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Abstract 

In the present paper, the exp (−φ(ξ )) expansion method is applied to the fractional Broer–Kaup and approximate long water wave 
equations. The explicit approximate traveling wave solutions are obtained by using this method. Here, fractional derivatives are defined in the 
conformable sense. The obtained traveling wave solutions are expressed by the hyperbolic, trigonometric, exponential and rational functions. 
Simulations of the obtained solutions are given at the end of the paper. 
© 2018 Shanghai Jiaotong University. Published by Elsevier B.V. 
This is an open access article under the CC BY-NC-ND license. ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

Nonlinear partial differential equations are important tools
sed to modeled nonlinear dynamical phenomena in different
elds such as mathematical biology, plasma physics, solid
tate physics, and fluid dynamics [1] . The traveling wave so-
utions of nonlinear partial differential equations play an im-
ortant role in the study of nonlinear physical phenomena
uch as fluid dynamics, water wave mechanics, meteorology,
lectromagnetic theory, plasma physics and nonlinear optics
tc. In the recent decade, many methods have been devel-
ped for finding the traveling wave solutions such as the Ja-
obi elliptic function method [2] , the ansatz method [3] , the
xp-( φ( η))) method [4] , exp-function method [5] , consistent
iccati expansion method [6] , the ( G 

′ / G )-expansion method
7] . 

Waves have a major influence on the marine environment
nd ultimately on the planet climate. One of the most im-
ortant and application classifications of marine waves is the
hallow water wave. The shallow water equations describe
he motion of water bodies wherein the depth is short rela-
ive to the scale of the waves propagating on that body and
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re derived from the depth-averaged Navier–Stokes equations
8] . These equations are used to describe flow in vertically
ell-mixed water bodies where the horizontal length scales

re much greater than the fluid depth (i.e., long wavelength
henomena) and to model the hydrodynamics of lakes, estuar-
es, tidal flats and coastal regions, as well as deep ocean tides.
he equations also, are used to study many physical phenom-
na such forces acting on off-shore structures and in modeling
he transport of chemical species such as storm surges, tidal
uctuations and tsunami waves [9] . 

In the present paper, we consider space-time fractional ap-
roximate long water wave equations and Broer–Kaup equa-
ions which are used to model the bidirectional propagation
f long waves in shallow water. The space-time fractional
pproximate long water wave equations (see, for example,
10–12] ) are given in the form 

 

α
t u − uT βx u − T βx v + γ T βx T βx u = 0, 

T αt v − T βx (uv) − γ T βx T βx v = 0, t > 0, 0 < α, β ≤ 1 , 

(1) 

nd the space-time fractional Broer–Kaup equations (see, for
xample, [13] ) are given as follows 
 is an open access article under the CC BY-NC-ND license. 
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T αt u + uT βx u + T βx v = 0, 

T αt v + T βx u + T βx (uv) + T βx T βx T βx u = 0, 

t > 0, 0 < α, β ≤ 1 , 

(2)

Here T αt and T βx denote conformable fractional derivative
with respect to t and x , respectively. These equations have
been investigated in [14–17] . New exact solutions for frac-
tional DR equation and fractional approximate long water
wave equation with the modified Riemann–Liouville deriva-
tive have been obtained by using G 

′ / G -expansion method
in [14] . The time fractional coupled Boussinesq–Burger and
time fractional approximate long water wave equations with
conformable derivative by using the generalized Kudryashov
method have been solved in [15] . The analytical approximate
traveling wave solutions of time fractional Whitham–Broer–
Kaup equations, time fractional coupled modified Boussinesq
and time fractional approximate long wave equations have
been obtained by using the coupled fractional reduced dif-
ferential transform method in [16] . Here fractional derivative
is defined by the Caputo sense. The fractional sub-equation
method has been applied to the fractional variant Boussinesq
equation and fractional approximate long water wave equa-
tion with Jumarie’s modified Riemann–Liouville derivatives
in [17] . 

