T.C. PAMUKKALE ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ KİMYA MÜHENDİSLİĞİ ANABİLİM DALI

BAZI 3-SÜBSTİTÜEHETARİLAMİNOFTALİTLERİN SENTEZİ, YAPISAL ÖZELLİKLERİNİN SPEKTROSKOPİK, DENEYSEL X-IŞINI KIRINIMI VE TEORİK YÖNTEMLERLE İNCELENMESİ

YÜKSEK LİSANS TEZİ

ZEYNEP TANRIKULU

DENİZLİ, HAZİRAN - 2019

T.C. PAMUKKALE ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ KİMYA MÜHENDİSLİĞİ ANABİLİM DALI

BAZI 3-SÜBSTİTÜEHETARİLAMİNOFTALİTLERİN SENTEZİ, YAPISAL ÖZELLİKLERİNİN SPEKTROSKOPİK, DENEYSEL X-IŞINI KIRINIMI VE TEORİK YÖNTEMLERLE İNCELENMESİ

YÜKSEK LİSANS TEZİ

ZEYNEP TANRIKULU

DENİZLİ, HAZİRAN - 2019

KABUL VE ONAY SAYFASI

ZEYNEP TANRIKULU tarafından hazırlanan "BAZI 3-SÜBSTİTÜEHETARİLAMİNOFTALİTLERİN SENTEZİ, YAPISAL ÖZELLİKLERİNİN SPEKTROSKOPİK, DENEYSEL X-IŞINI KIRINIMI VE TEORİK YÖNTEMLERLE İNCELENMESİ" adlı tez çalışmasının savunma sınavı 21.06.2019 tarihinde yapılmış olup aşağıda verilen jüri tarafından oy birliği / oy çokluğu ile Pamukkale Üniversitesi Fen Bilimleri Enstitüsü Kimya Mühendisliği Anabilim Dalı Yüksek Lisans Tezi olarak kabul edilmiştir.

Jüri Üyeleri

İmza

Danışman Prof. Dr. Mustafa ODABAŞOĞLU

Üye Prof. Dr. Ayşegül GÖLCÜ

Üye Doç. Dr. Nazan KARAPINAR

Pamukkale Üniversitesi Fen Bilimleri Enstitüsü Yönetim Kurulu'nun 2.1.108./2019 tarih ve ...33.119.... sayılı kararıyla onaylanmıştır.

Prof. Dr. Uğur YÜCEL

Fen Bilimleri Enstitüsü Müdürü

Bu tezin tasarımı, hazırlanması, yürütülmesi, araştırmalarının yapılması ve bulgularının analizlerinde bilimsel etiğe ve akademik kurallara özenle riayet edildiğini; bu çalışmanın doğrudan birincil ürünü olmayan bulguların, verilerin ve materyallerin bilimsel etiğe uygun olarak kaynak gösterildiğini ve alıntı yapılan çalışmalara atfedildiğine beyan ederim.

.

ZEYNEP TANRIKULU

ÖZET

BAZI 3-SÜBSTİTÜEHETARİLAMİNOFTALİTLERİN SENTEZİ, YAPISAL ÖZELLİKLERİNİN SPEKTROSKOPİK, DENEYSEL X-IŞINI KIRINIMI VE TEORİK YÖNTEMLERLE İNCELENMESİ YÜKSEK LİSANS TEZİ ZEYNEP TANRIKULU PAMUKKALE ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ KİMYA MÜHENDİSLİĞİ ANABİLİM DALI (DANIŞMAN: PROF. DR. MUSTAFA ODABAŞOĞLU) DENİZLİ, HAZİRAN - 2019

Bu çalışmada, önemli biyolojik aktiviteye sahip olmaları beklenen, bazı 3hetarilaminoftalit türevleri tek kademeli bir reaksiyonla sentezlendi. Sentezlenen bileşiklerin spektroskopik özellikleri FT-IR, ¹H-NMR, UV-VIS teknikleri ve Xışınları kırınımı yöntemi ile incelendi. Teorik hesaplamalar, X-ışınları verileri kullanılarak *Gaussian09* paket programının Yoğunluk Fonksiyoneli Teorisi (YFT) temel alınarak yapıldı. Yoğunluk Fonksiyoneli Teorisi B3LYP/6311G(d,p) temel bazı ile geometri optimizasyonu (bağ uzunlukları ve bağ açıları), yük yoğunluğu, dipol moment, moleküler elektrostatik potansiyel (MEP), en yüksek dolu moleküler orbital (HOMO) ve en düşük boş moleküler orbital (LUMO) enerjileri ve kimyasal reaktivite parametreleri (elektronegatiflik, kimyasal sertlik ve yumuşaklık, vb.) belirlendi. Ayrıca, ¹³C-NMR kimyasal kayma değerleri, titreşim frekansları ve enerji geçişleri hesaplatıldı. Spektroskopik ve X-ışınları kırınımı ile elde edilen deneysel sonuçlar, teorik hesaplamalarla elde edilen sonuçlarla karşılaştırıldı.

ANAHTAR KELİMELER: Ftalit (İsobenzofuranon), Spektroskopi, X-Işınları Kırınımı, Hesaplamalı Kimya Yöntemleri, Yoğunluk Fonksiyoneli Teorisi

ABSTRACT

SYNTHESIS OF SOME 3-SUBSTITUTEDPHTHALIDES AND EXAMINATION OF STRUCTURAL PROPERTIES BY SPECTROSCOPIC, EXPERIMENTAL X-RAY DIFFRACTION AND THEORETICAL METHODS MSC THESIS ZEYNEP TANRIKULU PAMUKKALE UNIVERSITY INSTITUTE OF SCIENCE CHEMISTRY ENGINEERING (SUPERVISOR: PROF. DR. MUSTAFA ODABASOGLU) DENİZLİ, JUNE 2019

Some 3-hetarylaminophthalide derivatives which are intended to have significant biological activities were synthesized by a single-step reaction. The spectroscopic properties of the synthesized compounds were determined by FT-IR, ¹H-NMR, UV-VIS techniques and X-ray diffraction method. The theoretical calculations were made based on the density functional theory of the Gaussian program using X-ray data. Geometry optimization (bond lengths and bond angles), charge density, molecular electrostatic potential (MEP), the highest occupied molecular orbital (HOMO) energies, the lowest unocccupied molecular orbital (LUMO) energies and chemical reactivity parameters (electronegativity, chemical hardness and softness etc.) were determined by Density Functional Theory (DFT/B3LYP/6311G(d,p)). ¹³C-NMR chemical shift values, vibration frequencies and energy transitions were also calculated. The experimental results obtained by spectroscopy and X-ray diffraction were compared with the results obtained by the theoretical calculations.

KEYWORDS: Phthalide (Isobenzofuranone), Spectroscopy, X-Ray Diffraction, Computational Chemistry Methods, Density Functional Theory

İÇİNDEKİLER

<u>Sayfa</u>

ÖZ	ЕТ		i
AB	STRACT	· · · · · · · · · · · · · · · · · · ·	ii
içi	NDEKİL	.ER	iii
ŞEI	KİL LİST	ſESİ	vi
TA	BLO LÍS	TESİ	X
SEI	MBOL L	İSTESİ	xiv
KIS	SALTMA	LAR LİSTESİ	XV
ÖN	SÖZ		xvi
1.	GİRİS		1
1.1	Tezi	n Amacı	8
2.	FTALİI	TLERİN GENEL YAPISI VE ÖZELLİKLERİ	10
2.1	Doğ	al Ftalitler	10
	2.1.1	Ftalitlerin Bitkiler Aleminde Yayılışları	13
	2.1.1.1	Biyosentezleri	15
	2.1.2	Fiziksel Özellikleri	15
	2.1.3	Kullanım Alanları	16
	2.1.4	Bitkilerden İzolasyon, Teşhis ve Miktar Tayinleri	16
	2.1.5	Ftalitleri İçeren Bitkilerin Farmakolojik Etkileri ve Tıbbi Amaçla	20
~ ~	Ftali	tlarin Santazi	
2.2	2 2 1	Etalik Asit Türevlerinin İndirgenmesi ile Etalit Sentezi	
	2.2.1	Orto-I ityumlama Vöntemiyle Etalit Sentezi	38
	2.2.2	B-Keto Asitler ve Etaldebidik Asitten Etalitlerin Sentezi	40
	2.2.4	Siklizasvon Yöntemiyle Ftalitlerin Sentezi	
	2.2.5	Ester ve Ketonlardan Ftalit Sentezi	48
	2.2.6	Orto-Dialdehitlerden Ftalit Sentezi	53
	2.2.7	İndan Türevlerinden Ftalit Sentezi	56
	2.2.8	Orto-Siyano Benzaldehitlerden Ftalit Sentezi	58
2.3	5-Sü	ibstitüe Ftalitlerin Sentezi	61
2.4	Ftali	tlerin Reaksiyonları	65

3.	MATER	AYAL VE YÖNTEM
3.1	Mate	eryal71
	3.1.1	Kullanılan Kimyasal Maddeler71
	3.1.2	Kullanılan Cihazlar
3.2	Yön	tem72
	3.2.1	3-Hetarilamino Ftalitlerin Sentezi72
	3.2.1.1	3-((5-metil piridin-2-il)amino) isobenzofuran-1(3H)-on (I) Sentezi
	3.2.1.2	3-(Pirimidin-2-ilamino) isobenzofuran-1(3H)-on (II) Sentezi74
	3.2.1.3	3-(Piridin-3-ilamino) isobenzofuran-1(3H)-on (III) Sentezi
	3.2.1.4 Sentezi	3-((4,6-dimetil pirimidin-2-il)amino) isobenzofuran-1(3 <i>H</i>)-on (IV)
	3.2.1.5 Sentezi	3-((4,6-dimetoksi pirimidin-2-il)amino) isobenzofuran-1(3 <i>H</i>)-on (V)
	3.2.1.6 Sentezi	3-((4-kloro-6-metil pirimidin-2-il)amino) isobenzofuran-1(3 <i>H</i>)-on (VI)
	3.2.1.7	3-((6-metil piridin-2-il)amino) isobenzofuran-1(3H)-on (VII) Sentezi 76
	3.2.1.8	3-((5-metiltiyazol-2-il)amino) isobenzofuran-1(3H)-on (VIII) Sentezi77
	3.2.1.9	3-((4,6-dimetilpirimidin-2-il)amino)-6,7-dimetoksi isobenzofuran-1(3H)-on
	(IX) Se	entezi
4.	BULGU	LAR VE SONUÇLAR78
4.1	X-Iş	ını Kırınımı
	4.1.1 İncelenme	3-((5-metilpiridin-2-il)amino) isobenzofuran-1(<i>3H</i>)-on (I) Bileşiğinin esi
	4.1.2	3-(Pirimidin-2-ilamino) isobenzofuran-1(3H)-on (II) Bileşiğinin İncelenmesi90
	4.1.3	3-(Piridin-3-ilamino) isobenzofuran-1(3H)-on (III) Bileşiğinin İncelenmesi.97
	4.1.4 İncelenme	3-((4,6-dimetil pirimidin-2-il)amino) isobenzofuran-1(3 <i>H</i>)-on (IV) Bileşiğinin esi
	4.1.5 Bileşiğini	3-((4,6-dimetoksi pirimidin-2-il)amino) isobenzofuran-1(3H)-on (V) n İncelenmesi112
	4.1.6 Bileşiğini	3-((4-klor-6-metil pirimidin-2-il)amino) isobenzofuran-1(3 <i>H</i>)-on (VI) n İncelenmesi
	4.1.7 İncelenme	3-((6-metil piridin-2-il)amino) isobenzofuran-1(3 <i>H</i>)-on (VII) Bileşiğinin esi
	4.1.8 Bileşiğini	3-((5-metiltiyazol-2-il)amino) isobenzofuran-1(3 <i>H</i>)-on (VIII) Sentezi n İncelenmesi131
	4.1.9 (IX) Biles	3-((4,6-dimetilpirimidin-2-il)amino)-6,7-dimetoksi isobenzofuran-1(3 <i>H</i>)-on siğinin İncelenmesi
4.2	UV-	VIS Spektrumu145

7.	ÖZGE	ÇMİŞ	199
6.	KAYN	AKLAR	186
5.	SONU	Ç VE ÖNERİLER	181
	4.4.1 Spektrui	3-((5-metilpiridin-2-il)amino) isobenzofuran-1(3H)-on (I) Bileşiğinin N mu	NMR 173
4.4	Nü	kleer Manyetik Rezonans (NMR) Spektrumu	173
	4.3.1 Spektrui	3-((5-metilpiridin-2-il)amino) isobenzofuran-1(<i>3H</i>)-on (I) Bileşiğinin F mu	FT-IR 154
4.3	Fou	urier Dönüşümlü Infrared (FT-IR) Spektrumu	154
	4.2.1 VIS Spe	3-((5-metilpiridin-2-il)amino) isobenzofuran-1(<i>3H</i>)-on (I) Bileşiğinin U ektrumu	JV- 145
	4 2 1	2 ((5 matilninidin 2 il)amina) isahangafuran 1(21) an (I) Dilasičinin I	117

ŞEKİL LİSTESİ

<u>Sayfa</u>

Sekil 1.1: 3-Arilaminoftalit sentezi	9
--------------------------------------	---

Sekil 2.1: Ftalit yapısı	10
Sekil 2.2: Ftalitlerin izolasyonunda kullanılan perkolasyon yöntemi	17
Şekil 2.3: Ftalitlerin izolasyonunda kullanılan maserasyon yöntemi	17

Şekil 4.1: 3-((5-metilpiridin-2-il)amino) isobenzofuran-1(3 <i>H</i>)-on (I) bileşiğinin molekül yapışı	78
Sekil 4 2: 3-((5-metilpiridin-2-il)amino) isobenzofuran-1(3H)-on (I) kristalinin	.78
denevsel ve teorik değerleri arasındaki korelasvon grafikleri a) bağ	
uzunluğu, b) bağ acısı, c) torsiyon acı	82
Şekil 4.3: 3-((5-metilpiridin-2-il)amino) isobenzofuran-1(3 <i>H</i>)-on (I) bileşiğinin	
teorik (gaz fazı) ve deneysel geometri (kırmızı) ile çizilen molekülleri	
çakıştırma	83
Şekil 4.4: 3-((5-metilpiridin-2-il)amino) isobenzofuran-1(3H)-on (I) bileşiği için	
N— HN, C—HO hidrojen bağları ve C—H π etkileşimlerinin	
gösterimi $[Cg1 = C2-C7$ halkasının merkezi; $Cg2 = C1-O1$ halkasının	~ .
merkezi]	84
Şekil 4.5: $3 - ((5 - \text{metilpiridin} - 2 - 1) \text{amino})$ isobenzoturan - $1(3H)$ -on (1) bileşiğinin	07
Sakil 4 6: 2 ((5 matilairidia 2 il)amina) isabanzafuran 1(2H) an (I) bilagižinin ga	87
fazındaki moleküler orbital yüzevleri	2 88
Sekil 4 7. 3-(Pirimidin-2-ilamino) isobenzofuran-1(3H)-on (II) bilesiğinin	00
molekül vapısı	90
Sekil 4.8: 3-(Pirimidin-2-ilamino) isobenzofuran-1(3 <i>H</i>)-on (II) bilesiğinin teorik	20
(gaz fazı) ve deneysel geometri (kırmızı) ile çizilen molekülleri	
çakıştırma	93
Şekil 4.9: 3-(Pirimidin-2-ilamino) isobenzofuran-1(3H)-on (II) bileşiği için	
hidrojen bağ gösterimi	94
Şekil 4.10: 3-(Pirimidin-2-ilamino) isobenzofuran-1(3 <i>H</i>)-on (II) bileşiğinin	
moleküler elektrostatik potansiyeli (gaz)	95
Şekil 4.11: 3-(Pirimidin-2-ilamino) isobenzofuran-1(3 <i>H</i>)-on (11) bileşiğinin gaz	0.6
fazindaki moleküler orbital yüzeyleri	96
Şekil 4.12: 3-(Piridin-3-ilamino) isobenzofuran-1(3H)-on (III) bileşiginin molekul	07
Sekil 4 13. 3-(Piridin-3-ilamino) isobenzofuran-1(3H)-on (III) bilesiğinin teorik (a	7/
fazi) ve denevsel geometri (kirmizi) ile cizilen molekülleri cakistirma 1	,az 100
inclusion for a conceptor geometri (krimizi) ne çizmen metekunen çukiştirina i	.00

