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Abstract We investigate problems of estimating the deviation of functions from their de la Vallée-Poussin
sums in weighted Orlicz spaces L M (T, ω) in terms of the best approximation En( f )M, ω.
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1 Introduction, some auxiliary results and main results

Let M(u) be a continuous increasing convex function on [0,∞) such that M(u)/u → 0 if u → 0, and
M(u)/u → ∞ if u → ∞. We denote by N the complementary of M in Young’s sense, i.e., N (u) =
max {uv − M(v) : v ≥ 0} if u ≥ 0. Wewill say that M satisfies the �2−condition if M(2u) ≤ cM(u) for any
u ≥ u0 ≥ 0 with some constant c, independent of u.

Let T denote the interval [−π, π] , C the complex plane, and L p(T), 1 ≤ p ≤ ∞, the Lebesgue space of
measurable complex-valued functions on T.

For a given Young function M , let ˜L M (T) denote the set of all Lebesgue measurable functions f : T →
C for which

∫

T

M (| f (x)|) dx < ∞.

Let N be the complementary Young function of M . It is well-known [28, p.69], [47, pp.52–68] that the
linear span of ˜L M (T) equipped with the Orlicz norm

‖ f ‖L M (T) := sup

⎧

⎨

⎩

∫

T

| f (x)g(x)| dx : g ∈ ˜L N (T),

∫

T

N (|g(x)|) dx ≤ 1

⎫

⎬

⎭
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or with the Luxemburg norm

‖ f ‖∗
L M (T) := inf

⎧

⎨

⎩

k > 0 :
∫

T

M

( | f (x)|
k

)

dx ≤ 1

⎫

⎬

⎭

becomes a Banach space. This space is denoted by L M (T) and is called an Orlicz space [28, p.26]. The Orlicz
spaces are known as the generalizations of the Lebesgue spaces L p(T), 1 < p < ∞. If M(x) = M(x, p) :=
x p, 1 < p < ∞, then Orlicz spaces L M (T) coincide with the usual Lebesgue spaces L p(T), 1 < p < ∞.
Note that the Orlicz spaces play an important role in many areas such as applied mathematics, mechanics,
regularity theory, fluid dynamics and statistical physics. Therefore, the investigation into the approximation
of the functions by means of Fourier trigonometric series in Orlicz spaces is also important in these areas of
research.

The Luxemburg norm is equivalent to the Orlicz norm as

‖ f ‖∗
L M (T) ≤ ‖ f ‖L M (T) ≤ 2 ‖ f ‖∗

L M (T) , f ∈ L M (T)

holds true [28, p.80].
If we choose M(u) = u p/p, 1 < p < ∞, then the complementary function is N (u) = uq/q with

1/p + 1/q = 1 and we have the relation

p−1/p ‖u‖L p(T) = ‖u‖∗
L M (T) ≤ ‖u‖L M (T) ≤ q1/q ‖u‖L p(T) ,

where ‖u‖L p(T) = (∫

T
|u(x)|p dx

)1/p stands for the usual norm of the L p(T) space.
If N is complementary to M in Young’s sense and f ∈ L M (T), g ∈ L N (T), then the so-called strong

Hölder inequalities [28, p.80]
∫

T

| f (x)g(x)| dx ≤ ‖ f ‖L M (T) ‖g‖∗
L N (T) ,

∫

T

| f (x)g(x)| dx ≤ ‖ f ‖∗
L M (T) ‖g‖L N (T)

are satisfied.
The Orlicz space L M (T) is reflexive if and only if the N−function M and its complementary function N

both satisfy the �2−condition [47, p.113].
Let M−1 : [0,∞) → [0,∞) be the inverse function of the N−function M. The lower and upper indices

[4, p.350]

αM := lim
t→+∞ − log h(t)

log t
, βM := lim

t→o+ − log h(t)

log t

of the function

h : (0, ∞) → (0,∞], h(t) := lim
y→∞ sup

M−1(y)

M−1(t y)
, t > 0

first considered by Matuszewska and Orlicz [38], are called the Boyd indices of the Orlicz spaces L M (T ).
It is known that the indices αM and βM satisfy 0 ≤ αM ≤ βM ≤ 1, αN + βM = 1, αM + βN = 1 and the

space L M (T) is reflexive if and only if 0 < αM ≤ βM < 1. The detailed information about the Boyd indices
can be found in [3,5–7,39].

