar basıncı

q : Ortalama hızdan meydana gelen rüzgar yükleri

Ce: Bölge faktörü

Cg: Bora faktörü

C_p: Dış basınç katsayısı

$$q = C \times V^2 \tag{3.2}$$

$$q_r = P \times L \tag{3.3}$$

qr: Kolonların 1 m'lik kısmına etkiyen rüzgar yükü

L : Kolonun yük aldığı aks aralığı

 $C = 50 \times 10^{-6}$

V = 90 km/h; 25 m/s olarak alınmıştır.

 $q = 50 \times 10^{\text{-6}} \times 90^2 \,{=}\, 0.41 \ kN/m^2$

Ce katsayısını yüksekliğe bağlı değerleri yine aynı şartnameden alınmıştır.

H (m)	Ce
0-6	0.9
6-12	1
12-20	1.1
20-30	1.2
30-44	1.3
44-64	1.4
64-85	1.5
85-140	1.6

Tablo 3.2: Yüksekliğe Bağlı Ce Bölge Faktörü Katsayısı Değerleri

Hesap sırasında kullanılan parametreler aşağıdaki gibidir.

- H : Yapının yüksekliği
- W : Yapının genişliği
- D : Yapının derinliği
- β : Kritik sönüm oranı ; Çerçeveli çelik yapılar için 0.01 alınır.
- K : Yüzey pürüzlülük faktörü ; B tipi arazi için 0.1 alınır.
- Ceh: Yapının en tepe noktasındaki bölge faktörü
- V : Rüzgar hızı
- VH: Yapının en üst noktasındaki ortalama rüzgar hızı
- B : Türbülans faktörü
- no: Doğal frekans ; 0.2 Hz.
- F: Enerji oranı, no/ VH oranına bağlı olarak bulunur.(Ek2)
- s : Boyut küçültme faktörü (Hxno/ VH oranına bağlı olarak bulunur .(Ek3)
- V = 90 km/s = 25 m/s seçilmiştir.

 $C_{eh} = 1.50 (Ek1)$

$$V_{\rm H} = V \ge \sqrt{C_{\rm eh}} = 25 \ge 1.50 = 30.6 \text{ m/s}$$
 (3.4)

Genişlik / Yükseklik oranı :W/H = 32/135.3 = 0.23

Boyut küçültme faktörünün bulunması: $\frac{\text{Hxn0}}{v_h} = 0.88$ olarak bulunduktan sonra, ilgili abaktan aşağıdaki fonksiyonun sonucu bulunması yeterlidir. (Ek3)

$$s = \frac{\Pi}{3} \times \left[\frac{1}{1 + \frac{8 \times n_0 \times H}{3V_H}}\right] \times \left[\frac{1}{1 + \frac{10 \times n_0 \times H}{V_H}}\right] = 0.10$$

Türbülans faktörü, bina yüksekliği ve yükseklik/genişlik değerlerinin ilgili abakta yerine konması sonucu, aşağıdaki fonksiyona denk gelir (Ek4).

$$B = \frac{4}{3} \int_{0}^{\frac{914}{H}} \left[\frac{1}{1 + \frac{xH}{457}} \right] \times \left[\frac{1}{1 + \frac{xW}{122}} \right] \times \left[\frac{1}{(1 + X^2)^{4/3}} \right] dx = 0.78$$

(F) enerji oranı için n_0 / V_H dalga sayısı bulunarak, önce (x₀) dalga sayısı bulunur ve sonra ilgili abaktan aşağıdaki fonksiyonun değeri okunur. (Ek2).

$$x_{0} = \left(\frac{1120 \times n_{0}}{V_{H}}\right) = 7.32$$
$$F = \frac{x_{0}^{2}}{(1 + x_{0}^{2})^{4/3}} = 0.26$$

Değişim katsayısının bulunması

$$\frac{\sigma}{\mu} = \sqrt{\frac{K}{C_{\rm eh}}} \times \left(B + \frac{sF}{\beta}\right) = \sqrt{\frac{0.1}{1.5}} \times \left(0.78 + \frac{0.1 \times 0.26}{0.01}\right) = 0.47$$

Ortalama dalgalanma oranı

$$v = n_0 \sqrt{\frac{s \times F}{(s \times F) + (B \times \beta)}} = 0.2 \sqrt{\frac{0.1 \times 0.26}{(0.1 \times 0.26) + (0.78 \times 0.01)}} = 0.17$$

Zirve faktörü (peak factor: g_p) ilgili abaktan ortalama dalgalanma (υ) değerine bağlı olarak okunmuştur. (Ek5)

$$g_{p} = \sqrt{2 \log_{e} vT} + \frac{0.577}{\sqrt{2 \log_{e} vT}} = 3.70$$

(2.1) denkleminde kullanılacak Bora etkisi (Gust Effect) faktörü:

$$C_g = 1 + g_p\left(\frac{\sigma}{\mu}\right) = 1 + 3.7(0.45) = 2.67$$

Aynı hesaplar binanın dar doğrultusu için yapıldığında bora etkisi değeri:

 $C_g = 3.50$ bulunur.

 $C_p = 0.8$ (rüzgarın basınç yaptığı cephede)

C_p = - 0.5 (rüzgarın emme yaptığı cephede)

Yapının geniş kenarına dik esen rüzgar yükleri:

 $P_{\text{basing}} = 0.41 \text{ x Ce x } 2.67 \text{ x } 0.8 = 0.87 \text{ x Ce}$

 $P_{emme} = 0.41 \text{ x Ce x } 2.67 \text{ x } (-0.5) = -0.55 \text{ x Ce}$

Yapının dar kenarına dik esen rüzgar yükleri:

 $P_{\text{basing}} = 0.41 \text{ x Ce x } 3.50 \text{ x } 0.8 = 1.15 \text{ x Ce}$

 $P_{emme} = 0.41 \text{ x Ce x } 3.50 \text{ x } (-0.5) = -0.72 \text{ x Ce}$

Tablo 3.5 te okunan ve yükseklikle değişen Ce değerleri yukarıdaki denklemlerde yerine koyularak, kare modele etkiyen yanal rüzgar yükleri hesaplanmış ve Tablo 3.3'de

gösterilmiştir. Diğer tablolarda altıgen, daire ve dikdörtgen model için hesaplanan rüzgar yükleri verilmiştir.

Kat	H(m)	q _{r basınç} (köşe kolonlarda)	q _{r basınç} (orta kolonlarda)	q _{r emme} (köşe kolonlarda)	q _{r emme} (orta kolonlarda)
1-8	0-30	4,22	8,45	-3,46	-6,91
8-12	30-44	4,58	9,15	-3,74	-7,49
12-18	44-64	4,93	9,86	-4,03	-8,06
18-25	64-85	5,28	10,56	-4,32	-8,64
25-40	85-140	5,63	11,26	-4,61	-9,22

Tablo 3.3: Kare Model Rüzgar Yükü Değerleri (kN/m)

Tablo 3.4: Dairesel Model Rüzgar Yükü Değerleri (kN/m)

Kat	H(m)	$q_{ m r \ basinc}$	$q_{ m r \ basinc}$	$q_{ m r\ emme}$	$q_{ m remme}$
	()	(köşe kolonlarda)	(orta kolonlarda)	(köşe kolonlarda)	(orta kolonlarda)
1-8	0-30	4,75	9,50	-2,97	-5,94
8-12	30-44	5,15	10,30	-3,22	-6,44
12-18	44-64	5,54	11,09	-3,47	-6,93
18-25	64-85	5,94	11,88	-3,71	-7,43
25-40	85-140	6,34	12,67	-3,96	-7,92

Tablo 3.5: Dikdörtgen Model Rüzgar Yükü Değerleri (kN/m)

Kat	H(m)	$q_{r basinc}$	$q_{r basinc}$	q _{r emme}	q_{remme}
		(koşe kolonlarda)	(orta kolonlarda)	(koşe kolonlarda)	(orta kolonlarda)
1-8	0-30	3,86	7,74	-3,16	-6,33
8-12	30-44	4,19	8,39	-3,43	-6,86
12-18	44-64	4,51	9,03	-3,69	-7,39
18-25	64-85	4,83	9,68	-3,95	-7,92
25-40	85-140	5,15	10,32	-4,22	-8,44

Tablo 3.6: Altıgen Model Rüzgar Yükü Değerleri (kN/m)

Kat	H(m)	$q_{ m rbasinc}$	$q_{r \; basınç}$	$q_{r emme}$	$q_{r emme}$
Ixut	mini	(köşe kolonlarda)	(orta kolonlarda)	(köşe kolonlarda)	(orta kolonlarda)
1-8	0-30	5,22	10,44	-3,30	-6,60
8-12	30-44	5,66	11,31	-3,58	-7,15
12-18	44-64	6,09	12,18	-3,85	-7,70
18-25	64-85	6,53	13,05	-4,13	-8,25
25-40	85-140	6,96	13,92	-4,40	-8,80

Tablo 3.7: Karşılaştırmalı Rüzgar Yükü Değerleri (kN/m)

3.3.2.2 Deprem Yükü

Yapıların deprem yükü hesabı TDY kurallarına göre yapılmıştır. Yapının deprem yükü analizi ile ilgili tüm yapı ve zemin parametreleri, bu yönetmelik altında değerlendirilmiş ve yönetmeliğin uygun gördüğü değerler hesaplarda kullanılmıştır. Yapı üç boyutlu SAP2000 bilgisayar programı ile modellenmiş olup yatay yük analizinde bina toplam yüksekliği olan $H_N > 40$ m olduğundan eşdeğer deprem yükü yöntemi uygulanmamış, mod birleştirme yöntemi kullanılmıştır.

Göz önüne alınan deprem doğrultusunda, binanın tümüne etkiyen toplam taban kesme kuvveti Vt, hesaplanacaktır.

$$V_t = \frac{W \times A(T_1)}{R_a(T_1)} \ge 0.1 \times A_0 \times I \times W$$
(3.5)

$$A(T) = A_0 \times I \times S(T) \tag{3.6}$$

Deprem bölgesi	A ₀
1	0.4
2	0.3
3	0.2
4	0.1

Tablo 3.8: Etkin Yer Ivmesi Katsayisi

Tablo 3.9: Hareketli Yük Katılım Katsayısı

Binanın Kullanım Amacı	n
Depo, antrepo, vb.	0.8
Okul, öğrenci yurdu, spor tesisi, sinema, tiyatro, konser salonu, garaj, lokanta, mağaza, vb.	0.6
Konut, işyeri, otel, hastane, vb.	0.3

Tablo 3.10: Spektrum Karakteristik Periyotları

Yerel zemin Sınıfı	T _{A (saniye)}	T _{B (saniye)}
Z1	0.1	0.3
Z2	0.15	0.4
Z3	0.15	0.6
Z4	0.2	0.9

Tablo 3.11: Tasarım İvme Spektrumu

Binanın Kullanım Amacı yeya Türü	Bina Önem
Billanni Kunanni Amacı veya Turu	Katsayısı (l)
Deprem sonrası kullanımı gereken binalar ve tehlikeli madde içeren binalar	1.5
İnsanların uzun süreli ve yoğun olarak bulunduğu ve değerli	1 /
eşyaların saklandığı binalar	1.4
İnsanların kısa süreli ve yoğun olarak bulunduğu binalar	1.2
Diğer binalar (Konutlar, işyerleri, oteller, vb.)	1

Tablo 3.12: Bina Önem Katsayısı (I)

Modeller için yapılan kabuller;

Taşıyıcı sistem davranış katsayısı R için, deprem yüklerinin çerçeveler ile birlikte merkezi çaprazlı çelik perdeler ile taşındığı süneklik düzeyi yüksek sistemler için geçerli olan R = 6 değeri alınmıştır

Yapılar 1. derece deprem bölgesinde olup Tablo 3.8'den $A_0 = 0,40$ alınmıştır.

