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Sensitivity Analysis on Stochastic Equilibrium 
Transportation Networks using Genetic Algorithm 

Halim Ceylan 
Michael G. H. Bell 

This study deals with the sensitivity analysis of an equilibrium 
transportation networks using genetic algorithm approach and uses the 
bi-level iterative sensitivity algorithm. Therefore, integrated Genetic 
Algorithm-TRANSYT and Path Flow Estimator (GATPFE) is 
developed for signalized road networks for various level of perceived 
travel time in order to test the sensitivity of perceived travel time error 
in an urban stochastic road networks. Level of information provided 
to drivers correspondingly affects the signal timing parameters and 
hence the Stochastic User Equilibrium (SUE) link flows. When the 
information on road system is increased, the road users try to avoid 
conflicting links. Therefore, the stochastic equilibrium assignment 
concept tends to be user equilibrium. The GATPFE is used to solve 
the bi-level problem, where the Area Traffic Control (ATC) is the 
upper-level and the SUE assignment is the lower-level. The GATPFE 
is tested for six-junction network taken from literature. The results 
show that the integrated GATPFE can be applied to carry out 
sensitivity analysis at the equilibrium network design problems for 
various level of information and it simultaneously optimize the signal 
timings (i.e. network common cycle time, signal stage and offsets 
between junctions). 

Keywords: Genetic Algorithm, Stochastic User Equilibrium 
Assignment, Sensitivity Analysis, Dispersion parameter 

Introduction 

Mutual interaction of Traffic Assignment (TA) and Area Traffic 
Control (ATC) can explicitly be considered, producing the so-called 
combined control and assignment problem. Allsop (1974) 
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stated that “when all or part of the network is subject to traffic control, 
the relationship between travel cost and traffic flow on some or all of the 
links in the network depends on the control parameters, and these can 
therefore be used to influence the number of journeys made through the 
network and the routes taken”. Thus, there exists a strong 
interdependence between traffic control and traffic assignment. 
The solution of the combined TA and ATC can widely be obtained in 
literature (Yang and Yagar, 1995, Chiou, 1998; Chiou, 2003; Ceylan and 
Bell, 2003) based on various approaches such as mutually consistent, bi- 
level or genetic algorithm. The literature mainly deals with the solution 
of the problem based on Wardropian User Equilibrium principle. A few 
studies deals with the Stochastic User Equilibrium Approach [Ceylan 
and Bell, 20031 for the combined ATC and TA problem. 

The allocation of the dispersion parameter, a , on a signal-controlled 
road networks affects the drivers’ perception of travel time to any 
changes in a network such as signal timing or road closure. So that 
reason, it is logical to consider a level of information provided to the 
road users about road system. Any changes in travel time perception will 
consequently affect the signal timing at a signal-controlled junction and 
the assignment process onto a network. So far no assumption is made to 
allow stochastic variations of perceived travel time on a stochastic 
equilibrium network. Clark and Watling [2002] carried out the SA for 
probit-based SUE networks, but no consideration is given to the SA for 
the combined ATC and TA. In this study, the stochastic errors on 
perceived travel time are relaxed and re-optimization for the signal 
timing parameters are made under perturbed equilibrium flows. 

Signal setting parameters for a random variation of perceived travel 
time, and corresponding equilibrium flows that optimize some measure 
of performance are sought. Due to the complexity of finding the 
optimum signal settings with different values of perceived travel time, 
Genetic Algorithms (GA) [Goldberg, 19891 approach has been applied to 
combined ATC and TA to solve the problem. One of the current 
limitations in available solution techniques in ATC problem is that no 
method so far allows stochastic user equilibrium assignment and no 
method allows re-optimization of signal timings when the level of 
information is changed for road users. 

Sensitivity analysis (SA) in an ATC with equilibrium transportation 
networks may be camed out to meet the following objectives. 
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It is to explore the uncertainties during the mathematical modeling of the 
combined TA and ATC due to the uncertainties in the link performance 
functions, 
It is to obtain the affect of randomness in route choice due to difference 
in the perceived travel time by road users. 
It is to find the perturbed-equilibrium link flows to the signal settings 
whether signal settings require re-setting when the level of information is 
changed. 

SA for the combined TA and ATC is basically not dealt with in 
literature due to the difficulties in formulating in the link cost function by 
including the common cycle time and the offset variable, especially for 
the SUE case. Ying and Miyagi [2001] carried out SA for SUE networks 
and proposed a dual approach to formulate the problem. Although they 
included sensitivity parameters in the link cost function, but no 
consideration is given to the inclusion of signal control parameter for the 
combined ATC and TA problem. Furthermore, there is no consideration 
about the signal timing re-optimization when SUE equilibrium flows are 
perturbed. This difficulty comes from complexity of combined signal 
setting and traffic assignment problem. This complexity is basically the 
non-convex nature of the problem. When the problem is non-convex, we 
first need to solve the combined assignment and traffic control problem, 
then we need to carry out the sensitivity analysis. Therefore, GATPFE is 
developed to solve the combined assignment traffic control problem, and 
then sensitivity analysis is carried out on the stochastic equilibrium link 
flows and the signal settings. 