A measurable function ω : T → [0,∞] is called a weight function if the set ω−1 ({0,∞}) has Lebesgue
measure zero. With any given weight ω we associate the ω-weighted Orlicz space L M (T, ω) consisting of all
measurable functions f on T such that

‖ f ‖L M (T,ω) := ‖ f ω‖L M (T) .
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Let 1 < p < ∞, 1/p + 1/p′ = 1 and let ω be a weight function on T. ω is said to satisfy Muckenhoupt’s
Ap-condition on T if

sup
J

⎛

⎝

1

|J |
∫

J

ωp (t) dt

⎞

⎠

1/p ⎛

⎝

1

|J |
∫

J

ω−p′ (t) dt

⎞

⎠

1/p′

< ∞,

where J is any subinterval of T and |J | denotes its length.
Let us indicate by Ap (T) the set of all weight functions satisfying Muckenhoupt’s Ap-condition on T.
According to [33,34, Lemma 3.3], and [34, Section 2.3] if L M (T) is reflexive and ω weight function

satisfying the condition ω ∈ A1/αM (T) ∩ A1/βM (T) , then the space L M (T, ω) is also reflexive.
Let L M (T, ω) be a weighted Orlicz space, let 0 < αM ≤ βM < 1 and let ω ∈ A 1

αM
(T) ∩ A 1

βM
(T). For

f ∈ L M (T, ω) we set

(νh f ) (x) := 1

2h

h
∫

−h

f (x + t) dt, 0 < h < π, x ∈ T .

By reference [18], Lemma 1.4, the shift operator νh is a bounded linear operator on L M (T, ω):

‖νh ( f )‖L M (T , ω) ≤ c ‖ f ‖L M (T, ω) .

The function

�l
M,ω (δ, f ) := sup

0<hi ≤δ
1≤i≤l

∥

∥

∥

∥

∥

l
∏

i=1

(

I − νhi

)

f

∥

∥

∥

∥

∥

L M (T,ω)

, δ > 0, l = 1, 2, . . .

is called k-th modulus of smoothness of f ∈ L M (T, ω), where I is the identity operator.
It can easily be shown that�k

M, ω (·, f ) is a continuous, nonnegative and nondecreasing function satisfying
the conditions

lim
δ→0

�k
M,ω (δ, f ) = 0, �k

M,ω (δ, f + g) ≤ �k
M,ω (δ, f ) + �k

M,ω (δ, g)

for f, g ∈ L M (T, ω).
The function conjugate to a 2π−periodic summable function on [−π, π] given by

˜f (x) = lim
ε−→+0

{

− 1

π

∫ π

ε

f (x + t) − f (x − t)

2 tan t
2

dt

}

= − 1

π

∫ π

0

f (x + t) − f (x − t)

2 tan t
2

dt

exists almost everywhere.
Let

a0
2

+
∞
∑

k=1

Ak(x, f ) (1.1)

be the Fourier series of the function f ∈ L1(T), where Ak(x, f ) := (ak ( f ) cos kx + bk ( f ) sin kx) , k =
1, 2, . . . , ak( f ) and bk( f ) are Fourier coefficients of the function f ∈ L1(T). For given f ∈ L1(T), let

˜f ∼
∞
∑

k=1

(ak( f ) sin kx − bk( f ) cos kx) =
∞
∑

k=−∞
{−isignk}ck( f )eikx

be the conjugate Fourier series of f with ck( f ) = (1/2) (ak( f ) − ibk( f )). It is known that the conjugate
series to Fourier series f ∈ L [0,2π ] will not always be the Fourier series (see, e.g., [53, p.155]).
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The n-th partial sums, and de la Vallé e-Poussin sums [57] of series (1.1) are defined, respectively, as

Sn(x, f ) = a0
2

+
n
∑

k=1

Ak(x, f ),

Vn,m(x, f ) = 1

m + 1

n
∑

ν=n−m

Sν(x, f ), (0 ≤ m ≤ n, m, n ∈ Z+ := {1, 2, 3, . . .}).

