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Abstract 

This study aims to solve dynamic user Equilibrium Network Design Problem (ENDP) with dynamic network loading profiles 
using modified Reinforcement Learning (RL) approach. The bi-level programming technique is used to solve the problem. At 
the lower level of the problem, the dynamic User Equilibrium (UE) link flows are obtained by simulation based Dynamic 
Traffic Assignment (DTA) model with DynusT and signal timings are obtained at the upper level by modified RL method. 
The system Performance Index (PI) is defined as the sum of a weighted linear combination of delay and number of stops per 
unit time for all traffic streams, which is evaluated by the traffic model of TRANSYT-7F. Q-learning, a model-free approach, 
is one of the RL methods. The modified RL method is actually based on Q-learning. By integrating the modified RL method, 
traffic assignment and traffic control, the modified REinforcement Learning TRANSYT-7F DynusT (RELTRAD) model is 
proposed to solve the dynamic ENDP. The objective function of the proposed RELTRAD is total network PI. The model is 
tested on the medium sized Allsop and Charlesworth’s network. Two scenarios, related to various dynamic network loading 
profiles, are proposed for numerical application. Encouraging results are obtained. Results showed that the RELTRAD model 
effectively optimizes the signal timings and values of the network PI. The RELTRAD model improves to the network PI from 
the initial value to the final value as 65% and 67% for loading profile 1 and 2, respectively. 
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1. Introduction 

In an urban road network controlled by fixed-time signals, there is a mutual interaction between the traffic 
control and traffic assignment. The mutual interaction of these two processes can be explicitly considered, 
producing the so-called combined control and assignment problem (Ceylan, 2002). When drivers follow 
Wardrop's (1952) first principle, (i.e User Equilibrium-UE), the problem is called the Equilibrium Network 
Design Problem (ENDP), which is normally non-convex. In order to achieve best system performance (i.e. 
minimizing the performance index of the network) based on finding the optimal values of the objective function 
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of interest, the dependence between the equilibrium flow patterns and signal setting variables is taken into 
account (Ceylan, 2002). In order to solve this combined control and assignment problem which is prone to local 
optima, it is required a full optimization process using heuristic algorithms such as Reinforcement Learning. 

The goal of Dynamic Traffic Assignment (DTA) is to determine the network traffic flows and conditions that 
result from the mutual interactions among the route choices. Static assignment models assume that link flows and 
link trip times remain constant over the planning horizon of interest, typically the peak period. However, network 
link flows and link travel times may be varied due to congestion in the peak period. In other words, link flows 
and travel times may be fluctuated depending on time in especially peak period. Because of that, static 
assignment models are inadequate for reflecting traffic congestion effects in the peak period. For this reason, 
DTA models have been attracted researchers’ attention for last few decades.  

DTA determines the network traffic pattern in a time-varying environment as a result of dynamic demand and 
supply interaction. DTA consists of two components: route choice component and network loading component. 
The aim of the dynamic network loading component is to find time-dependent link volumes, link travel times and 
path travel times given time-dependent path flow rates for a given time period. This component constitutes an 
inherent part of the DTA problem. The network loading component is used to model the flow propagation 
throughout a network. There exists a variety of analytical and simulation-based network loading approaches: 
analytical models typically use “exit functions” to predict how traffic propagates in the network, while most 
simulation-based approaches use some type of mesoscopic simulation approach that represents changes in traffic 
flow at a resolution of 5–10 seconds. 

Dynamic Urban Systems for Transportation (DynusT), which has been developed by University of Arizona, is 
a simulation based DTA software. DynusT uses mesoscopic simulation combined with DTA to model the 
evolution of traffic flows in a traffic network, which result from the travel decisions of individuals. Also, DynusT 
uses Time Dependent Shortest Path (TDSP) algorithm. 