In urban networks, the most significant component of delay arises at 
junctions because there capacity is least. One of the important 
components of delay occurred due to cyclic variations of signals and 
tends to increase with flow. Thus many traffic simulation models 
concentrate on queuing behavior and make simplifying assumptions 
[Yin, 2000; Yang and Yagar, 19951 about link travel times. The 
TRANSYT network study tool [Robertson, 1969; Vincent et al, 19801 
assumes that queues occupy no physical space (the “vertical queuing” 
assumption) and that travel time from stop-line to stop-line have a 
geometric distribution. The appropriate representation of a link travel 
time function in a coordinated signalized road networks is a difficult tusk 
due to finding an mathematical expressions for an offset variables. Hence 
for different values of degree of saturation, the approximate expressions 
are used [Chiou, 1998; Chiou, 2003; Ceylan, 20021. 
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For the purpose of solving the problem, a bi-level iterative sensitivity 
algorithm has been used. The upper level problem is signal setting while 
the lower level problem is finding SUE equilibrium link flows. It is, 
however, known [Sheffi and Powell, 19831 that there are local optima. It 
is not certain that the local solution obtained is also the global optimum 
because equilibrium network design is generally a non-convex 
optimization problem. Hence, a GA approach is used to globally 
optimize signal setting at the upper level by calling TRANSYT traffic 
model to evaluate the fitness function for different values of perceived 
travel time. 

Stochastic User Equilibrium (SUE) and Genetic Algorithm Formulation 

Notation 

N = { 1,2,3,. . .,N,} be a set of N, nodes each of which represents a signal- 
controlled junction; 
L = { 1,2,3, ...., NL} be a set of NL links where each traffic stream 
approaching any junction is represented by its own link; 

be the set of origin-destination pairs; 
P, = Set of paths between each origin-destination pair w, lfw E w ; 

= [tw;vw w1 be the vector of travel demand between each origin- 
destination pair; 
C ~ "  = minimum specified common cycle time; 
C,, = the maximum specified common cycle time; 
c = Common cycle time at a signalized road network ' = ['I,; " 

junction relative to an arbitrary time origin for the network as a whole; 

= b' = (', 

N1 be the vector of start of green for stage 1 at each 

N1 be the vector of green times, where = [@in ; lf sfl ' lf 

element 4ifl is the duration of green for stage i at junction n; 

Y' = (', ', 9) be the vector of feasible signal timings; ' = Vector of feasible range of offset variables 

4 = Vector of duration of green times 

Y' = (', ', 4) whole vector of feasible set of signal timings 
R 

O =Vector of feasible region for signal timings 
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q=[qa ;" L1 be the vector of the average flow qa on link a; 

= [ h h ;  " ' w 3  Vw w1 be the vector of all path flows, where 
element hh is traffic flow on path h; ' = " L, " ' w ,  Vw w I  be the link/path incidence 

otherwise; s,, = 0 if link a is on path h, and s,, = 1 matrix, where 

q*(Y') =Vector of stochastic user equilibrium link flows 
A = OD-path incidence matrix 
y= Vector of expected minimum origin-destination cost 

g(q9 v) = Vector of path travel times, 
C = Vector of free-flow link travel times, 

'(q9 W) = Vector of all link travel times, 

da = Uniform delay at a signal-controlled junction 

0 

d r  = 
Random plus over saturation delay at a signalised junction 

P 
X, =Potential solution matrix of dimension [pzx 11 for the GA random 
search space 
pz= Population size 
1 = Total number of binary bits in the string (i.e. chromosome) 
tt = Generation number 
PI= network performance index to be minimized 

=Matrix of link choice probabilities. 

SUE formulation 

According to multinomial logit model the probability that path p is 
chosen for a trip from i to j is given by 

At stochastic user equilibrium, the path flows are 
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Then the following conversion of link flows q to path flows h, path travel 

times g(q) to link travel times '(q), and path flows h to origin- 
destination demand t is calculated using the incidence relationships as 
follows: 

(3c) t = A h  
where T is the transpose of the link-path incidence matrix. 