The best approximation to f ∈ L M (T, ω) in the class
∏

n of trigonometric polynomials of degree not
exceeding n is defined by

En ( f )M,ω := inf
{

‖ f − Tn‖L M (T, ω) : Tn ∈
∏

n

}

.

Note that the existence of T ∗
n ∈ �n such that

En ( f )M,ω = ∥

∥ f − T ∗
n

∥

∥

L M (T,ω)

follows, for example, from Theorem 1.1 in [10, p.59].
Let W r

M (T, ω), (r = 1, 2, . . .) be the class of functions such that f (r−1) is absolutely continuous and
f (r) ∈ L M (T, ω) becomes a Banach space under the consideration of the norm

‖ f ‖WM (T,ω) :=‖ f ‖L M (T,ω) + ‖ f (r) ‖L M (T,ω) .

Let G be a finite domain in the complex plane C, bounded by a rectifiable Jordan curve �, and let
G− := ext�. Further let

T := {w ∈ C : |w| = 1} , D := int T and D− := ext T .

Let w = ϕ(z) be the conformal mapping of G− onto D− normalized by

ϕ(∞) = ∞, lim
z→∞

ϕ(z)

z
> 0,

and ψ stands for the inverse of ϕ.
Let w = ϕ1(z) indicate a function that maps the domain G conformally onto the disk |w| < 1. The inverse

mapping of ϕ1 will be shown by ψ1. Let �r be the image of the circle |ϕ1(z)| = r , 0 < r < 1 under the
mapping z = ψ1(w).

Let us denote by E p, where p > 0, the class of all functions f (z) �= 0 that are analytic in G and have the
property that the integral

∫

�r

| f (z)|p |dz|

is uniformly bounded for 0 < r < 1. We shall call the E p-class the Smirnov class. If the function f (z)
belongs to E p, then f (z) has definite limiting values f (z′) almost every where on �, over all nontangential
paths;

∣

∣ f (z′)
∣

∣ is summable on �; and

lim
r→1

∫

�r

| f (z)|p |dz| =
∫

�

∣

∣ f (z′)
∣

∣

p ∣
∣dz′∣

∣ .

It is known that ϕ′ = E1(G−) and ψ ′ ∈ E1(D−). Note that the general information about Smirnov classes
can be found in the books [12, pp.438–453], and [8, pp.168–185].

Let L M (�, ω) be a weighted Orlicz space defined on �. We also define the ω-weighted Smirnov–Orlicz
class EM (G, ω) as

EM (G, ω) := { f ∈ E1 (G) : f ∈ L M (�, ω)} .

With every weight function ω on �, we associate another weight ω0 on T defined by

ω0 (t) := ω (ψ (t)) , t ∈ T .
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For f ∈ L M (�, ω) we define the function

f0(t) := f (ψ(t)) , t ∈ T .

Let h be a continuous function on [0, 2π]. Its modulus of continuity is defined by

ω (t, h) := sup {|h (t1) − h (t2)| : t1, t2 ∈ [0, 2π] , |t1 − t2| ≤ t} , t ≥ 0.

The curve � is called Dini-smooth if it has a parameterization

� : ϕ0(s), 0 ≤ s ≤ 2π

such that ϕ′
0(s) is Dini-continuous, i.e.,

π
∫

0

ω
(

t, ϕ′
0

)

t
dt < ∞

and ϕ′
0 (s) �= 0 [44, p.48].

