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Abstract

In this study we investigate regular black hole solutions of the non-minimally coupled Y (R)F 2

gravity model. We give two regular black hole solutions and the corresponding non-minimal model

for both electrically or magnetically charged cases. We calculate all the energy conditions for these

solutions.
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I. INTRODUCTION

To understand the nature of singularities in theories of gravity is a challenging problem. It

can be considered that a Quantum Theory of Gravity may solve this problem. As for now,

we are very far from the Quantum Theory of Gravity, we can avoid the singularities with

regular black hole solutions. The regular black hole solution first were given by Bardeen

[1]. Later, this solution of Bardeen was obtained from the field equations of the Einstein-

Nonlinear electrodynamics [2]. It is interesting to obtain some regular black hole solutions

of the theory which is f(R) minimally coupled to the Non-linear electrodynamics. In recent

years, various new regular black holes were proposed and investigated increasingly in the

literature [3]-[16] (see for a review [5]). Since the non-minimally coupled Y (R)-Maxwell

models [17–25] have some solutions which can explain the rotation curves of galaxies and

cosmic acceleration of the universe, then; it is natural to seek regular black hole solutions

of the non-minimally coupled electromagnetic fields to gravity. We focus on this subject in

this paper.

According to the Penrose-Hawking singularity theorem [4], to arise a singularity inside the

horizon of a black hole, the strong energy condition (SEC) has to be satisfied. The regular

black holes violate the strong energy condition in the central region inside the black hole. We

find various models with the non-minimally coupled Y (R) function for some known regular

metric functions. We calculate the energy conditions for the effective energy-momentum

tensor of these models. Then we find that they lead to a negative tangential pressure in

the central core, and the effective equation of state with negative radial pressure pr = −ρ is

everywhere, which is important for the accelerated expansion phase of the Universe. We see

that at least SEC is violated by these solutions in some central regions of the black holes.

II. THE GRAVITATIONAL MODEL WITH Y (R)F 2-TYPE COUPLING

We start with the action with the Y (R)F 2-type non-minimal coupling term [21–23]

I[ea, ωa
b, F ] =

∫

M
{

1

2κ2
R ∗ 1−

1

2
Y (R)F ∧ ∗F + λa ∧ T a}. (1)
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Here {ea} is the co-frame 1-form, {ωa
b} is the connection 1-form, F = dA = 1

2
Fabe

a ∧ eb is

the homogeneous electromagnetic field 2-form, λa is the Lagrange multiplier 2-form whose

variation leads to the torsion-free Levi-Civita connection. Then the connection can be found

from T a = dea+ωa
b∧eb = 0. In this action, R is the curvature scalar which can be obtained

by this operation ιbaR
ab = R from the curvature tensor 2-forms Ra

b = dωa
b + ωa

c ∧ ωc
b via

the interior product ıa, and κ2 = 8πG is universal gravitational coupling constant. We take

the space-time metric g = ηabe
a ⊗ eb with the signature (− + ++). We set the orientated

volume element as ∗1 = e0 ∧ e1 ∧ e2 ∧ e3.

We obtain gravitational and electromagnetic field equations of the theory by taking in-

finitesimal variations of the action according to independent variations of {ea}, {ωa
b} and

{A} [21, 22]

−
1

2κ2
Rbc ∧ ∗eabc =

1

2
Y (ιaF ∧ ∗F − F ∧ ιa ∗ F ) +

1

2
YRFmnF

mn ∗Ra

+
1

2
D[ιbD(YRFmnF

mn)] ∧ ∗eab , (2)

d(∗Y F ) = 0 , dF = 0 (3)

where YR = dY
dR

. The gravitational field equation (2) can be written as

Ga

κ2
= τa (4)

where Ga = −1

2
Rbc ∧ ∗eabc = ∗Ra −

1

2
R ∗ ea is the Einstein tensor, and τa = τa,b ∗ e

b is the

effective energy momentum tensor for this non-minimally coupled model, which is equal to

right hand side of (2). The effective energy density, radial pressure, and tangential pressures

are found from ρ = τ0,0, pr = τ1,1, pt = τ2,2 = τ3,3 using the field equation (4).

