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Abstract. In this study, starting with the usual definition of octonions,
we introduce some matrix representations for Fibonacci quaternions and
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1. Introduction

Real and complex numbers are commutative and associative. Quaternions are
associative but not commutative, whereas octonions are neither commutative
nor associative. Quaternions and octonions are extensively used in physics
and mathematics. For example, octonions have played an important role in
various physical problems in higher dimensions. The octonions, O, form an
eight-dimensional real algebra with a basis {1, e1, e2, . . . , e7}. The most el-
ementary method to construct the octonions is to give their multiplication
table. Their multiplication is given in the following table which describes the
result of multiplying the element in the ith row by the element in the jth
column:

Furthermore, some other important properties of O are systematically
given in the following. At first, any element of O is x =

∑7
µ=0 xµeµ (where

e0 = 1), and octonionic conjugation is given by reversing the sign of the
imaginary basis units

x = x0e0 −
7∑

µ=1

xµeµ. (1.1)

*corresponding author.
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It should be noted that, conjugation is an antiautomorphism since it satisfies
x ◦ y = y ◦x. Moreover, an octonion can be decomposed in terms of its scalar
and vector parts as

x = x0e0 + �X

x0e0 =
x + x

2
; �X =

x − x

2
=

7∑

µ=1

xµeµ. (1.2)

Secondly, by using the multiplication table, the product of octonions, x and
y is expressed as

x ◦ y = x0y0 + x0
−→
Y +

−→
Xy0 − −→

X.
−→
Y +

−→
X × −→

Y (1.3)

Here, (·) is the dot product and (×) is the cross product of two elements
in R

7. Cross product of two vectors exists only in R
3 and R

7. For detailed
knowledge reader should see [7]. Furthermore, the inner product on O is the
one inherited from R

8.
Thirdly and the last, the norm of octonion x is given by

N(x) = x ◦ x = x ◦ x

= x0
2 + x1

2 + x2
2 + x3

2 + x4
2 + x5

2 + x6
2 + x7

2. (1.4)

Octonions form a composition algebra since the norm is multiplicative:

N(x ◦ y) = N(x)N(y). (1.5)

In this note, we investigate Fibonacci quaternions and octonions and we de-
rive different matrix representations of them. The rest of the paper is struc-
tured as follows. Some definitions and notation required in the analysis are
given in Sect. 2. In Sect. 3, we present some matrix representations which are
another way for the multiplication of Fibonacci quaternions and octonions.
In the conclusions, we list a few directions for the future research.

2. Some Preliminaries

Firstly, we introduce some definitions and notation that will help us greatly
in the statement of the results. Since the matrix multiplication is associative,
octonions cannot be represented by ordinary matrices. Zorn found a new way
to represent octonions in terms of 2× 2 matrices containing both scalars and
vectors using a modified version of matrix multiplication [1,8–10]. The Zorn
matrix can be considered over any field F, yet in this paper we set F = C:

z =
[

α a
b β

]

where α, β ∈ F and a, b ∈ F
3. (2.1)

As it is well known, the classic Fibonacci {Fn}n∈N sequence is defined by

F0 = 0, F1 = 1 and Fn = Fn−1 + Fn−2 for n ≥ 2,

where Fn denotes the nth classic Fibonacci number [6]. In a similar manner,
we can construct a new matrix similar to the matrix z given in equation (2.1)
as follows
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zF =
[

α A
B β

]

,where α, β ∈ F (2.2)

and A,B are the Fibonacci vectors. From [9], we know that a Fibonacci vector
is a triple of Fibonacci numbers. That is, the triple fn = (Fn−1, Fn, Fn+1) is
called the n-th Fibonacci vector. It is observed that all Fibonacci vectors lie
in the plane z = x + y. Hence, we can call the sequence {Fn}n≥1, where

{Fn}n≥1 = {f1, f2, f3, . . . , fn, . . .},

as the basic Fibonacci vector sequence. That is, the elements of this sequence
are given by

{Fn} = {(0, 1, 1), (1, 1, 2), (1, 2, 3), . . . , (Fn−1, Fn, Fn+1), . . .}.