2. Description of the conformable fractional derivative 
and its properties 

For a function f : (0, ∞ ) → R , the conformable fractional
derivative of f of order 0 < α < 1 is defined as (see, for ex-
ample, [18] ) 

T αt f (t ) = lim 

ε→ 0 

f (t + εt 1 −α ) − f (t ) 

ε 
. (3)

Some important properties of the conformable fractional
derivative are as follows: 

T αt (a f + bg)(t ) = aT αt f (t ) + bT αt g(t ) , ∀ a, b ∈ R, (4)

T αt (t μ) = μt μ−α, (5)

T αt ( f (g(t )) = t 1 −αg 

′ 
(t ) f 

′ 
(g(t )) . (6)

3. Analytic solutions to the space-time fractional 
approximate long water wave equations 

Let us consider the following transformation 

u(x, t ) = U (ξ ) , ξ = a 

t α

α
+ b 

x β

β
, (7)

where a, b are constants. Substituting (7) into (1) we have
the following ordinary differential equations 

aU 

′ − bU U 

′ − bV 

′ + γ b 

2 U 

′′ = 0, (8)
V 

′ − b(U V 

′ + V U 

′ 
) − γ b 

2 V 

′′ = 0. (9)

ntegrating (8) with respect to ξ , then we have 

 = 

a 

b 

U − C 1 

b 

− U 

2 

2 

+ γ bU 

′ 
. (10)

ubstituting (10) into (9) yields 

γ 2 b 

3 U 

′′ + 

b 

2 

U 

3 − 3 a 

2 

U 

2 + 

(
C 1 + 

a 

2 

b 

)
U − C 2 = 0. (11)

ere, C 1 and C 2 are integration constants. Let us suppose that
he solution of (11) can be expressed in the following form: 

 (ξ ) = 

N ∑ 

i=0 

a i ( exp (−Q(ξ ))) i , (12)

here a i are constants to be determined later and Q ( ξ ) satis-
es the following auxiliary ordinary differential equation: 

 

′ 
(ξ ) = exp (−Q(ξ )) + μ exp (Q(ξ )) + λ. (13)

nserting (12) into (11) then by balancing the highest or-
er derivative term and nonlinear term in result equation, the
alue of N can be determined as 1. Collecting all the terms
ith the same power of exp (−φ(ξ )) , we can obtain a set of

lgebraic equations for the unknowns a 0 , a 1 , C 1 , C 2 , a, b : 

2a 

2 a 0 − 3 aa 

2 
0 b − a 

3 
0 b 

2 + 2C 1 a 0 b − 2a 1 λμb 

4 γ 2 − 2C 2 b = 0;
2a 1 a 

2 − 6 a 1 aa 0 b + 3 a 1 a 

2 
0 b 

2 − 2a 1 b 

4 λ2 γ 2 

− 4a 1 μb 

4 γ 2 + 2C 1 a 1 b = 0;
3 a 0 a 

2 
1 b 

2 − 3 aa 

2 
1 b − 6 λa 1 b 

4 γ 2 = 0;
a 

3 
1 b 

2 − 4a 1 b 

4 γ 2 = 0. 

olving the algebraic equations in the Mathematica, we obtain
he following set of solutions: 

a 1 = 2bγ , C 1 = 

b 

2 

(a 

2 
0 − 2a 0 bγ λ + 4b 

2 γ 2 μ) , 

 2 = −b 

2 

(−a 0 + bγ λ)(a 

2 
0 − 2a 0 bγ λ + 4b 

2 γ 2 μ) , 

a = −b(−a 0 + bγ λ) . 

he solutions of Eq. (1) are given as follows: 

 i (x, t ) = a 0 + 2bγ R i (x, t ) , (14)

 i (x, t ) = (a 0 − bγ λ) u i (x, t ) − u 

2 
i (x, t ) 

2 

− 1 

2 

(a 

2 
0 − 2a 0 bγ λ + 4b 

2 γ 2 μ) 

− 2b 

2 γ 2 (R 

2 
i (x, t ) + μ+ λR i (x, t )) , i = 1 , 2, 3 , 4, 5 . 