III. REGULAR BLACK HOLE SOLUTIONS

We seek regular black hole solutions for the following (1+3)-dimensional spherically sym-

metric static line element

g = −f 2(r)dt2 + f−2(r)dr2 + r2dθ2 + r2 sin(θ)2dφ2 (5)
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and consider the electromagnetic tensor F which may have electric and magnetic components

F = E(r)dr ∧ dt+B(r)r2 sin θdθ ∧ dφ = E(r)e1 ∧ e0 +B(r)e2 ∧ e3. (6)

The field equations of the model for these ansatz turn out to five equations (three gravita-

tional, two electromagnetic) and four unknown functions (E,B, Y, f). These equations can

be found in [26]. The homogeneous electromagnetic field condition dF = 0 determines the

magnetic field as

B =
q

r2
(7)

where q is a real integration constant representing magnetic monopole charge. It is im-

possible to solve these equations without any simplification. Then, we use the following

constraint to simplify these equations

YR(E
2 − B2) =

1

κ2
. (8)

Under this constraint the number of equations decreases to two

f 2′′ −
2

r2
(f 2 − 1) = κ2Y (E2 +B2), (9)

Y E =
qe

r2
, (10)

where qe is the electric charge. We note that one can find the constraint (8) by taking

differential of the equation (9). To show this, we rewrite the equation (9) using the magnetic

field B = q
r2

from (7) and the electric field E = qe
Y r2

from (10) and find

r4
(

f 2′′ −
2

r2
(f 2 − 1)

)

= κ2(
q2e
Y

+ q2Y ) . (11)

After taking differential of equation (11) we obtain

(

−f 2′′′ −
4

r
f 2′′ +

2

r2
f 2′ +

4

r3
(f 2 − 1)

)

dr = κ2(
q2e

Y 2r4
−

q2

r4
)dY . (12)
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We see that left hand side of the equation (12) is equal to differential of the curvature scalar

R = −f 2′′ − 4

r
f 2′ − 2

r2
(f 2 − 1). Using the equations (7), (10) and dR in (12) we obtain the

following equation

dR = κ2(E2 −B2)dY (13)

which is differential form of the constraint (8). Thus, it is obvious that we have two equations

(9), (10) and three unknowns (f, Y, E). Then, for a given model with a non-minimal function

Y(R), we can determine the metric function f(r) from these equations. On the other hand,

for a desiring metric we can reach a corresponding model with a non-minimal Y(R) function.

In order to be successful in this process, we need to solve r fromR(r) and express the function

Y depending on R. Then we can determine the corresponding model.

A. Regular Black Hole Solution-1

The field equations of this non-minimal Y (R)F 2 model (9), (10) accept the following

regular black hole solution

f 2(r) = 1−
2m

r

(

1−
1

(1 + a3r3)1/3

)

(14)

with the magnetic field (E = 0) and the non-minimal function

B(r) =
q

r2
(15)

Y (r) =
8ma6r7

κ2q2(1 + a3r3)7/3
(16)

where we have defined a new constant a = 2m
q2
. The metric function (14) can be found

in [11] as an electrically charged solution of Einstein-Non-linear Electrodynamics. In this

notation, we calculate the curvature scalar R and the invariant 4-form Rab ∧ ∗Rab for the

metric function (14)

R(r) =
8ma3

(1 + a3r3)7/3
(17)

Rab ∧ ∗Rab = (
24m2

r6
−

48m2

r6p
−

32m2a6

p7
+

24m2

r6p2
+

40m2a6

p8
+

32m2a12r6

p14

5



−
16m2a3

r3p4
+

16m2a3

r3p5
) ∗ 1 (18)

where we have defined p = (1 + a3r3)1/3. When we check the limits

lim
r→0

R = 8ma3 =
64m4

q6
(19)

lim
r→0

Rab ∧ ∗Rab =
16

3
m2a6 ∗ 1 =

210m8

3q12
∗ 1, (20)

they are regular at the center of black hole. It needs to solve r from (17) to rewrite the

non-minimal function Y in terms of R

r(R) =
1

a

(

(
8ma3

R
)3/7 − 1

)1/3

. (21)