If � is a Dini-smooth curve, then there exist [58] the constants c1 and c2 such that

0 ≤ c1 ≤ ∣

∣ψ ′ (t)
∣

∣ ≤ c2 < ∞, |t | > 1. (1.2)

Note that if � is a Dini-smooth curve, then by (1.2) we have f0 ∈ L M (T, ω0) if f ∈ L M (�, ω).
Let 1 < p < ∞, 1

p + 1
p′ = 1 and let ω be a weight function on �. ω is said to satisfy Muckenhoupt’s

Ap -condition on � if

sup
z∈�

sup
r>0

⎛

⎜

⎝

1

r

∫

�∩D(z,r)

|ω (τ)|p |dτ |
⎞

⎟

⎠

1/p ⎛

⎜

⎝

1

r

∫

�∩D(z,r)

[ω (τ)]−p′ |dτ |
⎞

⎟

⎠

1/p′

< ∞,

where D(z, r) is an open disk with radius r and centered z.
Let us denote by Ap(�) the set of all weight functions satisfying Muckenhoupt’s Ap-condition on �. For

a detailed discussion of Muckenhoupt weights on curves (see, e.g., [4]).
Let � be a rectifiable Jordan curve and f ∈ L1(�). Then, the function f + defined by

f +(z) := 1

2π i

∫

�

f (s)ds

s − z
, z ∈ G

is analytic in G. Note that if 0 < αM ≤ βM < 1, ω ∈ A1/αM (�) ∩ A1/βM (�) and f ∈ L M (�, ω), then by
Lemma 1.4 in [20] f + ∈ EM (G, ω).

Let ϕk(z), k = 0, 1, 2, . . . be the Faber polynomials for G. The Faber polynomials ϕk(z), associated with
G ∪ �, are defined through the expansion

ψ ′ (w)

ψ (w) − z
=

∞
∑

k=0

ϕk (z)

tk+1 , z ∈ G, t ∈ D− (1.3)

and the equalities

ϕk (z) = 1

2π i

∫

T

wkψ ′ (w)

ψ (w) − z
dw , z ∈ G, (1.4)

ϕk (z) = ϕk (z) + 1

2π i

∫

�

ϕk (s)

s − z
ds , z ∈ G−, k = 0, 1, 2, . . . (1.5)

hold [51, p.33–38].
Let f ∈ EM (G, ω). Since f ∈ E1 (G) , we have

f (z) = 1

2π i

∫

�

f (s)ds

s − z
= 1

2π i

∫

T

f (ψ(w))ψ ′(w)

ψ(w) − z
dw ,
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for every z ∈ G. Considering this formula and expansion (1.3), we can associate with f the Faber series

f (z) ∼

∞
∑

k=0

ak( f )ϕk(z), z ∈ G , (1.6)

where

ak( f ) := 1

2π i

∫

T

f (ψ(w))

wk+1 dw, k = 0, 1, 2, . . .

This series is called the Faber series expansion of f, and the coefficients ak( f ), k = 0, 1, 2, . . . are said to
be the Faber coefficients of f.

The n-th partial sums and de la Vallée-Poussin sums of the series (1.6) are defined, respectively, as

Sn(z, f ) =
n
∑

k=o

ak( f )ϕk(z) ,

Vn,m(z, f ) = 1

m + 1

n
∑

ν=n−m

Sν(z, f ), (0 ≤ m ≤ n, m, n ∈ Z+) .

Let � be a Dini-smooth curve. Using the nontangential boundary values of f +
0 on T we define the r-th

modulus of smoothness of f ∈ L M (�, ω) as

�l
�, M,ω(δ, f ) := �l

M,ω0
(δ, f +

0 ), δ > 0,

for l = 1, 2, 3, . . .
LetP :={all polynomials (with no restriction on the degree)}, and letP(D) be the set of traces of members

of P on D. We define the operator T as follows:

T := P(D) −→ EM (G, ω) ,

T (P)(z) := 1

2π i

∫

T

P(w)ψ ′(w)

ψ(w) − z
dt, z ∈ G.

Then, taking into account (1.4) and (1.5) we have

T

(

n
∑

k=0

bkw
k

)

=
n
∑

k=0

bkϕk(z), z ∈ G.

We use the constants c, c1, c2, . . . (in general, different in different relations) which depend only on the
quantities that are not important for the questions of interest

We need the following results.

Theorem 1.1 [18] Let L M (T , ω) be a weighted Orlicz space with Boyd indices 0 < αM ≤ βM < 1, and let
ω ∈ A1/αM (T ) ∩ A1/βM (T ). Then for every

f ∈ W r
M (T , ω) (r = 0, 1, 2, . . .) the inequality

En( f )M,ω ≤ c3
(n + 1)r En( f (r))M,ω

holds with a constant c3 > 0 independent of n.