Şekil 4.14	3-(Piridin-3-ilamino) isobenzofuran-1(3H)-on (III) kristaline ait hidrojen
	bağları ve C—H π etkileşimlerinin gösterimi [Cg1 = C9-C13 halkasının
	merkezi; Cg2 = C2-C7 halkasının merkezi] 101
Şekil 4.15	3-(Piridin-3-ilamino) isobenzofuran-1(3H)-on (III) bileşiğinin moleküler
	elektrostatik potansiyeli (gaz) 102
Şekil 4.16	3-(Piridin-3-ilamino) isobenzofuran-1(3H)-on (III) bileşiğinin gaz
	fazındaki moleküler orbital yüzeyleri
Şekil 4.17:	3-((4,6-dimetil pirimidin-2-il)amino) isobenzofuran-1(3H)-on (IV)
	bileşiğinin molekül yapısı
Şekil 4.18:	3-((4,6-dimetil pirimidin-2-il)amino) isobenzofuran-1(3H)-on (IV)
	bileşiğinin teorik (gaz fazı) ve deneysel geometri (kırmızı) ile çizilen
	molekülleri çakıştırma 107
Şekil 4.19	3-((4,6-dimetil pirimidin-2-il)amino) isobenzofuran-1(3 <i>H</i>)-on (IV)
	bileşiği için N—H···N, C—H π hidrojen bağ etkileşimlerinin gösterimi
	[Cg1= C16-C21 halkasının merkezi, Cg2= C2-C7 halkasının merkezi]109
Şekil 4.20	3-((4,6-dimetil pirimidin-2-il)amino) isobenzofuran-1(3 <i>H</i>)-on (IV)
	bileşiği için asimetrik birimlerin O3…H5 hidrojen bağlarıyla birbirine
	bağlanmasının gösterimi 109
Şekil 4.21	3-((4,6-dimetil pirimidin-2-il)amino) isobenzofuran-1(3 <i>H</i>)-on (IV)
	bileşiğinin moleküler elektrostatik potansiyeli (gaz) 111
Şekil 4.22	3-((4,6-dimetil pirimidin-2-il)amino) isobenzofuran-1(3 <i>H</i>)-on (IV)
	bileşiğinin gaz fazındaki moleküler orbital yüzeyleri 111
Şekil 4.23	3-((4,6-dimetoksi pirimidin-2-il)amino) isobenzofuran-1(3 <i>H</i>)-on (V)
a b b b b b b b b b b	bileşiğinin molekül yapısı
Şekil 4.24:	$3^{-((4,6-dimetoksi pirimidin-2-11)amino)}$ isobenzoturan-1(3H)-on (V)
	bileşiginin teorik (gaz fazi) ve deneysel geometri (kirmizi) ile çizilen
G . I. I A 25.	molekulleri çakiştirma
Şekii 4.25	bilogižinin C5 ringin alugumumum göstarimi
Salvil 4 26	bileşiginin CS zincil oluşunlunun gösterinin
ŞEKII 4.203	bilogičinin C5 zinoirlorinin $\mathbf{P}_{2}^{2}(\mathbf{S})$ motifli bidroion bočlorulo bočlonomu
	$\alpha \beta \beta \beta \beta \beta \beta \beta \beta \beta \beta \beta \beta \beta \beta \beta \beta \beta \beta \beta$
Sekil 4 27	2 3-((4 6-dimetoksi pirimidin-2-il)amino) isobenzofuran-1(3H)-on (V)
ŞUKII 4.2 7	bilesiğinin moleküler elektrostatik notansiyeli (gaz)
Sekil 4.28	2 3-((4 6-dimetoksi pirimidin-2-il)amino) isobenzofuran-1(3H)-on (V)
şenii 1120	bilesiğinin gaz fazındaki moleküler orbital yüzeyleri
Sekil 4.29	3-((4-kloro-6-metil pirimidin-2-il)amino) isobenzofuran-1(3H)-on (VI)
· ,	bilesiğinin molekül yapısı
Sekil 4.30	3-((4-kloro-6-metil pirimidin-2-il)amino) isobenzofuran-1(3H)-on (VI)
	bileşiğinin teorik (gaz fazı) ve deneysel geometri (kırmızı) ile çizilen
	molekülleri çakıştırma
Şekil 4.31	3-((4-kloro-6-metil pirimidin-2-il)amino) isobenzofuran-1(3H)-on (VI)
	bileşiği için N—H···O hidrojen bağ etkileşiminin gösterimi 123
Şekil 4.32:	3-((4-kloro-6-metil pirimidin-2-il)amino) isobenzofuran-1(3H)-on (VI)
	bileşiğinin moleküler elektrostatik potansiyeli (gaz) 124
Şekil 4.33	3-((4-kloro-6-metil pirimidin-2-il)amino) isobenzofuran-1(3H)-on (VI)
	bileşiğinin gaz fazındaki moleküler orbital yüzeyleri 124
Şekil 4.34	3-((6-metil piridin-2-il)amino) isobenzofuran-1(3H)-on (VII) bileşiğinin
	molekül yapısı125

Şekil 4.	35: 3-((6-metil piridin-2-il)amino) isobenzofuran-1(3H)-on (VII) bileşiğini	in
	teorik (gaz fazı) ve deneysel geometri (kırmızı) ile çizilen molekülleri	
	çakıştırma	128
Şekil 4.	36: 3-((6-metil piridin-2-il)amino) isobenzofuran-1(3H)-on (VII) bileşiğini	in
	$R_4^4(24)$ halka motifinin oluşumu gösteren kısmi diyagram	129
Şekil 4.	37: 3-((6-metil piridin-2-il)amino) isobenzofuran-1(3H)-on (VII) bileşiğini	in
	moleküler elektrostatik potansiyeli (gaz)	130
Şekil 4.	38: 3-((6-metil piridin-2-il)amino) isobenzofuran-1(3 <i>H</i>)-on (VII) bileşiğin	nin
	gaz fazındaki moleküler orbital yüzeyleri	130
Şekil 4.	39: 3-((5-metiltiyazol-2-il)amino) isobenzofuran-1(3 <i>H</i>)-on (VIII) bileşiğin	in
	molekül yapısı	131
Şekil 4.	40: 3-((5-metiltiyazol-2-il)amino) isobenzofuran-1(3 <i>H</i>)-on (VIII) bileşiğin	in
	teorik (gaz fazı) ve deneysel geometri (kırmızı) ile çızılen molekülleri	
G L H A		134
Şekil 4.	41: $3 \cdot ((5 \cdot \text{metiltiyazol-} 2 \cdot 1) \text{ amino})$ isobenzofuran- $1(3H)$ -on (VIII) bileşiğin	in
	N—HN hidrojen bag ve C—O π etkileşiminin gösterimi [CgI=C]	l- 125
G . I . I . A	02 naikasinin merkezij.	135
Şekii 4.	42: 5-((5-metholyazoi-2-ii)amino) isobenzoiuran-1(5H)-on (VIII) bileşigin molokülor oloktrostatik notonsiyali (202)	111 126
Salvil 4	13. 2 ((5 matiltiyazol 2 il)emine) isohonzofyren 1(2H) on (VIII) bilasižin	130 in
ŞEKII 4.	43. 5-((5-methtyazoi-2-ii)amino) isobenizoitutaii-1(511)-on (1111) uneşigin gaz fazındaki moleküler orbital yüzevleri	111 136
Sekil 4	44. 3-((4 6-dimetilpirimidin-2-il)amino)-6 7-dimetoksi isobenzofuran-1(3)	130 40-
ŞUKII 4.	on (IX) hilesiöinin molekül vanısı	1)- 137
Sekil 4.	45: 3-((4 6-dimetilpirimidin-2-il)amino)-6 7-dimetoksi isobenzofuran-1(3 <i>k</i>	H)-
şenin n	on (IX) bilesiğinin teorik (gaz fazı) ve denevsel geometri (kırmızı) ile	-)
	cizilen molekülleri cakıstırma	141
Şekil 4.	46: 3-((4,6-dimetilpirimidin-2-il)amino)-6,7-dimetoksi isobenzofuran-1(3 <i>H</i>	-(F
	on (IX) için hidrojen bağlarının gösterimi	142
Şekil 4.	47: 3-((4,6-dimetilpirimidin-2-il)amino)-6,7-dimetoksi isobenzofuran-1(3R	H)-
	on (IX) bileşiğinin moleküler elektrostatik potansiyeli (gaz)	143
Şekil 4.	48: 3-((4,6-dimetilpirimidin-2-il)amino)-6,7-dimetoksi isobenzofuran-1(3P	H)-
	on (IX) bileşiğinin gaz fazındaki moleküler orbital yüzeyleri	143
Şekil 4.	49: I bileşiğinin UV-VIS spektrumu a) Deneysel, b) Teorik	145
Şekil 4.	50: II bileşiğinin UV-VIS spektrumu a) Deneysel, b) Teorik	146
Şekil 4.	51: III bileşiğinin UV-VIS spektrumu a) Deneysel, b) Teorik	147
Şekil 4.	52: IV bileşiğinin UV-VIS spektrumu a) Deneysel, b) Teorik	148
Şekil 4.	53: V bileşiğinin UV-VIS spektrumu a) Deneysel, b) Teorik	149
Şekil 4.	54: VI bileşiginin UV-VIS spektrumu a) Deneysel, b) Teorik	150
Şekil 4.	55: VII bileşiginin $\bigcup V - VIS$ spektrumu a) Deneysel, b) Teorik	151
Şekii 4. Salvil 4	50: VIII bileşiğinin UV-VIS spektrumu a) Deneysel, b) Teorik	152
Şekii 4. Solzil 4	57. IA bileşiğinin UV-VIS spektrumu a) Deneysel, b) Teorik	155
Şekii 4. Solzil 1	50. I bileşiğinin denevsel ve teorik ET_IR değerleri araşındaki korelaşıyon	155
ŞCKII 4.	grafiği	156
Sekil 4	60. II hilesiğinin FT-IR Snektrumu a) Denevsel h) Teorik	150
Şekil 4. Sekil 4.	61: III bileşiğinin FT-IR Spektrumu a) Deneysel b) Teorik	159
Sekil 4.	62: IV bilesiğinin FT-IR Spektrumu a) Denevsel, b) Teorik	161
Sekil 4.	63: V bilesiğinin FT-IR Spektrumu a) Denevsel. b) Teorik	163
Şekil 4.	64: VI bileşiğinin FT-IR Spektrumu a) Deneysel, b) Teorik	165
Şekil 4.	65: VII bileşiğinin FT-IR Spektrumu a) Deneysel, b) Teorik	167
-		

Şekil 4.66: VIII bileşiğinin FT-IR Spektrumu a) Deneysel, b) Teorik	169
Şekil 4.67: IX bileşiğinin FT-IR Spektrumu a) Deneysel, b) Teorik	
Şekil 4.68: I bileşiğinin DMSO ortamındaki ¹ H-NMR spektrumu	
Şekil 4.69: I bileşiğinin DMSO ortamındaki ¹³ C-NMR spektrumu	
Şekil 4.70: I bileşiğinin teorik ¹³ C-NMR spektrumu	175
Şekil 4.71: II bileşiğinin DMSO ortamındaki ¹ H-NMR spektrumu	176
Şekil 4.72: III bileşiğinin DMSO ortamındaki ¹ H-NMR spektrumu	176
Sekil 4.73: IV bileşiğinin DMSO ortamındaki ¹ H-NMR spektrumu	
Sekil 4.74: V bileşiğinin DMSO ortamındaki ¹ H-NMR spektrumu	
Şekil 4.75: VI bileşiğinin DMSO ortamındaki ¹ H-NMR spektrumu	
Şekil 4.76: VII bileşiğinin DMSO ortamındaki ¹ H-NMR spektrumu	
Sekil 4.77: VIII bileşiğinin DMSO ortamındaki ¹ H-NMR spektrumu	
Sekil 4.78: IX bileşiğinin deneysel ¹ H-NMR spektrumu	

TABLO LÍSTESÍ

<u>Sayfa</u>

Tablo 2.1: Doğada sık olarak rastlanan ftalitler ve izole edildikleri bitkiler	1
Tablo 3.1: Kullanılan kimyasal maddeler ve saflık dereceleri	1
Tablo 4.1: 3-((5-metilpiridin-2-il)amino) isobenzofuran-1(3H)-on (I) bileşiğinin	
kristal yapısına ait veriler7	9
Tablo 4.2: 3-((5-metilpiridin-2-il)amino) isobenzofuran-1(3H)-on (I) için atomik	
koordinatlar ve izotropik veya ekivalent izotropik yer değiştirme	
parametreleri (Å ²)	0
Tablo 4.3: 3-((5-metilpiridin-2-il)amino) isobenzofuran-1(3H)-on (I) kristali için	
atomik yer değiştirme parametreleri (Å ²)	0
Tablo 4.4: 3-((5-metilpiridin-2-il)amino) isobenzofuran-1(3H)-on (I) kristali için baş	ğ
uzunluğu, bağ açısı ve torsiyon açıları (Å, °)	1
Tablo 4.5: 3-((5-metilpiridin-2-il)amino) isobenzofuran-1(3 <i>H</i>)-on (I) kristaline ait	
moleküler etkileşim geometrisi (A, °)	4
Tablo 4.6: 3-((5-metilpiridin-2-il)amino) isobenzofuran-1(3 <i>H</i>)-on (1) ıçın atomlar	
üzerindeki teorik kısmı yükler	6
Tablo 4.7: 3-((5-metilpiridin-2-il)amino) isobenzofuran-1(3H)-on (1) için elektronik	~
reaktivite parametreleri	8
Tablo 4.8: 3-(Pirimidin-2-ilamino) isobenzoturan-1(3H)-on (II) bileşiginin kristal	1
yapisina ait veriler	I
Tablo 4.9: 3-(Pirimidin-2-ilamino) isobenzoturan- $I(3H)$ -on (II) için atomik	
koordinatiar ve izotropik veya ekivalent izotropik yer degiştirme	\mathbf{r}
Table 4 10: 2 (Dirimidin 2 ilemine) isobarzofuran 1(2H) on (II) kristeli join etemik	2 -
1 abio 4.10: 5-(Firminum-2-mainino) isobenizoruran-1(<i>SH</i>)-on (11) kristan için atomik vor doğiştirme peremetreleri (λ^2)	י ר
Table 4 11: 3 (Dirimidin 2 ilamino) isobenzofuran 1(3H) on (II) kristali join bağ	2
1 abio 4.11. 5-(1 minimum-2-manimo) isoberizoruran-1(5/1)-on (11) Kristan için bağ uzunluğu bağ açışı ve torsiyon açıları ($\mathring{\Lambda}$ °)	3
Table 4 12: 3-(Pirimidin-2-ilamino) isobenzofuran-1(3H)-on (II) kristaline ait	5
moleküler etkilesim geometrisi (Å °)	Δ
Tablo 4.13: 3-(Pirimidin-2-ilamino) isobenzofuran-1(3 <i>H</i>)-on (II) icin atomlar	•
üzerindeki teorik kısmi vükler	5
Tablo 4.14: 3-(Pirimidin-2-ilamino) isobenzofuran-1(3 <i>H</i>)-on (II) icin elektronik	2
reaktivite parametreleri	6
Tablo 4.15: 3-(Piridin-3-ilamino) isobenzofuran-1(3 <i>H</i>)-on (III) bilesiğinin kristal	-
yapısına ait veriler	8
Tablo 4.16: 3-(Piridin-3-ilamino) isobenzofuran-1(3 <i>H</i>)-on (III) için atomik	
koordinatlar ve izotropik veya ekivalent izotropik yer değiştirme	
parametreleri (Å ²)	8
Tablo 4.17: 3-(Piridin-3-ilamino) isobenzofuran-1(3H)-on (III) kristali için atomik	
yer değiştirme parametreleri (Å ²)	9
Tablo 4.18: 3-(Piridin-3-ilamino) isobenzofuran-1(3H)-on (III) kristali için bağ	
uzunluğu, bağ açısı ve torsiyon açıları (Å, °)	9

