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Abstract 

The Continuous Network Design Problem (CNDP) is recognized to be one of the most difficult problems in transportation 
field since the bilevel formulation of the CNDP is nonconvex. On the other hand, the computation time is crucial importance 
for solving the CNDP because the algorithms implemented on real sized networks require solving traffic assignment model 
many times, which is the most time consuming part of the solution process. Although the methods developed so far are 
capable of solving the CNDP, an efficient algorithm, which is able to solve the CNDP with less number of User Equilibrium 
(UE) assignments, is still needed. Therefore, this paper deals with solving the CNDP using MOdified Differential Evolution 
(MODE) algorithm with a new local search and mutation operators. For this purpose, a bilevel model is proposed, in which 
the upper level problem deals with minimizing the sum of total travel time and investment cost of link capacity expansions, 
while at the lower level problem, UE link flows are determined by Wardrop’s first principle. A numerical example is 
presented to compare the proposed MODE algorithm with some existing methods. Results showed that the proposed 
algorithm may effectively be used in order to reduce the number of UE assignments in solving the CNDP. 
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1. Introduction 

A Continuous Network Design Problem (CNDP) is to determine the set of link capacity expansions and the 
corresponding equilibrium link flows for which the measure of performance index for the network is optimal 
(Chiou, 2005). The CNDP can be described as one of the most computationally intensive problem in 
transportation field. Since the multiple objectives exist in the CNDP, it can be formulated as bilevel programming 
model which is difficult to solve. The difficulty stems from solving the lower level problem for each feasible set 
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of upper level decision variables. In the CNDP, upper level objective function can be defined as the sum of total 
travel time and investment cost of link capacity expansions whilst the lower level is formulated as traffic 
assignment model which can be static or dynamic.  

The first formulation for solving the CNDP was proposed by Abdulaal and LeBlanc (1979) using Hooke-
Jeeves (HJ) heuristic algorithm. Tan et al. (1979) attempted to solve the CNDP by expressing the traffic 
equilibrium problem by a set of nonlinear and nonconvex, but differentiable constraints in terms of path flow 
variables. Suwansirikul et al. (1987) developed Equilibrium Decomposition Optimization (EDO) algorithm for 
solving the CNDP. Marcotte and Marquis (1992) used an efficient heuristic procedure for solving the CNDP. In 
addition, sensitivity-based heuristic algorithms were developed for the CNDP in different studies (Cho, 1988; 
Friesz et al., 1990; Yang, 1995; 1997). Furthermore, Friesz et al. (1992) used Simulated Annealing (SA) 
approach to solve the CNDP. Their results showed that the proposed heuristic is more efficient than Iterative 
Optimization Assignment (IOA) algorithm, HJ algorithm and EDO approach. Davis (1994) used the generalized 
reduced gradient method and sequential quadratic programming to solve the CNDP. Meng et al. (2001) used 
single level model in solving the CNDP in order to avoid the disadvantages of the bilevel programming model. 
Chiou (2005) proposed gradient based methods to solve the CNDP and achieved good results especially when the 
congested road networks are considered. Similarly, Ban et al. (2006) presented a relaxation method to solve the 
CNDP when the lower level is a nonlinear complementary problem. Karoonsoontawong and Waller (2006) 
proposed SA, Genetic Algorithm (GA), and random search techniques to solve the mentioned problem. Their 
study showed that GA performed better than the others on the test networks. Xu et al. (2009) used SA and GA 
algorithms to find optimal solutions of the CNDP. They emphasized that quality of the results are dependent on 
the demand level. Wang and Lo (2010) proposed an approximation method for finding the globally optimal 
solution of the CNDP and Li et al. (2012) presented a viable global optimization method for the CNDP. Recently, 
Baskan and Dell’Orco (2012), Baskan (2013a) and Baskan (2013b) solved the CNDP using Artificial Bee 
Colony, Harmony Search and Cuckoo Search algorithms, respectively.  