Traffic signal control is a multiobjective optimization encompassing delay, queuing, pollution, fuel 
consumption, and traffic throughput, combined into a network performance index (Akcelik, 1981). Mathematical 
models have been widely applied to the traffic signal control problem. The original TRANSYT model was 
developed by the Transportation and Road Research Laboratory (Robertson, 1969). It is one of the most useful 
network study software tools for optimizing signal timing and also the most widely used program of its type for 
the area traffic control. It consists of two main parts: A traffic flow model and a signal timing optimizer. Traffic 
model utilizes a platoon dispersion algorithm that simulates the normal dispersion of platoons as they travel 
downstream. TRANSYT-7F simulates traffic in a network of signalized intersections to produce a cyclic flow 
profile of arrivals at each intersection that is used to compute a Performance Index (PI) for a given signal timing 
and staging plan. The PI in TRANSYT-7F is a measure of disadvantageous operation; that is stops, delay, fuel 
consumption, etc. It is defined as: 

 ( )
∈

⋅⋅+⋅=
Ll

lsld SwKdwPI
ll

        (1) 

where, dl is delay on link l (L set of links), 
ldw is link-specific weighting factor for delay d on link l, K is stop 

penalty factor to express the importance of stops relative to delay, Sl is stop on link l per second, 
lsw is link-

specific weighting factor for stops S on link l. 
While the majority of the literature on the traffic assignment and signal control optimization problem deals 

with static traffic assignment case, limited research has been reported on urban traffic control considering DTA. 
Abdelfatah and Mahmassani (1998) presented a mathematical formulation and simulation-based solution 
algorithm for the combined signal control and DTA problem. They conducted numerical experiments on the 
simulation based algorithm over a realistic, moderately large network. They implemented their algorithm on a 
moderately large signalized traffic network using well-known Webster’s formulas to optimize signal settings. 
Chen and Ben-Akiva (1998) introduced an integrated framework to combine dynamic control and assignment. 
They developed a game-theoretic methodology to model the combined problem as a non-cooperative game 
between the traffic authority and traffic users. To find efficient coordinated timing plans in a large network, 
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Cheng et al. (2004) applied the game-theoretic paradigm of fictitious play to find the local optimal coordinated 
timing plan. The significant merit of their algorithm is that only one simulation is required per iteration, and 
therefore it would be robustly scalable for networks of realistic sizes. Abdelfatah and Mahmassani (2001) 
extended their 1998s work by replacing Webster’s formula by a simulation-based signal optimization, using the 
same solution algorithm framework. Recently, Dazhi et al., (2006) presented a bi-level programming formulation 
for the dynamic signal optimization problem, together with a heuristic solution approach, which consists of a 
Genetic Algorithm (GA) and a Cell Transmission Simulation based Incremental Logit Assignment procedure.  

In this study, it is proposed to solve dynamic ENDP with dynamic network loading profiles using modified 
reinforcement learning approach. For this purpose, the modified REinforcement Learning TRANSYT-7F 
DynusT (RELTRAD) model is developed. The bi-level programming technique is used to solve the problem. At 
the lower level of the problem, the dynamic UE link flows are obtained by simulation based dynamic traffic 
assignment model with DynusT and signal timings are obtained at the upper level by modified reinforcement 
learning method. Signal timings are defined by the common network cycle time, the green time for each signal 
stage, and the offsets between the junctions. The PI value of network is calculated by the traffic model of 
TRANSYT-7F. 

The rest of this paper is organized as follows. Notations are given in Section 2. The Modified Reinforcement 
Learning method is summarized in Section 3. In Section 4, the problem formulation and model development are 
presented. A numerical application is presented in Section 5. The paper ends with some conclusions in Section 6. 

 
Nomenclature 
 a action 
 c cycle time 
 cmin minimum cycle time 
 cmax maximum cycle time 
 dl  delay on link l  
 I intergreen time 
 K stop penalty factor 
 L set of links 
 m environment size 
 n  number of decision variables 

),( asQ   Q-value of an action a executed in a state s  

 q*( ) vector of dynamic UE link flows 
),( asr  reward value of an action a executed in a state s 

 Sl stop on link l per second 
 s state 
 t number of learning episode 
 tmax maximum number of learning episode 

ldw  link-specific weighting factor for delay d on link l 

lsw  link-specific weighting factor for stops S on link l 

 z number of stages 
α  learning rate 
  vector of reduced search space parameter 
γ  discounting factor 

  offset time 
  vector of signal setting parameters 
φ  green time for stage 

minφ  minimum green time for stage 
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 0  vector of feasible region for signal timings 

2. Modified Reinforcement Learning method 

Reinforcement Learning (RL) is an artificial intelligence method that learns by the individual from its 
interaction with its environment. The RL method is meant to be a straightforward framing of the problem of 
learning from interaction to achieve a goal (Sutton and Barto, 1998). In RL, the decision-maker is called the 
agent that it interacts with its environment. This interaction takes the form of the agent sensing the environment, 
and based on this sensory input choosing an action to perform in the environment. The action changes the 
environment in different types and this change is informed to the agent through a scalar reinforcement signal. The 
environment also gives rise to rewards, special numerical values that the agent tries to maximize over time. 