Tablo 4.19: 3-(Piridin-3-ilamino) isobenzofuran-1(3H)-on (III) kristaline ait
moleküler etkileşim geometrisi (Å, °) 100
Tablo 4.20: 3-(Piridin-3-ilamino) isobenzofuran-1(3H)-on (III) için atomlar
üzerindeki teorik kısmi yükler 101
Tablo 4.21: 3-((4,6-dimetil pirimidin-2-il)amino) isobenzofuran-1(3H)-on (IV)
bileşiğinin kristal yapısına ait veriler 104
Tablo 4.22: 3-((4,6-dimetil pirimidin-2-il)amino) isobenzofuran-1(3H)-on (IV) için
atomik koordinatlar ve izotropik veya ekivalent izotropik yer değiştirme
parametreleri (Å ²) 104
Tablo 4.23: 3-((4,6-dimetil pirimidin-2-il)amino) isobenzofuran-1(3H)-on (IV) için
kristali için atomik yer değiştirme parametreleri (Å ²) 105
Tablo 4.24: 3-((4,6-dimetil pirimidin-2-il)amino) isobenzofuran-1(3H)-on (IV)
kristali için bağ uzunluğu, bağ açısı ve torsiyon açıları (Å, °) 106
Tablo 4.25: 3-((4,6-dimetil pirimidin-2-il)amino) isobenzofuran-1(3H)-on (IV)
kristaline ait moleküler etkileşim geometrisi (Å, °) 108
Tablo 4.26: 3-((4,6-dimetil pirimidin-2-il)amino) isobenzofuran-1(3H)-on (IV) için
atomlar üzerindeki teorik kısmi yükler
Tablo 4.27: 3-((4,6-dimetoksi pirimidin-2-il)amino) isobenzofuran-1(3H)-on (V)
bilesiğinin kristal yapısına ait veriler
Tablo 4.28: 3-((4,6-dimetoksi pirimidin-2-il)amino) isobenzofuran-1(3H)-on (V)
için atomik koordinatlar ve izotropik veya ekivalent izotropik yer
değistirme parametreleri (Å ²) 113
Tablo 4.29: 3-((4,6-dimetoksi pirimidin-2-il)amino) isobenzofuran-1(3H)-on (V)
kristali icin atomik ver değistirme parametreleri (Å ²)
Tablo 4.30: 3-((4,6-dimetoksi pirimidin-2-il)amino) isobenzofuran-1(3H)-on (V)
kristali için bağ uzunluğu, bağ açısı ve torsiyon açıları(Å, °) 114
Tablo 4.31: 3-((4,6-dimetoksi pirimidin-2-il)amino) isobenzofuran-1(3H)-on (V)
kristaline ait moleküler etkilesim geometrisi (Å, °)
Tablo 4.32: 3-((4.6-dimetoksi pirimidin-2-il)amino) isobenzofuran-1(3 <i>H</i>)-on (V)
icin atomlar üzerindeki teorik kısmi yükler 117
Tablo 4.33: 3-((4-kloro-6-metil pirimidin-2-il)amino) isobenzofuran-1(3H)-on (VI)
bilesiğinin kristal yapısına ait veriler
Tablo 4.34: 3-((4-kloro-6-metil pirimidin-2-il)amino) isobenzofuran-1(3 <i>H</i>)-on (VI)
için atomik koordinatlar ve izotropik veya ekivalent izotropik yer
değiştirme parametreleri (Å ²) 120
Tablo 4.35: 3-((4-kloro-6-metil pirimidin-2-il)amino) isobenzofuran-1(3 <i>H</i>)-on (VI)
için kristali için atomik yer değiştirme parametreleri (Å ²) 121
Tablo 4.36: 3-((4-kloro-6-metil pirimidin-2-il)amino) isobenzofuran-1(3 <i>H</i>)-on (VI)
kristali için bağ uzunluğu, bağ açısı ve torsiyon açıları(Å, °) 121
Tablo 4.37: 3-((4-kloro-6-metil pirimidin-2-il)amino) isobenzofuran-1(3H)-on (VI)
kristaline ait hidrojen bağ geometrisi (Å, °) 122
Tablo 4.38: 3-((4-kloro-6-metil pirimidin-2-il)amino) isobenzofuran-1(3H)-on (VI)
için atomlar üzerindeki teorik kısmi yükler 123
Tablo 4.39: 3-((6-metil piridin-2-il)amino) isobenzofuran-1(3H)-on (VII) bileşiğinin
kristal yapısına ait veriler
Tablo 4.40: 3-((6-metil piridin-2-il)amino) isobenzofuran-1(3H)-on (VII) icin
atomik koordinatlar ve izotropik veya ekivalent izotropik ver değistirme
parametreleri ($Å^2$)
Tablo 4.41: 3-((6-metil piridin-2-il)amino) isobenzofuran-1(3H)-on (VII) kristali
için atomik yer değiştirme parametreleri (Å ²)

Tablo 4.42: 3-((6-metil piridin-2-il)amino) isobenzofuran-1(3H)-on (VII) kristali
için bağ uzunluğu, bağ açısı ve torsiyon açıları (Å, °)
Tablo 4.43: 3-((6-metil piridin-2-il)amino) isobenzofuran-1(3H)-on (VII) kristaline
ait hidrojen bağ geometrisi (Å, °)128
Tablo 4.44: 3-((6-metil piridin-2-il)amino) isobenzofuran-1(3H)-on (VII) için
atomlar üzerindeki teorik kısmi yükler 129
Tablo 4.45: 3-((5-metiltiyazol-2-il)amino) isobenzofuran-1(3H)-on (VIII) bileşiğinin
kristal yapısına ait veriler132
Tablo 4.46: 3-((5-metiltiyazol-2-il)amino) isobenzofuran-1(3H)-on (VIII) için
atomik koordinatlar ve izotropik veya ekivalent izotropik yer değiştirme
parametreleri (Å ²)132
Tablo 4.47: 3-((5-metiltiyazol-2-il)amino) isobenzofuran-1(3H)-on (VIII) kristali
için atomik yer değiştirme parametreleri (Å ²)133
Tablo 4.48: 3-((5-metiltiyazol-2-il)amino) isobenzofuran-1(3H)-on (VIII) kristali
için bağ uzunluğu, bağ açısı ve torsiyon açıları (A, °)
Tablo 4.49: 3-((5-metiltiyazol-2-il)amino) isobenzofuran-1(3 <i>H</i>)-on (VIII) kristaline
ait moleküler etkileşim geometrisi (A, °) 134
Tablo 4.50: 3-((5-metiltiyazol-2-il)amino) isobenzofuran-1(3H)-on (VIII) 1çin
atomlar üzerindeki teorik kısmı yükler
Tablo 4.51: 3-((4,6-dimetilpirimidin-2-il)amino)-6,7-dimetoksi isobenzofuran- 120
I(3H)-on (IX) bileşiğinin kristal yapısına ait veriler
Tablo 4.52: 3-((4,6-dimetilpirimidin-2-il)amino)-6,7-dimetoksi isobenzoturan-
I(3H)-on (IX) için atomik koordinatlar ve izotropik veya ekivalent
Izotropik yer degiştirme parametreleri (A)
1 abio 4.53: 3-((4,6-dimetilpirimidin-2-ii)amino)-6, /-dimetoksi isobenzoiuran $1/2$ ID on (IV) triatali isin atomik yar dažistirma naromatralari ($\frac{k^2}{2}$) 120
Table 4 54: 2 ((4 6 dimetiliprimidin 2 il)emine) 6 7 dimeteksi isobanzafuran
1 abio 4.54: $3 - ((4,0-)$ and the input information by $3 - 0,7 - 0$ interforms in sobelizor unanti-
1(511)-OII (IX) KIIStall IÇIII Dağ uzulluğu, Dağ açısı ve törsiyöli açıları (X,
Table 4 55: 3-((A 6-dimetilnirimidin-2-il)amino)-6 7-dimetoksi isobenzofuran-
1(3H)-on (IX) kristaline ait moleküler etkilesim geometrisi (\mathring{A} °) 1/1
Tablo 4 56. 3-((4 6-dimetilpirimidin-2-il)amino)-6 7-dimetoksi isobenzofuran-
1(3H)-on (IX) icin atomlar üzerindeki teorik kısmi vükler 142
Tablo 4 57 . Tez kansamında sentezlenen bilesiklerin karakteristik özellikleri 144
Tablo 4.57: Tez kapsamında sentezlenen bileşiklerin UV-VIS absorpsivon değerleri
ve elektronik gecisleri
Tablo 4.59: I bilesiğinin FT-IR ($\rm cm^{-1}$) spektrum değerleri
Tablo 4.60: II bilesiğinin FT-IR (cm ⁻¹) spektrum değerleri
Tablo 4.61: III bilesiğinin FT-IR (cm ⁻¹) spektrum değerleri
Tablo 4.62: IV bilesiğinin FT-IR (cm ⁻¹) spektrum değerleri
Tablo 4.63: V bilesiğinin FT-IR (cm ⁻¹) spektrum değerleri
Tablo 4.64: VI bilesiğinin FT-IR (cm ⁻¹) spektrum değerleri
Tablo 4.65: VII bileşiğinin FT-IR (cm ⁻¹) spektrum değerleri
Tablo 4.66: VIII bileşiğinin FT-IR (cm ⁻¹) spektrum değerleri
Tablo 4.67: IX bileşiğinin FT-IR (cm ⁻¹) spektrum değerleri
Tablo 4.68: Tez kapsamında sentezlenen bileşiklerin karakteristik gerilme
titreşimleri ve korelasyon değerleri173
Tablo 4.69: I bileşiğinin deneysel ve teorik ¹³ C-NMR (ppm) spektrum
değerleri175

Tablo 4.70: Tez kapsamında sentezlenen bileşiklerin DMSO ortamındaki ¹ H-N	IMR
(ppm) spektrum değerleri	180
Tablo 4.71: Tez kapsamında sentezlenen bileşiklerin teorik ¹³ C-NMR (ppm)	
spektrum değerleri	180
Tablo 5.1: Sentezlenen bilesiklerin erime noktası ve verim sonucları	181
Tablo 5.2: Sentezlenen bileşiklerin deneysel ve teorik olarak hesaplanan bileşil	klerin
karakteristik UV-VIS dalga boylari	184
olarak hesaplanmış titreşim değerleri	orik 185

SEMBOL LİSTESİ

:	Asetik asit					
:	Etil asetat					
:	Gümüş triflorometansülfonat					
:	LYP korelasyon fonksiyoneli ile Becke'nin üç parametreli					
	hibrit fonksiyoneli					
:	Pentametilsiklopentadienil rodyum diklorür dimer					
:	1,8-diazabisiklo [5.4.0]-undec-7-en					
:	Dimetilsülfoksit					
:	Etanol					
:	Trietilamin					
:	Metanol					
:	Palladyum/Karbon					
:	Tetrahidrofuran					
:	Trimetilsilil klorür					

KISALTMA LİSTESİ

HOMO	:	En yüksek dolu moleküler orbital
FT-IR	:	Fourier dönüşümlü infrared spektroskopisi
LUMO	:	En düşük boş moleküler orbital
UV-VIS	:	Ultraviyole-görünür spektroskopisi
YFT	:	Yoğunluk fonksiyoneli teorisi
уу	:	Yüzyıl
¹³ C-NMR	:	¹³ C Nükleer magnetik rezonans spektroskopisi
¹ H-NMR	:	Proton nükleer magnetik rezonans spektroskopisi

ÖNSÖZ

Bu tez çalışmasında, önemli biyolojik aktiviteye sahip olması beklenen bazı 3-hetarilaminoftalit türevleri sentezlenmiştir ve sentezlenen bileşiklerin yapısal özellikleri spektroskopik ve X-ışını kırınımı yöntemleriyle aydınlatılmıştır. Spektroskopik ve X-ışını kırınımı ile elde edilen deneysel sonuçlar teorik verilerle karşılaştırılmıştır.

Çalışmalarım boyunca desteğini esirgemeyen, bilgi ve tecrübelerinden yararlandığım değerli hocam Prof. Dr. Mustafa ODABAŞOĞLU'na teşekkür eder, saygılarımı sunarım.

Bileşiklerin X-ışını kırınımı yöntemiyle yapıların incelenmesi için verilerin toplanmasında yardımlarını esirgemeyen Prof. Dr. Orhan BÜYÜKGÜNGÖR'e ve Dr. Öğr. Üyesi Nevzat KARADAYI'ya teşekkür ederim. Ayrıca, NMR spektrumlarının çekilmesi için gerekli yardımı sağlayan Hakkı Yasin ODABAŞOĞLU'na ve teorik hesaplamalarda desteğini esirgemeyen Öğr. Gör. Dr. Niyazi DÜDÜK'e teşekkür ederim.

Maddi ve manevi olarak desteklerini esirgemeyip sabır ve anlayışla her zaman yanımda olan aileme ve çalışmalarım boyunca beni canı gönülden destekleyen sevgili müstakbel eşim Erkan YILMAZ'a teşekkür ederim.

1. GİRİŞ

Ftalit (isobenzofuran-1(3H)-on), birkaç bitki familyası ile bazı mantar ve ciğer otu türleriyle sınırlı olan küçük, doğal bileşik grubudur. Esas olarak Asya, Avrupa ve Amerika'da tedavi amaçlı geleneksel olarak kullanılan farklı bitki türlerinin biyoaktif bileşenleri olarak bilinir (Leon ve diğ. 2017). Ftalitlerin kimyası ile ilgili ilk calısmalara 19. yy'nin sonunda başlanmış ve bu çalısmalardan elde edilen verilere göre ftalit, kereviz (Apium graveolens) esansiyel yağının koku bileseni olarak tanımlanmıştır (Ciamician ve Silber 1897). Geçmiş yüzyılın ilk yarısında ftalitler, Asya geleneksel tıbbında yaygın olarak kullanılan Cnidium Officinale¹ ve Ligusticum Acutilobum² türleri ile gıda ve çeşni olarak kullanılan Selam otu (Levisticum Officinale) türünden izole edilmişlerdir. 20. yy'nin ikinci varısıında ftalitler Papatyagiller (Asteraceae), Baklagiller (Leguminosae), Orkidegiller (Orchidaceae) ve Sedef otugiller (Rutaceae) gibi bazı bitki familyalarının yanı sıra esas olarak Maydonozgiller (Umbelliferae=Apiaceae) familyasından izole edilmiştir (Leon ve diğ. 2017).

Geleneksel tıpta kullanılan *Ligusticum Chuanxiong*³, Çin Melek otu (*Angelica Sinensis*), *Cnidium Officinale*, *Angelica Acutiloba*⁴ ve *Ligusticum Porteri*⁵ bitkilerinde yer alan ftalitler ayrıca *Penicillium*, *Alternaria* ve *Pestalotiopsis* gibi bazı mantar türlerinin ve ciğer otu türlerinin de bileşenlerindendir (Leon ve diğ. 2017).

Doğal ftalit türevlerinin çoğu, antibakteriyel⁶, antifungal⁷, insektisidal⁸, sitotoksik⁹ ve antienflamatuar¹⁰ gibi farklı biyolojik aktivite gösterirler. Konuyla ilgili son zamanlarda yapılan bir araştırmada, özellikle *Apiaceae* türünden izole

¹ Apiaceae familyasındaki çiçekli bitki cinsidir.

² Apiaceae familyasındaki çiçekli bitki cinsidir.

³ Elli temel bitkiden biri olarak kabul edilen havuç ailesindeki bir çiçekli bitkidir.

⁴ Apiaceae familyasından çok yıllık bir bitkidir.

⁵ Osha olarak bilinen, özellikle güneybatı Amerika Birleşik Devletleri'nde, Rocky Dağları ve kuzey Meksika'nın bazı bölgelerinde bulunan çok yıllık bir bitkidir.

⁶ Bakterilerin yaşamasını durduran veye üremesini önleyen kimyasal madde.

⁷ Mantar enfeksiyonlarında kullanılan sentetik farmakolojik ajandır.

⁸ Böcek öldürücü.

⁹ Hücreye toksik şeklinde etki edip hücreyi öldüren maddedir.

¹⁰ İltihap önleyicidir.

edilen ve tıbbi alanda kullanılan bileşikler antikolinerjik¹, antispazmodik², düz kas ve merkezi kas gevşetici gibi biyolojik aktivite gösterirler (Leon ve diğ. 2017).

Ftalitler, monomerik ve dimerik ftalitler olmak üzere iki yapısal gruba ayrılır. Bazı monomerik ftalidler ise İnme, Alzheimer ve Parkinson gibi belirli nörolojik hastalıklara etki gösterir (Leon ve diğ. 2017).

Ftalit çekirdeği sentetik ve doğal ürünlerin yapısında yer alan bir birimdir ve ftalit türevleri doğal olarak oluşan laktonların önemli bir sınıfını temsil eder.

Pestasin (1) ftalat doğal ürünlerinin ilk üyesidir ve güçlü antioksidan aktivite ile orta derecede antifungal özellik gösterir (Karmakar ve diğ. 2009). İsopestasin (2), en az bir vitamin E türevi olan Trolox (3) kadar antioksidan özellik gösterir (Strobel ve diğ. 2002).

¹ Parasempatik sinir sisteminden doku ve organlara giden uyarıları önleyen, bu uyarıların etkisini ortadan kaldıran etkidir.

² Spazm giderici

Kemoterapi potansiyeli olan mikofenolik asit (4) (Bedfordp ve diğ. 1973), aldoz redükdaz inhibitörü olan salfredin B11 (5), antibakteriyal özelliğe sahip olan arenoftalit A (6) (Mali ve Babu 1998), antifungal özellik gösteren (*E*)-4-((4-hidroksi-6-metoksi-1-okso-1,3-dihidroisobenzofuran-5-il)oksi)-2-metilbut-2-enoik asit (7) ve 4-((4-hidroksi-6-metoksi-1-okso-1,3-dihidroisobenzofuran-5-il)oksi)-2-metilbutanoik asit (8) bileşikleri (Takahashi ve diğ. 2005), neurotransmitter reseptorü olan (*E*)-6propil-3-propiliden-3,4,5,5a,6,7a-hekzahidro-1*H*,3'*H*spiro[siklobuta[*e*]isobenzofuran-7,1'-isobenzofuran]-1,'-dion (9) bileşiği (Deng ve diğ. 2006), sitotoksik ve diğer birçok biyolojik aktivite gösteren 3-(2-furil) ftalit (10) türevleri (Dmitriev ve diğ. 2005) doğal kaynaklardan izole edilen ve yapılarında ftalit birimlerini taşıyan bileşiklerdir. Ayrıca sentetik olarak hazırlanan ve antispasmodik, herbisidal ¹ ve insektisidal özellik gösteren benzilidenftalitler (11), pestisit² ve sitotoksik reaktif olarak da kullanılırlar (Kundu ve diğ. 1998).