Up to date, studies have been focused on the CNDP are generally based on the heuristic approaches, and 
guarantee finding a solution which is at least locally optimal. Nevertheless, an efficient heuristic algorithm, 
which is capable of solving the CNDP with less number of User Equilibrium (UE) assignments, is still needed. 
Therefore, this paper deals with determining the optimal link capacity expansions for a given road network using 
Modified Differential Evolution (MODE) algorithm.  

The rest of this paper is organized as follows. In Section 2, the problem formulation is summarized. In the next 
section, proposed solution method is presented. In Section 4, numerical applications are conducted on example 
test network. Conclusions are drawn in Section 5. 

2. Problem formulation 

The CNDP can be formulated as follows. The nomenclature used in the formulation is given in the table 
below. 
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aaaaaa,

ygxyxt,Z ))(),(()(min yx
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           (1) 

s.t. Aauy aa ,0             (2) 

where )(yx is vector of the equilibrium link flows which is the solution of the following convex optimization 
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Nomenclature 

A   the set of links 

rsK  the set of paths between O-D pair SsRrrs ,  

R  the set of origins 

S  the set of destinations 

D  the vector of O-D pair demands, ,rsD r R s SD  

f  the vector of path flows, rs
rs

k KkSsRrf ,,,f  

t  the vector of link travel times, Aayxt aaa ),(t  

u  the vector of upper bound for link capacity expansions, Aaua ,u  

x  the vector of equilibrium link flows, Aaxa ,x  

y  the vector of link capacity expansions, Aaya ,y  

ad  the cost coefficient, Aa   

a  the link capacity, Aa  

 Z upper level objective function 

 z lower level objective function 

 the conversion factor from investment cost to travel times 

)( aa yg  the investment function, Aa   

rs
ka ,  the link/path incidence matrix variables, AaKkS,sRr rs ,, . 1,

rs
ka  if route k 

 between O-D pair rs uses link a, and 0,
rs

ka  otherwise 

a , a  the parameters of link cost function, Aa  
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In general, the users’ route choice is characterized by the UE assignment in solving the CNDP. The UE 
assignment problem is to find the link flows, x, which satisfies the user-equilibrium criterion when all the Origin-
Destination (O-D) demands have been assigned. On the other hand, link capacity expansions without considering 
the response of road users may actually increase level of congestion on the road network. Therefore, prediction of 
traffic flows is crucial importance in solving the CNDP.  

3. Solution method 

3.1. Basics of  DE 

The Differential Evolution (DE) is a simple and powerful algorithm which is introduced by Storn and Price 
(1995) to solve various optimization problems. The DE guides the initial population towards to vicinity of the 
global or near-global optimum solution for a given optimization problem through repeated cycle of mutation, 
crossover and selection (Liu et al., 2010). In the DE, three control parameters are used to conduct the 
optimization process. One of them is the number of populations (NP) that represents the number of solution 
vectors used in the solution process. The second one is the mutation factor (F), which is used to obtain mutant 
vector from selected three solution vectors in the population and recommended to set between 0.5-1 by Storn and 
Price (1995). The last one is the crossover rate (CR) that is the probability of consideration of the mutant vector. 
The recommended range of the crossover rate is [0.8, 1] by Storn and Price (1995). In this study, F and CR are 
selected as 0.8 for all numerical applications. The procedure of the DE algorithm can be summarized as follows. 
Note that we preferred to describe the solution process of the DE combining with the CNDP in order to provide 
brevity of the paper. 
Generation of the initial population: At generation t, the initial solution vector, ,t j t

iyy , where 

1,2,...,i N and 1,2,...,j NP , is filled with randomly generated capacity expansions for a set of selected 
links in a given road network by considering upper and lower boundaries. Then their corresponding objective 
function values are calculated using Eqs. (1-6). Note that N represents the number of set of selected links on road 
network. 
Mutation: The mutation is performed by adding the weighted difference vector between two solution vectors to a 
third vector. A mutant vector, ,t j t

imm , can be created as shown in Eq. (7). 