Sheffi (1985) has formulated the SUE equivalent minimization problem 
based on the expected minimum origin-destination costs. Following Bell 
and Iida (1997), the objective function has the form 

Subject to *Ah, q=6h, h 2 0 

where 

where a is the sensitivity parameter that governs the level of 
information to road users 

Assuming separable link cost functions which are monotonically 
increasing with flows, link cost functions may be inverted. Integration by 
parts yields 
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When the link flows are represented as a function of link costs, the 
expression (5) reduces to 

The derivative of the objective function (6) with respect to link cost is 

the Jacobian of the expected minimum origin-destination costs with 
respect to link costs is equal to the matrix of link choice proportions, 
namely 

The first-order necessary conditions for the minimization problem 
requires that the derivative of the objective function vanish at the 
minimum point, namely 

(9) 
Az( q) = -tT (ay / ac) + qT = 0 

The minimisation of equation (6), subject to flow conservation and non- 
negativity constraints, leads to the SUE point. As a result, the SUE flow 
pattern can be obtained by solving equivalent mathematical program. 

As far as the uniqueness is concerned, it is sufficient to show the 
Hessian matrix of the objective function is positive definite anywhere, 
implying that the program is strictly convex. 

The Hessian of the equation (6) is 

V2Z(q) = x- tw( i3yw ldcdc)+ J-' 
M W  

where the Jacobean J = dc I dq 
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The Jacobean of the link cost function is positive definite if the link cost 
function are monotonically increasing, in which case the Jacobean matrix 
is also invertible. 

The rate of change in expected minimum origin-destination costs with 
respect to increase in link costs will be zero or negative, as the 
probability of link choice decrease with increasing link costs. Hence the 
Hessian of the expected cost for origin destination pair w in W with 

respect to link costs, avw "'" is negative semi-definite. The Hessian 
of (6) is therefore a positive definite matrix, since the sum of a series of 
positive semi-definite matrices and one positive matrix itself positive 
definite. This in turn establishes the objective function (6) to be convex 
with unique optimum. The optimum where 

tT(ay/dc) = tTP = qT 

or when transposed 

q=Pt (12) 

The first-order necessary condition (9) and the SUE condition (12) 
coincide. Hence, the optimum of Z(q) defines a stochastic user 
equilibrium. 

Path Flow Estimator (PFE) 
The underlying theory of the PFE is the logit SUE model based on 

the notion that perceived cost determines dnver route choice. It is a 
flexible traffic assignment software tool that has been developed by 
Transport Operations Research Group (TORG), University of Newcastle 
upon Tyne, UK, to support both on-line urban traffic management and 
off-line transportation planning. The basic idea is to find the path flows 
and hence links flows, which satisfy equilibrium condition where all 
travelers' perceive the shortest path (allowing for delays due to 
congestion) according to their own perception of travel time. The PFE 
gives an estimation of average flows and travel times in a network that 
are consistent with the assignment of flows to paths according to the logit 
model. The PFE algorithm assigns flows to paths according to the logit- 
path choice model. 
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Consider the following convex optimization problem 

x = 9 .  
MinZ(h)=hT(ln(h)-1)+a C ca(x)dr  

aEL 

subject to t=Ah, h 2 0  

is strictly convex in h, because the Hessian of Z(h) is positive definite. 
The convex optimization problem generates the required gradient vector 

VZ(h) = In@) + a g ( h )  

For practical purposes, the non-negativity conditions can be neglected as 
the objective function is not defined for non-positive path flows. This 
optimization problem was originally proposed by Fisk (1 980). 

One of the practical solution methods for (1 3), proposed by Powell and 
Sheffi [1982], made use of the method of successive averages. It follows 
the following steps [see for details Bell and Iida, 19971: 

Step 1 (initialization) 
q + o  
n + l  

Step 2 (find a logit assignment for fixed link costs) 
c + c(q> 
q* + logit assignment for c 

Step 3 (method of successive averages) 
q + q( 1 -l/n)+q*( l/n) 
if convergence insufficient then 

return to Step 2 
else stop. 

The PFE uses an iterative balancing algorithm [Bell et al., 19971 
combined with the Method of Successive Averages (MSA) to solve the 
logit-based stochastic user equilibrium assignment by providing the 
network topology, the 0-D matrix, the network links and their 
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corresponding link cost functions. The PFE algorithm is given in Figure 
1. 