Yapıların deprem hesabına esas olan kütlesinin hesabında kullanılacak olan hareketli yük katılım katsayısı Tablo 3.9'dan n = 0.30 alınmıştır

Yapıların yerel zemin sınıfı Z1 kabul edilmiş ve Tablo 3.9'dan karakteristik periyotlar, $T_A = 0,10$ ve $T_B = 0,30$ alınmıştır.

Bina önem katsayısı olan I için Tablo 3.12'den, konut ve iş yeri olan binalar için geçerli olan I = 1.0 alınmıştır.

Denklem (3.5) ve (3.6)'da geçen S(T) değeri için denklem (3.8)'de geçen ifadeler hesaplanmış ve programa spektrum fonksiyonu olarak girilmiştir.

Ayrıca denklemlerdeki A₀, I ve R değerleri için aşağıdaki scale factor hesaplanmış ve programa girilerek modal analiz yapılmıştır.

Scale Factor =
$$\frac{A_0 \times g \times I}{R} = \frac{0.4 \times 9.81 \times 1}{6} = 0.65$$

Hesaba katılması gereken yeterli titreşim modu sayısı, göz önüne alınan birbirine dik x ve y yatay deprem doğrultularının her birinde, her bir mod için hesaplanan etkin kütlelerin toplamının, hiçbir zaman bina toplam kütlesinin %90'ından daha az olmaması kuralına göre

belirlenecektir. Ayrıca göz önüne alınan deprem doğrultusunda etkin kütlesi, bina toplam kütlesinin %5'inden büyük olan bütün titreşim modları göz önüne alınacaktır.

3.4 Yük Kombinasyonları

Modellerin eleman kesit değerlerinin belirlenmesi için düşey yükler ile yatay deprem ve rüzgar kuvvetleri altında analizi yapılacaktır. Çelik elemanların boyutlandırılmasında kullanılacak yükleme kombinasyonları Deprem Bölgelerinde Yapılacak Yapılar Hakkında Yönetmelik 2007 ve TS648 Çelik Yapılar Standardı dikkate alınarak belirlenmiştir.

```
Düşey yük birleşimleri : G + Q
```

Düşey yük + deprem birleşimleri : G + Q + Ex = 0.3Ey

```
G + Q \mp 0.3Ex \mp Ey
0.9G \mp Ex \mp 0.3Ey
```

 $0.9G \mp 0.3Ex \mp Ey$

Düşey yük + rüzgar birleşimleri : $G \neq Q \neq Wx$

 $G \mp Q \mp Wy$

Burada

G : sabit yüklerden oluşan iç kuvvetler

Q : hareketli yüklerden oluşan iç kuvvetler

Wx , Wy : sırasıyla (x) ve (y) doğrultularındaki rüzgar yüklerinden oluşan iç kuvvetlerdir.

4. ANALİZ SONUÇLARI

4.1 Yapısal Düzensizliklerin İncelenmesi

4.1.1 Planda Düzensizlik Durumları

4.1.1.1 Burulma Düzensizliği (A1)

Birbirine dik iki deprem doğrultusunun herhangi biri için, herhangi bir katta en büyük göreli kat ötelemesinin o katta aynı doğrultudaki ortalama göreli ötelemeye oranını ifade eden Burulma Düzensizliği Katsayısı nbi 'nin 1.2'den büyük olması durumudur.

$$\eta_{\rm bi} = (\Delta_{\rm i})_{\rm max} / (\Delta_{\rm i})_{\rm ort} \tag{4.1}$$

$$\Delta_i = d_i - d_{i-1} \tag{4.2}$$

Denklem (4.2)'de di ve di-1-, her bir deprem doğrultusu için binanın i'inci ve (i-1)'inci katlarında herhangi bir kolon veya perdenin uçlarında azaltılmış deprem yüklerine göre hesaplanan yatay yer değiştirmeleri göstermektedir. Burulma düzensizliği kontrolü aşağıdaki tablolarda gösterilmiştir. Yapılarda burulma düzensizliği bulunmamaktadır.

Kat No	H _i (m)		Yanal D	Düzensizlik Oranı			
Ixat 110		Δx_{max}	Δx_{ort}	Δy_{max}	Δy_{ort}	η_{bx}	η_{by}
1	4,4	0,407	0,405	0,407	0,405	0,995	1,005
2	8,8	1,274	1,272	1,274	1,272	0,998	1,002
3	13,2	2,315	2,313	2,315	2,313	0,999	1,001
4	16,5	3,148	3,146	3,148	3,146	0,999	1,001
5	19,8	4,034	4,032	4,034	4,032	1,000	1,000
6	23,1	4,949	4,947	4,949	4,947	1,000	1,000
7	26,4	5,903	5,901	5,903	5,901	1,000	1,000
8	29,7	6,877	6,875	6,877	6,875	1,000	1,000
9	33,0	7,883	7,881	7,883	7,881	1,000	1,000
10	36,3	8,905	8,903	8,905	8,903	1,000	1,000
11	39,6	9,953	9,951	9,953	9,951	1,000	1,000
12	42,9	11,014	11,012	11,014	11,012	1,000	1,000
13	46,2	12,095	12,093	12,095	12,093	1,000	1,000
14	49,5	13,184	13,182	13,184	13,182	1,000	1,000
15	52,8	14,288	14,286	14,288	14,286	1,000	1,000
16	56,1	15,397	15,395	15,397	15,395	1,000	1,000
17	59,4	16,514	16,512	16,514	16,512	1,000	1,000
18	62,7	17,633	17,631	17,633	17,631	1,000	1,000
19	66,0	18,755	18,753	18,755	18,753	1,000	1,000
20	69,3	19,875	19,873	19,875	19,873	1,000	1,000
21	72,6	20,993	20,991	20,993	20,991	1,000	1,000
22	75,9	22,105	22,103	22,105	22,103	1,000	1,000
23	79,2	23,212	23,210	23,212	23,210	1,000	1,000
24	82,5	24,308	24,306	24,308	24,306	1,000	1,000
25	85,8	25,394	25,392	25,394	25,392	1,000	1,000
26	89,1	26,467	26,465	26,467	26,465	1,000	1,000
27	92,4	27,526	27,524	27,526	27,524	1,000	1,000
28	95,7	28,569	28,567	28,569	28,567	1,000	1,000
29	99,0	29,593	29,591	29,593	29,591	1,000	1,000
30	102,3	30,598	30,596	30,598	30,596	1,000	1,000
31	105,6	31,581	31,579	31,581	31,579	1,000	1,000
32	108,9	32,543	32,541	32,543	32,541	1,000	1,000
33	112,2	33,480	33,478	33,480	33,478	1,000	1,000
34	115,5	34,393	34,391	34,393	34,391	1,000	1,000
35	118,8	35,278	35,276	35,278	35,276	1,000	1,000
36	122,1	36,137	36,135	36,137	36,135	1,000	1,000
37	125,4	36,967	36,965	36,967	36,965	1,000	1,000
38	128,7	37,772	37,770	37,772	37,770	1,000	1,000
39	132,0	38,552	38,550	38,552	38,550	1,000	1,000
40	135,3	39,315	39,313	39,315	39,313	1,000	1,000

Tablo 4.1: Kare Model Burulma Düzensizliği

Kat No	H _i (m)	Yanal Deplasmanlar				Düzensizlik Oranı	
		Δx_{max}	Δx_{ort}	Δy_{max}	Δy_{ort}	η_{bx}	η_{bv}
1	4,4	0,475	0,472	0.505	0,501	1,006	1,008
2	8,8	1,634	1,631	1,745	1,741	1,002	1,002
3	13,2	3,355	3,352	3,587	3,583	1,001	1,001
4	16,5	4,487	4,484	4,777	4,773	1,001	1,001
5	19,8	5,581	5,578	5,908	5,904	1,001	1,001
6	23,1	6,720	6,717	7,084	7,080	1,000	1,001
7	26,4	7,918	7,915	8,328	8,324	1,000	1,000
8	29,7	9,154	9,151	9,622	9,618	1,000	1,000
9	33,0	10,429	10,426	10,967	10,963	1,000	1,000
10	36,3	11,735	11,732	12,348	12,344	1,000	1,000
11	39,6	13,074	13,071	13,768	13,764	1,000	1,000
12	42,9	14,438	14,435	15,217	15,213	1,000	1,000
13	46,2	15,829	15,826	16,696	16,692	1,000	1,000
14	49,5	17,239	17,236	18,196	18,192	1,000	1,000
15	52,8	18,668	18,665	19,717	19,713	1,000	1,000
16	56,1	20,108	20,105	21,253	21,249	1,000	1,000
17	59,4	21,560	21,557	22,803	22,799	1,000	1,000
18	62,7	23,017	23,014	24,361	24,357	1,000	1,000
19	66,0	24,477	24,474	25,924	25,920	1,000	1,000
20	69,3	25,937	25,934	27,489	27,485	1,000	1,000
21	72,6	27,393	27,390	29,052	29,048	1,000	1,000
22	75,9	28,843	28,840	30,610	30,606	1,000	1,000
23	79,2	30,283	30,280	32,161	32,157	1,000	1,000
24	82,5	31,711	31,708	33,701	33,697	1,000	1,000
25	85,8	33,125	33,122	35,227	35,223	1,000	1,000
26	89,1	34,521	34,518	36,737	36,733	1,000	1,000
27	92,4	35,898	35,895	38,228	38,224	1,000	1,000
28	95,7	37,254	37,251	39,698	39,694	1,000	1,000
29	99,0	38,585	38,582	41,145	41,141	1,000	1,000
30	102,3	39,892	39,889	42,567	42,563	1,000	1,000
31	105,6	41,172	41,169	43,961	43,957	1,000	1,000
32	108,9	42,423	42,420	45,328	45,324	1,000	1,000
33	112,2	43,644	43,641	46,662	46,658	1,000	1,000
34	115,5	44,835	44,832	47,967	47,963	1,000	1,000
35	118,8	45,992	45,989	49,238	49,234	1,000	1,000
36	122,1	47,116	47,113	50,478	50,474	1,000	1,000
37	125,4	48,206	48,203	51,686	51,682	1,000	1,000
38	128,7	49,267	49,264	52,866	52,862	1,000	1,000
39	132,0	50,308	50,305	54,023	54,019	1,000	1,000
40	135,3	51,341	51,338	55,171	55,167	1,000	1,000