¹ Bitki öldürücü.

² Zararlı organizmaları engellemek için kullanılan maddedir.

İndanilidenftalit (12) gibi bazı türevler, kemoterapatik etkili frederikamisin-A (13) gibi bileşiklerin sentezinde kullanılır (Nakamura ve diğ. 2004). 3fenilsülfonilftalitler (14) ise makrosiklik antibiyotiklerin sentezinde kullanılan sübstitüe naftalinlerin hazırlanmasında kullanılır (de Koning ve diğ. 2002).

Doğal kaynaklardan izole edilen (*Z*)-3-butilidenftalit (15) güçlü bir insektisitken (*E*)-izomer (16) hormonal etkiye sahiptir (Tsukamoto ve diğ. 2006). 3-Fenasilidenftalitler (17) ve bunların türevleri bitki büyüme hormonu olarak kullanılır (Bousquet ve diğ. 1975). Stirilftalitler (18) ise ısı ve basınca duyarlı renk değiştiren bileşikler olarak kullanılır (Mali ve diğ. 1997).

Corollosporine (19) *Staphyococcus aureus*¹, a karşı antibakteriyal etki gösterir (Liberra ve diğ 1998). CJ-12,954 (20) ve CJ-13,014 (21) *Helikobakter pilori*², ye karşı antibiyotik etki gösterirler (Dekker ve diğ. 1997). Z-Ligustilit (22) ve Senkyunolit A (23) antitümör etki gösterir (Liu ve diğ. 1984).

¹Bakteri türüdür.

 $^{^2}$ Mide ve oniki parmak bağırsağının çeşitli alanlarına yerleşen, gram, mikroa
erofilik bir bakteridir.

3-((4-etoksifenil)-fenilamino)3-(1-etil-2-metil-3-indolil)isobenzofuran-1(3*H*)on (24) ve benzeri bileşikler basınca duyarlı karbonsuz kopyalama sistemleri (Schmidt ve diğ. 1984), termal işaretleme sistemleri ve hektografik kopyalama sistemlerinde kullanılan ftalit türevleridir (Puzin ve diğ. 2004).

3-*n*-butilftalit (25), kerevizde bulunur ve laboratuar hayvanları üzerinde yapılan çalışmalarda özellikle antitümör etkisi gösteren bir bileşiktir (Elango ve diğ. 1983; Zheng ve diğ. 1993). Ayrıca kereviz ve kereviz tohumlarının tansiyon düşürücü etkiye sahip olduğu, gut ve romatizma tedavisinde kullanıldığı bilinmektedir (Le ve diğ. 1991^{a, b}; Tsi ve diğ. 1997; Gijbels 1983; Uhlig ve diğ. 1987).

Melek otu ekstraktının başta kadın hastalıkları olmak üzere huzursuzluk, sinirlilik, korku, endişe, karamsarlık, baş ağrısı, migren, sinirsel kaynaklı kalp çarpıntıları, histeri, sinirsel kaynaklı mide şişkinlikleri, mide bulantısı, menopoz rahatsızlıkları, mide ve karın ağrıları, safra kesesi rahatsızlıkları, kalp bölgesindeki ağrılar ve sürekli kabızlık halleri olmak üzere pek çok rahatsızlığa iyi geldiği bilinmektedir (Zhong ve diğ. 1954, Xian ve diğ. 1997). Bu amaçlarla kullanılan ekstraktlarda bulunan bileşiklerden ikisi ftalit türevidir (25), (26).

Sentetik bazı 3-aminoftalitler (27), (28); antifungal, antibakteriyel ve mutajenik aktiviteye sahiptirler (Maslat ve diğ. 2003).

1.1 Tezin Amacı

Geniş biyolojik aktiviteye sahip olan ftalit çekirdeğine yeni fonksiyonel gruplar bağlanması, yeni bileşiklere ilave biyolojik aktiviteler kazandırması ya da mevcut biyolojik aktivitelerini daha da artırması muhtemeldir. Bu düşünceden hareketle yeni ftalit türevleri sentezlenmesi amaçlanmıştır. X-ışınları difraksiyon verileri kullanılarak *Gaussian09* paket programı yardımıyla tek kristali hazırlanabilen moleküllerin gaz fazı ve çözelti halinde yalıtılmış durumda kararlı yapıları, Yoğunluk Fonksiyoneli Teorisi (YFT) ile incelenmiştir. YFT çerçevesinde potansiyel enerji yüzeyleri üzerindeki global minimumlara karşılık gelen en kararlı geometriyi bulmak üzere geometri optimizasyonu, yük yoğunluğu, dipol momentler, moleküler elektrostatik potansiyeller, sınır orbitalleri (HOMO ve LUMO) ve sertlik değerleri B3LYP/6-311G(d,p) yöntemi ile belirlenerek spektroskopi ve x-ışınları temel amacını oluşturmuştur.

Sentezlerde kullanılmak üzere seçilen piridin ve pirimidin türevleri, sentezlenecek ftalitlerin biyolojik aktivitelerini artırabilecek ve yan grupları içerecek ürünleri verebilecek bileşikler olmasına dikkat edilmiştir. Ftalit çekirdeğine bağlanacak olan yeni heterohalkaların ilave biyolojik özellikler kazandırması kuvvetle muhtemeldir. Çıkış maddelerinin seçiminde ürünlerin biyolojik aktivitelerinin yükseltilmesi ve çeşitlendirmesine katkı sağlaması beklenen bileşikler kullanılmıştır.

Bu çalışmada önemli biyolojik aktiviteye sahip olmaları beklenen bazı 3hetarilaminoftalit türevleri sentezlenmiştir (Şekil 1.1). Sentezlenen bileşiklerin yapıları spektroskopik ve X-ışınları kırınımı yöntemleriyle aydınlatılmıştır.

Karboksialdehitler

3-Arilaminoftalitler

Şekil 1.1: 3-Arilaminoftalit sentezi

2. FTALİTLERİN GENEL YAPISI VE ÖZELLİKLERİ

2.1 Doğal Ftalitler

Ftalit yapısındaki bileşikler, (isobenzofuran-1(3H)-on) iskeleti taşırlar.

 $R_1 = R_2 = H$ Isobenzofuran-1(*3H*)-on

Şekil 2.1: Ftalit yapısı

Doğada rastlanan ftalitlerde ana iskelet iki şekilde olabilir;

- Homosiklik halka kısmen ya da tamamen doymuş olabilir ve bu halka substitüent taşımaz. Lakton halkasında ise substitüent bakımından iki olasılık vardır; R₁=H, R₂= alkil veya R₁, R₂= alkiliden olabilir.
- Homosiklik halka daima aromatik yapıda ve substitüe durumdadır. R₁, R₂ hidrojen ya da oksijen içeren gruplar olabilir.

Bu değişikliklere göre, bitkiler aleminde rastlanan ftalit yapısındaki bileşiklerin sınıflandırılması doğada sık rastlanan örnekleriyle birlikte aşağıda görülmektedir (Şarer ve Kökdil 1992);

- I. Lakton Halkasından Sübstitüe Ftalitler
 - Aromatik yapılı

3-butilftalit 3-butilidenftalit 3-butilisobenzofuran-1(3*H*)-on 3-pentilidenisobenzofuran-1(3*H*)-on

3-propilidenftalit 3-butilidenisobenzofuran-1(3*H*)-on

• Dietilenik yapılı

Ligustilit 3-pentiliden-4,5-dihidro isobenzofuran-1(3*H*)-on

Senkyunolit (sedanenolit) 3-butil-4,5-dihidro isobenzofuran-1(3*H*)-on

• Monoetilenik yapılı

Knidilit 3-butil-3a,4,5,7a-tetrahidro isobenzofuran-1(*3H*)-on

Sedanonikanhidrit 3-pentiliden-4,5,6,7-tetrahidro isobenzofuran-1(3*H*)-on

Neoknidilit 3-pentil-3a,4,5,6-tetrahidro isobenzofuran-1(3*H*)-on

• Doymuş yapılı

3-butil hekzahidroftalit 3-pentilhekzahidroisobenzofuran-1(3*H*)-on

II. Homosiklik Halkadan Sübstitüe Ftalitler

4-hidroksibutilftalit 3-butil-4-hidroksi isobenzofuran-1(3*H*)-one

7-hidroksi-5-metoksi ftalit 7-hidroksi-5-metoksi isobenzofuran-1(3*H*)-on

Nidulol 5-hidroksi-7-metoksi-6-metil isobenzofuran-1(3*H*)-on

Ayrıca bu bileşiklerin izomerlerine, epoksimonomer, dimer ve glikozitlerine de doğadaki bitkilerde rastlanmaktadır. Örneğin; izobutilidenftalit, (Z)-6, 7-epoksiligustilit, angeolit, riligustilit pediglukozit gibi. Doğada diğer bazı büyük moleküller de ftalit yapısı taşımaktadır. Ancak bu tip bileşiklerin sözü edilen ftalitler gibi koku ve tad ajanı olma özellikleri yoktur.

2.1.1 Ftalitlerin Bitkiler Aleminde Yayılışları

Ftalit iskeletine sahip bileşikler, özellikle *Umbelliferae* familyası bitkilerinde yaygın olarak bulunur. Son yıllarda yapılan çalışmalarda, Papatyagiller (*Compositae*) [Balkaymak (*Helichrysum İtalicum G. Don*), Altın otu (*Helichrysum Arenarium (L*) *Moench*) vb.], Buğdaygiller (*Gramineae*) [Beyaz yulaf (*Avena Sativa L.*)], Baklagiller (Leguminosae) (*Peltogyne pubescens Benth, P. Venosa Benth.*), Zeytingiller (*Oleaceae*) (*Forsythia japonica Makino*), Kantarongiller (*Gentianaceae*) (*Gentiana pedicellata Wall.*, *G. Pyrenaica L.*), *Aspergillus nidulans*¹, *Aspergillus Terreus*² familyalarında ftalit türevi bileşikler saptanmıştır.

Günümüze denk yapılan araştırmalar sonucu doğada sık rastlanan ftalitler ve izole edildikleri bitkiler Tablo 2.1'de görülmektedir.

Ftalitleri taşıyan uçucu yağlar; bitkilerin kök, rizom, meyve ya da otsu kısımlarından elde edilmektedir. Ftalitlerin uçucu yağ içindeki miktarı, uçucu yağın elde edildiği bitki ve organa göre değişir (% 0,1-3). Uçucu yağ miktarı, genelde meyvelerde oldukça yüksek olduğundan ftalit oranı da diğer organlara göre fazladır (Şarer ve Kökdil 1992).

¹ Asklı mantarlar bölümünde yer alan pek çok ipliksi mantarlardan biri olan ve ökaryotik hücre biyolojisini çalışmak için kullanılmış önemli bir araştırma organizmasıdır.

² Toprakta bulunan bir mantardır ve cinsel üreme yeteneğine sahip olduğu bildirilmektedir.

FTALİT BİTKİ	Ligust ilit (E/Z)	3- bütiliden ftalit	3- bütil ftalit	Senkyunolit	Neo knidilit	Knidilit	Seda- nonik Asit
Angelica Sp.	+	+	+				
Anethum Sp.	+		+	+	+		
Apium Sp.	+	+	+	+	+	+	+
Archangelica Sp.	+						
Bifora Sp.	+			+	+		
Capnophyllum Sp.	+						
Cenalophium Sp.	+		+		+		
Cnidium Sp.	+	+	+	+		+	+
Conioselinum Sp.	+	+					
Coriandrum Sp.	+				+		
Levisticum Sp.	+	+	+	+			
Ligusticum Sp.	+	+	+			+	+
Meum Sp.	+	+	+				
Oppapanax Sp.	+	+	+	+		+	
Petroselinum Sp.	+	+	+	+			
Peucedanum Sp.	+			+	+		
Silaum Sp.	+	+	+	+	+		
Silaus Sp.	+			+			
Todoroa Sp.	+			+			

Tablo 2.1: Doğada sık olarak rastlanan ftalitler ve izole edildikleri bitkiler

2.1.1.1 Biyosentezleri

Ftalitlerin biyosentezleri üzerindeki çalışmalar Selam otu (*Levisticum Officinale Koch.*) bitkisi üzerinde yürütülmüş ve bitkinin ana ftaliti olan ligustilit'in biyosentez yolunun altı molekül asetat ünitesinin baş-kuyruk şeklindeki bağlantısı ile meydana geldiği sonucuna varılmıştır (Mitsuhashi ve Namura 1966). Sonraki yıllarda *Cnidium Officinale, Ligusticum Wallichii* ve *Meum Athamanticum* (Ayı rezenesi) üzerinde yapılan çalışmalarda diğer ftalitlerin muhtemelen Z-ligustilit'den türedikleri ve biyosentetik yollarının aynı olduğu saptanmıştır (Kaouadji ve Pouget 1986).

2.1.2 Fiziksel Özellikleri

- Ftalitler sıvı bileşiklerdir.
- Kaynama noktası, 70- 234°C arasında değişmektedir.
- Yoğunlukları 1'den büyüktür.
- Polarize ışığı çevirirler ve refraksiyon indeksleri 1,47-1,57 arasındadır.
- Alkol ve eterde çözünürler (Guenther 1966).

Ftalitler genellikle kokulu maddelerdir. Bazen bulundukları bitkilerin karakteristik tad ve kokusunu verirler. Örneğin, 3-butilftalit ve sedanolit, kerevizin (*Apium graveolens*) karakteristik tad ve kokusunu vermektedir. Bu nedenle bitkilerden izole edilen ya da sentezlenen ftalitler, gıda ve parfümeri sanayinde kullanılmaktadır (Şarer ve Kökdil 1992).

Yapılan çalışmalarda, *Apiaceae* türlerinin kokuları ftalitlerin yapılarına bağlı olduğu saptanmıştır. Buna göre tipik kereviz kokusu için lakton halkasındaki 3 nolu karbona bir hidrojen atomu ve bir alkil grubu gereklidir. Eğer iki hidrojen de alkil ile sübstitüe ise koku hafiflemektedir. Aril grubu olursa kaku kaybolmaktadır. Alkiliden grubu bulunursa koku kuvvetlenmekte, uzun alkil zinciri ise keskin kokuya neden olmaktadır. Tetra ve hekzahidroftalitlerin kereviz kokusu ve benzeri kokuyu en iyi veren bileşikler olduğu bildirilmektedir (Şarer ve Kökdil 1992).

2.1.3 Kullanım Alanları

- Fungisidal
- Bakterisidal
- Herbisidal
- Antioksidan
- Analgesik
- Kalp ve dolaşım sistemleriyle ilgili hastalıkların tedavisinde
- Basınca duyarlı karbonsuz kopyalama sistemleri ve termal işaretleme sistemlerinde
- Sıcaklık, basınç ve pH'a göre farklı özellik gösteren polimerlerin yapımında kullanılırlar.

2.1.4 Bitkilerden İzolasyon, Teşhis ve Miktar Tayinleri

Ftalitlerin bitkisel ekstraktlarda teşhis ve izolasyonları; genellikle az oranda bulunmaları, yapılarının yakın oluşu ve bazılarının havada kolayca okside olmasından dolayı oldukça güçtür. Bu nedenle ftalitlerin teşhisi için pek çok reaktif denenmiş ve hiçbiri spesifik bulunamamıştır. Ftalitlerin teşhisi için fenilhidrazinferriklorür ve anisaldehit-sülfürik asit reaktiflerinin İnce Tabaka Kromatografisi' nde kullanılabilir olduğu belirtilmektedir (Gijbels 1983). Ftalit izolasyonunda ilk uygulanan yöntem hidrodistilasyondur. Fakat bu işlem sonunda sıcaklık ve suyun etkisi ile yan ürünler oluşmaktadır. Bu nedenle ftalit izolasyonunda daha çok perkolasyon ve maserasyon yöntemleri uygulanmaktadır (Şarer ve Kökdil 1992).

Perkolasyon yönteminde, toz edilmiş drog, *n*-hekzan ile muamele edilir ve işlem sonunda ele geçen nötral yağdan fraksiyonlu distilasyon ile ftalitler izole edilir (Şekil 2.2). Maserasyon yönteminde ise drog, önce petrol eteriyle sonra ise dietileterle muamele edilir. Ele geçen yağ, kolon kromatografisi ile içerdiği ftalitlere ayrılır (Şekil 2.3) (Şarer ve Kökdil 1992).

Şekil 2.2: Ftalitlerin izolasyonunda kullanılan perkolasyon yöntemi

Şekil 2.3: Ftalitlerin izolasyonunda kullanılan maserasyon yöntemi

Bitkilerden izole edilen ftalitlerin teşhisi için kromatografik ve spektroskopik yöntemlerden yararlanılmaktadır. Bunlar İnce Tabaka Kromatografisi, Gaz Sıvı Kromatografisi, Yüksek Basınçlı Sıvı Kromatografisi, Gaz Kromatografisi- Kütle Spektroskopisi ile Ultraviyole, Infrared, Nükleer Magnetik Rezonans ve Kütle Spektroskopileridir (Şarer ve Kökdil 1992).