Genetic algorithm 
Genetic Algorithm (GA) is based on nature’s theory of evolution, 

survival of the fittest. GA’s have been developed by Holland [1975] as 
reported by Goldberg [1989] and Gen and Cheng [1997]. The GA is an 
iterative process that involves reproduction, crossover and mutation. In 
the last few years, GA has been successfully used to achieve the optimal 
design of signal timings. The first appearance of GAS for traffic signal 
optimization was due to Foy et al., [1992], in which the green timings 
and common cycle time were the explicit decisional variables and the 
offset variables were the implicit decisional variable in a four-junction 
network when flows remain fixed. In the optimization process, a simple 
microscopic simulation model was used to evaluate alternative solutions 
based on minimizing delay. The results showed an improvement in the 
system performance when GA was used and suggested that GAS have the 
potential to optimize signal timing. The results, however, were not 
compared with what could be achieved using existing optimization tools. 
In addition, the GA model is applied to a very simple system with two- 
stage operation and no explicit offsets between intersections. More 
typical real-world applications are needed to prove its effectiveness. It 
was also concluded that the GA model may be able to solve more 
difficult problems than traditional control strategies and search methods 
in terms of convergence and that good convergence were reported in that 
study. 

A different approach (i.e. hybrid use of GA and TRANSYT hill- 
climbing) has been followed by Hadi et al., [1993] in which the GA 
model is expanded to optimize signal staging and timing together with 
TRANSYT-7F. A GA was used to optimize stage sequence by way of 
look-up table and network common cycle time. The green timings were 
calculated based on TRANSYT optimization routine. The objective 
function was the TRANSYT performance index. The results were 
compared with the existing network signal timings for the example 
network. It was concluded that GA model has a potential to optimize 
signal settings in conjunction with TRANSYT hill-climbing. However, 
their approach was the hybrid use of GA and TRANSYT optimizing the 
signal timings, where the green timings were calculated using 
TRANSYT hill-climbing, but no allowance is given to the stochastic 
route choice. 
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Briefly, the steps involved in the GA are: 

Represent all the variables in the optimization problem in binary form. 
Hence all variables will be represented by a string of bits. All variables 
will be in one block. For example, if we have four variables, 

' y 1 ' v 2 '  'y3' 'y4 ; where ' y 1  can have a value between 0 and 120, vz, 
'y3 and ' y 4  can have a value between 5 and 120, and then the following 
string will represent all four variables. In other words, one binary number 
of lengths 20 can represent all the four variables in (14). 

148494 243'94 44d4 484d4 g43'94 942l4 243' 

'yl 'y2 'y3 'y4 (14) 

Randomly selects two numbers of 20 bits length parents. Those two 
numbers needs to satisfy all the constraints. 
Perform what is called crossover on the two selected numbers. Crossover 
between two variables in a simple process where the bits of the two 
variables, after a randomly chosen point of crossover, interchange values 
with the corresponding bits in the other variable. For example, if we have 
two parents as in (15a), crossover will yield the variables as in (15b). In 
this example, bits 5 to 20 exchange values with corresponding bits in the 
other number 

M A 1 1  0 1 0 0 1  1 0 1  1 1  1 1  1 0 0 0 1 0  
M B O O 1 1 1  1 0 0  0 0 1  1 1  0 0 1  1 0 1  (15a) 

M A 1  1 0  1 0  0 1 0  0 0 0 1 1  1 0  0 1 1  0 1 
Point of crossover 

M B O O 1 1 1 1 O I O I I  1 1 1 1 O O O 1 O  (1,jb) 

Perform mutation on the new offsprings. Mutation is simply to change 
the value in a randomly chosen bit from 0 to lor 1 to 0, as shown in (15c) 
and (lSd), where bold letters indicate the mutated bits. 
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O f f s p n n g A 1 1 0 1 0 0 1 1 0 1 1 1  1 1 1 0 0 0 1 0  

OlEjmngA 1 1  0 1 0  0 1 1  0 1 1  0 1 1  1 0  0 0 1 0  

Repeat steps 3 through to 4 for the pre-defined maximum number of 
generations. If any stage of mutation any of the variables violate the 
problem constraints, then such variables will be discarded and a new 
number chosen randomly. 

The reproduction is a process that selects the most fit individual 
strings according to some selection operators, such as tournament 
[Goldberg and Deb, 19911 selection with or without fitness scaling 
applied. It is responsible for choosing the members that will be allowed 
to reproduce during the current generation. These members are selected 
on the basis of their fitness, F, values and the most fit individuals are 
passed on to future generations. The best solution will be achieved at the 
end of the generations. Moreover, elitism operator is used to ensure that 
the chromosome of the best parent generated to date is carried forward 
into the next generation. After the population is generated, the GA 
checks to see if the best parent has been replicated; if not, then a random 
individual is chosen and the chromosome set of the best parent is mapped 
into that individual. 

Problem Formulation 

The bi-level formulation for the ATC is presented as an interaction 
between decision-takers and a decision maker in following way: 

subject to subject to tp(C,O,Cp) E 42, (1 6 4  
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where q * ( y )  can be obtained in the following way [Bell and Iida, 
19971. 