Tablo 4.2: Dikdörtgen Model Burulma Düzensizlikleri

Kat No	H _i (m)		Yanal D	Düzensizlik Oranı			
		Δx_{max}	Δx_{ort}	Δy_{max}	Δy_{ort}	η_{bx}	η_{by}
1	4,4	0,363	0,358	0,363	0,359	1,014	1,011
2	8,8	1,135	1,130	1,135	1,131	1,004	1,004
3	13,2	2,069	2,064	2,069	2,065	1,002	1,002
4	16,5	2,808	2,803	2,808	2,804	1,002	1,001
5	19,8	3,591	3,586	3,591	3,587	1,001	1,001
6	23,1	4,395	4,390	4,395	4,391	1,001	1,001
7	26,4	5,233	5,228	5,233	5,229	1,001	1,001
8	29,7	6,087	6,082	6,087	6,083	1,001	1,001
9	33,0	6,970	6,965	6,970	6,966	1,001	1,001
10	36,3	7,869	7,864	7,869	7,865	1,001	1,001
11	39,6	8,791	8,786	8,791	8,787	1,001	1,000
12	42,9	9,726	9,721	9,726	9,722	1,001	1,000
13	46,2	10,680	10,675	10,680	10,676	1,000	1,000
14	49,5	11,642	11,637	11,642	11,638	1,000	1,000
15	52,8	12,619	12,614	12,619	12,615	1,000	1,000
16	56,1	13,601	13,596	13,601	13,597	1,000	1,000
17	59,4	14,592	14,587	14,592	14,588	1,000	1,000
18	62,7	15,585	15,580	15,585	15,581	1,000	1,000
19	66,0	16,583	16,578	16,583	16,579	1,000	1,000
20	69,3	17,579	17,574	17,579	17,575	1,000	1,000
21	72,6	18,576	18,571	18,576	18,572	1,000	1,000
22	75,9	19,568	19,563	19,568	19,564	1,000	1,000
23	79,2	20,557	20,552	20,557	20,553	1,000	1,000
24	82,5	21,537	21,532	21,537	21,533	1,000	1,000
25	85,8	22,510	22,505	22,510	22,506	1,000	1,000
26	89,1	23,473	23,468	23,473	23,469	1,000	1,000
27	92,4	24,424	24,419	24,424	24,420	1,000	1,000
28	95,7	25,362	25,357	25,362	25,358	1,000	1,000
29	99,0	26,285	26,280	26,285	26,281	1,000	1,000
30	102,3	27,192	27,187	27,192	27,188	1,000	1,000
31	105,6	28,081	28,076	28,081	28,077	1,000	1,000
32	108,9	28,952	28,947	28,952	28,948	1,000	1,000
33	112,2	29,802	29,797	29,802	29,798	1,000	1,000
34	115,5	30,632	30,627	30,632	30,628	1,000	1,000
35	118,8	31,438	31,433	31,438	31,434	1,000	1,000
36	122,1	32,223	32,218	32,223	32,219	1,000	1,000
37	125,4	32,983	32,978	32,983	32,979	1,000	1,000
38	128,7	33,721	33,716	33,721	33,717	1,000	1,000
39	132,0	34,435	34,430	34,435	34,431	1,000	1,000
40	135,3	35,134	35,129	35,134	35,130	1,000	1,000

Tablo 4.3: Dairesel Model Burulma Düzensizlikleri

Kat No	H _i (m)	Yanal Deplasmanlar				Düzensizlik Oranı	
		Δx_{max}	Δx_{ort}	Δy_{max}	Δy_{ort}	η_{bx}	η_{bv}
1	4,4	0,312	0,309	0,312	0,310	1,010	1,006
2	8,8	1,015	1,012	1,015	1,013	1,003	1,002
3	13,2	1,895	1,892	1,895	1,893	1,002	1,001
4	16,5	2,638	2,635	2,638	2,636	1,001	1,001
5	19,8	3,450	3,447	3,450	3,448	1,001	1,001
6	23,1	4,311	4,308	4,311	4,309	1,001	1,000
7	26,4	5,224	5,221	5,224	5,222	1,001	1,000
8	29,7	6,175	6,172	6,175	6,173	1,000	1,000
9	33,0	7,171	7,168	7,171	7,169	1,000	1,000
10	36,3	8,199	8,196	8,199	8,197	1,000	1,000
11	39,6	9,264	9,261	9,264	9,262	1,000	1,000
12	42,9	10,355	10,352	10,355	10,353	1,000	1,000
13	46,2	11,475	11,472	11,475	11,473	1,000	1,000
14	49,5	12,616	12,613	12,616	12,614	1,000	1,000
15	52,8	13,780	13,777	13,780	13,778	1,000	1,000
16	56,1	14,958	14,955	14,958	14,956	1,000	1,000
17	59,4	16,154	16,151	16,154	16,152	1,000	1,000
18	62,7	17,359	17,356	17,359	17,357	1,000	1,000
19	66,0	18,575	18,572	18,575	18,573	1,000	1,000
20	69,3	19,797	19,794	19,797	19,795	1,000	1,000
21	72,6	21,023	21,020	21,023	21,021	1,000	1,000
22	75,9	22,250	22,247	22,250	22,248	1,000	1,000
23	79,2	23,476	23,473	23,476	23,474	1,000	1,000
24	82,5	24,699	24,696	24,699	24,697	1,000	1,000
25	85,8	25,917	25,914	25,917	25,915	1,000	1,000
26	89,1	27,128	27,125	27,128	27,126	1,000	1,000
27	92,4	28,329	28,326	28,329	28,327	1,000	1,000
28	95,7	29,519	29,516	29,519	29,517	1,000	1,000
29	99,0	30,695	30,692	30,695	30,693	1,000	1,000
30	102,3	31,858	31,855	31,858	31,856	1,000	1,000
31	105,6	33,003	33,000	33,003	33,001	1,000	1,000
32	108,9	34,132	34,129	34,132	34,130	1,000	1,000
33	112,2	35,241	35,238	35,241	35,239	1,000	1,000
34	115,5	36,331	36,328	36,331	36,329	1,000	1,000
35	118,8	37,400	37,397	37,400	37,398	1,000	1,000
36	122,1	38,447	38,444	38,447	38,445	1,000	1,000
37	125,4	39,472	39,469	39,472	39,470	1,000	1,000
38	128,7	40,474	40,471	40,474	40,472	1,000	1,000
39	132,0	41,455	41,452	41,455	41,453	1,000	1,000
40	135,3	42,423	42,420	42,423	42,421	1,000	1,000

Tablo 4.4: Altıgen Model Burulma Düzensizlikleri

4.1.1.2 Döşeme Süreksizliği (A2)

Herhangi bir kattaki döşemede;

I – Merdiven ve asansör boşlukları dahil, boşluk alanları toplamının kat brüt alanının

1/3'unden fazla olması durumu,

II – Deprem yüklerinin düşey taşıyıcı sistem elemanlarına güvenle aktarılabilmesini

güçleştiren yerel döşeme boşluklarının bulunması durumu,

III – Döşemenin düzlem içi rijitlik ve dayanımında ani azalmaların olması durumu

Yapılarda bu tür düzensizlik bulunmamaktadır.

4.1.1.3 Planda Çıkıntılar Bulunması (A3)

Bina kat planlarında çıkıntı yapan kısımların birbirine dik iki doğrultudaki boyutlarının her ikisinin de, binanın o katının aynı doğrultulardaki toplam plan boyutlarının % 20'sinden daha büyük olması durumudur.

Yapılarda bu tür düzensizlik mevcut değildir.

4.1.2 Düşey Doğrultuda Düzensizlik Durumları

4.1.2.1 Komşu Katlar Arasında Dayanım Düzensizliği (B1) (Zayıf kat)

Betonarme binalarda, birbirine dik iki deprem doğrultusunun herhangi birinde, herhangi bir kattaki etkili kesme alanının, bir üst kattaki etkili kesme alanına oranı olarak tanımlanan dayanım düzensizliği katsayısı ŋci'nin 0.80'den küçük olması durumudur.
Çelik yapılar için geçerli olmadığı için incelenmemiştir.

4.1.2.2 Komşu Katlar Arasında Rijitlik Düzensizliği (B2) (Yumuşak kat)

Birbirine dik iki deprem doğrultusunun herhangi biri için, herhangi bir i'inci kattaki ortalama göreli kat ötelemesi oranının bir üst veya bir alt kattaki ortalama göreli kat ötelemesi oranına bölünmesi ile tanımlanan rijitlik düzensizliği katsayısı η_{ki} değerinin 2.0'den fazla olması durumudur.

$$\eta_{ki} = (\Delta_i / h_i)_{ort} / (\Delta_i / h_{i-1})_{ort} > 2.0$$
(4.3)

$$\eta_{ki} = (\Delta_i / h_i)_{ort} / (\Delta_i / h_{i+1})_{ort} > 2.0$$
(4.4)

Yumuşak kat kontrolü deprem yüklerine göre sırasıyla tablolarda gösterilmiştir. Yapılarda yumuşak kat düzensizliği mevcut değildir.