When we substitute the inverse function (21) in the non-minimal function (16) we obtain

Y (R) =

[

(8ma3)3/7 − R3/7
]7/3

κ2q2a4
(22)

and the corresponding model is written as:

L =
1

2κ2
R ∗ 1−

[

(8ma3)3/7 − R3/7
]7/3

2κ2q2a4
F ∧ ∗F + λa ∧ T a. (23)

After the duality transformation B → −Y E, q → −qe and Y → 1

Y
; which is given in [26],

we reach the field equations of the model for the electromagnetic tensor F with only electric

component (B = 0, E 6= 0). As a consequence of this transformation, the same metric

function (14) determines the electric field and the non-minimal function of this model as

follows

Y (r) =
κ2q2e(1 + a3r3)7/3

8ma6r7
(24)

E(r) =
4qe
κ2r2

(

1 +
1

a3r3

)−7/3

=
qe

Y (r)r2
(25)

with a = 2m
q2
e

. We see that the electric field is regular at the center of black hole,

limr→0E(r) = 0. We can rewrite the non-minimal function (24) in terms of R as

Y (R) =
κ2q2ea

4

[(8ma3)3/7 − R3/7]
7/3

(26)

6



and we write the corresponding Lagrangian of the model

L =
1

2κ2
R ∗ 1−

κ2q2ea
4

2 [(8ma3)3/7 − R3/7]
7/3

F ∧ ∗F + λa ∧ T a (27)

via the duality transformation.

The same metric function (14) and an electric field different from (25) only up to a scale

factor was obtained from a different theory with Einstein-nonlinear electrodynamics in [11].

It is important to check all the energy conditions for this solution. The conditions which

are calculated as below have to be equal or greater than zero for rising a singularity in

General Relativity. But in the regular black holes at least the strong energy condition has

to be violated. To show this we firstly calculate the energy density ρ(r), the radial and

tangential pressures pr, pt for the metric function (14) and the magnetic field (15). We note

that all the following results also can be obtained from the solutions with the electric field

(25) which has the electric charge qe = q

ρ(r) =
16m4q2

κ2(q6 + 8m3r3)4/3
= −pr(r) pt(r) =

16q2m4(8m3r3 − q6)

κ2(q6 + 8m3r3)7/3
. (28)

We find the following energy conditions using the energy density ρ(r), the radial and tan-

gential pressures pr, pt

DEC1 = ρ ≥ 0, (29)

NEC1 = WEC1 = ρ+ pr = 0 , (30)

NEC2 = WEC2 = ρ+ pt =
28m7q2r3

κ2(q6 + 8m3r3)7/3
, (31)

SEC = ρ+ pr + 2pt =
32m4q2(8m3r3 − q6)

κ2(q6 + 8m3r3)7/3
, (32)

DEC2 = ρ− pr = 2ρ , (33)

DEC3 = ρ− pt =
32m4q8

κ2(q6 + 8m3r3)7/3
. (34)

Thus, we see that all the energy conditions are satisfied in the region r ≥ q2

2m
for the

electrically or magnetically charged solutions. But, only the SEC is violated in the central

region r < q2

2m
.
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B. Regular Black Hole Solution-2

Secondly, we take the metric function from [6] and [16] with the electric charge qe

f 2(r) = 1−
2m

r
e−

q
2
e

2mr . (35)

The Ricci scalar and Rab ∧ ∗Rab are calculated using the metric function (35) as

R(r) =
q4e

2mr5
e−

q
2
e

2mr (36)

Rab ∧ ∗Rab = (
24m2

r6
−

24mq2e
r7

+
12q4e
r8

−
2q6e
mr9

+
q8e

8m2r10
)e−

q
2
e

mr ∗ 1 . (37)