(15)

ere R i (x, t ) , i = 1 , 2, 3 , 4, 5 , is defined as follows: 
When λ2 − 4μ > 0, μ � = 0, 



H. Çerdik Yaslan / Journal of Ocean Engineering and Science 3 (2018) 295–302 297 

Fig. 1. 3D plot of the solitary wave solution u 1 ( x, t ) of Eq. (1) for a 0 = 10, b = 1 , μ = 1 , C = 10, λ = 3 , γ = 10, α = 0. 75 , β = 0. 5 . 
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 1 (x, t ) 

= 

2μ

−λ −
√ 

λ2 − 4μ tanh ( 
√ 

λ2 −4μ

2 (b(a 0 − bγ λ) t 
α

α
+ b x 

β

β
+ C)) 

, 

(16) 

When λ2 − 4μ < 0, μ � = 0, 

 2 (x, t ) 

= 

2μ

−λ + 

√ 

4μ − λ2 tan 

(√ 

4μ−λ2 

2 (b(a 0 − bγ λ) t 
α

α
+ b x 

β

β
+ C) 

)

(17) 

hen λ2 − 4μ > 0, μ = 0, λ � = 0, 

 3 (x, t ) = 

λ

cosh (b(a 0 − bγ λ) t 
α

α
+ b 

x β
β

+ C) + sinh (b(a 0 − bγ

hen λ2 − 4μ = 0, μ � = 0, λ � = 0, 

 4 (x, t ) = −
λ2 (b(a 0 − bγ λ) t 

α

α
+ b x 

β

β
+ C) 

2λ( b( a 0 − bγ λ) t 
α

α
+ b x 

β

β
+ C) + 4 

. (18) 

hen λ2 − 4μ = 0, μ = 0, λ = 0, 

 5 (x, t ) = 

1 

(b(a 0 − bγ λ) t 
α

α
+ b x 

β

β
+ C) 

. (19) 

ere C is the integration constant. 
+ b 

x β
β

+ C) − 1 

. 

Figs. 1–4 represent the change of amplitude and na-
ure of the solitary waves for each obtained solitary wave
olutions. The solutions u 1 ( x, t ), u 2 ( x, t ) and v 1 ( x, t )
f Eq. (1) are simulated as traveling wave solutions for
arious values of the physical parameters in Figs. 1 –4 .
igs. 1 and 2 show solitary wave solutions of Eq. (1) . 3D
lots of the obtained solutions u 1 ( x, t ) and v 1 ( x, t ) are given
n Fig. 1 and Fig. 2 for parameters a 0 = 10, b = 1 , μ =
 , C = 10, λ = 3 , γ = 10, α = 0. 75 , β = 0. 5 , respectively.
igs. 3 and 4 are kink-type periodic wave solutions of Eq.
1) . 3D plot of the obtained solution u 2 ( x, t ) is given for
arameters a 0 = 0. 5 , b = 1 , μ = 1 , C = 5 , λ = 1 , γ = 1 α =
. 75 , β = 0. 5 in Fig. 3 . Fig. 4 demonstrates the same solu-
ion with 2D plot for 0 ≤x ≤50 at t = 1 . 

. Analytic solutions to the space-time fractional 
roer–Kaup equations 

Applying the transformation (7) into (2) we have the fol-
owing ordinary differential equations 

U 

′ + bU U 

′ + bV 

′ = 0, (20) 

V 

′ + bU 

′ + b(U V 

′ + V U 

′ 
) + b 

3 U 

′′′ = 0. (21) 
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Fig. 2. 3D plot of the solitary wave solution v 1 ( x, t ) of Eq. (1) for a 0 = 10, b = 1 , μ = 1 , C = 10, λ = 3 , γ = 10, α = 0. 75 , β = 0. 5 . 