Kat no	h (am)	Ц. (m)	A wi/bi	A vi/bi	ri/h; Rijitlik Düzensizliği Oranı		11	
Kat 110	n _i (cm)	п _i (ш)		⊿у⊮ш	ηkx (i-1)	ηky (i-1)	ηkx (i+1)	ηkx (i+1)
1	440	4.4	0.0006	0.0007	0.8843	0.9151	-	-
2	440	8.8	0.0007	0.0007	0.9110	0.9308	1.1308	1.0928
3	440	13.2	0.0008	0.0008	0.8918	0.8938	1.0977	1.0744
4	330	16.5	0.0009	0.0009	0.9155	0.9175	1.1213	1.1189
5	330	19.8	0.0010	0.0010	0.9443	0.9455	1.0923	1.0899
6	330	23.1	0.0010	0.0010	0.9428	0.9439	1.0590	1.0576
7	330	26.4	0.0011	0.0011	0.9593	0.9602	1.0606	1.0594
8	330	29.7	0.0012	0.0011	0.9561	0.9570	1.0424	1.0415
9	330	33.0	0.0012	0.0012	0.9685	0.9692	1.0459	1.0449
10	330	36.3	0.0012	0.0012	0.9659	0.9666	1.0325	1.0317
11	330	39.6	0.0013	0.0013	0.9758	0.9764	1.0353	1.0345
12	330	42.9	0.0013	0.0013	0.9739	0.9745	1.0248	1.0241
13	330	46.2	0.0014	0.0013	0.9818	0.9824	1.0268	1.0261
14	330	49.5	0.0014	0.0013	0.9805	0.9812	1.0185	1.0179
15	330	52.8	0.0014	0.0014	0.9870	0.9875	1.0198	1.0192
16	330	56.1	0.0014	0.0014	0.9863	0.9869	1.0132	1.0126
17	330	59.4	0.0014	0.0014	0.9915	0.9921	1.0139	1.0133
18	330	62.7	0.0015	0.0014	0.9914	0.9920	1.0085	1.0080
19	330	66.0	0.0015	0.0014	0.9956	0.9961	1.0086	1.0081
20	330	69.3	0.0015	0.0014	0.9961	0.9966	1.0044	1.0039
21	330	72.6	0.0015	0.0014	0.9994	0.9999	1.0039	1.0034
22	330	75.9	0.0015	0.0014	1.0003	1.0009	1.0006	1.0001
23	330	79.2	0.0015	0.0014	1.0028	1.0033	0.9997	0.9991
24	330	82.5	0.0015	0.0014	1.0043	1.0048	0.9972	0.9967
25	330	85.8	0.0015	0.0014	1.0061	1.0066	0.9958	0.9952
26	330	89.1	0.0015	0.0014	1.0079	1.0085	0.9939	0.9934
27	330	92.4	0.0015	0.0014	1.0092	1.0097	0.9921	0.9915
28	330	95.7	0.0014	0.0014	1.0114	1.0120	0.9909	0.9904
29	330	99.0	0.0014	0.0014	1.0121	1.0127	0.9887	0.9881
30	330	102.3	0.0014	0.0014	1.0147	1.0153	0.9880	0.9875
31	330	105.6	0.0014	0.0013	1.0149	1.0155	0.9855	0.9849
32	330	108.9	0.0014	0.0013	1.0177	1.0184	0.9853	0.9847
33	330	112.2	0.0013	0.0013	1.0175	1.0182	0.9826	0.9819
34	330	115.5	0.0013	0.0013	1.0204	1.0212	0.9828	0.9822
35	330	118.8	0.0013	0.0012	1.0198	1.0206	0.9800	0.9792
36	330	122.1	0.0013	0.0012	1.0227	1.0237	0.9806	0.9798
37	330	125.4	0.0012	0.0012	1.0216	1.0226	0.9778	0.9768
38	330	128.7	0.0012	0.0012	1.0222	1.0231	0.9789	0.9779
39	330	132.0	0.0012	0.0011	1.0136	1.0138	0.9783	0.9774
40	330	135.3	0.0012	0.0011	-	-	0.9866	0.9864

Tablo 4.5: Kare Model Kat Rijitlikleri

Vatura	h (and)	II (m)	A:/l.:	A = .://.:	/bi Rijitlik Düzensizliği Oranı			11
Kat no	n _i (cm)	п _i (III)		∆у⊮ш	ηkx (i-1)	ηky (i-1)	ηkx (i+1)	ηkx (i+1)
1	440	4.4	0.0007	0.0332	0.8356	0.8909	-	-
2	440	8.8	0.0008	0.0373	1.2123	1.1904	1.1967	1.1225
3	440	13.2	0.0006	0.0313	0.7043	1.5356	0.8249	0.8400
4	330	16.5	0.0009	0.0204	0.9588	1.1438	1.4199	0.6512
5	330	19.8	0.0010	0.0178	0.9567	1.1231	1.0429	0.8742
6	330	23.1	0.0010	0.0159	0.9677	1.1047	1.0453	0.8904
7	330	26.4	0.0010	0.0144	0.9654	1.0939	1.0334	0.9052
8	330	29.7	0.0011	0.0131	0.9745	1.0827	1.0358	0.9142
9	330	33.0	0.0011	0.0121	0.9728	1.0765	1.0261	0.9236
10	330	36.3	0.0011	0.0113	0.9803	1.0693	1.0280	0.9290
11	330	39.6	0.0012	0.0105	0.9790	1.0657	1.0201	0.9352
12	330	42.9	0.0012	0.0099	0.9854	1.0611	1.0215	0.9383
13	330	46.2	0.0012	0.0093	0.9845	1.0591	1.0149	0.9424
14	330	49.5	0.0012	0.0088	0.9899	1.0560	1.0158	0.9442
15	330	52.8	0.0012	0.0083	0.9895	1.0549	1.0102	0.9470
16	330	56.1	0.0012	0.0079	0.9940	1.0529	1.0106	0.9479
17	330	59.4	0.0012	0.0075	0.9940	1.0524	1.0060	0.9498
18	330	62.7	0.0013	0.0071	0.9978	1.0511	1.0060	0.9502
19	330	66.0	0.0013	0.0068	0.9982	1.0509	1.0022	0.9514
20	330	69.3	0.0013	0.0065	1.0013	1.0501	1.0018	0.9515
21	330	72.6	0.0013	0.0061	1.0022	1.0503	0.9987	0.9523
22	330	75.9	0.0013	0.0059	1.0047	1.0499	0.9978	0.9521
23	330	79.2	0.0012	0.0056	1.0060	1.0503	0.9953	0.9524
24	330	82.5	0.0012	0.0053	1.0081	1.0503	0.9940	0.9521
25	330	85.8	0.0012	0.0051	1.0098	1.0509	0.9920	0.9521
26	330	89.1	0.0012	0.0048	1.0113	1.0513	0.9903	0.9516
27	330	92.4	0.0012	0.0046	1.0135	1.0520	0.9888	0.9512
28	330	95.7	0.0012	0.0043	1.0146	1.0526	0.9867	0.9506
29	330	99.0	0.0012	0.0041	1.0171	1.0535	0.9856	0.9500
30	330	102.3	0.0012	0.0039	1.0178	1.0544	0.9832	0.9492
31	330	105.6	0.0011	0.0037	1.0207	1.0555	0.9825	0.9484
32	330	108.9	0.0011	0.0035	1.0210	1.0566	0.9797	0.9475
33	330	112.2	0.0011	0.0033	1.0242	1.0579	0.9794	0.9464
34	330	115.5	0.0011	0.0032	1.0239	1.0593	0.9764	0.9453
35	330	118.8	0.0010	0.0030	1.0268	1.0606	0.9766	0.9440
36	330	122.1	0.0010	0.0028	1.0251	1.0616	0.9739	0.9428
37	330	125.4	0.0010	0.0026	1.0255	1.0615	0.9755	0.9420
38	330	128.7	0.0010	0.0025	1.0192	1.0596	0.9751	0.9421
39	330	132.0	0.0009	0.0023	1.0000	1.0555	0.9811	0.9437
40	330	135.3	0.0009	0.0022	-	-	1.0000	0.9474

Tablo 4.6: Dairesel Model Kat Rijitlikleri

Vatura	h (and)	II (m)	A:/l.:	A = 1 ² /la :	/bi Rijitlik Düzensizliği Oranı			11
Kat no	n _i (cm)	п _i (III)		⊿уиш	ηkx (i-1)	ηky (i-1)	ηkx (i+1)	ηkx (i+1)
1	440	4.4	0.0008	0.0795	0.8803	1.2756	-	-
2	440	8.8	0.0009	0.0623	0.9116	1.3391	1.1360	0.7839
3	440	13.2	0.0010	0.0465	0.9641	1.7295	1.0970	0.7467
4	330	16.5	0.0010	0.0269	0.9358	1.1777	1.0373	0.5782
5	330	19.8	0.0011	0.0228	0.9488	1.1179	1.0686	0.8491
6	330	23.1	0.0012	0.0204	0.9422	1.1149	1.0539	0.8945
7	330	26.4	0.0012	0.0183	0.9586	1.0876	1.0613	0.8969
8	330	29.7	0.0013	0.0169	0.9556	1.0897	1.0432	0.9194
9	330	33.0	0.0014	0.0155	0.9702	1.0706	1.0465	0.9177
10	330	36.3	0.0014	0.0144	0.9526	1.0760	1.0307	0.9341
11	330	39.6	0.0015	0.0134	0.9729	1.0606	1.0498	0.9294
12	330	42.9	0.0015	0.0127	0.9655	1.0676	1.0278	0.9429
13	330	46.2	0.0016	0.0119	0.9786	1.0544	1.0357	0.9367
14	330	49.5	0.0016	0.0112	0.9740	1.0622	1.0218	0.9484
15	330	52.8	0.0016	0.0106	0.9844	1.0504	1.0267	0.9414
16	330	56.1	0.0017	0.0101	0.9814	1.0589	1.0159	0.9520
17	330	59.4	0.0017	0.0095	0.9896	1.0480	1.0189	0.9444
18	330	62.7	0.0017	0.0091	0.9889	1.0570	1.0105	0.9542
19	330	66.0	0.0017	0.0086	0.9993	1.0466	1.0112	0.9461
20	330	69.3	0.0017	0.0082	0.9717	1.0561	1.0007	0.9554
21	330	72.6	0.0018	0.0078	1.0039	1.0460	1.0292	0.9469
22	330	75.9	0.0018	0.0074	0.9942	1.0560	0.9961	0.9560
23	330	79.2	0.0018	0.0070	1.0004	1.0459	1.0058	0.9469
24	330	82.5	0.0018	0.0067	1.0000	1.0566	0.9996	0.9561
25	330	85.8	0.0018	0.0064	1.0039	1.0464	1.0000	0.9464
26	330	89.1	0.0018	0.0061	1.0058	1.0578	0.9962	0.9557
27	330	92.4	0.0018	0.0058	1.0070	1.0472	0.9942	0.9454
28	330	95.7	0.0018	0.0055	1.0109	1.0595	0.9930	0.9549
29	330	99.0	0.0017	0.0052	1.0099	1.0484	0.9892	0.9438
30	330	102.3	0.0017	0.0049	1.0154	1.0618	0.9902	0.9539
31	330	105.6	0.0017	0.0047	1.0126	1.0499	0.9849	0.9418
32	330	108.9	0.0017	0.0044	1.0192	1.0646	0.9876	0.9525
33	330	112.2	0.0016	0.0042	1.0150	1.0516	0.9812	0.9393
34	330	115.5	0.0016	0.0040	1.0223	1.0680	0.9852	0.9509
35	330	118.8	0.0016	0.0037	1.0171	1.0537	0.9782	0.9363
36	330	122.1	0.0016	0.0035	1.0240	1.0724	0.9832	0.9490
37	330	125.4	0.0015	0.0033	1.0186	1.0570	0.9765	0.9325
38	330	128.7	0.0015	0.0031	1.0312	1.0874	0.9817	0.9461
39	330	132.0	0.0014	0.0029	1.0744	1.0677	0.9697	0.9196
40	330	135.3	0.0013	0.0027	-	-	0.9307	0.9366