At equilibrium, this function has value zero, so 

It is possible to infer how equilibrium link flows change with the signal 
setting parameters. Note that 

provided that the matrix (dZ(q* ,\v)/aq) is invertible. Regarding the first 
term of the right hand side of the (19) 

(dZ(q*,yr)/d\lr)=I- C t j  -(apj/ac)J 
all j 

where pj is the j" column of the matrix of link choice proportions P 

In the case of logit model as in PFE with sensitivity parameter it may be 
readily verified that 

2 1 

if i = i  
otherwise 

-apU + a p y  

- a p .  ? . + apqp!  . 1 1 l J  1J 

apUiac, = 

where p . !  

both links i and i' 

Concerning the second term on the right hand side of (19 ,  

is the proportion of traffic from j" trip table element using 
11 j 
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Eqn. (1 9) can also be written as: 

where y is a function of c(q, w ) and associated with minimum 0-D cost. 

The evaluation of pij 

[ 1997al. 

and p.?  can be obtained in Bell and Iida 
11 j 

Parameter a determines the sensitivity of assignment to path cost. As 
a increases, the importance of the second part of the objective function 
increases in solving the lower-level problem. In the limit, the assignment 
tends to UE. As a tends to zero, the driver preference for lesser-cost 
paths disappears. Hence the assignment becomes completely random. As 
a increases tTq reduces monotonically [Bell et al.; 19971. For given 
different values of the a, the GATPFE model can be run until 
convergence can be found for each value of deterrence parameter. 
Therefore, the effect on system performance of any change in the 
perception of travel time (i.e. a) is searched for by way of GATPFE 
model. As perception parameter, a, becomes smaller, the perception error 
of travel times increase. 

The GA works with the expression operation that is performed based 
on fitness evaluation. The fitness indicates the goodness of design, and 
therefore, the objective function is a logical choice for the fitness 
measure. The fitness function selected in this study is: 

where F(x) is the fitness function for the GA 
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Each signal-timing variable is transformed for use in the GA process as 
follows: 

1. For cycle time 

i= 1 C = C,, + P j A  C,. 

where A ' i  is the precision of cycle time and can be calculated as: 

A Ci = 
, ' i  is the required number of binary digits and 

P i  is the integer resulting from binary representation of the cycle time. 
Although a higher degree of precision can be obtained by increasing the 
string length, it is not always desirable because computational cost of 
GAS also increases, as the binary string gets longer. 

Ci,mx - Ci,min 

2' -1 

2. For offsets 

L e=p,.- i=2,3.. ..,A$ 
24 -1 

Mapping the vector of offset values to a corresponding signal stage 
change time at every junction is carried out as follows: 

3 .  For stage green timings 

Let rl,  r2, . . ., rm be the numbers representing by the genetic strings for m 
stages of a particular junction, and 11, 12,. . ., I, be the length of the 
intergreen times between the stages. 

The binary bit strings (i.e. rl, r2, . . ., rm) can be encoded as follows first; 
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where rhn and rmX are set as Chn and C,, respectively. 

Then, using the following relation the green timings can be distributed to 
the all signal stages as follows second: 

m m 

#i + L ( c - ~ I ~  i=1,2 ,..., m (26) 
k=l k = l  2 5  

k=l  

Solution for Combined Assignment and Signal Control 

The following bi-level iterative sensitivity algorithm is used to solve the 
combined TA and ATC problem: 

Upper level: Solve the upper level problem (16) for Y' given q, and 
proceed to lower level. 

Lower level: Given v* fined new SUE link flows, q, and 

* 

YT(a/a)($/dc)(dc/as)+ (" -sTJ)(dq/dY'). And proceed to the 
upper level. 

The solution of integrated GA, TRANSYT and PFE, referred to 
GATPFE, can be seen in Figure 2. As can be seen from Figure 2, the GA 
provides a feasible set of signal timings both for the traffic assignment 
process and traffic control. If any given signal timings by the GA 
violates the constraints, the GATPFE will automatically discards those 
chromosomes from the pool due to Equations (24)-(26). The equilibrium 
link flows are decided by the signal timings from the GA and the 
resulting network performance index is calculated from the resulting 
equilibrium flows and signal timings. 

The algorithmic steps of the iterative sensitivity algorithm can be 
outlined in the following way. 

Step 0. Initialization. Set the user-specified GA parameters that are the 
population size, probability of crossover and mutation, 
generation number, number of possibilities per decision variable 
and reproduction operator. Set the decision variables Y' as 
binary strings to form a chromosome x by giving the minimum 
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Step 1. 

Step 2. 

Step 3. 

v ~ n  and maximum vmx specified lengths for decision 
variables. 