Theorem 1.2 [18] Let L M (T , ω) be a weighted Orlicz space with Boyd indices 0 < αM ≤ βM < 1, and let
ω ∈ A1/αM (T ) ∩ A1/βM (T ). Then for every

f ∈ L M (T , ω) the inequality

En( f )M,ω ≤ c4�
l
M.ω

(

1

n + 1
, f

)

holds with a constant c4 > 0 independent of n.
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Theorem 1.3 [26] Let L M (T , ω) be a weighted Orlicz space with Boyd indices 0 < αM ≤ βM < 1, and let
f ∈ L M (T, ω), ω ∈ A1/αM (T ) ∩ A1/βM (T ). If the condition

∞
∑

n=1

nr−1En( f )M,ω. < ∞

is satisfied for r ∈ Z+, then ˜f (r) ∈ L M (T , ω) and

En(˜f
(r))M,ω ≤ c5

⎧

⎨

⎩

(n + 1)r En( f )M,ω. +
⎛

⎝

∞
∑

μ=n+1

μr−1Eμ( f )M,ω.

⎞

⎠

⎫

⎬

⎭

,

where the constant c5 is independent of n.

Lemma 1.4 Let L M (T , ω) be a weighted Orlicz space with Boyd indices 0 < αM ≤ βM < 1, and ω ∈
A1/αM (T ) ∩ A1/βM (T ) .

1. Then, for r ∈ N and f (r) ∈ L M (T , ω) the estimate

‖ f (r) ‖L M (T,ω)≤ c6
{

nr ‖ f ‖L M (T,ω) +En( f (r))M,ω.

}

(1.7)

holds with a constant c6 > 0 independent of n.
2. If ˜f (r) ∈ L M (T, ω), then the estimate

‖ ˜f (r) ‖L M (T,ω)≤ c7
{

nr ‖ f ‖L M (T,ω) +En(˜f
(r))M,ω.

}

(1.8)

holds with a constant c7 > 0 independent of n.

Proof The function f (r) can be written in following form:

f (r)(x) =
(

f (r)(x) − V2n,n(x, f (r))
)

+ V2n,n(x, f (r)). (1.9)

Then, by (1.9) we obtain

‖ f (r) ‖L M (T,ω)≤‖ f (r) − V2n,n(., f (r)) ‖L M (T,ω) + ‖ V2n,n(., f (r)) ‖L M (T,ω) . (1.10)

By [18] the following inequality holds:

‖ f − Sn (., f ) ‖L M (T,ω)≤ c8En( f )M,ω . (1.11)

Then, from the inequality (1.11) we conclude that

‖ f (r) − V2n,n(., f (r)) ‖L M (T,ω)≤ En( f (r))M,ω . (1.12)

Using the Bernstein inequality for weighted Orlicz spaces [18], we have

‖ V2n,n(., f (r)) ‖L M (T,ω)=‖ dr

dxr
V2n,n(x, f ) ‖L M (T,ω)

≤ c9 (2n)r ‖ V2n,n(., f ) ‖L M (T,ω)≤ c10nr ‖ f ‖
L M (T,ω)

.

Now combining (1.10), (1.12) and last relation, we obtain the inequality (1.7) of Lemma 2.1. The inequality
(1.8) is proved to be similar.

The proof of Lemma 1.4 is completed. ��
Theorem 1.5 [20] Let � be a Dini-smooth curve and L M (�) be a reflexive Orlicz space. If ω ∈ A1/αM (�) ∩
A1/βM (�), then the linear operator T := P(D) −→ EM (G, ω) is bounded.
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Theorem 1.6 [20] If � is a Dini-smooth curve, 0 < αM ≤ βM < 1, and ω ∈ A1/αM (�) ∩ A1/βM (�), then
the operator

T : EM (D, ω0) −→ EM (G, ω)

is one-to-one and onto.