Q-learning is one of the main categories of RL method. It is a model-free approach to reinforcement learning 
that does not require the agent to have access to information about how the environment works. The development 
of Q-learning is seen as one of the most important breakthroughs in RL. It uses the experience of each state 
transition to update one element of a table. This table denoted Q, has an entry, ),( asQ , for each pair of state, s, 

and action, a. Upon the transition ts , 1+ts , having taken action ta and received reward 1+tr . The Q-learning 

algorithm compromises of the Q-value, reflecting the value of an action a executed in a state s and selecting the 
best actions (Vanhussel et al., 2009). The Q-values can be defined as follows: 

 ),(),(),( * asQasrasQ ′′×+= γ         (2) 

where ),( asQ is the Q-value of the state action pair ),( as and ),(* asQ ′′ is the best Q-value which can be obtained 

by selecting action a′ in state s′ , which is the state resulting from executing action a in state s. ),( asr is the 

reward received when executing action a in state s. γ is the discounting factor, reflecting the weight assigned to 

future rewards. The Q-table is populated in the course of the learning process. The learning process takes place in 
the course of a number of learning episodes. Each learning episode starts in a random state s, the agent selects 
and executes an action, a, receives the immediate reward and observes the next state. Based on this information, 
the agent updates the Q-value corresponding to this state-action couple according to Eq. (3): 

 ′′×+×+×−= −′− ),(max),(),()1(),( 11 asQasrasQasQ t
a

tt γαα     (3) 

where ),( asQt is the updated Q-value, ),(1 asQt− is the Q-value previously stored in the Q-table and which needs 

to be updated and α is the step size parameter or learning rate of the algorithm and expresses the weight assigned 

to the “newly” calculated Q-value ′′×+ −′
),(max),( 1 asQasr t

a
γ  compared to the “old”, saved estimate of the Q-

value ),(1 asQt−  and γ is the discounting factor (Vanhussel et al., 2009). 

Although few studies have been carried out on traffic signal control using the RL algorithms, there are not any 
studies on ENDP using the RL algorithms as far as authors’ knowledge. Thorpe (1997) applied the RL algorithm 
to a simulated traffic signal control problem. Martin and Brauer (2000) presented a fuzzy model based on RL 
approach, and applied to the problem of optimal framework signal plan selection. Wiering (2000) studied the use 
of multi-agent RL algorithms for learning traffic signal controllers. Bingham (2001) applied the RL in the context 
of a neuro-fuzzy approach to traffic signal control. Abdulhai et al. (2003) applied a RL based method to an 
isolated traffic signal in a two-phase-signal two dimensional road network. In addition, Camponogara and Kraus 
(2003) studied a simple scenario with only two intersections, using stochastic game theory and RL. Additionally, 
Nunes and Oliveira (2004) applied a set of different techniques in order to try to improve the learning ability of 
agents in a simple scenario. Cai et al. (2009) investigated the application of approximate dynamic programming 
to the field of traffic signal control, aimed to develop a self-sufficient adaptive controller for online operation. 
Bazzan et al. (2010) investigated the task of multiagent RL for control of traffic signals. Ozan et al. (2012) 
proposed a REinforcement Learning with TRANSYT-7F (RELTRANS) model to solve the area traffic control 
problem. In the RELTRANS model, the modified RL algorithm was used to optimize traffic signal timings in 
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coordinated signalized networks. It was stated that the RELTRANS model is better in signal timing optimization 
in terms of PI when it is compared with TRANSYT-7F in which GA and Hill-climbing optimization tools.  