Although the domain of the vector geometry is Z3, it is convenient to extend
it to F

3. So, we refer to zF as the Zorn–Fibonacci matrix. The trace of matrix
zF is

tr(zF) = α + β.

The conjugate matrix and the norm of zF in equation (2.2) are given by

zF =
[

β −A
−B α

]

and (2.3)

N(zF) =
∣
∣
∣
∣
α A
B β

∣
∣
∣
∣ = αβ − A.B, (2.4)

respectively. Here the A.B is dot product. The addition and multiplication
operations for two Zorn–Fibonacci matrices zF and wF are

[
α A
B β

]

+
[

γ C
D δ

]

=
[

α + γ A + C
B + D β + δ

]

(2.5)

and
[

α A
B β

] [
γ C
D δ

]

=
[

αγ + A.D δA + αC − B × D
γB + βD + A × C βδ + B.C

]

, (2.6)

respectively. Then, for λ ∈ R we get
[

λ 0
0 λ

] [
α A
B β

]

=
[

α A
B β

] [
λ 0
0 λ

]

. (2.7)

The matrix
[

λ 0
0 λ

]

can be called the Zorn unit matrix.

The multiplication operation in the Zorn matrix representation is de-
fined as to be isomorphic to the octonion multiplication which is defined
in Table 1. Since multiplication operation for octonions has 480 possible
definitions, the multiplication in the Zorn matrix representation should be
rearranged accordingly to the defined octonion table.



1236 S. Halici and A. Karataş Adv. Appl. Clifford Algebras

Table 1. Multiplication of octonions

◦ e1 e2 e3 e4 e5 e6 e7
e1 −1 e3 −e2 e5 −e4 −e7 e6
e2 −e3 −1 e1 e6 e7 −e4 −e5
e3 e2 −e1 −1 e7 −e6 e5 −e4
e4 −e5 −e6 −e7 −1 e1 e2 e3
e5 e4 −e7 e6 −e1 −1 −e3 e2
e6 e7 e4 −e5 −e2 e3 −1 −e1
e7 −e6 e5 e4 −e3 −e2 e1 −1

3. Two Matrix Representations of Fibonacci Octonions

Quaternions are related to both real and complex numbers. Since complex
numbers can be represented by matrices, quaternions can also be represented
by matrices. One of the approaches to matrices representing quaternions is
to convert a given real quaternion into a 2 × 2 complex matrix and the other
is to use a 4 × 4 real matrix. These are injective homomorphisms from H to
the matrix rings M2(C) and M4(R), respectively. Using linear algebra, the
matrix representations permit us to explain certain properties of complex
numbers, quaternions, and octonions, i.e: the norm is the determinant of the
corresponding matrix, the multiplicative property of the absolute value and
the inverse of an element. In [3], Halici introduced the real representation for
Fibonacci quaternion Qn, Qn = Fn+Fn+1i+Fn+2j+Fn+3k, by some special
matrices which are as follows:

Qn =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

Fn Fn+1 Fn+2 Fn+3

−Fn+1 Fn −Fn+3 Fn+2

−Fn+2 Fn+3 Fn −Fn+1

−Fn+3 −Fn+2 Fn+1 Fn

⎤

⎥
⎥
⎥
⎥
⎥
⎦

. (3.1)

Based upon [4,5] the Fibonacci octonion p can be expressed as a set of con-
secutive eight Fibonacci numbers,

p = (Fn, Fn+1, Fn+2, . . . , Fn+7) = Fne0 +
7∑

µ=1

Fn+µeµ = p′ + p′′e, (3.2)

where p′ and p′′ are the Fibonacci quaternions and eµ, μ = 1, 2, . . . , 7 are
imaginary octonion units. Therefore, using the Pauli spin matrices, Fibonacci
octonion p can be represented by 8 × 8 real matrices. For further details of
them, readers are referred to [1,2,4,5]. Note that e0 is the multiplicative unit
element and e4 = e. The conjugate of Fibonacci octonion p can be defined as

p = Fne0 −
7∑

µ=1

Fn+µeµ; μ = 1, 2, . . . , 7 (3.3)
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So, the norm of Fibonacci octonion p is N(p) = p ◦ p = p ◦ p =
∑7

n=0 F 2
ne0.