Tablo 4.7: Altıgen Model Kat Rijitlikleri

Vat no	h (am)	II (m)	A withi	A zvi/lai	hi Rijitlik Düzensizliği Oranı			11
Kat no	n _i (cm)	п _i (III)		∆уиш	ηkx (i-1)	ηky (i-1)	ηkx (i+1)	ηkx (i+1)
1	440	4.4	0.0006	0.0456	0.6026	0.8157	-	-
2	440	8.8	0.0010	0.0560	0.6688	1.0016	1.3906	1.2260
3	440	13.2	0.0016	0.0559	1.1471	1.9457	1.5953	0.9984
4	330	16.5	0.0014	0.0287	1.0325	1.2592	0.8717	0.5139
5	330	19.8	0.0013	0.0228	0.9577	1.1200	0.9685	0.7941
6	330	23.1	0.0014	0.0204	0.9511	1.0792	1.0442	0.8928
7	330	26.4	0.0015	0.0189	0.9680	1.0806	1.0515	0.9266
8	330	29.7	0.0015	0.0175	0.9677	1.0680	1.0331	0.9254
9	330	33.0	0.0015	0.0163	0.9767	1.0703	1.0334	0.9364
10	330	36.3	0.0016	0.0153	0.9741	1.0600	1.0239	0.9343
11	330	39.6	0.0016	0.0144	0.9813	1.0618	1.0266	0.9434
12	330	42.9	0.0017	0.0136	0.9801	1.0542	1.0191	0.9418
13	330	46.2	0.0017	0.0129	0.9865	1.0561	1.0203	0.9486
14	330	49.5	0.0017	0.0122	0.9863	1.0507	1.0137	0.9469
15	330	52.8	0.0017	0.0116	0.9917	1.0525	1.0139	0.9518
16	330	56.1	0.0018	0.0110	0.9920	1.0488	1.0084	0.9501
17	330	59.4	0.0018	0.0105	0.9964	1.0505	1.0081	0.9535
18	330	62.7	0.0018	0.0100	0.9972	1.0480	1.0036	0.9520
19	330	66.0	0.0018	0.0095	1.0007	1.0494	1.0028	0.9542
20	330	69.3	0.0018	0.0091	1.0019	1.0479	0.9993	0.9530
21	330	72.6	0.0018	0.0087	1.0047	1.0489	0.9981	0.9543
22	330	75.9	0.0018	0.0083	1.0063	1.0483	0.9954	0.9534
23	330	79.2	0.0018	0.0079	1.0084	1.0489	0.9937	0.9539
24	330	82.5	0.0017	0.0075	1.0105	1.0491	0.9917	0.9533
25	330	85.8	0.0017	0.0072	1.0119	1.0493	0.9897	0.9532
26	330	89.1	0.0017	0.0068	1.0144	1.0501	0.9882	0.9530
27	330	92.4	0.0017	0.0065	1.0153	1.0500	0.9858	0.9523
28	330	95.7	0.0017	0.0062	1.0181	1.0513	0.9849	0.9524
29	330	99.0	0.0016	0.0059	1.0185	1.0509	0.9822	0.9512
30	330	102.3	0.0016	0.0056	1.0217	1.0527	0.9818	0.9516
31	330	105.6	0.0016	0.0053	1.0217	1.0519	0.9788	0.9499
32	330	108.9	0.0015	0.0051	1.0252	1.0542	0.9788	0.9506
33	330	112.2	0.0015	0.0048	1.0250	1.0530	0.9754	0.9486
34	330	115.5	0.0015	0.0046	1.0290	1.0552	0.9756	0.9497
35	330	118.8	0.0014	0.0043	1.0285	1.0532	0.9719	0.9477
36	330	122.1	0.0014	0.0041	1.0313	1.0543	0.9723	0.9495
37	330	125.4	0.0013	0.0039	1.0261	1.0498	0.9697	0.9485
38	330	128.7	0.0013	0.0037	1.0201	1.0451	0.9745	0.9526
39	330	132.0	0.0013	0.0036	1.0071	1.0334	0.9803	0.9568
40	330	135.3	0.0013	0.0034	-	-	0.9930	0.9677

Tablo 4.8: Dikdörtgen Model Kat Rijitlikleri

4.1.2.3 Taşıyıcı Sistemin Düşey Elemanlarının Düzensizliği (B3)

Taşıyıcı sistemin düşey elemanlarının (kolon veya perdelerin) bazı katlarda kaldırılarak kirişlerin veya guseli kolonların üstüne veya ucuna oturtulması, ya da üst kattaki perdelerin altta kolonlara oturtulması durumudur. Yapılarda bu tür düzensizlik mevcut değildir.

4.2 Deplasman Kontrolleri

4.2.1 Etkin Göreli Kat Ötelenmeleri

Her bir deprem doğrultusu için, binanın i'inci katındaki kolon veya perdeler için etkin göreli kat ötelemesi, δ_i , denklem 4.5 ile elde edilecektir.

$$\delta_{i} = \mathbf{R} \times \Delta \tag{4.5}$$

Her bir deprem doğrultusu için, binanın herhangi bir i'inci katındaki kolon veya perdelerde, Denklem 4.1 ile hesaplanan δ_i etkin göreli kat ötelemelerinin kat içindeki en büyük değeri (δ_i)_{max}, denklem 4.6 da verilen koşulu sağlayacaktır:

$$\frac{\left(\delta_{i_{\max}}\right)}{h_{i}} \le 0.02 \tag{4.6}$$

Her bir deprem doğrultusu için, binanın her katındaki azaltılmış göreli kat ötelenmeleri söz konusu deprem doğrultusundaki deprem yükü azaltma katsayısı R ile çarpılarak δ_i etkin göreli kat ötelenmeleri hesaplanmıştır.

Kat no	h _i (cm)	H _İ (m)	d _{ix (cm)}	d _{iy (cm)}	$\Delta_{\rm xi}$	Δ _{yi}	δ_{ix}	δ_{iy}	δ_{ix}/h_i	δ_{iy}/h_i
1	440	4,4	0,407	0,407	0,285	0,297	1,712	1,783	0,004	0,004
2	440	8,8	1,274	1,274	0,128	0,111	0,767	0,668	0,002	0,002
3	440	13,2	2,315	2,315	0,354	0,349	2,126	2,093	0,005	0,005
4	330	16,5	3,148	3,148	0,298	0,293	1,788	1,756	0,005	0,005
5	330	19,8	4,034	4,034	0,325	0,319	1,953	1,914	0,006	0,006
6	330	23,1	4,949	4,949	0,345	0,337	2,068	2,025	0,006	0,006
7	330	26,4	5,903	5,903	0,366	0,358	2,193	2,145	0,007	0,007
8	330	29,7	6,877	6,877	0,381	0,372	2,286	2,234	0,007	0,007
9	330	33,0	7,883	7,883	0,399	0,389	2,391	2,334	0,007	0,007
10	330	36,3	8,905	8,905	0,412	0,401	2,469	2,408	0,007	0,007
11	330	39,6	9,953	9,953	0,426	0,415	2,556	2,492	0,008	0,008
12	330	42,9	11,014	11,014	0,437	0,425	2,620	2,552	0,008	0,008
13	330	46,2	12,095	12,095	0,448	0,436	2,690	2,618	0,008	0,008
14	330	49,5	13,184	13,184	0,457	0,444	2,740	2,665	0,008	0,008
15	330	52,8	14,288	14,288	0,466	0,453	2,794	2,716	0,008	0,008
16	330	56,1	15,397	15,397	0,472	0,458	2,831	2,751	0,009	0,008
17	330	59,4	16,514	16,514	0,478	0,465	2,870	2,787	0,009	0,008
18	330	62,7	17,633	17,633	0,482	0,468	2,895	2,809	0,009	0,009
19	330	66,0	18,755	18,755	0,487	0,472	2,920	2,832	0,009	0,009
20	330	69,3	19,875	19,875	0,489	0,474	2,932	2,843	0,009	0,009
21	330	72,6	20,993	20,993	0,491	0,475	2,944	2,853	0,009	0,009
22	330	75,9	22,105	22,105	0,491	0,475	2,946	2,853	0,009	0,009
23	330	79,2	23,212	23,212	0,491	0,475	2,945	2,850	0,009	0,009
24	330	82,5	24,308	24,308	0,489	0,473	2,937	2,841	0,009	0,009
25	330	85,8	25,394	25,394	0,487	0,471	2,924	2,827	0,009	0,009
26	330	89,1	26,467	26,467	0,484	0,468	2,906	2,809	0,009	0,009
27	330	92,4	27,526	27,526	0,481	0,464	2,884	2,785	0,009	0,008
28	330	95,7	28,569	28,569	0,476	0,460	2,857	2,758	0,009	0,008
29	330	99,0	29,593	29,593	0,471	0,454	2,825	2,725	0,009	0,008
30	330	102,3	30,598	30,598	0,465	0,449	2,791	2,691	0,008	0,008
31	330	105,6	31,581	31,581	0,458	0,442	2,751	2,650	0,008	0,008
32	330	108,9	32,543	32,543	0,452	0,435	2,710	2,610	0,008	0,008
33	330	112,2	33,480	33,480	0,444	0,427	2,663	2,563	0,008	0,008
34	330	115,5	34,393	34,393	0,436	0,420	2,617	2,517	0,008	0,008
35	330	118,8	35,278	35,278	0,427	0,411	2,565	2,465	0,008	0,007
36	330	122,1	36,137	36,137	0,419	0,402	2,515	2,415	0,008	0,007
37	330	125,4	36,967	36,967	0,410	0,393	2,460	2,359	0,007	0,007
38	330	128,7	37,772	37,772	0,401	0,384	2,408	2,307	0,007	0,007
39	330	132.0	38,552	38,552	0,393	0,376	2,355	2,255	0,007	0,007
40	330	135,3	39,315	39,315	0,387	0,371	2,324	2,224	0,007	0,007