 , 1, 2, 3,( )j t t t t
i i i im y F y y                             (7) 

where 1,t
iy , 2,t

iy  and 3,t
iy  are randomly selected capacity expansions within the range [0,NP] at generation t, and 

1, 2, 3,t t t
i i iy y y . 

Crossover: The search process of the DE is completed with the crossover operator. At this step, each member of 

the trial vector,
tj

ir
,

, is chosen from the mutant vector with the probability of CR or from the target vector with 
the probability of (1-CR) as given in Eq. (8). 

 
,

,
,

, if rand (0,1) or 

, otherwise
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i
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 As can be seen from Eq. (8), CR is compared with the output of a uniform random number 
generator, rand (0,1) , to determine either mutant vector or target vector will provide the member of the trial 
vector. If the random generated number is less than or equal to CR at generation t, the trial parameter is chosen 
from the mutant vector, ,j tm ; otherwise the parameter is chosen from the target vector, tj ,y . Additionally, the 
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constraint, randi i , where randi is the uniformly distributed random number in the range [1,N], ensures that at 
least one member of the trial vector is taken from the mutant vector. 

Selection: At this step, the trial vector, tr , is compared with the parent individual ty  by way of determining the 
objective function values and the best one enters to the generation t+1. 

1 , if ( ) ( )

, otherwise

t t t
t

t

f fr r y
y

y
                 (9) 

Termination: Mutation, crossover and selection steps of the DE are repeated until a predetermined stopping 
criterion is met or maximum number of generations (MGN) is reached. 

3.2. Improvement mechanisms 

 3.2.1. Improvement 1: Although the DE algorithm is a simple and powerful heuristic algorithm, it can be 
further improved to solve complex optimization problems. For this purpose, we propose the MODE algorithm 
with newly developed local search and mutation operators. First improvement on the standard DE is performed 
by way of taking different mutation strategies into account. Thus, we defined a new parameter called Mutation 
Strategy Consideration Rate (MSCR) to decide which strategy is used at the mutation process of the MODE. The 
basic rule for selecting the mutation strategy is given as follows: 

  
1, 2, 3,

,
1, , 1 2,

( ),

( ), otherwise

if rand (0,1) MSCRt t t
i i ij t

i t best t t
i i i

y F y y
m

y F y y
          (10) 

 The proposed mutation process differs from the base DE in two aspects: one is that we use two mutation 
strategies simultaneous with MSCR parameter, and the other one is that we take the effect of best solution vector 
determined at previous generation into account with probability (1-MSCR). Thus, the MODE has ability to reach 
faster to global or near global optimum solutions. The recommended range of the parameter of MSCR is [0.9, 1]. 
This range has been determined after several experiments made by authors with different value of MSCR. It 
should be emphasized that this parameter setting is crucial importance because low values of MSCR may lead to 
the premature convergence of the MODE. On the contrary, its high values may produce unacceptable solutions 
especially for complex optimization problems. In this study, we used the value of 0.95 of MSCR for solving the 
CNDP. 

 3.2.2. Improvement 2: The second improvement mechanism is a kind of embedding a local search mechanism 
within the DE algorithm. Because of the DE’s stochastic nature, it may suffer from slow convergence to the 
specified problem. On the other hand, increasing the rate of convergence of the algorithm may increase the 
chance of getting trapped to the local optima. It is clear that one of the possible ways to increase the rate of 
convergence is to save the best solution vector at each generation. Thus, we use local search method in order to 
improve the fitness value of the best solution vector that produced at each generation. In other words, our goal 
with this improvement is to push the best solution existed in the population towards to the global or near global 
optimum one step closer. The pseudo-code of the MODE algorithm with proposed improvements is shown in 
Fig. 1. In the local search process, the MODE algorithm generates dx vector from [α1,α2] range to adjust the 
length of jump for the best solution vector at each generation. The values of α1 and α2 are selected according to 
the upper and lower bounds of link capacity expansions, and decreased after local search phase is ended in order 
to reduce the search space around the best solution step by step. If the relative error between the average and best 
objective function values in the memory is less than a predetermined value, the MODE is terminated.   
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Begin 
         Set NP=10; F=0.8; CR=0.8;MSCR=0.95  
         Input α1, α2 
         Initialize a random population  
         For t=1 to MGN 
                   For j=1 to NP 
                             Randomly generate three integers in the range [1,NP], and then determine mutant vector 
                             If rand(0,1)<MSCR 
                                   , 1, 2, 3,