When we check their limits

lim
r→0

R = 0, lim
r→0

Rab ∧ ∗Rab = 0 (38)

we see that they are regular at the center of black hole. We find the solution of these

differential equations (9) and (10) for this regular metric function (35) as follows

Y (r) =
2κ2mr

(8mr − q2e)e
−

q
2
e

2mr

(39)

E(r) =
qe

r2Y (r)
=

qe(8mr − q2e)e
−

q
2
e

2mr

2mκ2r3
. (40)

While this electric field is regular at the center, it has the following asymptotic behavior

E(r) =
4qe
κ2r2

−
5q3e

2mκ2r3
+

3q5e
4m2κ2r4

+O(
1

r5
) . (41)

The inverse function of R(r) in (36) can be found in terms of Lambert function [27] as

r(R) = −
q2e
10m

W−1



−
1

10

(

2q6eR

m4

)1/5


 . (42)
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Then we rewrite the non-minimal function of this model as

Y (R) = −
105κ2m4W 5

[

− 1

10

(

2q6
e
R

m4

)1/5
]

2q6eR
(

4 + 5W
[

− 1

10

(

2q6
e
R

m4

)1/5
]) . (43)

From the duality transformation Y E → −B, qe → −q, Y → 1

Y
[26], we can find

the magnetic solution for this same metric (35), which corresponds to dual solution of the

electrically charged solution (39), (40). Then the resulting magnetic field

B(r) =
q

r2
(44)

and the corresponding non-minimal function

Y (R) = −
2q6R

(

4 + 5W
[

− 1

10

(

2q6R
m4

)1/5
])

105κ2m4W 5

[

− 1

10

(

2q6R
m4

)1/5
] (45)

constructs the dual solution. We calculate the energy density and pressures for the metric

function (35) with the magnetic charge q and the the magnetic field (44). We note that

all the following results also can be obtained from the solutions with the electric field (40)

which has the electric charge qe = q

ρ(r) =
q2e

−q
2

2mr

κ2r4
= −pr(r) pt(r) = ρ(r)−

q4e
−q

2

2mr

4κ2mr5
. (46)

Now we calculate all the energy conditions for the metric function (35)

DEC1 = ρ ≥ 0, (47)

NEC1 = WEC1 = ρ+ pr = 0 , (48)

NEC2 = WEC2 = ρ+ pt =
q2e

−q
2

2mr

4mκ2r5
(8mr − q2) , (49)

SEC = ρ+ pr + 2pt =
q2e

−q
2

2mr

2mκ2r5
(4mr − q2) , (50)

DEC2 = ρ− pr = 2ρ , (51)

DEC3 = ρ− pt =
q4e

−q
2

2mr

4κ2mr5
. (52)
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We found that all the energy conditions are satisfied in the region r ≥ q2

4m
for these

electrically (qe = q) or magnetically charged solutions. But, in the region q2

8m
≤ r < q2

4m

only the SEC is violated by this solution. Furthermore, in the central region r < q2

8m
the

conditions NEC2,WEC2 together with SEC are violated.

IV. CONCLUSION

We have investigated various regular black hole solutions of the non-minimally coupled

Y (R)F 2 theory. We found electrically charged or magnetically charged (after the duality

transformation) regular black hole solutions which can be obtained from the non-minimal

model with some specific non-minimal functions Y (R). We calculated all the energy condi-

tions for these solutions using the effective energy-momentum tensor that comes from the

non-minimally coupled Y (R)F 2 term.

The first regular black hole solution violates only the strong energy condition in a central

region r < q2

2m
, inside the event horizon. This solution is in agreement with the singularity

theorem of General Relativity [28]. But the second regular black hole solution violates the

weak energy condition together with the strong energy condition in the region r < q2

8m
, while

it satisfies all the energy conditions in the outer region r ≥ q2

4m
for the electric or magnetic

fields. The same energy conditions of the second regular black hole with an electric field are

also found in [16] for a different theory which is f(R) minimally coupled to the Non-linear

electrodynamics.
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