The problems of approximation theory in weighted and nonweighted Lebesgue spaces, weighted and
nonweighted Orlicz spaces have been investigated by several authors (see, e.g., [13–27,30–32,36,37,45,46]).

Note that the approximation problems by trigonometric polynomials in weighted Lebesgue spaces with
weights belonging to the Muckenhoupt class Ap(T) were studied in [13,36,37]. Detailed information on the
weighted polynomial approximation can be found in the books [9,41].

In the present paper, we investigate the problems of estimating the deviation of functions from their de la
Vallée-Poussin sums in weighted Orlicz spaces L M (T, ω).
This result is applied to estimate of approximation of de la Vallé e-Poussin sums of Faber series in weighted
Smirnov–Orlicz classes defined on simply connected domains of the complex plane in terms of the modulus
of smoothness. We also study the approximation of conjugate function by de la Vallée-Poussin sums of the
Fourier series of the conjugate function in weighted Orlicz spaces L M (T, ω). Note that the estimates obtained
in this work depend on sequence of the best approximation En( f )M, ω. Similar problems in different spaces
have been investigated by several researchers (see, e.g., [1,2,11,27,42,43,48–50,52–57,59,60]).

Our main results are as follows.

Theorem 1.7 Let L M (T ) be a reflexive Orlicz space and ω ∈ A1/αM (T ) ∩ A1/βM (T ) . Then for f ∈
L M (T, ω), 0 ≤ m ≤ n, m, n ∈ Z+ the inequality

‖ f − Vn,m (., f ) ‖L M (T,ω) ≤ c11
m + 1

n
∑

k=n−m

Ek( f )M,ω (1.13)

holds with a constant c11 > 0 independent of n.

Note that this result in the spaces of continuous functions and Lebesgue space L p (1 < p < ∞) have been
investigated in [49,50,60].

Corollary 1.8 Let L M (T , ω) be a weighted Orlicz space with Boyd indices 0 < αM ≤ βM < 1, and let
ω ∈ A1/αM (T ) ∩ A1/βM (T ), m, n ∈ Z+, 0 ≤ m ≤ n. Then for every f ∈ L M (T , ω), the estimate

‖ f − Vn,m (., f ) ‖L M (T,ω) ≤ c12
m + 1

n
∑

k=n−m

�l
M,ω

(

1

k + 1
, f

)

(1.14)

holds with a constant c12 > 0 independent of n.

Similar result for the other modulus of smoothness in the spaces of continuous functions has been obtained
in [49]. Also, similar results for the Cesaro means, Zygmund means of order 2 and Abel–Poisson means in
weighted Orlicz spaces can be found in [15].

Theorem 1.9 Let L M (T , ω) be a weighted Orlicz space with Boyd indices 0 < αM ≤ βM < 1, and let
ω ∈ A1/αM (T ) ∩ A1/βM (T ), m, n ∈ Z+, 0 ≤ m ≤ n. If the inequality

∞
∑

ν=1

Eν ( f )M,ω

ν
< ∞

is satisfied for f ∈ L M (T , ω), then the estimate

‖ ˜f − Vn,m(., ˜f ) ‖L M (T,ω) ≤ c13

{

1

m + 1

n
∑

ν=0

En−m+ν( f )M,ω. +
∞
∑

ν=n+1

Eν( f )M,ω.

ν

}

holds with a constant c13 > 0 independent of n.

This result for the spaces of continuous functions has been obtained in [1].
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Theorem 1.10 Let � be a Dini-smooth curve. Also, let L M (�, ω) be a Orlicz space with Boyd indices 0 <
αM ≤ βM < 1, and ω ∈ A1/αM (�) ∩ A1/βM (�). Then for f ∈ EM (G, ω) the inequality

‖ f − Vn,m (., f ) ‖L M (T,ω) ≤ c14
m + 1

n
∑

k=n−m

�l
�,M,ω

(

1

k + 1
, f

)

holds with a constant c14 > 0 independent of n.

Similar results for the other means of Fourier trigonometric series in the Smirnov classes E p(G) (1 < p <
∞) and weighted Orlicz spaces EM (G, ω) can be found in [15,29].