Generate the initial random population of signal timings X,; 
set tt=l 

Decode all signal timings of X, and transfer them into feasible 
signal timings [see for details, Ceylan, 20021, and to map the 
chromosomes to the corresponding real numbers by using 
(24)-(26). 

Solve the lower level problem by way of the PFE. This gives 
an stochastic equilibrium link flows and update the link travel 
time function for each link a in L. The link cost function is the 
sum of free-flow travel time under prevailing traffic condition 

(i.e. ' 0 )  and average delay to a vehicle at the stop-line at a 

signal-controlled junction over the time slice t (i.e. d a  (t)). By 
assuming a separable function of q,, the link cost function is: 

0 

since do ( t )  = dou + d:( t )  ,, the link cost function is expressed as 

Note that TRANSYT traffic model provides network performance index 
for given signal timings. For different initial signal timings, there is a 
problem of being trapped at bad local optimum due to the non-convex 
nature of the problem. On the other hand, GA starts with large population 
base in order not being trapped at bad local optimum (i.e. GA searches 
globally). 

Step4. Get the network performance index for resulting signal 
timing at Step 1 and the corresponding equilibrium link 
flows resulting in Step 3 by running TRANSYT. 

Step 5. Calculate the fitness functions for each chromosome xj 
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Step 6. Reproduce the population X, according to the distribution of 
the fitness function values. 

Step 7. Carry out the crossover operator by a random choice with 
probability P,. 

Crossover probability (denoted by p,) is defined as the ratio of the 
number of offspring produced in each generation to the population size. 
This ratio controls the expected number pc*pz of chromosomes to 
undergo the crossover operation. A higher crossover rate allows 
exploration of more of the solution space and reduces the chances of 
settling for a bad local optimum, but the higher the crossover rate, the 
longer the computation time. After the new population has been filled 
with crossed over members, mutation can take place. Based on previous 
studies Goldberg [1989] and Carroll [996] set the probability of 
crossover (p,) between 0.5 and 0.8. Hence, pc is selected as 0.5 in this 
study. 

Step 8. Carry out the mutation operator by a random choice with 
probability P,, then we have a new population X,+,. 

Mutation probability (denoted by pm) is a parameter that controls the 
probability with which a given string position alters its value. The pm 
controls the rate at which new genes are introduced into the population 
for trial; if it is too low, many genes that would have been useful are 
never tried out; but if it is too high, there will be much random 
perturbation, the offspring will start losing their resemblance to the 
parents, and the algorithm will lose the ability to learn from the history of 
the search. p, can be set to l/pz [Carroll, 19961. 

Step 9. If the difference between the population average fitness and 
population best fitness index is less than 5%, re-start 
population and go to the Step 1. Else go to Step 10. 

Step 10. If ttmaximal generation number, the chromosome with the 
highest fitness is adopted as the optimal solution of the 
problem. Else set tt=tt+l and return to Step 2 
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Numerical Example 

The test network is illustrated based upon the one used by Allsop and 
Charlesworth [ 19771 and Chiou [ 19981. Basic layouts of the network for 
use in signal settings and in traffic assignment are given in Figure 3a and 
3b, where Figure 3a is adapted from Chiou [1998] and Figure 3b and 3c 
is adapted from Charlesworth [ 19771. Allocation for signal stages at each 
junction is given in Figure 3c. Travel demands for each origin and 
destination are those used by Charlesworth [1977] and also given in 
Table 1. Fixed set of input data for undelayed travel time and saturation 
flow for each link entering each junction are also taken from 
Charlesworth [ 19771 and given in Table 2, where we assume that travel 
times on the non-signal controlled exit links (i.e. turning links) are one 
second because these values are constant throughout the computation 
process, and for those links that have greens over the whole cycle the 
travel times are constant throughout this computation. 

The given level of information provided to road users can be 
identified in Table 3, where different values of a and their corresponding 
performance index in terms of g/h and veh-h/h are presented in the test 
network. The application of iterative sensitivity algorithm by way of the 
GATPFE can be seen in Table 3. It provides the network cycle time, and 
network performance index when the level of information is provided to 
road usres. 

Generally, there is a tendency of better system performance with less 
computational demand when a becomes bigger. Road users try to avoid 
conflicting links when a is bigger. This tendency can be seen in Table 2a. 
For example, the flows on link 1 are increasing, whilst the flows in link 2 
are decreasing when a is bigger. For example, when the level of 
information increases, drivers avoid junctions 5 and 6 in the test network 
in South-North (S-N) direction. 

During the application of the GATPFE, all the user-specified GA 
parameters are kept fixed, and if there is no improvement on the last 20 
generations, then the GATPFE is assumed to be converged [see for 
convergence details, Ceylan 20021. The GA parameters used during 
analysis are: pz=40, pm=0.25, uniform crossover pc=0.5, number of 
possibilities per parameter 256 (li=8). 