Since p′ and p′′ are not zero, the norm of Fibonacci octonion p is always
positive.

In the algebra ZornF, we have:

e0 =
[

1 0
0 1

]

, e4 =
[

i 0
0 −i

]

,

ej =
[

0 −uj

uj 0

]

, ej+4 =
[

0 iuj

iuj 0

]

, (3.4)

where j = 1, 2, 3 and u1 = (1, 0, 0), u2 = (0, 1, 0), u3 = (0, 0, 1) are three
dimensional unit vectors in the field R. Since e2k = −1, k = 1, 2, . . . , 7 and
{e0, e1, . . . , e7} is a standard basis for Fibonacci octonions, we can represent
the Fibonacci octonions and Fibonacci quaternions by using the elements of
this basis.

Considering the bases given in equation (3.4), we present the following
proposition without proof.

Proposition 3.1. For the nth Fibonacci quaternion and octonion two identical
representations are given as follows

(i) Qn = Fne0 + Fn+1e1 + Fn+2e2 + Fn+3e3 =
[

Fn −fn+2

fn+2 Fn

]

, (3.5)

where fn+2 is the (n+2)th Fibonacci vector sequence.

(ii) pn = Fne0 + Fn+1e1 + Fn+2e2 + · · · + Fn+7e7 =
[

Wn −wn+2

wn+2 Wn

]

,

(3.6)

where wn+k = Fn+k + iFn+k+4; k = 0, 1, 2, 3 and Wn = Fn + iFn+4.

Taking into account matrix operations, we obtain the following equa-
tions:

Qn + Qn+1 = Qn+2, pn + pn+1 = pn+2 (3.7)

tr(Qn) = 2Fn, det(Qn) = F 2
n + F 2

n+1 + F 2
n+2 + F 2

n+3 =
3∑

k=0

F 2
n+k (3.8)

and

N(pn) = WnWn + (wn+1wn+1 + wn+2wn+2 + wn+3wn+3)

=
7∑

k=0

F 2
n+k. (3.9)

For the octonions, another representation, which we will call a modified Zorn
matrix representation, is given in [1]. In that representation, three dimen-
sional basis vectors are replaced with Pauli matrices. The Pauli matrices are
denoted by σk, (k = 1, 2, 3) and these three matrices can be reduced to only
one matrix as follows:

σk =
[

δk,3 δk,1 − iδk,2
δk,1 + iδk,2 −δk,3

]

, (3.10)



1238 S. Halici and A. Karataş Adv. Appl. Clifford Algebras

where δ is the Kronecker delta. By recalling the most prominent features
of Pauli matrices such as σ2

k = I, det(σk) = −1 and tr(σk) = 0, the base
elements of modified Zorn matrix representation are represented in [1] as
follows.

e0 =
[

1 0
0 1

]

, ek =
[

0 −σk

σk 0

]

,

e4 =
[

i 0
0 −i

]

, ek+4 =
[

0 iσk

iσk 0

]

. (3.11)

Furthermore, the multiplication operation in the modified Zorn matrix rep-
resentation has been given in [1] as follows:

[
α A

B β

][
γ C

D δ

]

=

[
αγ + 1

2 tr(AD) T

Υ βδ + 1
2 tr(BC)

]

, (3.12)

where T = δA + αC + i
2 [B,D], Υ = γB + βD − i

2 [A,C] and A is a matrix
which is analogous to the vector part of Zorn matrix representation, and
[A,B] = AB − BA is a commutator.