Ftalitlerin İnce Tabaka Kromatografisi ile teşhisinde adsorban olarak en çok silikajel kullanılır. Çözücü olarak da kloroform, toluen ve metanolden yararlanılır (Şarer ve Kökdil 1992).

Bir karışımdaki tüm ftalitlerin kesin olarak ayrımı için son yıllarda daha çok Gaz-Sıvı Kromatografisi ve Yüksek Basınçlı Sıvı Kromatografisi kullanılmaktadır. Gaz-Sıvı Kromatografisi ile analizde % 10 SF 96, % 10 Carbowax 20 M v.b sabit fazlardan yararlanılmakta, Yüksek Basınçlı Sıvı Kromatografisi analizlerinde ise RP-18, μ-porasil, Zorbax-Sil, v.b. kolonlar kullanılmaktadır (Şarer ve Kökdil 1992).

Ftalitlerin miktar tayinleri, bu bileşikleri içeren karışımların Gaz-Sıvı Kromatografisi analizi sonucunda elde edilen kromatogramlarla ilgili pik alanlarının ölçülmesiyle yapılır (Şarer ve Kökdil 1992).

Apiaceae bitki türü familyasından izole edilen bileşenler, ftalit ve bunlara karşılık gelen dihidro, tetrahidro ve dimer izole yapılardan oluşurlar. Bu bitkilerin birçoğunun çeşitli etnobotanik uygulamalara sahip olduğu bildirilmiş ve izole edilen ftalit türevleri yapı çeşitliliği yönünden gruplandırılmıştır. 29-42 nolu bileşikler ftalit, 43-56 nolu bileşikler ftalitlerin dihidro, 57-78 nolu bileşikler ftalitlerin tetrahidro ve 79-94 nolu bileşikler ise ftalitlerin dimer izole yapılarını göstermektedir (Beck ve Chou 2006).

(Z)-iso-bütiliden ftalit (Z)-3-(2-metilpropiliden) isobenzofuran-1(3*H*)-on

(Z)-iso-validen ftalit

(*Z*)-3-(3-metilbütiliden) isobenzofuran-1(3*H*)-on

32 senkyunolit B

(*Z*)-3-bütiliden-4-hidroksi isobenzofuran-1(3*H*)-on

33 senkyunolit C

(Z)-3-bütiliden-5-hidroksi isobenzofuran-1(3*H*)-on

34

3-butiliden-7-hidroksi ftalit

(Z)-3-bütiliden-7-hidroksi isobenzofuran-1(3H)-on

34

(Z)-3-bütiliden-4,5-dihidroksi isobenzofuran-1(3*H*)-on

35 (Z)-senkyunolit E (Z)-3-(2-hidroksibutiliden) isobenzofuran-1(3*H*)-on

36

(E)-senkyunolit E

(*E*)-3-(2-hidroksibutiliden) isobenzofuran-1(3*H*)-on

ftalit

10-angeloil-3-bütil (S)-3-bütil-4-hidroksi isobenzofuran-1(3H)-on

39

7-hidroksibütiliden ftalit-7-O-glukozit

40

7-hidroksibütiliden ftalit-7-O-(6'-malonil)-glukozit

seleftalit A

seleftalit B

43

(Z)-ligustilit (Z)-3-bütiliden-4,5-dihidro isobenzofuran-1(3H)-on

44 (E)-ligustilit (E)-3-bütiliden-4,5-dihidro isobenzofuran-1(3H)-on

(Z)-iso-bütiliden-3a,4-dihidroftalit (Z)-3-(2-metilpropiliden)-4,5-dihidro isobenzofuran-1(3H)-on

(Z)-validen-4,5-dihidro ftalit

(Z)-3-pentiliden-4,5-dihidro isobenzofuran-1(3H)-on

(Z)-3-(3-metilbütiliden)-4,5-dihidro isobenzofuran-1(3H)-on

senkyunolit A (*S*)-3-bütil-4,5-dihidro isobenzofuran-1(3H)-on

3-bütiril-3-hidroksi-4,5-dihidro isobenzofuran-1(3*H*)-on

senkyunolit F'nin angeleoil esteri

(Z)-3-bütiliden-6-hidroksi-5,6dihidro isobenzofuran-1(3*H*)-on

3-bütilhekzahidro isobenzofuran-1(3*H*)-on

(Z)-6,7-dihidro ligustilit

(*Z*)-3-bütiliden-4,5,6,7-tetrahidro isobenzofuran-1(3*H*)-on

Neo knidilit

(S)-3-bütil-1-okso-1,4,5,6,-tetrahidro isobenzofuran-3a(3*H*)-ide

senkyunolit H

НО

(*6S*, *7R*,*Z*)-3-bütiliden-6,7dihidroksi-4,5,6,7-tetrahidro isobenzofuran-1(*3H*)-on (*6S*, *7R*,*E*)-3-bütiliden-6,7dihidroksi-4,5,6,7-tetrahidro isobenzofuran-1(*3H*)-on (6S,7R,Z)-3-bütiliden-6,7dihidroksi-4,5,6,7-tetrahidro isobenzofuran-1(3*H*)-on

ligustilidol

66 senkyunolit I

(6*S*,7*S*,*E*)-3-bütiliden-6,7dihidroksi-4,5,6,7-tetrahidro

isobenzofuran-1(3H)-on

(6*R*,7*R*,*Z*)-3-bütiliden-6,7dihidroksi-4,5,6,7-tetrahidro isobenzofuran-1(3*H*)-on cis-6,7-dihidroksi-ligustilit

67

(6*R*,7*S*,*Z*)-3-bütiliden-6,7dihidroksi-4,5,6,7-tetrahidro isobenzofuran-1(3*H*)-on

senkyunolit N

(3S, 6S, 7S)-3-bütil-6,7-

senkyunolit J

(3*S*,6*R*,7*R*)-3-bütil-6,7dihidroksi-4,5,6,7-tetrahidro isobenzofuran-1(3*H*)-on

(Z)-6-hidroksi-7metoksidihidroligustilit (Z)-3-bütiliden-6-hidroksi-7-metoksi-4,5,6,7-tetrahidro isobenzofuran-1(3*H*)-on

tokinolit B

E-232

ansaspirolit

85 sinaspirolit 0. n 86

takinolit A

Ó 87 levistolit A

-6.6',7.3a'-digulistilit

3,8-dihidro-diligustilit

Tifaftalit (bir benzil ftalit) (95) ve tifarin (96) olarak adlandırılan iki yeni fenolik bileşik, Typha capensis bitki türünün rizomlarından izole edilmiştir. Typha capensis, Güney Afrika'da yaygın olarak bulunan sağlam, kamış benzeri bir bitkidir (Van Wyk ve dig. 1997). Bitkinin rizomları; hamilelikte doğumu kolaylaştırmak, zührevi hastalıklar, dismenore (ağrılı adet), ishal, dizanteri ve erkek gücü ve libidoyu güçlendirmek için kullanılır (Watt ve Breyer-Brandwijk, 1962; Hutchings ve diğ. 1996). Rizomların izole edilmesi ile (95) ve (96) gibi bileşiklerin yanı sıra afzelechin, epiafzalechin, (+)-katehin, (-)-epikatehin ve türevleri gibi bileşikler tanımlanmıştır. (95) ve (96) bileşiklerin yapıları spektroskopik teknikler kullanılarak aydınlatılmıştır. (95) bileşiğinin yapısında 7-hidroksi ftalit grubunun olduğu teşhis edilmiş ve spektral verileri bilinen (97) bileşiği ile karşılaştırılarak benzer iskelet yapılara sahip olduğu teyit edilmistir. Tifaftalit olarak adlandırılan bu bileşik 7hidroksi-3-benzilftalit olarak tanımlanmıştır. Bileşik (95)'den elde edilen süzüntüden kolon kromatografisi ile bileşik (96) ve sitosterol ayrılmıştır. Bileşik (96)'nın spektral verileri, (98) bileşiği gibi bilinen dihidroisokumarinlerle karşılaştırılması ile 8E-hidroksi-3-[2-(fenil)etenil)]dihidro-isokumarin olarak doğrulanmıştır yapisi (Shode ve diğ. 2002).

Tifaftalit 3-benzil-7-hidroksi isobenzofuran-1(3*H*)-on

(*E*)-8-hidroksi-3-stiril isokroman-1-on

97

ЮH

9-benzil-6-hidroksi-3-metil-5,9-dihidrooksepino[2,3-*f*] isobenzofuran-7(2*H*)-on

0

99

afzelechin

(2*R*,3*S*)-2-(4-hidroksifenil)

kroman-3,5,7-triol

ÓН

ΌΗ

HO

8E-hidroksi-3-[2-(fenil)etenil] dihidro-isokumarin

(S)-8-hidroksi-3-(3-hidroksi-4-metoksifenil) isokroman-1-on

100

epiafzelechin

(2*R*,3*R*)-2-(4-hidroksifenil) kroman-3,5,7-triol

101

(+)-katehin

102

(-)-epikatehin

(2*R*,3*R*)-2-(3,4-dihidroksifenil) kroman-3,5,7-triol

afzelechin tetraasetat

(2*R*,3*S*)-2-(4-asetoksifenil) kroman-3,5,7-tril triasetat

104

epiafzelechin tetraasetat

(2*R*,3*R*)-2-(4-asetoksifenil) kroman-3,5,7-tril triasetat

(2*R*,3*S*)-2-(3,4-diasetoksifenil) kroman-3,5,7-tril triasetat (2*R*,3*R*)-2-(3,4-diasetoksifenil) kroman-3,5,7-tril triasetat

(107), (108), (109), (110), (111), (112), (113) ve (114) bileşikleri, 3-sübstitüe ftalitlerin doğal bileşik grubuna örnektir (Mal ve diğ. 2007; Maleki ve diğ. 2015). (114) bileşiği *Cryphonectria parasitica*¹ kültüründen izole edilmiştir ve domates fidelerinin oluşumunu olumsuz yönde etkiler (Mal ve diğ. 2007).

¹ Kestane kanserine neden olan patojenik bir mantardır.

(1), (2) ve (114) nolu bileşikler *Pestalotiopsis microspora*¹'dan izole edilmiştir (Karmakar ve diğ. 2009).

kriponetrik asit

2.1.5 Ftalitleri İçeren Bitkilerin Farmakolojik Etkileri ve Tıbbi Amaçla Kullanımları

Ftalitleri taşıyan bitkiler, özellikle Doğu ve Güneydoğu Asya'da uzun yıllardır tıbbi amaçla kullanılmaktadır. Bu bitkilerin ftalitlerden ileri gelen ve tedavide kullanımlarına neden olan farmakolojik etkileri, günümüze kadar yapılan çalışmalarla ancak bir dereceye kadar aydınlatılabilmiştir. Bu araştırmalar sonucu ftalitlerin antihelmentik², antikolinerjik, spazmolitik³, sedatif⁴, antikonvülzan⁵ ve antiastmatik⁶ etkiler gösterdikleri belirtilmiştir.

Bazı alkilftalitlerin antihelmentik etki gösterdikleri eskiden beri bilinmektedir. Bu tip ftalitlerin en az santonin [(3S,3aS,5aS,9bS)-3,5a,9-trimetil-3a,5,5a,9b-tetrahidronafto[1,2-b]furan-2,8(3H,4H)-dion] kadar, hatta daha fazla etkili olduğu saptanmıştır.

¹Poliüretanı parçalayabilen bir endofitik mantar türüdür.

² Bağırsak solucanlarını öldürücü.

³ Spazm giderici

⁴ Sakinleştirici

⁵ Epilepsi nöbetleri, bipolar bozukluk, nöropatik ağrı gibi durumların önlenmesi ve tedavisinde kullanılan ilaç.

⁶ Astım tedavisi

Ftalit yapısının santonin yapısına benzediği ve antihelmentik etkiden lakton grubu ile metil gruplu oksinaftalen halkasının sorumlu olduğu sonucuna varılmıştır. Lakton halkasının açılması ile bileşikler inaktif hale geçmektedir (Gijbels 1983).

Mitsuhashi ve diğ. (1960), butilidenftalitin antikolinerjik olduğunu bildirmiştir. Knidilit ve Neoknidilitin ise daha az antikolinerjik olduğu bulunmuştur. 1985 yılında *Angelica Acutiloba*'nın hekzanlı ekstraktları ile yapılan klinik çalışmalarda, ligustilitin antikolinerjik aktivitesinin diğer C-3 sübstitüe ftalitlerden (*n*-butilidenftalit gibi) daha kuvvetli olduğu saptanmıştır. Bütilftalit ise inaktiftir (Wagner ve diğ. 1985).

1966' da *Angelica Sinensis*'in spazmolitik aktivite gösteren ekstraktının etken maddesi olan ligustilit izole ve teşhis edilmiştir (Gijbels 1983). Takip eden yıllarda butilidenftalitin aktivitesinin ligustilitden daha kuvvetli olduğu bulunmuştur. Daha sonra butilftalit ve sedanonik asit laktonun da spazmolitik etkisi olduğu saptanmıştır (Shau ve diğ. 1987; Ko ve diğ. 1971).

Ko ve diğ. (1971), ligustilitin prostoglandin $F_{2\alpha}$ 'nın meydana getirdiği kontraksiyonu inhibe ettiğini saptamışlardır. Aynı araştırmacılar daha sonra *Ligusticum Wallichii*'den izole edilen butilidenftalitin prostoglandin $F_{2\alpha}$ 'nın uterus kontraksiyonunu (oksitosin ve asetilkolinin neden olduğu) araştırmışlardır. Bu bileşiğin papaverin [1-(3,4-dimetoksibenzil)-6,7-dimetoksiizokuinolin] gibi nonspesifik spazm giderici etkisi olduğunu, ancak etki mekanizmasının farklı olduğunu bildirmişlerdir (Gijbels 1983; Ko ve Lin 1977; Ko 1980).

Bjeldanes ve Kim (1978), 3-*n*-butilftalit ve sedanenolitin zayıf sakinleştirici etkiye sahip olduklarını bildirmişlerdir.

Güneydoğu Çin' de epilepsi tedavisinde kullanılan *Apium Graveolens*'den izole edilen 3-*n*-butilftalit ve 3-*n*-butil-4,5-dihidroftalit fareler üzerinde yapılan deneylerde antiepileptik etki göstermişlerdir (Cracer ve Simon 1987).

Geleneksel Çin ilacı olan *Angelica Sinensis*'in uçucu yağı iki ana bileşik (ligustilit ve butilidenftalit) taşımaktadır. Ligustilit, asetilkolin veya histamin enjekte edilmiş kobaylarda antiastmatik etki göstermiştir. Benzer şekilde butilidenftalitin de antiastmatik etkisi olduğu saptanmıştır (Ko 1980; Cracer ve Simon 1987).

Ftalit içeren bitkiler Doğu ve Günaydoğu Asya'da tedavi amacıyla yaygın olarak kullanılırken, bu kullanım Avrupa'da Asya'ya oranla çok daha azdır. Literatür verilerine göre ftalit içeren bitkiler arasında sık olarak kullanılanlar şunlardır;

- Angelica Anomala: Çin'de soğuk algınlığı, başağrısına karşı kullanılmaktadır (Gijbels 1983). Hartwell'e göre tüm bitki göğüs kanseri tedavisinde etkilidir, kökler spesifik olmayan tümörlere karşı kullanılmaktadır (Hartwell 1971; Revolutionary HeaJth Committe of Human Province 1978).
- Çin Melek Otu (Angelica Sinensis): Menstrual (Adet döngüsü) düzensizlikler ve romatizmaya karşı kullanılmaktadır. Kökler in vivo olarak antiviral etki göstermektedir (Wagner ve diğ. 1985; Ko 1980; Revolutionary HeaJth Committe of Human Province 1978). Ayrıca bitki, göğüs kanseri tedavisinde etkilidir (Hartwell 1971).
- Kereviz (Apium Graveolens): Avrupa tıbbında kökler diüretik olarak kullanılmıştır. Avrupa' da halk arasında gut ve romatizmaya karşı kullanılmaktadır. Meyvelerinin uçucu yağı, Hindistan'da romatizmaya karşı ve antispazmodik olarak kullanılmıştır (Indial Pharmaceutical Codex 1953). Asya tıbbında ise karaciğer tümörleri tedavisinde kullanılmaktadır (Gijbels 1983; Uhlig ve diğ. 1987).
- Selam Otu (*Levisticum Officinale*): Avrupa tıbbında diüretik, antispazmodik ve emanagog (regl düzenleyici ve uyarıcı) olarak kullanılmaktadır. Yapraklar ve gövde, sebze olarak ayrıca tadlandırma amacıyla kullanılır. Kökler günümüzde de diüretik olarak kullanılır. Hartwell'e göre bu tür, karaciğer ve dalak tümörlerinde etkilidir (Gijbels 1983; Hartwell 1971).
- Ayı Rezenesi (*Meum Athamanticum*): Meyve ve kökleri eski Fransız ve İspanyol farmakopelerinde kayıtlıdır; kökler tad ajanı olarak, tonik, stomaşik (mide güçlendirici), spazmolitik, histeriye (kişilik bozukluğu) karşı ve uterus (rahim) hastalıklarında kullanılmıştır (Gijbels 1983).