2 Proofs of the main results

Proof of Theorem 1.7 We take the integer j such that the inequality 2 j ≤ m + 1 < 2 j+1 is satisfied. The
following identity holds:

f (x) − Vn,m(x, f ) = 1

m + 1

[

f (x) − Sn−m(x, f )
]

+ 1

m + 1

⎧

⎨

⎩

j
∑

k=1

n−m+2k−1
∑

i=n−m+2k−1

[ f (x) − Si (x, f )]

⎫

⎬

⎭

+ 1

m + 1

⎧

⎨

⎩

n
∑

k=n−m+2 j

[ f (x) − Sk(x, f )]

⎫

⎬

⎭

. (2.1)

Taking into account of (2.1), we have

‖ f − Vn,m(., f ) ‖L M (T,ω)≤ 1

m + 1
‖ f − Sn−m(., f ) ‖L M (T,ω)

+ 1

m + 1

⎧

⎨

⎩

j
∑

k=1

n−m+2k−1
∑

i=n−m+2k−1

‖ f − Si (., f ) ‖L M (T,ω)

⎫

⎬

⎭

+ 1

m + 1

⎧

⎨

⎩

n
∑

k=n−m+2 j

‖ f − Sk(., f ) ‖L M (T, ω)

⎫

⎬

⎭

. (2.2)

Consideration of (1.11) and (2.1) gives us

‖ f − Vn,m(., f ) ‖L M (T,ω)≤ c15
1

m + 1

⎧

⎨

⎩

En−m( f )M,ω. +
j

∑

k=1

2k−1En−m+2k−1( f )M,ω

⎫

⎬

⎭

+c15
1

m + 1

(

m − 2 j + 1
)

En−m+2 j ( f )M,ω . (2.3)

On the other hand, the following inequality holds:

j
∑

k=1

2k−1En−m+2k−1( f )M,ω ≤ En−m+1( f )M,ω

+2
j

∑

k=2

n−m+2k−1−1
∑

i=n−m+2k−2

Ei ( f )M,ω ≤ c16

n−m+2 j−1
∑

k=n−m

Ek( f )M,ω. (2.4)
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From inequality 2 j ≤ m + 1 < 2 j+1, we have 2 j > m − 2 j + 1.Then,

(

m − 2 j + 1
)

En−m+2 j ( f )M,ω ≤
n−m+2 j −1

∑

k=n−m

Ek( f )M,ω (2.5)

Using (2.3), (2.4) and (2.5), we finally conclude that

‖ f − Vn,m(., f ) ‖L M (T,ω)≤ c17
m + 1

⎧

⎨

⎩

En−m( f )M,ω +
n−m+2 j−1

∑

k=n−m

Ek( f )M,ω +
n−m+2 j −1

∑

k=n−m

Ek( f )M,ω

⎫

⎬

⎭

≤ c18
m + 1

n
∑

k=n−m

Ek( f )M,ω.

Thus, the proof of Theorem 1.7 is completed.

Proof of Corollary 1.8 According to Theorem 1.2 and (1.13), we obtain the inequality (1.14) of Corollary 1.8.

Proof of Theorem 1.9 We consider two cases: 1. Take 0 ≤ 2m ≤ n. Suppose that R(x) is an antiderivative of
the function f (x) − Vn,m(x, f ) and U (x) is an antiderivative of the function f (x) − a0/2. Then, according
to Theorem 1.1 we obtain

Eν(U )M,ω ≤ c20
ν + 1

Eν( f )M,ω , ν ∈ Z+. (2.6)

Since

∞
∑

ν=1

Eν ( f )M,ω

ν
< ∞,

the inequality (2.6) yields

∞
∑

ν=1

Eν(U )M,ω. < ∞.

By virtue of Lemma 1.4 we get

‖ ˜R′ ‖L M (T,ω)≤ c21
{

n ‖R‖L M (T,ω) + En(˜R′)M,ω

}

,

where R = U − Vn,m(., U ) + c22 and c22 is a constant. Then, taking Theorem 1.3 into account, we conclude
that

En(˜R′)M,ω ≤ c23

{

(n + 1) En(U )M,ω. +
∞
∑

ν=n+1

Eν(U )M,ω

}

.