Now, by considering (3.11) and (3.12), in the following proposition, sec-
ond representation for Fibonacci quaternion and octonions is given.

Proposition 3.2. For the nth Fibonacci quaternion and octonion, we have a
different representation as follows.

(i) Qn =
[

Fn Mn+3

−Mn+3 Fn

]

, (3.13)

where

Mn+3 =
[−Fn+3 −Fn+1 + iFn+2

−Fn+1 − iFn+2 Fn+3

]

. (3.14)

(ii) pn =
[

Wn Nn+3

−Nn+3 Wn

]

, (3.15)

where

Nn+3 =
[−wn+3 −wn+1 + iwn+2

−wn+1 − iwn+2 wn+3

]

. (3.16)

Proof. For the nth Fibonacci quaternion and octonion, if necessary calcula-
tions are made, then these representations can be easily obtained. �

Note that the trace and norm of the matrix pn is

tr(pn) = Fn + iFn+4 + Fn − iFn+4 = 2Fn, and

N(pn) =
7∑

k=0

F 2
n+k. (3.17)

From equation (3.17), it can be easily identified, N(p) �= 0 for any Fibonacci
octonion p. Since usage of the Binet formula in the calculations are more
convenient, in the following proposition, we employ the Binet formula for
Fibonacci sequence and we give a new representation for Fibonacci octonions.
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Proposition 3.3. For the Fibonacci octonions, the Zorn and the modified Zorn
matrix representation are given, respectively, as:

pn =
[

Bn −bn+2

bn+2 Bn

]

(3.18)

and

Pm =
[

Bm Cm+3

−Cm+3 Bm

]

, (3.19)

where

Cm+3 =
[−Bm+3 −Bm+1 + iBm+2

−Bm+1 − iBm+2 Bm+3

]

.

Proof. The Binet style form of Fibonacci sequence is

Fn =
αn − βn

α − β
,

where α = 1+
√
5

2 and β = 1−√
5

2 . If the Binet formula in Zorn matrix repre-
sentation is used, then

pn =
[

Bn −bn+2

bn+2 Bn

]

, (3.20)

where

Bn =
(αn − βn) + i(αn+4 − βn+4)

α − β
(3.21)

and

bn = [Bn−1, Bn, Bn+1]. (3.22)

Furthermore, as in the Zorn matrix representation, the modified Zorn matrix
representation by Binet’s formula is expressed as

Pm =
[

Bm Cm+3

−Cm+3 Bm

]

. (3.23)

It should be noted that quaternion versions of these representations can be
calculated in a similar manner. �

Thus, we can obtain Cassini identity by the aid of matrix representations
as follows.

Corollary 3.4. From different matrix representations, the following Cassini
identity is obtained:

(i) pn+1 ◦ pn−1 − pn
2 = (−1)nA1,

(ii) pn−1 ◦ pn+1 − pn
2 = (−1)nA2,

(iii) pn+1 ◦ pn−1 − pn
2 = (−1)nB1,

(iv) pn−1 ◦ pn+1 − pn
2 = (−1)nB2,

where

A1 =
[

2 + 10i (−2 + 2i,−4 + 12i,−6 + 35i)
(2 + 2i, 4 + 12i, 6 + 35i) 2 − 10i

]

,
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A2 =
[

2 + 4i (20i,−2 + 24i,−2 + 23i)
(20i, 2 + 24i, 2 + 23i) 2 − 4i

]

and

B1 =

⎡

⎢
⎢
⎣

2 + 10i
[−6 + 35i −14 − 2i

10 + 6i 6 + 35i

]

[
6 + 35i 14 − 2i

−10 + 6i −6 − 35i

]

2 − 10i

⎤

⎥
⎥
⎦ ,

B2 =

⎡

⎢
⎢
⎣

2 + 4i

[−2 + 23i −24 + 18i
24 + 22i 2 + 23i

]

[
2 + 23i 24 + 18i

−24 + 22i −2 − 23i

]

2 − 4i

⎤

⎥
⎥
⎦ .