Ayrıca *Cnidium Officinale*, *Angelica Acutiloba* türü ile birlikte obstetrik ve jinekolojik bozuklukların tedavisinde en popüler ham ilaçlardan biridir. Çin ve Japonya'da bu amaçla kullanıldığı bilinmektedir (Tsukamoto ve diğ. 2005).

Ftalitleri içeren bitkilerden gıda olarak da yararlanılmaktadır (Perry 1980). Ülkemizde ftalitleri içeren bitkiler diüretik, karminatif (gaz giderici) olarak ayrıca diğer ülkelerde olduğu gibi gıda maddesi olarak, tad ve koku vermek üzere de yemeklerde kullanılmaktadır (Baytop 1984).

Ftalitler üzerindeki araştırmalar geçmişten günümüze kadar uzanmakla birlikte, önceki yıllarda daha çok ftalitlerin teşhisleri, bitkilerden izolasyonları üzerinde durulmuş, farmakoloijk etkileri üzerindeki araştırmalar ise son yıllarda hız kazanmıştır. Asya'da bu bitkilerin çeşitli kanser türlerinde etkili olması, Avrupa'da da araştırmacıların ftalit içeren bitkilere karşı ilgisi artmıştır. Ulusal Kanser Enstitüsü'nde yapılan bir araştırma Z-butilidenftalitin ve *Levisticum Officinale* kök uçucu yağının sitostatik aktivitesi incelenmiştir. Saf madde ya da yağda böyle bir etki görülmemiştir (Gijbels 1983). Bir başka çalışmada da *Radix Angelicae*¹ 'nin tümörlere karşı aktivitesinin içerdiği ftalitlerden değil, polisakkarit tipi bileşiklerden ileri geldiği saptanmıştır (Wagner 1985). Ancak bu konudaki çalışmalar kesin bir sonuç verecek kadar yeterli düzeye ulaşmamıştır.

Bu konudaki araştırmaların hızlandırılması, ftalit içeren yeni bitkilerin belirlenmesi yanında, bu bileşiklere ait farmakolojik aktivitelerin bulunması ve kanser tedavisinde ftalitlerin gerçekten etkili olup olamayacaklarının saptanması bakımından büyük önem taşımaktadır.

2.2 Ftalitlerin Sentezi

Ftalitler literatürde iki ana yöntemle sentezlenmiştir:

- 1. Ftalik asit türevlerinin indirgemesi (ftalik asit, ftalik esterler, ftalik anhidrit, ftalimid)
- 2. Benzil alkollerden veya benzoik asit türevlerinden *orto*-lityumlama yöntemiyle hazırlanan *o*-hidroksimetil benzoik asitlerin halkalaşması

¹ Melek otu türünün köklerine verilen isimdir.

2.2.1 Ftalik Asit Türevlerinin İndirgenmesi ile Ftalit Sentezi

Simetrik olarak konumlanmış ftalik asitlerin (115) ve ftalik anhidritlerin (116) çeşitli indirgen maddeler tarafından indirgenmesi ile ftalitler (117) elde edilmiştir (Molnar 2015).

4-kloroftalik anhidrit (118) örneğinde gösterildiği gibi asimetrik ftalik anhidritlerin Zn/AcOH ile indirgenmesi ile izomer ürünler meydana gelir (119), (120). Bu nedenle bu yöntem, ftalit sentezi için tercih edilen bir yöntem değildir (Molnar 2015).

Ftalik anhidrit (122) ile klor ve nitro benzenlerin (121) AlCl₃ katalizörlüğünde etkileştirilmesi ile *o*-karboksibenzofenon türevleri (123) elde edilir. Bu bileşiklerin uygun şartlarda indirgenmesi ile *o*-alkilbenzoik asit türevleri (124) ele geçer. *o*-alkilbenzoik asit türevleri NaBrO₃/NaHSO₃ yükseltgenme reaktifi ile oksitlenerek biyolojik olarak aktivite gösteren ilgili ftalit türevleri (125) sentezlenir. Birçok araştırmada biyolojik olarak aktivite gösteren çeşitli ftalitlerin sentezi için çok sayıda benzoik asit ve *o*-alkilbenzoik asit türevleri kullanılmıştır. Bu araştırmalarda

sentezlenen bileşiklerin sitotoksite, antibakteriyel ve antifungal aktiviteleri test edilmiştir (Bayer ve diğ. 2005).

Ftalik anhidritler gibi ftalimidler de ftalit sentezlerinde başlangıç maddesi olarak kullanılabilirler. Bu yöntemle yapılan bir çalışmada Gardner ve Naylor Jr (1936), ftalimid (128) bileşiğini Zn-Cu katalizörlüğünde indirgeyerek elde edilen (129) bileşiğin asidik ortamda ısıtılması ile ftalit (130) sentezini başarmışlardır.

2.2.2 Orto-Lityumlama Yöntemiyle Ftalit Sentezi

Alternatif bir sentez yöntemi olarak *orto*-lityumlama ile çeşitli ftalitler elde edilir. Uygun yönlendirici grup ve bir elektrofilik reaktif kullanılarak ftalit sentezlemek üzere *orto*-disübstitüe bileşikler hazırlanabilir. Bu amaçla benzil alkollerin *orto*-lityumlama (A) yoluyla *orto*-karboksilasyonu ve ardından siklizasyon reaksiyonu ile ftalitler elde edilir. Bununla birlikte, benzoik asitlerin bazı türevleri (örneğin; çeşitli amidler, dihidrooksazoller), *orto*-lityumlama reaksiyonlarındaki hidroksimetil gruplarına göre daha güçlü yönlendirici olduklarından ftalitlerin sentezi için başlangıç maddesi olarak daha çok kullanılırlar. Diğer bir yöntem (B), uygun benzoik asit türevlerinin *orto*-lityumlanmasının ardından isteğe bağlı olarak sübstitüe hidroksimetil grubunun bağlanmasından sonra oluşan bileşiğin asitle muamele edilmesiyle ftalitlerin elde edildiği yöntemdir (Faigl ve diğ. 2010).

R₁, R₂, R₃, R₄: H, alkil, vb.

Benzil alkollerin (131) *orto*-lityumlanmasının ardından karboksilasyon ile *o*hidroksimetil benzoik asitler (132) elde edilir. Elde edilen bileşiğin asit katalizli halkalaşmasıyla ftalitler (133) sentezlenir. Bu metod, hidroksimetil grubunun lityumlama reaksiyonlarındaki zayıf *orto*-yönlendirme etkisi ile sınırlanır. Benzoik asit türevlerinin *orto*-lityumlanmasının (134) ardından uygulanan hidroksimetilasyon reaksiyonu ile elde edilen bileşiğin asidik işlemlerden sonra *o*-hidroksimetilbenzoik asit türevlerine (132) dönüştürülmesi daha sık uygulanan bir yöntemdir. Bu yöntemle *orto* konumunda lityumlanmış benzoik asit türevlerinin formillenmesi ve ardından indirgenmesi ile yapılan sentez doğrudan hidroksimetilasyonla yapılan senteze göre daha yüksek verimle gerçekleşir (Molnar 2015).

2.2.3 β-Keto Asitler ve Ftaldehidik Asitten Ftalitlerin Sentezi

Jia ve Han (2017), gliserol içinde katalitik tek pot kademeli reaksiyonu yoluyla 2-formilbenzoik asit (135) ve β -keto asitlerinden (136) 3-sübstitüe ftalitlerin (137) sentezini gerçekleştirmişlerdir.

Çok sayıda biyoaktif bileşiğin yapıtaşı olan 3-sübstitüe ftalitler, antibakteriyel, anti-HIV, antifungal, antibiyotik, antitümör ve bağışıklık sistemini baskılayıcı (immünosupresif) gibi geniş bir farmakolojik aktivite sergilemektedirler. Ayrıca, izokumarinler, antrakinonlar, antrasiklinler, çeşitli alkaloidler gibi birçok biyoaktif bileşikte bulunan önemli heterosiklik yapılardır. 3-sübstitüe ftalitlerin tek pot kademeli reaksiyon yoluyla sentezi sıkça uygulanan yöntemlerdendir (Jia ve Han 2017).

2-formilbenzoik asit (138) ile benzoilasetik asit (139) reaksiyonundan 3fenasilfatlitler elde edilir. Reaksiyon gerçekleşmesi için bir baza ihtiyaç vardır. Baz olarak trietilamin (Et₃N) kullanıldığında reaksiyon % 32 verimle gerçekleşir. Verimi arttırmak için üçüncül, ikincil, birincil aminlerden yapılan çalışmalardan en iyi verimin birincil aminlerde gerçekleştiği görülmüştür. Genel olarak, en iyi sonuç, 0,5 saatte 65°C sıcaklıkta *p*-anisidin katalizörlüğünde elde edilmiş ve reaksiyonun verimi % 80 olarak bulunmuştur (Jia ve Han 2017).

Reaksiyon mekanizması aşağıda gösterilmiştir. İlk olarak, 2-formilbenzoik asit aldol ara ürününü (A) vermek üzere bir baz eşliğinde benzoilasetik asit ile reaksiyona girer. Daha sonra, dekarboksilasyon ve ara ürünün laktanizasyonu (A) ile 3-fenasilftalit (140a) oluşur. Bu yöntemle elde edilen ftalit türevlerinin verimleri aşağıda gösterilmiştir (Jia ve Han 2017).

2.2.4 Siklizasyon Yöntemiyle Ftalitlerin Sentezi

Kademeli siklizasyon yöntemi ile aromatik asit ve aldehitlerden 3-sübstitüe ftalitler elde edilir. Reaksiyon rodyum katalizörü ile gerçekleşir. Genel olarak, 3sübstitüe ftalitlerin sentezi için çok aşamalı reaksiyonlar kullanılır. Geçiş metali katalizörlerinin geliştirilmesiyle 3-sübstitüe ftalitlerin sentezi üzerine yapılan araştırmalar çoğalmıştır (Shi ve Li 2012). Örneğin; siklizasyon yöntemi ile aldehitler ve metil 2-iyodobenzoatların reaksiyonundan yüksek verimlerde ftalitler elde edilmiştir. Geçiş metali katalizörü olarak CoI₂ ve Zn katalizörleri de kullanılır (Cheng ve diğ. 2007; Rayabarapu ve diğ. 2004).

o-toluik asit (144) ve 3-nitrobenzaldehitin (145) reaksiyonu ile ftalit (146) elde edilir. Ag₂CO₃ ve AgClO₄ beraberinde ve [Cp*RhCl₂]₂ katalizörü ile yapılan reaksiyonun verimi oldukça düşüktür. Bazı optimizasyon çalışmalarından sonra en iyi sonuç, Ag₂CO₃ bazı, AgOTf katkı maddesi ve [Cp*RhCl₂]₂ katalizörü ile elde edilmiş ve reaksiyonun verimi % 81 olarak bulunmuştur (Shi ve Li 2012).

Yapılan çalışmalardan elde edilen sonuçlara göre benzoik asit türevleri (147) ve 3,5-bis(triflormetil) benzaldehitin (148) reaksiyonu ile de ftalit elde edilir. Reaksiyon mekanizması ve verimleri aşağıdaki gibidir;

Bu çalışmalardan karboksil grubu tarafından aktive edilen aromatik *orto* C-H bağlarının rodyum (III) katalizörü ile etkileşmesi neticesinde 3-sübstitüe ftalitlerin elde edildiği bir yöntem geliştirilmiştir. Bu yöntemde su dışında hiçbir yan ürün oluşmamıştır (Shi ve Li 2012).

Benzer şekilde, kademeli siklizasyon yöntemi ile aromatik asitler ve aldehitlerin reaksiyonundan 3-sübstitüe ftalitler elde edilir. Reaksiyon, yüksek verimli ve uygun maliyetli rutenyum(II) katalizörü ile gerçekleşir. Bu kademeli siklizasyon, C-H bağının polar C=O grubuna bağlanmasının ardından molekül içi nükleofilik sübstitüsyon (yerdeğiştirme) tepkimesinden meydana gelir (Fan ve diğ. 2017).

o-toluik asit ve *m*-nitrobenzaldehitin reaksiyonu $[RuCl_2(p-simen)]_2$ katalizörü, AgOTf ve Na₂CO₃ katkı maddesi eşliğinde gerçekleşir. Reaksiyonun verimi % 69 olarak bulunmuştur.

Ru (II) katalizli ftalit sentezi için reaksiyon mekanizması aşağıdaki gibidir;

2-asetil benzoik asitin asidik etanol ortamındaki siklizasyon reaksiyonundan 3etoksi-3-metil isobenzofuran-1(3*H*)-on (154) elde edilir. (154) bileşiğinin dietil malonat ile reaksiyonundan (155) bileşiği sentezlenir. Elde edilen bileşiğin verimi % 89 olarak bulunmuştur (Li ve diğ. 2006).

2-formilbenzoik asitleri (158) ve furan türevleri (159) ile kondenzasyon reaksiyonundan 3-füril ftalitler (160) elde edilir. Reaksiyon, asidik katalizör eşliğinde gerçekleşir. 3-fürilftalitler, nafto [2,3-b] furan-4,9-dionların (157) sentezinde kullanılan 2-karboksibenzilfuranların (156) halkalaşma ürünleridir. 3-fürilftalitlerin birçoğu bitkilerden izole edilir. Ayrıca sitotoksite ve diğer farmakolojik aktiviteleri de gösterirler. Reaksiyona su ilave edilmesiyle elde edilen ürünün verimi artar. İlk defa sentezlenen 3-füril ftalit bileşiğinin verimi, tepkime koşullarının değiştirilmesi ile artacağı öngürülür (Dmitriev ve diğ. 2005).

Ftalitlerin sentezi için birçok yöntem geliştirilmiştir. Bu yöntemlerin arasında kuvvetli asit ve bazlar tarafından katalize edilen siklizasyon reaksiyonları da yer alır. Bu yöntemlerin bazılarında güçlü, korozif ve zararlı asit ve bazların kullanılması, düsük verime ve uzun reaksiyon süresine yol açar. Son yıllarda, katı asitlerin heterojen katalizör olarak kullanılması organik sentezin farklı alanlarına olan ilgiyi arttırmıştır. Heterojen katı asitler, homojen katı asit katalizörlerine göre daha çok avantaja sahiptir. Heterojen katı asitler, filtreleme yöntemiyle reaksiyon karışımından kolaylıkla ayrılabilir ve yeniden kullanılabilir. Ancak bu katalizörün ana dezavantajı düşük özgül yüzey alanına sahip olmasıdır. Bu yüzden yüzey alanının arttırılması veya katalizörün etki ettiği aktif alan sayısının arttırılması önemlidir. Bu amaca ulaşmak için katalizör genellikle yüksek yüzey alanı olan katı bir desteğin yüzeyine tutturulur. Katalizörün katalitik davranısı desteğin özelliğine bağlıdır. Özellikle alümina ve silika destekli katalizörler düşük maliyet, kolay hazırlanma ve geri dönüşüm gibi avantajlara sahiptir. Silika destekli sülfürik asit katalizörü eşliğinde, metilaril veya siklik ketonlar (163 veya 164) ile ftalaldehidik asitin (162) reaksiyonundan yüksek verimle ftalit elde edilir (Maleki ve diğ. 2015).

Reaksiyon mekanizması aşağıda gösterildiği gibi iki aşamalıdır. İlk aşamada gerçekleşen aldol kondenzasyonunun ardından siklizasyon reaksiyonuyla ftalit oluşur.

2.2.5 Ester ve Ketonlardan Ftalit Sentezi

İyot-magnezyum değişim reaksiyonu ile ester (örn; metil *o*- iyodobenzoatlar) ve ketonlardan ftalit elde edilir. Reaksiyon, silil metil grignard katalizörü (Me₃SiCH₂MgCl) ile gerçekleşir. Aşağıda metil *orto*-iyodobenzoat (167) ve benzofenon (168) reaksiyonundan elde edilen 3,3-difenil ftalit (169) sentezi gösterilmektedir. Sentezlenen bileşiğin verimi % 40 olarak bulunmuştur (Nakamura ve diğ. 2017).

Çeşitli ester ve ketonlardan elde edilen ftalit türevleri ve verimleri aşağıdaki gibidir;

Benzer şekilde, ftalaldehidik asit (162) ile siklik ketonların (170) kademeli tek pot reaksiyonundan 3-sübstitüe ftalitler elde edilir. Reaksiyon, silika destekli Preyssler nanoparçacıkları ($H_{14}[NaP_5W_{30}O_{110}]/SiO_2$) ile gerçekleşir. Silika destekli Preyssler nanoparçacıkları, yüksek dönüşüm, düşük sıcaklıkta çalışma ve yeniden kullanılma gibi çeşitli avantajlara sahiptir. Elde edilen ftalit türevlerinin verimleri ve reaksiyon mekanizması aşağıda gösterilmiştir (Heravi ve diğ. 2009).