This study proposes the modified RL algorithm which is actually based on Q-learning method for solving the 
dynamic ENDP. It differs from other algorithms in that it has a sub-environment that is generated as original 
environment size with the assistance of the best solution of the previous information at each learning episode. At 
tth learning episode, sub-environment is also random generated as the same size of the original environment 
according to best solution of the previous information using Eq. (4). 
 )),(;),(( 11 +− −− asQasQrandom best

t

best

t        (4) 

Through the generated sub-environment, global optimum is searched around the best solution using reduced 
search space with  value during the algorithm process.  must be decreased in order to reduce the step size as 
shown in Fig.(1). It also guides the bounds of sub-environment during the modified RL algorithm application, 
where j is a vector, j=1,2,..,n and n is the number of decision variables. The range of the  may be chosen 
between minimum and maximum bounds of any given problem (Baskan et al., 2009). Environment and sub-
environment are set together in order from the best to the worst to obtain potentially better ),( asQt according to 

objective function value given in Eq.(6). Thus, sub-environment and best solution obtained from the previous 
learning episode are compared with the original environment. If one of the solutions provides a better functional 
value than the worst one, the new values are included to the original environment and the worst values are 
excluded from the environment. Therefore, the global optimum without being trapped in bad local optimum may 
be attained by the modified RL algorithm. Fig.(1) shows steps of solution procedure of the modified RL 
algorithm. 

The reward function, ),( asr , has been improved for taking action a in state s in order to find global optimum 

as shown in Eq. (5). 
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where ),( asrt  is the reward function, ),( asQt  is the Q value, and ),( asQbest
t  is the best Q value obtained at tth 

learning episode. Reward function is evaluated by dividing the difference between best Q-value and Q-value at tth 
learning episode. In the modified RL algorithm, reward values approximate to the value “0” because of the form 
of reward function. In other words, total reward needs to be minimized in order to find global or near global 
optimum of given optimization problem. 
 

Step 0:  t=0. Set , , , tmax

Step 1: If t=0, generate initial ),( asQ  

             Determine the value of objective function  
             Else 
             Save the best ),(1 asQbest

t −  

            tβ = 1−tβ * 0.99 

    Generate as sub-environment using Eq. (4)
          end if 
Step 2: environment and sub-environment are both set in order from the best to the worst

           Find the best ),( asQbest
t  

          Determine ),( asrt  using Eq. (5) 

 Step 3: update the ( )asQt ,  using Eq.(3) 

 Step 4: if t = tmax , terminate the algorithm; otherwise, t=t+1 and go to Step 1 

Fig. 1. Solution procedure of the modified RL algorithm 
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3. Problem formulation and model development 

3.1. Problem formulation 

In this study, the bi-level programming technique is used to solve the dynamic ENDP. At the lower level of 
the problem, the dynamic equilibrium link flows are obtained by simulation based dynamic traffic assignment 
model with DynusT and signal timings are obtained at the upper level by modified reinforcement learning 
method. Signal timings are defined by the common network cycle time, the green time for each signal stage, and 
the offsets between the junctions. The system PI is defined as the sum of a weighted linear combination of delay 
and number of stops per unit time for all traffic streams, which is evaluated by the traffic model of TRANSYT-
7F. By integrating the modified reinforcement learning method, traffic assignment and traffic control, the 
modified REinforcement Learning TRANSYT-7F DynusT (RELTRAD) model is proposed to solve the dynamic 
ENDP. The objective function of the proposed RELTRAD model is network PI. The objective function and 
corresponding constraints are given in Eq. (6). 

( )( )q ,∗PIMin          (6) 

subject to   ( )

( ) =+

≤≤
≤≤

≤≤

∈

=
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i
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sconstraintoffsetofvalues0

sconstrainttimecycle

;,,

φ

φφ
θ
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where, q*( ) is dynamic UE link flows,  is signal setting parameters, c is common cycle time (sec),  is offset 
time (sec), φ  is green time (sec), 0 is feasible region for signal timings, I is intergreen time (sec), and z is 

number of stages at each signalized intersection in a given road network. The green timings can be distributed to 
the all signal stages in a road network according to Eq. (7) in order to provide the cycle time constraint (Ceylan 
and Bell, 2004). 
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where, iφ  is the green time (sec) for stage i, imin,φ  is minimum green time (sec) for stage i, ∗
iφ  is randomly 

generated green timings (sec) for stage i in environment, and z is the number of stages.  