Tablo 4.9: Kare Model Göreli Kat Ötelenmeleri

Kat no	h _i (cm)	H ₁ (m)	d _{ix (cm)}	d _{iy (cm)}	$\Delta_{\rm xi}$	Δ_{yi}	$\boldsymbol{\delta}_{ix}$	$\boldsymbol{\delta}_{iy}$	δ_{ix}/h_i	$\delta_{iy}\!/h_i$
1	440	4,4	0,363	0,363	0,288	0,146	1,728	0,877	0,004	0,002
2	440	8,8	1,135	1,135	0,345	0,328	2,068	1,968	0,005	0,004
3	440	13,2	2,069	2,069	0,284	0,413	1,706	2,480	0,004	0,006
4	330	16,5	2,808	2,808	0,303	0,336	1,817	2,019	0,006	0,006
5	330	19,8	3,591	3,591	0,316	0,353	1,895	2,118	0,006	0,006
6	330	23,1	4,395	4,395	0,330	0,367	1,980	2,200	0,006	0,007
7	330	26,4	5,233	5,233	0,341	0,379	2,046	2,276	0,006	0,007
8	330	29,7	6,087	6,087	0,353	0,390	2,120	2,341	0,006	0,007
9	330	33,0	6,970	6,970	0,363	0,400	2,175	2,402	0,007	0,007
10	330	36,3	7,869	7,869	0,373	0,409	2,236	2,454	0,007	0,007
11	330	39,6	8,791	8,791	0,380	0,417	2,281	2,504	0,007	0,008
12	330	42,9	9,726	9,726	0,388	0,424	2,330	2,545	0,007	0,008
13	330	46,2	10,680	10,680	0,394	0,431	2,365	2,583	0,007	0,008
14	330	49,5	11,642	11,642	0,400	0,436	2,402	2,614	0,007	0,008
15	330	52,8	12,619	12,619	0,404	0,440	2,426	2,640	0,007	0,008
16	330	56,1	13,601	13,601	0,409	0,443	2,452	2,659	0,007	0,008
17	330	59,4	14,592	14,592	0,411	0,446	2,467	2,674	0,007	0,008
18	330	62,7	15,585	15,585	0,414	0,447	2,482	2,682	0,008	0,008
19	330	66,0	16,583	16,583	0,415	0,448	2,487	2,686	0,008	0,008
20	330	69,3	17,579	17,579	0,415	0,447	2,492	2,684	0,008	0,008
21	330	72,6	18,576	18,576	0,415	0,446	2,489	2,677	0,008	0,008
22	330	75,9	19,568	19,568	0,414	0,444	2,483	2,665	0,008	0,008
23	330	79,2	20,557	20,557	0,412	0,441	2,472	2,648	0,007	0,008
24	330	82,5	21,537	21,537	0,409	0,438	2,457	2,627	0,007	0,008
25	330	85,8	22,510	22,510	0,406	0,433	2,437	2,601	0,007	0,008
26	330	89,1	23,473	23,473	0,402	0,428	2,414	2,570	0,007	0,008
27	330	92,4	24,424	24,424	0,398	0,423	2,387	2,535	0,007	0,008
28	330	95,7	25,362	25,362	0,392	0,416	2,355	2,496	0,007	0,008
29	330	99,0	26,285	26,285	0,387	0,409	2,321	2,453	0,007	0,007
30	330	102,3	27,192	27,192	0,380	0,401	2,282	2,406	0,007	0,007
31	330	105,6	28,081	28,081	0,374	0,393	2,242	2,356	0,007	0,007
32	330	108,9	28,952	28,952	0,366	0,384	2,196	2,302	0,007	0,007
33	330	112,2	29,802	29,802	0,359	0,374	2,151	2,244	0,007	0,007
34	330	115,5	30,632	30,632	0,350	0,364	2,100	2,184	0,006	0,007
35	330	118,8	31,438	31,438	0,342	0,353	2,051	2,120	0,006	0,006
36	330	122,1	32,223	32,223	0,333	0,342	1,998	2,055	0,006	0,006
37	330	125,4	32,983	32,983	0,325	0,331	1,949	1,988	0,006	0,006
38	330	128,7	33,721	33,721	0,317	0,320	1,900	1,922	0,006	0,006
39	330	132,0	34,435	34,435	0,311	0,310	1,864	1,860	0,006	0,006
40	330	135,3	35,134	35,134	0,311	0,301	1,864	1,807	0,006	0,005

Tablo 4.10: Dairesel Model Göreli Kat Ötelenmeleri

Kat no	h _i (cm)	H _i (m)	d _{ix (cm)}	d _{iy (cm)}	Δ_{xi}	Δ_{yi}	δ_{ix}	$\boldsymbol{\delta}_{iy}$	$\delta_{ix}\!/h_i$	$\delta_{iy}\!/\!h_i$
1	440	4,4	0,312	0,312	0,447	0,350	2,681	2,098	0,006	0,005
2	440	8,8	1,015	1,015	0,137	0,548	0,820	3,290	0,002	0,007
3	440	13,2	1,895	1,895	0,440	0,614	2,637	3,685	0,006	0,008
4	330	16,5	2,638	2,638	0,342	0,444	2,052	2,663	0,006	0,008
5	330	19,8	3,450	3,450	0,365	0,452	2,192	2,714	0,007	0,008
6	330	23,1	4,311	4,311	0,385	0,472	2,311	2,832	0,007	0,009
7	330	26,4	5,224	5,224	0,409	0,484	2,452	2,903	0,007	0,009
8	330	29,7	6,175	6,175	0,426	0,500	2,558	3,003	0,008	0,009
9	330	33,0	7,171	7,171	0,446	0,510	2,677	3,062	0,008	0,009
10	330	36,3	8,199	8,199	0,460	0,524	2,759	3,146	0,008	0,010
11	330	39,6	9,264	9,264	0,483	0,532	2,897	3,189	0,009	0,010
12	330	42,9	10,355	10,355	0,496	0,543	2,977	3,258	0,009	0,010
13	330	46,2	11,475	11,475	0,514	0,548	3,084	3,286	0,009	0,010
14	330	49,5	12,616	12,616	0,525	0,557	3,151	3,340	0,010	0,010
15	330	52,8	13,780	13,780	0,539	0,559	3,235	3,354	0,010	0,010
16	330	56,1	14,958	14,958	0,548	0,565	3,286	3,392	0,010	0,010
17	330	59,4	16,154	16,154	0,558	0,565	3,349	3,392	0,010	0,010
18	330	62,7	17,359	17,359	0,564	0,569	3,384	3,416	0,010	0,010
19	330	66,0	18,575	18,575	0,570	0,567	3,422	3,402	0,010	0,010
20	330	69,3	19,797	19,797	0,571	0,569	3,424	3,413	0,010	0,010
21	330	72,6	21,023	21,023	0,587	0,564	3,524	3,386	0,011	0,010
22	330	75,9	22,250	22,250	0,585	0,564	3.510	3,384	0,011	0,010
23	330	79,2	23,476	23,476	0,588	0,557	3,531	3,344	0,011	0,010
24	330	82,5	24,699	24,699	0,588	0,555	3,529	3,330	0,011	0,010
25	330	85,8	25,917	25,917	0,588	0,546	3,529	3,278	0,011	0,010
26	330	89,1	27,128	27,128	0,586	0,542	3,516	3,253	0,011	0,010
27	330	92,4	28,329	28,329	0,583	0,532	3,495	3,189	0,011	0,010
28	330	95,7	29,519	29,519	0,579	0,526	3,471	3,154	0,011	0,010
29	330	99,0	30,695	30,695	0,572	0,513	3,434	3,080	0,010	0,009
30	330	102,3	31,858	31,858	0,567	0,506	3,400	3,035	0,010	0,009
31	330	105,6	33,003	33,003	0,558	0,492	3,349	2,951	0,010	0,009
32	330	108,9	34,132	34,132	0,551	0,483	3,307	2,899	0,010	0,009
33	330	112.2	35.241	35.241	0.541	0.468	3.245	2.805	0.010	0.009
34	330	115.5	36.331	36.331	0.533	0.458	3.197	2.746	0.010	0.008
35	330	118.8	37,400	37,400	0,521	0,441	3,127	2,645	0,009	0,008
36	330	122.1	38,447	38,447	0,512	0,430	3,075	2,579	0,009	0,008
37	330	125,4	39,472	39,472	0,500	0,412	3,002	2,470	0,009	0,007
38	330	128.7	40,474	40.474	0.491	0.400	2.948	2.399	0.009	0.007
39	330	132.0	41,455	41,455	0,476	0,377	2,858	2,262	0,009	0,007
40	330	135,3	42,423	42,423	0,443	0,362	2,660	2,172	0,008	0,007

Tablo 4.11: Altıgen Model Göreli Kat Ötelenmeleri

Kat no	h _i (cm)	H _i (m)	d _{ix (cm)}	d _{iy (cm)}	Δ_{xi}	Δ_{yi}	δ_{ix}	$\boldsymbol{\delta}_{iy}$	δ_{ix}/h_i	$\delta_{iy}\!/h_i$
1	440	4,4	0,475	0,505	0,189	0,201	1,136	1,205	0,003	0,003
2	440	8,8	1,634	1,745	0,460	0,492	2,762	2,954	0,006	0,007
3	440	13,2	3,355	3,587	0,688	0,737	4,130	4,424	0,009	0,010
4	330	16,5	4,487	4,777	0,450	0,474	2,700	2,842	0,008	0,009
5	330	19,8	5,581	5,908	0,436	0,451	2,615	2,709	0,008	0,008
6	330	23,1	6,720	7,084	0,455	0,470	2,731	2,822	0,008	0,009
7	330	26,4	7,918	8,328	0,479	0,498	2,871	2,988	0,009	0,009
8	330	29,7	9,154	9,622	0,494	0,518	2,966	3,111	0,009	0,009
9	330	33,0	10,429	10,967	0,511	0,539	3,065	3,236	0,009	0,010
10	330	36,3	11,735	12,348	0,523	0,554	3,138	3,326	0,010	0,010
11	330	39,6	13,074	13,768	0,537	0,571	3,222	3,423	0,010	0,010
12	330	42,9	14,438	15,217	0,547	0,582	3,284	3,493	0,010	0,011
13	330	46,2	15,829	16,696	0,558	0,595	3,350	3,568	0,010	0,011
14	330	49,5	17,239	18,196	0,566	0,603	3,396	3,620	0,010	0,011
15	330	52,8	18,668	19,717	0,574	0,612	3,443	3,675	0,010	0,011
16	330	56,1	20,108	21,253	0,579	0,618	3,472	3,710	0,011	0,011
17	330	59,4	21,560	22,803	0,583	0,624	3,500	3,745	0,011	0,011
18	330	62,7	23,017	24,361	0,585	0,627	3,513	3,763	0,011	0,011
19	330	66,0	24,477	25,924	0,587	0,630	3,523	3,780	0,011	0,011
20	330	69,3	25,937	27,489	0,587	0,630	3,520	3,782	0,011	0,011
21	330	72,6	27,393	29,052	0,586	0,630	3,514	3,781	0,011	0,011
22	330	75,9	28,843	30,610	0,583	0,628	3,497	3,769	0,011	0,011
23	330	79,2	30,283	32,161	0,579	0,625	3,475	3,751	0,011	0,011
24	330	82,5	31,711	33,701	0,574	0,621	3,446	3,725	0,010	0,011
25	330	85,8	33,125	35,227	0,568	0,616	3,411	3,693	0,010	0,011
26	330	89,1	34,521	36,737	0,562	0,609	3,371	3,655	0,010	0,011
27	330	92,4	35,898	38,228	0,554	0,602	3,323	3,609	0,010	0,011
28	330	95,7	37,254	39,698	0,545	0,593	3,273	3,560	0,010	0,011
29	330	99,0	38,585	41,145	0,536	0,584	3,215	3,503	0,010	0,011
30	330	102,3	39,892	42,567	0,526	0,574	3,156	3,445	0,010	0,010
31	330	105,6	41,172	43,961	0,515	0,563	3,089	3,378	0,009	0,010
32	330	108,9	42,423	45,328	0,504	0,552	3,023	3,311	0,009	0,010
33	330	112,2	43,644	46,662	0,492	0,539	2,949	3,236	0,009	0,010
34	330	115,5	44,835	47,967	0,480	0,527	2,877	3,164	0,009	0,010
35	330	118,8	45,992	49,238	0,466	0,514	2,796	3,084	0,008	0,009
36	330	122,1	47,116	50,478	0,453	0,502	2,719	3,010	0,008	0,009
37	330	125,4	48,206	51,686	0,439	0,489	2,636	2,932	0,008	0,009
38	330	128,7	49,267	52,866	0,428	0,478	2,569	2,866	0,008	0,009
39	330	132,0	50,308	54,023	0,420	0,469	2,519	2,813	0,008	0,009
40	330	135,3	51,341	55,171	0,417	0,465	2,501	2,790	0,008	0,008

Tablo 4.12: Dikdörtgen Model Göreli Kat Ötelenmeleri

4.3 Kat Deplasmanları

Bu bölümde yatay yükler sonucu meydana gelen kat deplasman sonuçları her bir model için ayrı ayrı grafiklerde gösterilmiştir.