Aril grubuna sahip 3-substitüe ftalitler iki yöntemle sentezlenir;

 Farklı asetofenon, propiofenon, kumarinoil asetofenonunun brom türevleriyle (172) *o*-aril benzoik asidin (173) geri soğutucu altında kaynatılması ile ftalitler elde edilir. Reaksion, susuz K₂CO₃ ve etil metil keton ortamında gerçekleşir (Nalini V. ve Poonam 2012).

51

 Birinci yöntemle aynı reaksiyon ortamına sahip, *o*-aril benzoik asit (173) ve brom dietil malonatın (175) geri soğutucu altında kaynatılması ile de ftalitler elde edilir (Nalini V. ve Poonam 2012).

2.2.6 Orto-Dialdehitlerden Ftalit Sentezi

Enantiyomerik saflıkta 3-sübstitüe ftalitler iki adımda sentezlenir;

Birinci adımda, ilk olarak (-)-8-benzilaminomentol (177) ve *o*-ftaldehidin (178) kondenzsasyon reaksiyonundan perhidro-1,3-benzoksazin (179) elde edilir. Elde edilen bileşik, farklı organometalik bileşiklerle reaksiyona sokularak alkollere (180) dönüştürülür (Pedrosa ve diğ. 2006).

(-)-8-benzilaminomentol (177) ile *o*-brombenzaldehitin (181) kondenzasyon reaksiyonundan tek diastereoizomer olarak 182 bileşiği elde edilir. Elde edilen bileşiğin verimi % 65'dir. 182 bileşiği tetrahidrofuran (THF) ortamında ve 90°C sıcaklıkta *t*-Butillityum (*t*-BuLi) reaktifi ile muamele edildiğinde organolityum türevine dönüşür. 90°C sıcaklıkta, organolityum türevinin uygun aldehit ile reaksiyonundan benzilik alkoller (180) elde edilir. Benzilik alkollerin alternatif sentez yöntemi yukarıda ifade edilen yönteme göre daha düşük verim ve distereo seçiciliğe sahiptir (Pedrosa ve diğ. 2006).

İkinci adımda, birinci adımda sentezlenen alkoller ftalitlere dönüştürülür. Benzilik alkollerden (180) ftalitlerin (184) elde edilmesi de iki adımda gerçekleşir; Öncelikle benzilik alkoller, seyreltik alkolik HCl çözeltisiyle tepkimeye girer ve N,O-ketal yapısının hidrolitik bölünmesiyle asetallerin (183) eşit molde *cis* ve *trans* izomerleri oluşur. Daha sonra 183 bileşiği, mCPBA (Meta-klorperoksibenzoik asit), BF₃.Ot₂ (Bor triflorür etil eterat) ve CH₂Cl₂ (metilen klorür) ile muamele edilerek yüksek verimde enantiyosaf ftalitler (184) elde edilir. Elde edilen ftalit türevlerinin verimleri aşağıda verilmiştir (Pedrosa ve diğ. 2006).

2.2.7 İndan Türevlerinden Ftalit Sentezi

Subkritik su, normal kaynama noktası (100°C) ve kritik sıcaklık (374°C) arasındaki sıcaklıklarda basınç altında bulunan sıvı sudur (Kuş 2012; Klose ve Naberuchin 1986). Suyun anormal özelliklerinin birçoğu çok güçlü hidrojen bağından kaynaklanır. Subkritik sıcaklık aralığının üstünde, hidrojen bağları bozulur ve genellikle sıcaklığın arttırılması beklenenden daha fazla özelliğin değişmesine sebep olur (Klose ve Naberuchin 1986). Su daha az polar hale gelir ve metanol veya etanol gibi bir organik çözücü davranışı sergiler (Kuş 2012).

Subkritik suyun özelliğinden ve moleküler oksijenin subkritik sudaki yüksek çözünürlüğünden dolayı bir organik çözücü ve metal tuzları/kompleksleri olmadan indan türevlerinden isobenzofuran-1(3H)-on (130) ve isobenzofuran-1(3H)-dion (122) elde edilebilir. İndan türevleri, subkritik sudaki moleküler oksijen ile isobenzofuran-1(3H)-on'a ve moleküler oksijen ve hidrojen peroksit (H_2O_2) ile isobenzofuran-1(3H)-dion'a yükseltgenir. Reaksiyon, Kornblum–DeLaMare reaksiyonu olarak bilinen ve katalizöre ihtiyaç olmadan tek adımda gerçekleşir. Ayrıca basit, ekonomik ve çevreye uyumlu bir sentez yöntemidir ve subkritik su altındaki sentez çalışmalarına örnek oluşturur (Kuş 2013).

İndan türevlerinin isobenzofuran-1(3*H*)-on'a dönüşüm reaksiyonunun mekanizması aşağıda verilmiştir. Mekanizmaya göre, ilk olarak oksijeni Kornblum– DeLaMare reaksiyonu ile karbonil grubu oluşturmak için hidroperoksit oluşturacak şekilde α -karbon atomuna saldırır. Diketon, Baeyer-Villiger reaksiyonu yoluyla lakton oluşturmak için reaksiyon sırasında oluşan hidrojen peroksit ile etkileşir. Elde edilen bileşikten bir mol karbonmonoksitin (CO) ayrılması ile ftalit (130) elde edilir.

Sentezler, subkritik sudaki moleküler oksijen ile gerçekleşir. 2,3-dihidro-1*H*inden-1-on (185) ve 1,2-dibrom-2,3-dihidro-1*H*-inden (186) yüksek verimlerde isobenzofuran-1(3*H*)-on'a (130) okside olur. 2-brom-2,3-dihidro-1*H*-inden-1-on (187) moleküler oksijenle yükseltgenmesinden daha düşük verimde (%50) ftalit (130) elde edilir.

2.2.8 Orto-Siyano Benzaldehitlerden Ftalit Sentezi

2-siyanobenzaldehitler (188) ve *t*-bütil asetat ve *N*,*N*-dimetilasetamidin organolityum veya lityum enolatları gibi nükleofillerle reaksiyonundan 3-sübstitüe 3*H*-isobenzofuran-1-ilidenaminler (189) elde edilir. Bu ürünlerden bazıları, hidroklorik asit ile muamele edilerek 3-sübstitüe ftalit sentezlenir (Kobayashi ve diğ. 2011).

188 bileşiği ve *t*-bütil asetat ve *N*,*N*-dimetilasetamidin lityum enolatları ile reaksiyonundan 2-(3-imino-l, 3-dihidroizobenzofuran-1-il) asetik asit türevleri (190) sentezlenir. Elde edilen bileşik, 3-sübstitüe ftalit sentezi için alternatif bir başlangıç maddesidir.

189 ve 190 bileşiği asidik koşullar altında hidroliz edilerek 3-sübstütüe ftalit (191) elde edilir.

Benzoik asitler (192 ve 195) Palladyum (II) asetat $(Pd(OAc)_2, Potasyum bikarbonat (KHCO_3)$ ve dibrommetan (CH_2Br_2) ile tepkimeye girerek metoksi ftalitler (193 ve 196) elde edilir. Elde edilen bileşiklerin bor tribromür (BBr₃) ile reaksiyonundan hidroksile ftalitler (194 ve 197) sentezlenir (Teixeira ve diğ. 2014).

2.3 5-Sübstitüe Ftalitlerin Sentezi

Ftalit, ilaç ve ilaç adaylarında önemli bir yapı olduğu için çeşitli ftalit türevleri geliştirilmiştir (Faigl ve diğ. 2010). Bu türevlerden biri olan 5-sübstitüe ftalitler, literatürde çeşitli yöntemlerle sentezlenir ve 5-sübstitüe ftalitlerin ara ürünleri, antidepresan ilacı olan sitolopram ve onun optikçe aktif benzeri olan essitolopramın üretim sürecinde kullanılır (Hilden ve diğ. 2004; Castaner ve diğ, 1979; Sorbera ve diğ. 2001).

Literatürde dört ayrı yolla sentezlenen (A, B, C, D) 5-klor ftalitin (198) reaksiyonları aşağıda verilmiştir. Ancak literatür prosesleri çeşitli dezavantajlara sahiptir. Örneğin; Sayısız reaksiyon aşaması içerir ve düşük verimli ürünler elde edilir. Ayrıca karbontetraklorür (CCl₄) veya çinko kullanımının çevreye olan zararlı etkisinden dolayı bu proseslerin uygulanmasından kaçınılır (Faigl ve diğ. 2010).

Yukarıdaki proseslerin dezavantajlarından dolayı *orto*-lityumlama yöntemiyle 5-sübstitüe ftalitler sentezlenir. Prosedürün temel adımı, dimetil formamid (DMF) ile formillemeyi takip eden 4-klor-*N*,*N*-diizopropilbenzamitin (199a) orto-lityumlanmasıdır. Formil grubunun sodyum borohidrit ile indirgenmesinin ardından halkalaşma ile yüksek verimde 5-klor ftalit (198) elde edilir (%76). Hidroksimetil ara ürünü (202a) izole edilmeden formil türevinin (201a) sodyum borhidrür ile indirgenmesinin ardından asidik siklizasyon ile 5-klor ftalit (198) elde edilir. Bileşiğin verimi % 95'dir (Faigl ve diğ. 2010).

Yukarıda açıklanan 5-klor ftalitin sentezine benzer şekilde 3,5-diklor-*N*,*N*-diisopropilbenzamitin (3,5-diflor-*N*,*N*-diisopropilbenzamit) orto lityumlanması ile 4,6-diklor (207a) ve 4,6-diflor ftalitler (213b) de sentezlenebilir (Molnar ve diğ. 2011).

N,*N*-diisopropilkarbomilin orto-lityumlanmasında *s*-bütil lityum (sBuLi) yerine bütil lityum (BuLi) veya hekzil lityum (HexLi) reaktiflerinin de kullanılması önemli bir avantajdır. Bu yöntemle 5-klor ftalitin sentezi % 92-95 verimle gerçekleştirilir (Molnar ve diğ. 2011).

2.4 Ftalitlerin Reaksiyonları

Ftalitler, heterosiklik yapıların ve tıp kimyasının çok yönlü yapıtaşlarıdır. Bu yüzden heterosiklik bileşiklerin sentezinde sıklıkla kullanılırlar.

5,6-diaminoftalit (214) ve tiyadiazolftalit (215) bileşikleri heterosiklik yapıların eldesinde ve bazı organik bileşik türevlerinin sentezinde kullanılan başlangıç bileşikleridir (Molnar ve diğ. 2012).

o-fenilendiamin de ftalit gibi daha karmaşık heterosiklik bileşiklerin sentezinde kullanılır. Bu iki yapının aynı molekülde bulunması yeni heterosiklik bileşiklerin sentezine imkan tanır. 214 ve 215 bileşiklerinin bu amaçla kullanımı aşağıda gösterilmiştir.

214 ve 215 bileşiklerinin literatürde bulunan sentez yöntemi (A) ile yeni sentez yöntemi (B) aşağıda verilmiştir. Yeni sentez yönteminde, 5-klor ftalitin (216) nitrolanması ile 5-klor-6-nitroisobenzofuran-1(3*H*)-on (217) elde edilir. Klor atomununun azit anyonu ile nükleofilik yerdeğiştirme reaksiyonuna göre yer değiştirmesi 5-azido-6-nitroisobenzofuran-1(3*H*)-on (218) bileşiğini verir. 218 bileşiğinin katalitik indirgenmesi ile 5,6-diaminoftalit (214) oluşur. Son olarak, 214 bileşiğinin tiyonil klorür ile halkalaşmasından tiyadiazolftalit (215) elde edilir.

Ftalitler kullanılarak sentezlenen bir başka bileşik pestasindir. Ftalitin hidrodesülfürizasyon yolu ile pestasine (1) dönüşümü aşağıda gösterilmişir (Karmakar ve diğ. 2009).

Bir tionoftalitin hidrodesülfürizasyon ile ftalana dönüşüm reaksiyonu aşağıda verilmiştir. Ftalitin (220) Lawesson reaktifi ile etkileşmesi ile tionolakton (221) elde edilir. Elde edilen bileşiğin (221), Raney nikeli muamele edilmesiyle çok düşük verimde ftalan (222) sentezlenir (Karmakar ve diğ. 2009).

Permetil eter pestasin de ftalitler kullanılarak sentezlenen bileşiklerdir. Aseton (223) ile dietil oksalatın reaksiyonundan hidroksibenzoik asit (224a) elde edilir. Elde edilen bileşik asetonda MeI ve K₂CO₃ ile reaksiyona sokularak 224b bileşiği sentezlenir. 224b bileşiği formilleme reaksiyonu ile formil ester (225) oluşur ve formil esterin LiOH ile hidrolize edilmesiyle ftalaldehidik asit (226) meydana gelir. 226 bileşiğinin siklohekzan-1,3-dion (227) ile kondenzasyon reaksiyonundan 3-siklohekzenilftalit (228) sentezlenir. 228 bileşiğinin iyot ve metanol ortamında geri soğutucu altındaki işleminden sonra trimetoksiarilftalit (229) elde edilir. 229 bileşiğinin LiAlH₄ ile indirgenmesinden sonra elde edilen bileşiğin (230) halkalaşması ile permetile eter pestasin (231) elde edilir. Permetil pestasin bileşiğinin verimi %98'dir (Karmakar ve diğ. 2009).

Monometil eter pestasin de permetil eter pestasin gibi ftalitler kullanılarak sentezlenen bileşiklerdir. 228 bileşiğinin civa (II) asetat [Hg(OAc)₂], sodyum asetat (NaOAc) ve asetik asit (AcOH) ortamında geri soğutucu altında kaynatılması ile

resorsinolilftalit (232) elde edilir. Elde edilen bileşiğin indirgenmesinden sonra monometil eter pestasin (233) oluşur. Oluşan bileşiğin verimi permetil eter pestasin (231) bileşiğine göre daha düşüktür (%50) (Karmakar ve diğ. 2009).

3. MATERYAL VE YÖNTEM

3.1 Materyal

3.1.1 Kullanılan Kimyasal Maddeler

Tez kapsamında sentezlerde kullanılan karboksialdehitler ve hetarilaminler ticari olarak mevcut olduğundan satın alınma yoluyla temin edilmiştir. Kullanılan tüm kimyasal maddeler, saflık dereceleri ile birlikte Tablo 3.1'de verilmiştir.

Tablo 3.1: Kullanılan kimyasal maddeler ve saflık dereceler

Kimyasal Madde				
Ftalaldehidik asit (2-formilbenzoik asit)	98			
6,7-dimetoksi ftalaldehidik asit (6-formil-2,3-dimetoksi benzoik asit)	98			
2-aminopirimidin	97			
3-aminopiridin	99			
2-amino-5-metil piridin	99			
2-amino-6-metil piridin	98			
2-amino-4,6-dimetil pirimidin	98			
2-amino-4,6-dimetoksi pirimidin	98			
2-amino-4-klor-6-metil pirimidin	98			
2-amino-5-metilthiazol	98			
2-amino-4,6-dimetil pirimidin	95			
Etil alkol (Abs)	99,9			
Etil alkol (Ticari)	96			
Asetonitril	99,9			

3.1.2 Kullanılan Cihazlar

- Erime noktası tayini için Stuart SMP30 model erime noktası cihazı
- UV-VIS spektrumlarının çekilmesi için Optizen Pop UV Spektrofotometresi
- IR spektrumlarının çekilmesi için Agilent Technologies Carry 630 model FT-IR Spektrofotometresi
- Kristal yapılarının çözümünde STOE IPDS II Difraktometresi
- NMR spektrumlarının çekilmesi için Magritek Spinsolve 60/Karbon Spektrofotometresi
- Gaussian09 paket programı kullanılarak teorik hesaplamalar elde edilmiştir.

3.2 Yöntem

3.2.1 3-Hetarilamino Ftalitlerin Sentezi

Ftalitler üzerine çok sayıda çalışma yapılmış olmasına rağmen tez kapsamında sentezlenen türevler literatürde yer almamaktadır. Science Finder Scholar data bazında yapılan tarama ile literatürde yer almayan bileşikler olduğu görülmüştür. Arilaminoftalitler üzerine yapılan daha önceki çalışmalar ise genellikle homoaromatik aminlerle gerçekleştirilen sentezlerdir (Odabaşoğlu ve Büyükgüngör 2006, 2007, 2008). Sentezlenen hetarilftalitler ile ilgili çok az çalışma mevcuttur (Odabaşoğlu ve Büyükgüngör 2006^{e,f,g}).