310 Halim Ceylan and Michael G. H. Bell 

In Table 4a and Table 4b, the final value of equilibrium link flows 
and the corresponding final value of degree of saturation are given for 
various a. Note that the degrees of saturation is greater than 90% for 
none of the links. 

Table 5 shows the different values of dispersion parameter against the 
start of stage times and corresponding green times for each stage. As can 
be seen from Table 5, for each value for the a the signal settings are 
changed. 

Table 1 Origin-Destination demand for the test network in 
vehic leshours 

Origiflestination A B D E  F Ongin 
totals 

A -- 250 700 30 200 1180 
C 40 20 200 130 900 1290 
D 400 250 -- 50* 100 800 
E 300 130 30, -- 20 480 
G 550 450 170 60 20 1250 
Destination totals 1290 110 110 270 124 5000 

where the travel demand between 0-D pair D and E are not included 
in this numerical test which can be allocated directly via links 12 and 
13 

0 0  0 

Conclusions 

This study investigates the sensitivity of the perceived travel time 
error and its corresponding affects to the signal timings. Traffic is 
assigned to paths according to a logit path choice model on the basis of 
the path travel times and the dispersion parameter. For set of links, 
network performance index (PI) is calculated so as to achieve 
equilibrium between demand and capacity. The dispersion parameter 
governs the degree of dispersion across alternative paths. There is a 
preference for the cheaper path but some traffic would opt for the more 
expensive path, perhaps out of ignorance at SUE. The problem is 
formulated as a bi-level problem and iterative sensitivity algorithm is 
used to solve the problem'by way of GATPFE. The following 
conclusions can be drawn from this study. 
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It was found that when the sensitivity parameter a is bigger, the 
performance index is lower and there is less computation demand. 
Hence, system performance is improved. The GATPFE model showed 
good progress in terms of convergence when a is less than 1.  Because the 

Table 2 Fixed data for the test network 
Junction Link co S Junction Link co s 

2 
16 
19 

2 3 
15 
23 

3 4 
14 
20 

1 
1 
10 
10 

10 
15 
15 

15 
20 
1 

2000 4 
1600 
2900 
1500 

3200 5 
2600 
3200 

3200 6 
3200 
2800 

5 
6 
10 
11 
12 
13 
8 
9 
17 
21 

7 
18 
22 

20 1800 
20 1850 
10 2200 
1 2000 
1 1800 
1 2200 
15 1850 
15 1700 
10 1700 
15 3200 

10 1800 
15 1700 
1 3600 

where co, s are the free-flow travel time in seconds and saturation flows 
in vehicleshour, and for entry links to the network one second default 
travel time given 

~~ 

a becomes smaller the perception error on travel time becomes in effect 
higher and the assignment becomes more stochastic. When a is bigger, 
the SUE approaches the UE case. 

When the level of information is increased, the link flows on non- 
conflicting paths (hence links) tends to increase, whilst the link flows on 
conflicting paths are decreased. For example, the path flow on South- 
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North direction using junction 5-6 decreases whilst the flow on the path, 
which uses junction 2 and 3 increases. When a varies between 0.01 and 
1 .O, there is not much change in the link flows. 

Table 3 Sensitivity parameter changes on drivers' perception of 
travel time 

Sensitivity Generation Cycle Performance Index 
Parameter (a) Number time €h veh-h/h 

seconds 
. 

0.1 120 73 719.3 75.8 
1 .o 75 77 712.5 75.4 
10.0 75 66 709.0 74.6 
25.0 60 75 700.1 73.8 
50.0 50 64 689.4 71.7 

Table 4a Final values of equilibrium link flows resulting from the 
GATPFE for different values of the sensitivity parameter 
in veh/h 

a ql q 2  q 3  q 4  q 5  q 6  q 7  q S  4 9  q10 q l l  q l 2  

0.01 714 465 714 578 635 173 464 479 120 480 499 250 

0.1 714 465 714 578 635 173 464 479 120 480 499 250 

1.0 716 463 716 579 636 173 462 478 120 479 499 250 

10.0 '743 436 743 591 672 169 436 450 139 451 482 267 

25.0 783 396 783 621 687 166 396 424 132 435 485 264 

50.0 811 368 811 648 723 167 368 397 133 398 488 261 

a q l 3  q l 4  4 1 5  q16 q17 4 1 8  4 1 9  q 2 0  q 2 l  q 2 2  q23 

0.01 450 788 789 664 410 351 626 1290 1058 1250 840 

0.1 450 788 789 664 410 351 626 1290 1058 1250 840 

1.0 450 789 790 663 409 350 625 1290 1057 1250 837 

10.0 450 778 798 626 421 341 661 1290 1020 1250 777 

25.0 450 787 803 602 411 336 686 1290 1040 1250 737 
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50.0 450 799 821 605 399 317 682 1290 1024 1250 719 