Fig. 3. 3D plot of the periodic wave solution u 2 ( x, t ) of Eq. (1) for a 0 = 0. 5 , b = 1 , μ = 1 , C = 5 , λ = 1 , γ = 1 , α = 0. 75 , β = 0. 5 . 
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Fig. 4. 2D plot of the periodic wave solution u 2 ( x , 1) of Eq. (1) for a 0 = 0. 5 , b = 1 , μ = 1 , C = 5 , λ = 1 , γ = 1 , α = 0. 75 , β = 0. 5 . 
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ntegrating (20) with respect to ξ , then we have 

 = 

C 1 

b 

− U 

2 

2 

− a 

b 

U . (22) 

ubstituting (22) into (21) yields 

 

3 U 

′′ − b 

2 

U 

3 − 3 a 

2 

U 

2 + 

(
C 1 + b − a 

2 

b 

)
U − C 2 = 0. (23) 

ere C 1 and C 2 are integration constants. Let us suppose that
he solution of (23) can be expressed in the form (12) . Insert-
ng (12) into (23) and balancing the highest order derivative
erm and nonlinear term in result equation, the value of N
an be determined as 1. Collecting all the terms with the
ame power of exp (−φ(ξ )) , we can obtain a set of algebraic
quations for the unknowns a 0 , a 1 , C 2 , C 2 , a, b : 

2a 

2 a 0 − 3 aa 

2 
0 b − a 

3 
0 b 

2 + 2a 0 b 

2 + 2C 1 a 0 b 

+ 2a 1 λμb 

4 − 2C 2 b = 0;
−2a 1 a 

2 − 6 a 1 aa 0 b − 3 a 1 a 

2 
0 b 

2 + 2a 1 b 

4 λ2 

+ 4a 1 μb 

4 + 2a 1 b 

2 + 2C 1 a 1 b = 0;
−3 a 0 a 

2 
1 b 

2 − 3 aa 

2 
1 b + 6 λa 1 b 

4 = 0;
−a 

3 
1 b 

2 + 4a 1 b 

4 = 0;
olving the algebraic equations in the Mathematica, we obtain

he following set of solutions: 

a 1 = 2b, C 1 = −b 

2 

(2 + a 

2 
0 − 2a 0 bλ + 4b 

2 μ) , 

 2 = 

b 

2 

(−a 0 + bλ)(a 

2 
0 − 2a 0 bλ + 4b 

2 μ) , a = b(−a 0 + bλ) . 

 3 (x, t ) = 

λ

cosh (b(−a 0 + bλ) t 
α

α
+ b 

x β
β

+ C) + sinh (b(−a 0 + b
he solutions of Eq. (1) are given as follows: 

 i (x, t ) = a 0 + 2bR i (x, t ) , (24) 

 i (x, t ) = 

−1 

2 

(2 + a 

2 
0 − 2a 0 bλ + 4b 

2 μ) − u 

2 
i (x, t ) 

2 

+ (a 0 − bλ) u i (x, t ) i = 1 , 2, 3 , 4, 5 . (25) 

ere R i (x, t ) , i = 1 , 2, 3 , 4, 5 , is defined as follows: 
When λ2 − 4μ > 0, μ � = 0, 

 1 (x, t ) 

= 

2μ

−λ −
√ 

λ2 − 4μ tanh ( 
√ 

λ2 −4μ

2 (b(−a 0 + bλ) t 
α

α
+ b x 

β

β
+ C)) 

, 

(26)

hen λ2 − 4μ < 0, μ � = 0, 

 2 (x, t ) 

= 

2μ

−λ + 

√ 

4μ − λ2 tan ( 
√ 

4μ−λ2 

2 (b(−a 0 + bλ) t 
α

α
+ b x 

β

β
+ C)) 

(27) 

hen λ2 − 4μ > 0, μ = 0, λ � = 0, 

+ b 

x β
β

+ C) − 1 

. 

hen λ2 − 4μ = 0, μ � = 0, λ � = 0, 

 4 (x, t ) = −
λ2 (b(−a 0 + bλ) t 

α

α
+ b x 

β

β
+ C) 

2λ( b( −a 0 + bλ) t 
α

α
+ b x 

β

β
+ C) + 4 

. (28) 
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Fig. 5. 3D plot of the solitary wave solution u 1 ( x, t ) of Eq. (2) for a 0 = 0. 5 , b = 0. 7 , μ = 1 , C = 1 , λ = 3 , α = 0. 75 , β = 0. 5 . 