Ex ve Ey deprem yönlerinden gelen deprem kuvvetleri sonucu her bir yapının kat deplasmanları hesaplanmıştır.

Şekil 4.1: Kare Model Deplasman Eğrisi

Şekil 4.2: Dairesel Model Deplasman Eğrisi

Şekil 4.3: Altıgen Model Deplasman Eğrisi

Şekil 4.4: Dikdörtgen Model Deplasman Eğrisi (x yönü)

Şekil 4.5: Dikdörtgen Model Deplasman Eğrisi (y yönü)

Rüzgar kuvvetleri sonucu kat deplasmanları hesaplanmıştır.

Şekil 4.6: Kare Model Deplasman Eğrisi (Wx-Wy Rüzgar yönü)

Şekil 4.7: Daire Model Deplasman Eğrisi (Wx-Wy Rüzgar yönü)

Şekil 4.8: Altıgen Model Deplasman Eğrisi (Wx-Wy Rüzgar yönü)

Şekil 4.9: Dikdörtgen Model Deplasman Eğrisi (Wx Rüzgar yönü)

Şekil 4.10: Dikdörtgen Model Deplasman Eğrisi (Wy Rüzgar yönü)

4.4 Yapı Titreşim Periyotları

Geometrik formları birbirinden farklı çelik yüksek yapıların titreşim periyot değerleri verilmiştir.

Aşağıdaki tablolarda görüldüğü gibi hesaplarda 20 mod dikkate alınmıştır.

KARE MODEL											
Mod	Periyod	UX	UY	ΣUX	ΣUY						
1	5.6439	71.0000	0.0000	71.00	0.00						
2	5.5606	0.0000	71.2000	71.00	71.20						
3	3.3638	0.0000	0.0000	71.00	71.20						
4	1.5345	17.1000	0.0000	88.10	71.20						
5	1.5202	0.0000	17.0000	88.10	88.20						
6	0.9549	0.0000	0.0000	88.10	88.20						
7	0.7577	4.6000	0.0000	92.70	88.20						
8	0.7525	0.0000	4.5000	92.70	92.70						
9	0.4975	2.1000	0.0000	94.80	92.70						
10	0.4946	0.0000	2.0000	94.80	94.80						
11	0.4841	0.0000	0.0000	94.80	94.80						
12	0.3632	1.1000	0.0000	95.90	94.80						
13	0.3613	0.0000	1.1000	95.90	95.90						
14	0.3283	0.0000	0.0000	95.90	95.90						
15	0.2925	0.0000	0.0000	95.90	95.90						
16	0.2892	0.2790	0.0000	95.90	95.90						
17	0.2844	0.0000	0.0800	95.90	95.90						
18	0.2820	0.7287	0.0000	96.60	95.90						
19	0.2807	0.0000	0.7198	96.60	96.60						
20	0.2789	0.0000	0.0000	96.60	96.60						

Tablo 4.13: Kare Model Periyot Değerleri

DİKDÖRTGEN MODEL										
Mod	Periyod	UX	UY	ΣUX	ΣUΥ					
1	6.4932	0.0000	73.0000	0.00	73.00					
2	6.2660	74.0000	0.0000	74.00	73.00					
3	4.2287	0.0000	0.0000	74.00	73.00					
4	1.8718	0.0000	16.0000	74.00	90.00					
5	1.8131	16.0000	0.0000	90.00	90.00					
6	1.2540	0.0000	0.0000	90.00	90.00					
7	0.9473	0.0000	3.8970	90.00	93.00					
8	0.9084	3.9680	0.0000	94.00	93.00					
9	0.6339	0.0000	0.0000	94.00	93.00					
10	0.6322	0.0000	1.5470	94.00	95.00					
11	0.5937	1.5700	0.0000	95.00	95.00					
12	0.4703	0.0000	0.8351	95.00	96.00					
13	0.4323	0.8218	0.0000	96.00	96.00					
14	0.4283	0.0000	0.0000	96.00	96.00					
15	0.3705	0.0000	0.5754	96.00	96.00					
16	0.3357	0.5437	0.0000	97.00	96.00					
17	0.3254	0.0000	0.0000	97.00	96.00					
18	0.3093	0.0000	0.0000	97.00	96.00					
19	0.3065	0.0001	0.0000	97.00	96.00					
20	0.2999	0.0000	0.4492	97.00	97.00					

Tablo 4.14: Dikdörtgen Model Periyot Değerleri

DAİRESEL MODEL										
Mod	Periyod	UX	UY	ΣUX	ΣUY					
1	5.4662	0.0000	71.0000	0.00	71.00					
2	5.4662	71.0000	0.0000	73.00	73.00					
3	3.1794	0.0000	0.0000	73.00	73.00					
4	1.5977	0.4084	15.0000	73.00	88.00					
5	1.5977	15.0000	0.4084	89.00	89.00					
6	0.9496	0.0000	0.0000	89.00	89.00					
7	0.8219	0.0769	3.9000	89.00	93.00					
8	0.8219	3.9000	0.0769	93.00	93.00					
9	0.5543	0.4877	1.3950	93.00	94.00					
10	0.5543	1.3950	0.4877	95.00	95.00					
11	0.5442	0.0000	0.0000	95.00	95.00					
12	0.5442	0.0000	0.0000	95.00	95.00					
13	0.5442	0.0000	0.0000	95.00	95.00					
14	0.5442	0.0000	0.0000	95.00	95.00					
15	0.5442	0.0000	0.0000	95.00	95.00					
16	0.5442	0.0000	0.0000	95.00	95.00					
17	0.5442	0.0000	0.0000	95.00	95.00					
18	0.5442	0.0000	0.0000	95.00	95.00					
19	0.5442	0.0000	0.0000	95.00	95.00					
20	0.5442	0.0000	0.0000	95.00	95.00					

Tablo 4.15: Dairesel Model Periyot Değerleri

ALTIGEN MODEL											
Mod	Periyod	UX	UY	ΣUX	ΣUΥ						
1	6.2223	0.0000	74.7300	0.00	74.73						
2	5.2339	71.9200	0.0000	71.92	74.73						
3	3.3369	0.0000	0.0000	71.92	74.73						
4	1.8723	0.0000	15.9200	71.92	90.65						
5	1.4768	16.6300	0.0000	88.56	90.65						
6	0.9837	0.0000	0.0000	88.56	90.65						
7	0.9804	0.0000	3.7900	88.56	94.44						
8	0.7440	4.1700	0.0000	92.73	94.44						
9	0.6783	0.0000	1.6300	92.73	96.07						
10	0.5185	0.0000	0.8600	92.73	96.93						
11	0.5077	0.0000	0.0000	92.73	96.93						
12	0.4961	1.9400	0.0000	94.67	96.93						
13	0.4224	0.0000	0.5300	94.67	97.47						
14	0.4184	0.0000	0.0000	94.67	97.47						
15	0.4182	0.0000	0.0000	94.67	97.47						
16	0.4182	0.0000	0.0000	94.67	97.47						
17	0.4182	0.0000	0.0000	94.67	97.47						
18	0.4182	0.0000	0.0000	94.67	97.47						
19	0.4182	0.0000	0.0000	94.67	97.47						
20	0.4182	0.0000	0.0000	94.67	97.47						

Tablo 4.16: Altıgen Model Periyot Değerleri

4.5 Kat Kesme Kuvvetleri

Deprem yükünden dolayı yapılarda oluşan kat kesme kuvvetleri grafik halinde verilmiştir.

Tablo 4.17: Dairesel Model Kat Kesme Kuvvetleri

Tablo 4.18: Kare Model Kat Kesme Kuvvetleri

Tablo 4.19: Altıgen Model Kat Kesme Kuvvetleri

Tablo 4.20: Dikdörtgen Model (x yönü) Kat Kesme Kuvvetleri

Tablo 4.21: Dikdörtgen Model (y yönü) Kat Kesme Kuvvetleri

5. SONUÇ VE DEĞERLENDİRME

Bu tez çalışması kapsamında, kare, dikdörtgen, altıgen ve daire formundaki çok katlı çelik yapıların yatay ve düşey yükler altında analizleri yapılmış, elde edilen sonuçlar değerlendirilmiş ve aralarındaki en ideal geometrik form belirlenmiştir. Taşıyıcı sistem elemanları, Deprem Bölgelerinde Yapılacak Yapılar Hakkında Yönetmelik 2007, TS648, AISC-ASD89 ve Kanada Yönetmeliği (NBC 1995) kapsamında analiz edilmiştir. Yapıların deprem yükü analizi mod birleştirme yöntemi kullanılarak yapılmıştır. Rüzgar yükleri hesabı ve analizler ise Kanada Yönetmeliği kapsamında incelenmiştir.

Yatay yükler altında deprem yükü ve rüzgar yükleri analizlerine göre en ideal sonucu dairesel model vermiştir. Şekil 5.1 ve şekil 5.2' de görüldüğü üzere deprem etkileri sonucu oluşan kat deplasmanları rüzgar yüklerine kıyasla daha fazladır.

Şekil 5.1: Deprem Yükü Sonucu Oluşan Kat Deplasmanları

Şekil 5.2: Rüzgar Yükü Sonucu Oluşan Kat Deplasmanları

Farklı geometriye sahip bu modellerde periyot mod sayısı grafiği karşılaştırmaları yapılmıştır. Mod sayısı olarak 20 seçilmiştir. En yüksek periyot değeri dikdörtgen modelde, en düşük periyot değeri ise dairesel modelde elde edilmiştir.