Table 4b Final value of degree of saturation for different values of 
a (YO) 

a XI x 2  x 3  x4 XS x6 x 7  x8 x 9  XI0 x I I  XI2  

0.01 4 53 42 53 57 36 63 50 38 79 79 22 

0.1 4 53 43 53 57 36 63 51 40 80 79 22 
1.0 4 54 44 54 57 34 62 51 39 80 80 22 

10.0 4 47 45 55 60 38 67 46 41 80 72 23 
25.0 4 41 44 56 60 32 66 45 39 78 76 24 

50.0 4 40 46 65 61 30 59 42 41 83 78 25 

Cl XI3 XI4 XIS XI6 XI7 x19 x20 x21 x22 x 2 3  

0.01 78 72 58 67 87 51 76 83 87 71 71 

0.1 78 72 58 67 88 50 76 84 86 72 71 

1.0 75 73 60 63 88 50 78 82 85 72 67 

10.0 84 73 60 71 91 55 77 84 91 67 67 

25.0 73 71 55 71 86 59 76 84 87 62 69 

50.0 69 80 58 70 88 54 79 82 89 65 68 

The signal timings are changed for different values of a .  This 
shows that the level of information provided also affects the signal 
timing optimization on a signalized road network that the signal settings 
on equilibrium network design problem should be re-optimized. 

The effect on small changes on the 0-D demand is not taken into 
account in this study. This is out of the scope of this study. Future work 
should be on the affect of the small changes of the demand to an SUE 
equilibrium link flows as well as signal timings. 
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Table 5 Start of green timings for various values of a changes in 
secnnds 

Junction 1 Junction 2 Junction 3 Junction 4 
Start of green 

Stage Stage 
1 2 

0.01 39 69 
0.1 40 69 
1.0 0 32 
10.0 32 56 
25.0 34 60 
50.0 19 42 

Start of green 

Stage Stage 
1 2 
18 62 
20 62 
59 25 
10 48 
5 51 
15 54 

Start of green 

Stage Stage 
1 2 
52 22 
53 24 
13 60 
41 15 
40 10 
45 21 

Start of green 

Stage Stage Stage 
1 2 3 
5 33 58 
10 37 61 
44 72 20 
0 26 47 
68 21 44 
5 29 47 

Junction 5 Junction 6 
Start of green 
Stage 1 Stage 2 Stage Stage 1 Stage 2 

3 

Start of green 

0.01 26 44 69 0 35 
0.1 30 47 71 0 34 
1.0 64 5 30 47 6 
10.0 20 37 59 2 30 
25.0 15 33 58 62 16 
50.0 20 36 57 58 20 
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Initialisation and input 

OD user supplied Vw 

9 a  

ca + ca(qa), 'da E L 

t o  V a E L  

n + 0, iteration counter 

Repeat 
Update link costs n + n + l  

Can+I =("n)c , (q , )+( l - l 'n)ca  Va E L  
Build fastest paths and store new paths in link/path incidence matrix 

Calculate new link flows 40 + C p , p w ' a p h p  

Until no new paths and link flows converged 

Va E L 

output 

A , ,  Vp E P, Path flows 

VP E pw 
Path travel times g,, 
Link flows 4 a  V a E L  

Link travel times C,. V a  E L 
~~ ~ ~ ~~ ~ 

Fig. 1 The algorithm steps of the PFE 
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Select values of input parameters: pm. 
Po PZ. 4, 11, Wmm wmar 

Generate initial population randomly 
(i e Initial snliitinns) 

k 
E.g. solution 1=101010 ... 00101 

solution 2=101001. . .lo100 

solution oZ=ool~lO ... 11101 ... 

I Decode the solutions to obtain the decimal I values of decision variables 

Solution 1 :C=88, &18, 4 =22, etc. 

Solution 2:c=55, &33, 4 =40, etc 

Solution m : ~ = 5 9 .  e27 .  b =43. etc 

Repeat for each solution j=1,2,  .. ,pz 

0 - D  matrix 

TRANSYT 

Fitness(+ I /PI 

GA operators from the old population 
based on their finesses 

<Convergence Exit 

I No 

Fig. 2. The GATPFE model 
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Fig. 3a Layout for the test network 
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Fig. 3b Representation for traffic assignment use of nodes and links 
for test network 
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Junction number Stage 1 Stage 2 

Fig. 3c 

3 - +  4 *I+ 

321 

Stage 3 

Stage configurations at six junctions of the test network 