Fig. 6. 2D plot of the solitary wave solution u 1 ( x , 1) of Eq. (2) for a 0 = 0. 5 , b = 0. 7 , μ = 1 , C = 1 , λ = 3 , α = 0. 75 , β = 0. 5 . 

 

 

s  

t  

s  

s  
When λ2 − 4μ = 0, μ = 0, λ = 0, 

R 5 (x, t ) = 

1 

(b(−a 0 + bλ) t 
α

α
+ b x 

β

β
+ C) 

. (29)
The solutions u 1 ( x, t ), v 2 ( x, t ) and v 3 ( x, t ) of Eq. (2) are
imulated as traveling wave solutions for various values of
he physical parameters in Figs. 5 –9 . Figs. 5 and 6 show
olitary wave solutions of Eq. (2) . 3D plot of the obtained
olution u 1 ( x, t ) is given for a 0 = 0. 5 , b = 0. 7 , μ = 1 , C =
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Fig. 7. 3D plot of the periodic wave solution v 2 ( x, t ) of Eq. (2) for a 0 = 0. 5 , b = 0. 7 , μ = 2, C = 1 , λ = 1 , α = 0. 75 , β = 0. 5 . 

Fig. 8. 2D plot of the periodic wave solution v 2 ( x , 1) of Eq. (2) for a 0 = 0. 5 , b = 0. 7 , μ = 2, C = 1 , λ = 1 , α = 0. 75 , β = 0. 5 . 
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Fig. 9. 3D plot of the solitary wave solution v 3 ( x, t ) of Eq. (2) for a 0 = 0. 5 , b = 0. 7 , μ = 0, C = 1 , λ = 0. 1 , α = 0. 75 , β = 0. 5 . 
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1 , λ = 3 , α = 0. 75 , β = 0. 5 . Fig. 6 also illustrates the same
solution with 2D plot for 0 ≤x ≤10 at t = 1 . Figs. 7 and
8 show periodic wave solutions of Eq. (2) . 3D and 2D plots
of the obtained solution v 2 ( x, t ) and v 2 ( x , 1) are given for
a 0 = 0. 5 , b = 0. 7 , μ = 2, C = 1 , λ = 1 , α = 0. 75 , β = 0. 5 ,

respectively. From Fig. 8 , we can see that the wave ampli-
tudes go to infinity and the wavelengths increase when x
approaches to infinity. Fig. 9 shows solitary wave solution
v 3 ( x, t ) of Eq. (2) . 3D plot of the obtained solution v 3 ( x, t )
is given for a 0 = 0. 5 , b = 0. 7 , μ = 0, C = 1 , λ = 0. 1 , α =
0. 75 , β = 0. 5 . Note that the 3D graphs describe the behav-
ior of u and v in space x at time t , which represents the change
of amplitude and shape for each obtained solitary wave solu-
tions. 2D graphs describe the behavior of u and v in space x
at fixed time t = 1 . All graphics in figures are drawn by the
aid of Mathematica 10. 

5. Conclusion 

In the present paper, the space and time fractional Broer–
Kaup and approximate long water wave equations with the
conformable fractional derivative are considered. By using the
exp (−φ(ξ )) expansion method new approximate analytic so-
lutions are obtained. The new analytical solutions obtained
in this paper have not been reported in the literature so far.
his method is useful in solving wide classes of conformable
onlinear fractional differential equations. 
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