Şekil 5.3: Modellerin Periyot-Mod Sayısı Grafiği

Kat yükseklikleri ilk üç katta 4.4 m ve diğer 37 katta ise 3.3 m olan modellerin analiz sonuçlarına kat kesme kuvveti değerleri en yüksek çıkan dikdörtgen model, en düşük kat kesme kuvveti değerleri dairesel modelde görülmüştür. (Bknz. Bölüm 4.5)

Yapılar aynı profillerden seçilip analizler yapılmıştır. Sonuçlar değerlendirilmiş ve birbirleriyle karşılaştırılmıştır. Her model için en ekonomik kesitler yapılan optimizasyonlar sonucunda belirlenmiştir.

Model	OPTİMİZASYON İÇİN KULLANILAN KESİTLER			
	Kolon	Kiriş	Diyagonal Çaprazlar	
Daire	HAC450B-HAC800B	IPE300-IPE500	φ244.5/5 mm-φ323.9/5.9 mm	
Kare	HAC450B-HAC800B	IPE300-IPE500	φ244.5/5 mm-φ323.9/5.9 mm	
Altıgen	HAC500B-HAC1000B	IPE360-IPE500	φ273/6 mm-φ323.9/5.9 mm	
Dikdörtgen	HAC600B-HAC1000B	IPE360-IPE600	φ273/10 mm-φ323.9/10 mm	

Tablo 5.1: Modellerde Optimizasyon için Kullanılan Kesit Aralıkları

Model	Kolon	Kiriş	Diyagonal Çaprazlar	
Daire	0-10 kat HAC 800B		φ273/10 mm	
	10-20 kat HAC 650B	IPE 400/360		
	20-40 kat HAC 450B			
Kare	0-10 kat HAC 700B		φ298.5/5.9 mm	
	10-20 kat HAC 600B	IPE 400/360		
	20-40 kat HAC 500B			
Altıgen	0-10 kat HAC 1000B		¢244.5∕10 mm	
	10-20 kat HAC 700B	IPE 450/400		
	20-40 kat HAC 600B			
Dikdörtgen	0-10 kat HAC 1000B	IPE 500/450	φ323.9/5.9 mm	
	10-20 kat HAC 800B			
	20-40 kat HAC 700B			

Tablo 5.2: Modeller için Seçilen En Ekonomik Kesitler

Taşıyıcı sistem nihai ağırlığı en düşük olan model kare, en ağır ise dikdörtgen model olmuştur. Dikdörtgen modelin performans açısından kötü sonuçlar vermesi yapı ağırlığının diğer modellere oranla daha fazla çıkmasına neden olmuştur.

	Malzeme Ağırlıkları (ton)				
Model	Çelik				
	HISTAR 355	HISTAR 460	Toplam		
Kare	1358,4	1697,3	3055,7		
Daire	921,0	2412,2	3333,2		
Dikdörtgen	2049,4	2119,5	4168,9		
Altigen	1162,2	2240,9	3403,1		

Tablo 5.3: Taşıyıcı Sistem Çelik Profil Ağırlıkları

Tüm bu sonuçlar ışığında yaklaşık olarak aynı taban alanına sahip eşit yatay ve düşey yükler altında, kat ve yapı yükseklikleri, yapı kullanım amaçları, zemin sınıfları, deprem bölgeleri aynı olan kare, dikdörtgen, daire ve altıgen formuna sahip 40 katlı çelik yüksek yapılarda, kat kesme kuvvetleri, kat deplasmanları, periyot değerleri ve göreli kat ötelenmeleri sonuçlarına göre en iyi performansı dairesel model verirken en olumsuz sonuçlar dikdörtgen modelde gözlemlenmiştir.

Yapılan optimizasyonlar ile belirlenen en ekonomik kesitler sonucu toplam yapı ağırlıkları belirlenmiştir. Buna bağlı olarak çelik taşıyıcı sistem ağırlığı en hafif olan yapı kare model olurken en ağır bina ise dikdörtgen model olmuştur.

6. KAYNAKLAR

Akhoundov, E. "Yüksek çelik yapılar", Yüksek Lisans Tezi, Eskişehir Osmangazi Üniversitesi Fen Bilimleri Enstitüsü, İnşaat Mühendisliği Anabilim Dalı, Eskişehir, (2000).

Aslangiray, B. "Çelik yapılarda farklı standartların karşılaştırılması", Yüksek Lisans Tezi, Eskişehir Osmangazi Üniversitesi Fen Bilimleri Enstitüsü, *İnşaat Mühendisliği Anabilim Dalı*, Eskişehir, (2008).

Ateş, A. "Çelik yapıların deprem analizi ve 1997 ile 2006 deprem yönetmeliklerinin karşılaştırılması", Yüksek Lisans Tezi, Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü, *İnşaat Mühendisliği Anabilim Dalı*, İstanbul, (2006).

Bulut, M. "Merkezi çaprazlı ve dış merkez çaprazlı çok katlı çelik yapıların doğrusal olmayan davranışında süneklik düzeylerinin karşılaştırılması", Yüksek Lisans Tezi, Sakarya Üniversitesi Fen Bilimleri Enstitüsü, *İnşaat Mühendisliği Yapı Anabilim Dalı*, Sakarya, (2008).

Computers & Structures, "SAP2000 Çelik Yapı Boyutlama Kılavuzu [online]" http://www.compengineering.com/downloads/manuals/SAP2000/Turkce/SAP2000% 20CELIK%20YAPI%20BOYUTLAMA%20KILAVUZU%202002.pdf, (2000).

Çağatay, Y. E. "Çok katlı çelik yapıların tasarımı", Yüksek Lisans Tezi, İstanbul Teknik Üniversitesi Fen Bilimleri Enstitüsü, İnşaat Mühendisliği Anabilim Dalı, İstanbul, (2006).

Çileli, E. "Çok katlı çelik yapılarda çaprazlı çerçeve sistemlerin dbybhy 2007'ye göre tasarımı ve süneklik düzeylerinin karşılaştırılması", Yüksek Lisans Tezi, Sakarya Üniversitesi Fen Bilimleri Enstitüsü, İnşaat Mühendisliği Anabilim Dalı, Sakarya, (2008).

Eşssiz, Ö. "Deprem Bölgelerinde Çok Katlı Çelik Yapı Tasarımı", Deprem Sempozyumu Kocaeli, 657-664, (2005).

Gözüaçık, Ç. "Çelik çok katlı bir yapıda dış merkez ve merkezi güçlendirilmiş sistemlerin irdelenmesi", Yüksek Lisans Tezi, İstanbul Teknik Üniversitesi Fen Bilimleri Enstitüsü, İnşaat Mühendisliği Anabilim Dalı, İstanbul, (2016).

Güner, F. "Çok katlı çelik yapılarda deprem performansının belirlenmesi ve doğrusal olmayan davranışın incelenmesi", Yüksek Lisans Tezi, Yıldız Teknik Üniversitesi

Fen Bilimleri Enstitüsü, İnşaat Mühendisliği Anabilim Dalı, İstanbul, (2007).

İmar İskan Bakanlığı, Deprem Araştırma Enstitüsü Başkanlığı, "Deprem Bölgelerinde Yapılacak Binalar Hakkında Yönetmelik", (2007).

Kocabaş, S. "Çelik yapıların SAP2000 programı ile analiz ve tasarımı", Yüksek Lisans Tezi, Çukurova Üniversitesi Fen Bilimleri Enstitüsü, İnşaat Mühendisliği Anabilim Dalı, Adana, (2005).

Rashid, M. "Yüksek katlı Çelik yapıların dinamik yükler altında yanal deformasyon davranışlarının iyileştirilmesi", Yüksek Lisans Tezi, Gaziantep Üniversitesi Fen Bilimleri Enstitüsü, İnşaat Mühendisliği Anabilim Dalı, Gaziantep, (2015).

Şen, G. "Çok katlı çelik yapılarda performansa dayalı tasarım kriterleri", Yüksek Lisans Tezi, Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü, *İnşaat Mühendisliği Anabilim Dalı*, İstanbul, (2006).

Tansel, M. "Çok katlı çelik yapıların 2007 deprem yönetmeliğine göre analiz ve tasarımı", Yüksek Lisans Tezi, Çukurova Üniversitesi Fen Bilimleri Enstitüsü, İnşaat Mühendisliği Anabilim Dalı, Adana, (2010).

TS648, "Çelik Yapıların Hesap Ve Yapım Kuralları, Türk Standartları Enstitüsü", Ankara, (2008).

TS498, "Yapı Elemanlarının Boyutlandırılmasında Alınacak Yüklerin Hesap Değerleri", Türk Standartları Enstitüsü, Ankara, (1997).

The National Building Code Of Canada, "Part 4", Canada, (1985).

Yemez, K. "Çelik yapı tasarımını etkileyen son dönemlerdeki araştırma ve gelişmeler", İnşaat Mühendisleri Odası 3. Ulusal Çelik Yapılar Sempozyumu, Gaziantep, (2009).

Zervent, A."Çelik yapıların tasarım metodlarının değerlendirilmesi", Yüksek Lisans Tezi, Ortadoğu Üniversitesi Fen Bilimleri Enstitüsü, İnşaat Mühendisliği Anabilim Dalı, Ankara, (2009).

Zeybek, Ö. "Çok katlı çelik yapıların geometri bakımından doğrusal olmayan davranışın artımsal ve pratik 2.mertebe analiz yöntemleri ile incelenmesi", Yüksek Lisans Tezi, Dokuz Eylül Üniversitesi Fen Bilimleri Enstitüsü, *İnşaat Mühendisliği Anabilim Dalı*, İzmir, (2011).

Weber, L. "Histar high performance hot rolled beams", Advanced Materials for construction of Bridges, Buildings and Other Structures III, (2003).

EKLER

7. EKLER

Şekil A.1: Ceh katsayıları

EK A.2 Guse Enerji Oranı

Şekil A.2: Gust enerji oranları

EK A.3 Boyut Küçültme Faktörü

Şekil A.3: Boyut küçültme faktörü

EK A.4 Türbülans Faktörü

Şekil A.4: Türbülans faktörü

EK A.5 Ortalama Dalgalanma Oranı

Şekil A.5: Ortalama dalgalanma oranı

8. ÖZGEÇMİŞ

Adı Soyadı	:Burak ÇIRPAN			
Doğum Yeri ve Tarihi	:Ankara 16.06.1992			
Lisans Üniversite	:Pamukkale Üniversitesi, Mühendislik Fakültesi, İnşaat Mühendisliği Bölümü, 2014			
Y.Lisans Üniversite	:Pamukkale Enstitüsü, İnşa	Üniversitesi, aat Mühendisliği	Fen ABD, 2	Bilimleri 017
E-posta	:brk.crpn.92@	gmail.com		