( )
j t t t t

Fm y y y  
                             Else 
                                   , 1, , 1 2,

( )
j t t best t t

Fm y y - y  

                             End If 
                              Randomly generate an integer randi within the range [1,N] 
                              For i=1 to N                 
                                     If rand(0,1)<CR  or randii  
                                            , ,j t j t

r mi i  
                                     Else 
                                             , ,j t j t

r yi i  
                                     End If 
                              End For 
                              Determine the objective function values of trial and target vectors (rt,yt) 
                               If ( ) ( )

t t
f fr y  

                                    1t t
y = r  

                               Else       
                                    1t t

y = y  
                               End If 
                   End For 
                   Local search started 
                   Find best solution vector in the current population at generation t 
                   Generate dx random vector within [α1,α2] range 
                   , ,

dx
new t best t

y y  
                   Determine the objective function value of new target vector 
                               If , ,

( ) ( )
new t best t

f fy y  
                                    , ,best t new t

y = y  
                               Else    
                                    Determine new value of target vector in other direction 
                                    , ,

dx
new t best t

y y  
                                         If , ,

( ) ( )
new t best t

f fy y  
                                                 , ,best t new t

y = y  
                                         End If    
                               End If 
                               Decrease the length of jump for next generation 
                              dx dx * 0.9  
                  Local search ended 
                  Stopping criterion 

If   310best average

best

Z Z

Z
 , then quit. Otherwise, go to next generation. 

         End For 
End 

Fig. 1. Pseudo-code of MODE 
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4. Numerical application 

In order to show the performance of the MODE algorithm against the standard DE in solving the CNDP, a 
small-sized example test network, which is adopted from Baskan (2013a), is used. This network consists of 18 
links and 6 nodes as can be seen in Fig. 2. The travel demand scenarios for this network are given in Table 1.  

 
Fig. 2. 18-link network 

 
Table 1. Travel demands 

Scenario D16 D61 Total demand 
1 5 10 15 
2 15 25 40 

 
The travel time function is defined as shown in Eq. (11), and its corresponding parameters for 18-link network 

can be taken from Baskan (2013a).  

  4)(),(
aa

a
aaaaa y

xyxt          (11) 

The upper level objective function is defined as: 

Aa
aaaaaa,

ydxyxt,Z )),(()(min yx
yx

         (12) 

 s.t. Aauy aa ,0             (13) 

Upper bound for capacity expansion of link Aa  is set to 20 for fair comparison with results generated by 
Xu et al. (2009). The comparison of CPU times is conducted in terms of the number of UE assignments (NUE) 
since traffic assignment process is the most time consuming part of the algorithms. Results obtained through the 
DE and MODE are also compared with those produced by the SA and GA algorithms on the same network taken 
from Xu et al. (2009), and they are given in Table 2. As it can be seen from Table, the MODE shows steady 
convergence towards the global or near-global optimum for all demand scenarios and achieved good solutions in 
terms of the objective function value and the number of UE assignments. In scenario 1, the DE algorithm 
converges to the value of 190.43 after 86 generations (i.e. 860 number of UE assignments) while the MODE 
achieves slightly better objective function value of 190.33 with much less number of UE assignments than the 
DE. In addition, the SA and GA algorithms produced the value of 205.89 and 191.26 after 15000 and 50000 
number of UE assignments, respectively (Xu et al., 2009). It is clear that the DE and MODE algorithms produce 
much better results than the SA and GA in terms of the objective function value and number of UE assignments. 
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In comparison with the results generated by the DE, SA and GA algorithms, it has been found that the MODE is 
capable of solving the CNDP with much less computational efforts. 