3.2. Model development 

The flowchart of the proposed RELTRAD model is given in Fig.(2). At beginning of the model, the user 
specified parameters; learning rate ( ), discounting factor ( ), the number of decision variables (n) (this number is 
sum up the number of green times as stage numbers at each intersection, the number of offset times as 
intersection numbers and common cycle time), the constraints for each decision variable, maximum number of 
learning episodes (tmax), the size of environment (m), search space value ( ) for each decision variable as input 
are defined. As can be seen in Fig.(2), modified RL method randomly generates signal timings for given upper 
and lower bounds of signal timings. This generated signal timings are input to simulation based DTA model 
DynusT. DynusT calculates the dynamic UE link flows for analysis period. Afterwards, dynamic UE link flows 
obtained from the DynusT are input to TRANSYT-7F traffic model. TRANSYT-7F traffic model calculates the 
network PI value according to dynamic UE link flows obtained from DynusT and generated signal timings from 
the modified RL method. This process is carried out during the optimization procedure of the modified RL 
method until a convergence criterion is met (Ozan, 2012). 
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4. Numerical application 

The proposed RELTRAD model is applied to medium sized Allsop and Charlesworth’s network. This network 
includes 23 links and 21 signal timing variables at six signal-controlled junctions. The network is taken from 
Ceylan (2002). Basic layouts of the network and stage configurations are given in Fig.(3a) and (3b), respectively. 
Travel demands for each origin and destination taken from Ceylan (2002) are also given in Table 1. 

The constraints on signal timings are set as follows: 
14036 ≤≤ c    cycle time constraint 

c≤≤ θ0    offsets 

c≤≤ φ7    green split 

51221 == −− II  sec.  intergreen time 

The RELTRAD model was encoded by the MATLAB® environment. It is performed with the following user-
specified parameters: learning rate ( ) is 0.8, discounting factor ( ) is 0.2, environment size (m) is 20, and 
maximum number of learning episodes (tmax) is 300. The solution process is repeated until a convergence 
criterion is met. In the RELTRAD model, when the difference between the best and average values of network PI 
at tth learning episode is less than 1 %, the model is terminated. 

Two scenarios which are related to different dynamic network loading profiles are proposed for numerical 
applications of the RELTRAD model. In the loading profile 1, O-D travel demand, 5000 veh/hr, is loaded equally 
on the network. In other words, 833 vehicles is loaded in each ten minutes in the loading profile 1. In the loading 
profile 2, O-D travel demand is loaded inequality on the network. In other words, O-D travel demand is not 
loaded equally on the network in the loading profile 2. This loading profiles are given in Fig.(4a) and (4b), 
respectively.        

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 2. Flow chart of the proposed RELTRAD model (Ozan, 2012) 
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                Fig.3a. Layout for Allsop and Charlesworth’s network      Fig.3b. Stage configurations for Allsop and Charlesworth’s network 

Table 1. Origin-Destination demand for Allsop and Charlesworth’s network (veh/hr) 

Origin/Destination A B D E F Origin totals 
A 
C 
D 
E 
G 

-- 
40 

400 
300 
550 

250 
20 
250 
130 
450 

700 
200 
-- 

30* 
170 

30 
130 
50* 
-- 
60 

200 
900 
100 
20 
20 

1180 
1290 
800 
480 

1250 
Destination totals 1290 1100 1100 270 1240 5000 

* where the travel demand between O-D pair D and E are not included in this numerical test which can be allocated directly via 
links 12 and 13 

 

 
 
 
 
 
 
 
 

      Fig.4a. Loading profile 1          Fig.4b. Loading profile 2 

The convergence of the proposed RELTRAD model according to loading profile 1 and 2 can be seen in 
Fig.(5a) and (5b), respectively. In loading profile 1 and 2, solution process was terminated in 50th learning 
episode, because stopping criterion was met. For the loading profile 1, while the PI value in the 1st learning 
episode is found as 829.40, the best PI value is found as 283.64 in 28th learning episode. The improvement rate is 
65% from the initial value to the final value for loading profile 1. As for the loading profile 2, while the PI value 
in the 1st learning episode is found as 858.70, the best PI value is found as 283.37 in 17th learning episode. The 
improvement rate is 67% from the initial value to the final value for loading profile 2. 