In the following example, we demonstrate representations described in
Propositions 3.1 and 3.2.

Example. Let us take two Fibonacci octonions, such as, the 4th Fibonacci
octonion p4 and the 1st Fibonacci octonion p1:

p4 = 3e0 + 5e1 + 8e2 + 13e3 + 21e4 + 34e5 + 55e6 + 89e7,

p1 = 1e0 + 1e1 + 2e2 + 3e3 + 5e4 + 8e5 + 13e6 + 21e7.

Firstly, let us start with the Zorn matrix representation of p4 and p1,

p4 =
[

W4 −w6

w6 W 4

]

p4 =
[

3 + 21i −(5 − 34i, 8 − 55i, 13 − 89i)
(5 + 34i, 8 + 55i, 13 + 89i) 3 − 21i

]

,

p1 =
[

W1 −w3

w3 W 1

]

p1 =
[

1 + 5i −(1 − 8i, 2 − 13i, 3 − 21i)
(1 + 8i, 2 + 13i, 3 + 21i) 1 − 5i

]

.

Using these representations and the Zorn multiplication defined in equation
(2.6) p4p1 can be calculated as

p4p1 =
[−3018 + 30i −(6 − 76i, 12 − 106i, 18 − 140i)

(6 + 76i, 12 + 106i, 18 + 140i) −3018 − 30i

]

.

In fact, the resulting matrix is the Zorn matrix representation of p4 ◦ p1:

p4 ◦ p1 = −3018e0 + 6e1 + 12e2 + 18e3 + 30e4 + 76e5 + 106e6 + 140e7.

Second representation, which uses Pauli matrices in the Zorn matrix repre-
sentation [1], is as follows:

P4 =

⎡

⎢
⎢
⎣

3 + 21i

[−(13 − 89i) 50 + 42i
−60 + 26i 13 − 89i

]

[
13 + 89i 60 + 26i

−50 + 42i −13 − 89i

]

3 − 21i

⎤

⎥
⎥
⎦ ,
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P1 =

⎡

⎢
⎢
⎣

1 + 5i

[−(3 − 21i) 12 + 10i
−14 + 6i 3 − 21i

]

[
3 + 21i 14 + 6i

−12 + 10i −3 − 21i

]

1 − 5i

⎤

⎥
⎥
⎦ .

If we multiply these Fibonacci octonions in a similar way as defined in [1],
then we obtain the matrix given below.

P4P1 =

⎡

⎢
⎢
⎣

−3018 + 30i
[−18 + 140i 100 + 88i

−112 + 64i 18 − 140i

]

[
18 + 140i 112 + 64i

−100 + 88i −81 − 140i

]

−3018 − 30i

⎤

⎥
⎥
⎦ .

This representation is also the modified Zorn matrix representation of p4 ◦p1.

At this point, it is crucial to consider definitions of two representations
for a better insight of the current problem and identify which one seems to
be advantageous in calculations. By recalling the definition of Zorn matrix
multiplication, which is similar to the ordinary matrix multiplication, one ob-
serves that the Zorn matrix multiplication involves additional computations
of the dot and the vector products as shown in (2.6). From the definition of
the modified version of the multiplication, one can easily see that the multi-
plication in this representation needs more calculations than the Zorn matrix
representation such as the extra matrix multiplication, commutator and trace
functions (3.12). It is better and convenient to use the standard version of the
octonion algebra. If one is restricted to use the complex algebra rather than
the quaternion and octonion algebras, then the reader can use both of them.
Advantage of these representations is to calculate multiplication of Fibonacci
octonions without knowing the octonion multiplication table.

4. Conclusion

In conclusion, we have introduced two different matrix representations for
Fibonacci quaternions and Fibonacci octonions by means of the Zorn matrix
and the modified Zorn matrix. As a future research, we will try to generalize
these representations over the sedenion algebra which generalizes the octonion
algebra.
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