Then, the last inequality yields

‖ ˜f − Vn,m(., ˜f ) ‖L M (T,ω)≤ c24

{

(n + 1)
∥

∥ f − Vn,m(., U )
∥

∥

L M (T,ω)
+

∞
∑

ν=n+1

En(U )M,ω

}

.

From Theorem 1.7 we have

∥

∥ f − Vn,m(., U )
∥

∥

L M (T,ω)
≤ c25

m + 1

n
∑

ν=n−m

Eν(U )M,ω

≤ c26
m + 1

n
∑

ν=n−m

Eν( f )M,ω

ν + 1
= c26

m + 1

n
∑

ν=0

En−m+ν( f )M,ω

n − m + ν + 1
.
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Since 0 ≤ 2m ≤ n, this implies (n + 1)/(n − m + 1) ≤ 3. Then, using the last inequality we reach

‖ ˜f − Vn,m(., ˜f ) ‖L M (T,ω)≤ c27

{

1

m + 1

n
∑

ν=0

En−m+ν( f )M,ω

n − m + ν + 1
(n + 1) +

∞
∑

ν=n+1

Eν(U )M,ω

}

≤ c28

{

1

m + 1

n
∑

ν=0

En−m+ν( f )M,ω +
∞
∑

ν=n+1

Eν( f )M,ω

}

.

2. Suppose that the inequality n < 2m ≤ 2n is satisfied. From Theorem 1.3 we have

Eν(˜f )M,ω ≤ c29

⎧

⎨

⎩

Eν( f )M,ω +
∞
∑

μ=ν+1

Eμ( f )M,ω

μ

⎫

⎬

⎭

.

Using the last inequality and Theorem 1.7, we find that

‖ ˜f − Vn,m(., ˜f ) ‖L M (T,ω)≤ c30
m + 1

n
∑

ν=n−m

Eν(˜f )M,ω

≤ c31
m + 1

n
∑

ν=n−m

⎧

⎨

⎩

Eν( f )M,ω +
∞
∑

μ=ν+1

Eμ( f )M,ω

μ

⎫

⎬

⎭

≤ c32

{

1

m + 1

n
∑

ν=n−m

Eν( f )M,ω +
∞
∑

ν=n+1

Eν( f )M,ω

ν

}

.

Hence, the proof of Theorem 1.9 is completed.

Proof of Theorem 1.10. Suppose that f ∈ EM (G, ω) . By virtue of Theorem 1.6 the operator T :
EM (D, ω0) −→ EM (G, ω) is bounded, one-to-one and onto and T ( f +

0 ) = f. For the function f, the
following Faber series holds:

f (z) �
∞
∑

k=0

ak( f )ϕk(z).

Sinceω0 ∈ A1/αM (T )∩ A1/βM (T ), considering Lemma 1.4 given in Ref. [20] we get f +
0 ∈ EM (D, ω0). Then,

function f +
0 has the following Taylor expansion

f +
0 (w) =

∞
∑

k=0

ak( f )wk .

Note that f +
0 ∈ E1(D) and boundary function f +

0 ∈ L M (T, ω0). Then, using Theorem 3.4 [8, p.38] for the
function f +

0 (w) we get Fourier expansion

f +
0 (t) �

∞
∑

k=0

ak( f )eitk .

Using the boundedness of the operator T, Theorems 1.7 and 1.2 we reach

‖ f − Vn,m(., f ) ‖L M (�,ω)=‖ T ( f +
0 ) − T (Vn,m(., f +

0 )) ‖L M (�,ω)

≤ c33 ‖ f +
0 − Vn,m(., f +

0 ) ‖L M (T,ω0)≤
c34

m + 1

n
∑

k=n−m

Ek( f +
0 )M,ω

≤ c35
m + 1

n
∑

k=n−m

�l
M,ω0

(

1

k + 1
, f +

0

)

= c35
m + 1

n
∑

k=n−m

�l
�,M,ω

(

1

k + 1
, f

)

.
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Thus, the theorem is proved.
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