While the common network cycle time obtained in the RELTRAD model is 82 sec for loading profile 1, the 
common network cycle time obtained in the RELTRAD model is 87 sec for loading profile 2. The proposed 
RELTRAD model’s results are given in Table 2 for loading profile 1 and 2. At the end of analysis period, 
dynamic UE link flows obtained from the RELTRAD model are also given Table 3. 
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      Fig.5a. The converge of the proposed model for loading profile 1      Fig.5b. The converge of the proposed model for loading profile 2 

Table 2. The best PI and signal timings for loading profiles 1 and 2 

 PI 
Cycle time 

c (sec) 
Junction number 

i 

Duration of stages (sec) Offset 
(sec) 

iθ  

Stage 1 

1,iφ
Stage 2 

2,iφ
Stage 3 

3,iφ

Loading 
profile 1 

283.64 82 

1 28 44 - 0 
2 43 29 - 74 
3 43 29 - 8 
4 27 21 19 27 
5 24 22 21 28 
6 41 31 - 57 

Loading 
profile 2 

283.37 87 

1 40 37 - 0 
2 43 34 - 78 
3 32 45 - 8 
4 23 27 22 29 
5 27 26 19 30 
6 37 40 - 60 

Table 3. The dynamic user equilibrium link flows for loading profiles 1 and 2 

Loading 
profile 1 

q1 q2 q3 q4 q5 q6 q7 q8 q9 q10 q11 q12 
1188 612 692 10 405 10 612 298 321 23 502 522 
q13 q14 q15 q16 q17 q18 q19 q20 q21 q22 q23  
31 10 177 10 10 137 137 1291 137 10 10  

Loading 
profile 2 

q1 q2 q3 q4 q5 q6 q7 q8 q9 q10 q11 q12 
1145 767 378 136 10 10 767 598 170 666 10 469 
q13 q14 q15 q16 q17 q18 q19 q20 q21 q22 q23  
96 10 10 10 10 10 10 155 128 11 10  

The summary statistics for the network performance at the end of analysis period for loading profiles 1 and 2 
are given in Table 4. While average travel time is 11.09 min for loading profile 1, it is 11.39 min for loading 
profile 2 at the end of 60 min. As average travel distance is 2.18 km for loading profile 1, it is 1.98 km for 
loading profile 2 at the end of 60 min. DynusT model uses TDSP algorithm as well as other simulation based 
DTA software, which is simulation based DTA models’ feature. Due to TDSP algorithm, all vehicles may not 
reach their destination at the end of analysis period. Thus, at the end of 60 min, 3964 vehicles remain in the 
network for loading profile 1, 3744 vehicles remain in the network for the loading profile 2. 

Table 4. Statistics for both loading profiles 1 and 2 

Loading 
profile 

Total 
travel time 

(hr) 

Average 
travel time 

(min) 

Total travel 
distance 
(veh-km) 

Average travel 
distance 
(veh-km) 

Number of the 
vehicles in the 

network 
1 924.90 11.09 10931.64 2.18 3964 
2 938.77 11.39 9810.52 1.98 3744 

5. Conclusions 
This study deals with solving the dynamic ENDP with dynamic network loading profiles using modified RL 

method. The bi-level programming technique is used to solve the problem. At the lower level of the problem, the 
dynamic UE link flows are obtained by simulation based dynamic traffic assignment model with DynusT and 
signal timings are obtained at the upper level by modified RL method. Signal timings are defined by the common 
network cycle time, the green time for each signal stage, and the offsets between the junctions. The system PI is 
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defined as the sum of a weighted linear combination of delay and number of stops per unit time for all traffic 
streams, which is evaluated by the traffic model of TRANSYT-7F. By integrating the modified RL method, 
traffic assignment and traffic control, RELTRAD model is proposed. The proposed RELTRAD model is tested 
on the medium sized Allsop and Charlesworth’s network under two scenarios. The encouraging results are 
obtained. The proposed RELTRAD model minimized the network PI and showed steady convergence for this 
example. Results showed that the proposed RELTRAD model effectively optimizes the signal timings and values 
of the network PI. The improvement rate of the network PI from the initial value to the final value are 65% and 
67% for loading profile 1 and 2, respectively. Results also showed that the RELTRAD model may effectively be 
used to solve network design problem under dynamic UE conditions. 
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