Table 2. Results on the 18-link network 

 Scenario 1 Scenario 2 
 MODE DE SA GA MODE DE SA GA 

y1 0 0 0 0 0 0 0 0 
y2 0 0 0.47 0 10.13 9.29 9.12 11.98 
y3 0 0 0.65 0 17.54 17.34 18.12 16.24 
y4 0 0 0 0 0 0 0 0 
y5 0 0 0 0 0 0 0 0 
y6 5.24 4.93 6.53 4.47 5.95 6.12 4.98 5.40 
y7 0 0 0.80 0 0 0 0.11 0 
y8 0 0 0.25 0 3.48 2.69 1.58 6.04 
y9 0 0 0 0 0 0.12 0 0 
y10 0 0 0 0 0.01 0.04 0 0 
y11 0 0 0 0 0 0 0 0 
y12 0 0 0 0 0 0 0 0 
y13 0 0 0 0 0 0 0 0 
y14 0 0 0.84 0 12.66 12.25 11.66 12.28 
y15 0 0 0.14 0 0 0 2.97 0.82 
y16 7.61 7.69 7.34 7.54 19.99 19.94 19.71 19.99 
y17 0 0 0 0 0 0.12 0 0 
y18 0 0 0 0 0 0 0 0 
Z 190.33 190.43 205.89 191.26 729.58 730.43 739.54 744.39 

NUE 396 860 15000 50000 759 1090 22500 50000 
 
      For scenario 1, the convergence trend of the MODE and DE algorithms is given in Fig. 3. As can be seen in 
Fig. 3, the MODE algorithm with developed mutation strategy and local search operator converges rapidly 
without being trapped in bad local optimum after almost 20 generations. The reason how the MODE converges 
so rapidly to the near global optimum is that it uses information of the best solution vector produced at the 
previous generation with new mutation strategy. The other one, it takes advantage of the local search operator 
after each generation in which the best solution may be pushed to be located closer to the near global optimum 
solutions. 
 To investigate the ability of the MODE in solving the CNDP under heavy demand condition, scenario 2 has 
been considered and results are obtained as given in Fig. 4. In scenario 2, the DE reached the near global 
optimum value of 730.43 after about 1100 UE assignments as shown in Fig. 4. Although the MODE slightly 
outperformed than the DE for given stopping criterion, the MODE reaches the optimal solution with much less 
UE assignments in comparison with the DE. Besides, it is remarkable that the results produced by the SA and GA 
are not as good as those generated by the DE and MODE in terms of both objective function value and required 
number of UE assignments as can be seen in Table 2. 
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Fig. 3. Convergence comparisons of the DE and MODE for scenario 1 
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Fig. 4. Convergence comparisons of the DE and MODE for scenario 2 

 According to the results obtained from numerical experiments, it has been found that the MODE is much 
more efficient and effective method than the DE, SA and GA in terms of the objective function value and 
required number of UE assignments in solving the CNDP.  
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5. Conclusions 

 In this paper, an efficient heuristic algorithm called MODE was used to solve the CNDP with link capacity 
expansions. The CNDP was modeled as a bilevel programming model which is nonconvex. The upper level 
objective function has been defined as sum of the total travel time and total investment costs of link capacity 
expansions on the network while the lower level problem is formulated as user equilibrium traffic assignment 
model. The Frank-Wolfe method was used to solve the traffic assignment problem at the lower level. Numerical 
computations have been conducted on 18-link network and two demand scenarios were proposed. According to 
the results, the MODE achieved better solutions in all scenarios in terms of objective function value and number 
of UE assignments in comparison with the DE. Moreover, the newly developed mutation strategy and local 
search operator have facilitated the rate of convergence of the base DE algorithm without being trapped in bad 
local optimum.   
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