Çalışmada sentezlenen tüm ftalitler, heteroaromatik halka içeren aminler (piridin ve pirimidin türevleri) ve karboksi aldehitler kullanılarak tek kademeli bir reaksiyon ile elde edilmiştir (Şekil 3.1) (Odabaşoğlu ve Büyükgüngör 2006^e). Sentezi gerçekleştirilen bileşikler, uygun çözücüler kullanılarak tek kristal haline getirilmiştir.

Şekil 3.1: 3-Hetarilaminoftalit sentezi

3.2.1.1 3-((5-metil piridin-2-il)amino) isobenzofuran-1(3H)-on (I) Sentezi

1,50 gr (0,01 mol) ftalaldehidik asit 50 ml etanol içerisinde çözüldü ve üzerine 1,081 gr (0,01 mol) 2-amino-5-metil piridin ilave edildi. Çözelti, geri soğutucu altında 4 saat kaynatıldı. Reaksiyon sonunda çözelti soğumaya bırakıldı ve çöken kısım süzülüp kurutuldu. Elde edilen ürün, etanol ile saflaştırıldı. 3-((5-metil piridin-2-il)amino) isobenzofuran-1(3*H*)-on (I) bileşiği saflaştırıldıktan sonra bu bileşiğin tek kristalleri, asetonitril çözeltisinin oda sıcaklığında yavaş bir şekilde uçurulmasıyla elde edildi. Verim: % 82, erime noktası: 168-169°C'dir.

Diğer ftalit türevleri de aynı şekilde sentezlenmiş ve saflaştırılmıştır. Sentezlenen bileşiklerin isimleri, erime noktaları, verimleri ve tek kristallerin hazırlandığı çözücüler aşağıda verilmiştir.

3.2.1.2 3-(Pirimidin-2-ilamino) isobenzofuran-1(3H)-on (II) Sentezi

Verim: % 64; Erime noktası: 215,3-216,4°C. Saflaştırmada kullanılan çözücü: Etanol. Tek kristallerin hazırlandığı çözücü: Asetonitril.

3.2.1.3 3-(Piridin-3-ilamino) isobenzofuran-1(3H)-on¹ (III) Sentezi

Verim: % 95; Erime noktası: 159,5-160,5°C. Saflaştırmada kullanılan çözücü: Etanol. Tek kristallerin hazırlandığı çözücü: Asetonitril.

¹Bu bileşik ilk defa 2006 yılında sentezlenmiştir (Odabaşoğlu ve Büyükgüngör 2006^d).

3.2.1.4 3-((4,6-dimetil pirimidin-2-il)amino) isobenzofuran-1(3H)-on (IV) Sentezi

3-((4,6-dimetil pirimidin-2-il)amino) isobenzofuran-1(3*H*)-on

Verim: % 90; Erime noktası: 177,5-178°C. Saflaştırmada kullanılan çözücü: Etanol. Tek kristallerin hazırlandığı çözücü: Asetonitril.

3.2.1.5 3-((4,6-dimetoksi pirimidin-2-il)amino) isobenzofuran-1(3H)-on (V) Sentezi

3-((4,6-dimetoksi pirimidin-2-il)amino) isobenzofuran-1(3*H*)-on

Verim: % 89; Erime noktası: 187,8-188,8°C. Saflaştırmada kullanılan çözücü: Asetonitril Tek kristallerin hazırlandığı çözücü: Asetonitril.

3.2.1.6 3-((4-kloro-6-metil pirimidin-2-il)amino) isobenzofuran-1(3H)-on (VI) Sentezi

3-((4-kloro-6-metil pirimidin-2-il)amino) isobenzofuran-1(3*H*)-on

Verim: % 94; Erime noktası: 164,4-165,5°C. Saflaştırmada kullanılan çözücü: Etanol Tek kristallerin hazırlandığı çözücü: Asetonitril.

3.2.1.7 3-((6-metil piridin-2-il)amino) isobenzofuran-1(3*H*)-on ¹ (VII) Sentezi

Verim: % 66; Erime noktası: 152,0-152,9°C. Saflaştırmada kullanılan çözücü: Etanol Tek kristallerin hazırlandığı çözücü: Etanol.

¹Bu bileşik ilk defa 2007 yılında sentezlenmiştir (Odabaşoğlu ve Büyükgüngör 2007^h).

3.2.1.8 3-((5-metiltiyazol-2-il)amino) isobenzofuran-1(3*H*)-on (VIII) Sentezi

Reaksiyon, geri soğutucu altında 18 saat kaynatılarak gerçekleştirildi.

Verim: % 31; Erime noktası: 197,5-198,2°C. Saflaştırmada kullanılan çözücü: Etanol. Tek kristallerin hazırlandığı çözücü: Asetonitril.

3.2.1.9 3-((4,6-dimetilpirimidin-2-il)amino)-6,7-dimetoksi isobenzofuran-1(3*H*)-on (IX) Sentezi

Verim: % 90; Erime noktası: 199-203,5°C. Saflaştırmada kullanılan çözücü: Etanol Tek kristallerin hazırlandığı çözücü: Etanol

4. BULGULAR VE SONUÇLAR

4.1 X-Işını Kırınımı

4.1.13-((5-metilpiridin-2-il)amino)isobenzofuran-1(3H)-on(I)Bileşiğinin İncelenmesi

Şekil 4.1: 3-((5-metilpiridin-2-il)amino) isobenzofuran-1(3*H*)-on (I) bileşiğinin molekül yapısı

Şekil 4.1'de I molekülünün kristal yapısı görülmektedir. Tüm difraksiyon ölçümleri, grafit tek renkli MoK\α radyasyonu ve bir STOE IPDS 2 difraktometresi kullanılarak oda sıcaklığında (296 K) yapılmıştır. I molekülüne ait kristal yapı verileri Tablo 4.1, atomik koordinatlar ve izotropik veya ekivalent izotropik yer değiştirme parametreleri Tablo 4.2, atomik yer değiştirme parametreleri Tablo 4.3 ve seçilmiş deneysel ve teorik bağ uzunlukları, bağ açıları ve torsiyon açılarının karşılaştırılması Tablo 4.4'de verilmiştir.

I molekülünün geometrisi (Şekil 4.1), 3-(6-Metil-2-piridilamino) isobenzofuran-1 (3*H*) –on için bulunan ortalama geometriden önemli bir farkı yoktur (Odabaşoğlu ve Büyükgüngör 2007). Şekil 4.1'de gösterildiği gibi molekül yapısı bir ftalit grubu ve azot atomuyla birbirine bağlanmış bir 5-metil-2-piridilamino grubundan oluşur. Ftalit grubu (C1-C8/O2) düzlemseldir, ortalama düzlemden en büyük sapma -0,026 Å (O2 için)'dır. Düzlemsel ftalit grubu ile piridil halkası arasındaki dihedral açı 62,10°'dir. C1-O1 bağ uzunluğu (1,2041(1) Å) çift bağa karşılık gelir ve benzofuranon karbonil grubunun özelliklerini taşır. 5-metoksi ftalit'de bu bağ uzunluğu 1,209(2) Å, (3Z,3'Z)-3,3'-(etan-1,2-diiliden)-bis (isobenzofuran-1(3*H*)-on)'da 1,2007(18) Å) (Paxiao ve diğ. 2012; Ono ve diğ. 2009). 1,4016(1) Å olan C8—N1 arasındaki bağ uzunluğu, 3-(6-Metil-2-piridilamino) isobenzofuran-1(3*H*)—on (Odabaşoğlu ve Büyükgüngör 2007) ve 3-(benzo[*d*]tiyazol-2-ilamino) isobenzofuran-1(3*H*)—on (Xing ve diğ. 2018) bileşiklerindeki C—N tekli bağ uzunlukları ile uyumludur. Bu bileşiklerdeki C-N bağ uzunlukları sırasıyla 1,401(2) Å ve 1,404(5) Å'dur. I molekülü, 3-(6-Metil-2-piridilamino) isobenzofuran-1(3*H*)-on izomeri ile karşılaştırıldığında C8-O2 (1,4873(1) Å) bağı çok az kısalırken C1-O1 (1,2041(1) Å) ve C1-O2 (1,3483(1) Å bağlarının çok az uzadığı anlaşılır. Bu molekülde C1-O1, C1-O2 ve C8-O2 bağ uzunlukları sırasıyla (1,201(2) Å), (1,343(2) Å), (1,491(2) Å'dır.

$C_{14}H_{12}N_2O_2$
240,26
Monoklinik
P 21n
8,0712(7), 6,6762(4), 23,005(2) Å
1225,01(17) Å ³
4
90°
98,813(7)°
90°
504
1,303 Mg m ⁻³
Μο Κ\α
0,71073 Å
0,089 mm ⁻¹
296 K
Prizma ve renksiz
0,80*0,52*0,24 mm
0,9595, 0,984
ω taraması
$h=-6\rightarrow 10, k=-8\rightarrow 8, l=-28\rightarrow 28$
1 702 26 403 °
1,792-20,493
5782
5782 2461
5782 2461 1691
5782 2461 0,0558
1,792-20,493 5782 2461 1691 0,0558 211
1,792-20,493 5782 2461 0,0558 211 0,932
1,792-20,493 5782 2461 0,0558 211 0,932 0,0347
1,792-20,493 5782 2461 0,0558 211 0,932 0,0347 0,0926
$\begin{array}{c} & & & & & & \\ & & & & & & \\ & & & & & $

Tablo 4.1: 3-((5-metilpiridin-2-il)amino) isobenzofuran-1(3*H*)-on (I) bileşiğinin kristal yapısına ait veriler

Atom	x	v	Z	Uias*/Uas
01	0.17482(13)	0.11803(17)	0.28041(4)	0.0717(3)
02	0.24515(11)	0 39207(14)	0.33395(3)	0.0562(3)
N1	0.41255(15)	0,59207(17)	0.41699(5)	0.0539(3)
N2	0 38148(14)	0,73520(15)	0.49774(4)	0.0504(3)
C1	0.28252(18)	0 2269(2)	0 30482(5)	0.0553(3)
C2	0.46569(17)	0.2122(2)	0.30950(5)	0.0536(3)
C3	0.5633(2)	0.0667(3)	0.28822(7)	0.0685(4)
C4	0.7346(2)	0.0922(3)	0.29868(7)	0.0748(5)
C5	0.8053(2)	0.2583(3)	0.32888(6)	0.0709(4)
C6	0.70735(19)	0.4021(3)	0.35027(6)	0.0626(4)
C7	0.53550(16)	0.3754(2)	0.34010(5)	0.0518(3)
C8	0.39991(17)	0.5060(2)	0.35664(5)	0.0513(3)
C9	0.34130(16)	0.70967(18)	0.43962(5)	0.0482(3)
C10	0.32424(18)	0.8991(2)	0.52133(6)	0.0561(3)
C11	0.22682(19)	1.04472(19)	0.49055(6)	0.0583(4)
C12	0,1824(2)	1,0099(2)	0,43116(7)	0,0675(4)
C13	0,2359(2)	0,8431(2)	0,40516(6)	0,0635(4)
C14	0,1717(3)	1,2295(3)	0,52009(12)	0,0822(5)
H1	0,4641(19)	0,461(2)	0,4405(7)	0,061(4)
H3	0,512(2)	-0,050(3)	0,2669(8)	0,091(5)
H4	0,809(3)	-0,008(2)	0,2836(8)	0,093(6)
Н5	0,924(2)	0,273(2)	0,3338(7)	0,079(5)
H6	0,753(3)	0,521(3)	0,3709(8)	0,088(5)
H8	0,3872(16)	0,6337(17)	0,3333(5)	0,046(3)
H10	0,3549(19)	0,916(2)	0,5635(7)	0,066(4)
H12	0,113(2)	1,101(2)	0,4069(8)	0,091(5)
H13	0,204(2)	0,818(2)	0,3641(8)	0,078(5)
H14A	0,069(4)	1,274(4)	0,5023(11)	0,144(10)
H14B	0,253(3)	1,339(3)	0,5191(10)	0,129(8)
H14C	0,168(3)	1,206(3)	0,5602(11)	0,126(9)

Tablo 4.2: 3-((5-metilpiridin-2-il)amino) isobenzofuran-1(3*H*)-on (I) için atomik koordinatlar ve izotropik veya ekivalent izotropik yer değiştirme parametreleri ($Å^2$)

Tablo 4.3: 3-((5-metilpiridin-2-il)amino) isobenzofuran-1(3*H*)-on (I) kristali için atomik yer değiştirme parametreleri ($Å^2$)

Atom	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
01	0,0495(6)	0,1045(8)	0,0600(5)	-0,0202(5)	0,0046(5)	-0,0124(5)
O2	0,0406(5)	0,0812(6)	0,0464(4)	-0,0057(4)	0,0052(4)	0,0039(4)
N1	0,0600(7)	0,0622(7)	0,0381(5)	0,0029(5)	0,0029(5)	0,0115(6)
N2	0,0524(7)	0,0538(6)	0,0450(5)	-0,0008(5)	0,0071(4)	-0,0011(5)
C1	0,0468(7)	0,0805(9)	0,0381(6)	-0,0048(6)	0,0050(5)	0,0001(7)
C2	0,0446(7)	0,0765(8)	0,0396(6)	-0,0029(6)	0,0063(5)	0,0010(6)
C3	0,0571(9)	0,0898(11)	0,0588(8)	-0,0151(8)	0,0095(7)	0,0067(8)
C4	0,0562(10)	0,1087(13)	0,0609(8)	-0,0075(9)	0,0133(7)	0,0197(9)
C5	0,0405(8)	0,1186(14)	0,0541(7)	0,0046(8)	0,0089(6)	0,0042(9)
C6	0,0469(8)	0,0922(11)	0,0486(7)	-0,0006(7)	0,0069(6)	-0,0082(8)
C7	0,0458(7)	0,0738(8)	0,0358(5)	0,0031(6)	0,0066(5)	0,0003(6)
C8	0,0480(8)	0,0658(8)	0,0394(6)	0,0023(6)	0,0042(5)	0,0004(6)
C9	0,0465(7)	0,0533(7)	0,0445(6)	0,0039(5)	0,0057(5)	-0,0018(6)
C10	0,0570(9)	0,0578(8)	0,0545(7)	-0,0048(6)	0,0121(6)	-0,0073(7)
C11	0,0498(8)	0,0521(7)	0,0755(9)	-0,0006(7)	0,0178(6)	-0.0055(6)
C12	0,0621(10)	0,0645(9)	0,0759(10)	0,0146(8)	0,0100(8)	0,0123(7)
C13	0,0631(10)	0,0718(9)	0,0533(7)	0,0081(7)	0,0017(6)	0,0118(7)
C14	0,0770(13)	0,0571(10)	0,1174(17)	-0,0134(10)	0,0300(12)	-0,0024(9)

Tablo 4.4: 3-((5-metilpiridin-2-il)amino) isobenzofuran-1(3*H*)-on (I) kristali için bağ uzunluğu, bağ açısı ve torsiyon açıları (Å, °)

Coometrik	Atom	V_isinlari	Gaussian	Gaussian	Gaussian
Parametrolor	Gruplari	(Denevsel)	(Teorik)	(Teorik)	(Teorik)
	Gruphari	(Deneyser)	Gaz Fazı	Etanol	DMSO
	C1O1	1,2042(16)	1,198	1,206	1,2040
	C1-O2	1,3482(16)	1,371	1,362	1,348
	C1-C2	1,4691(19)	1,485	1,479	1,469
Daž	C2–C7	1,3704(18)	1,386	1,388	1,371
Dag	C7–C8	1,4938(19)	1,509	1,508	1,494
Uzunlukları	C8-N1	1,4016(16)	1,411	1,409	1,402
	C8-O2	1,4873(16)	1,476	1,490	1,487
	C9-N1	1,3754(17)	1,394	1,394	1,376
	C8-H1	1,004(12)	1,093	1,091	1,004
	N1-H4	0,844(15)	1,011	1,011	0,847
	01C102	121,67(13)	123,207	122,425	121,669
	01-C1-C2	129,81(13)	129,352	129,526	129,823
	N1-C8-O2	111,97(11)	113,433	112,746	111,973
	O2-C8-C7	102,73(10)	103,519	103,059	102,755
Bağ	N1-C8-H8	110,8(7)	109,725	110,397	110,796
Açıları	N2-C9-N1	115,36(10)	114,402	114,534	115,363
	N2-C9-C13	121,40(12)	122,369	122,169	121,401
	C9-N1-C8	123,64(11)	124,843	124,894	123,652
	C9-N1-H1	118,8(10)	113,348	113,725	118,876
	C1O2C8	110,67(10)	111,372	111,129	110,669
	01	178,05(14)	-179,945	-179,787	178,037
	O2-C1-C2-C7	-2,15(14)	0,064	0,147	-2,131
	01C1C2C3	-1,6(2)	-0,954	-0,770	-1,671
	O2-C1-C2-C3	178,16(13)	179,055	179,164	178,160
Torsiyon	C6-C7-C8-O2	-179,20(12)	-178,097	-178,266	-179,186
Açıları	N2-C9-N1-C8	-172,97(12)	174,540	172,006	-172,974
-	C13-C9-N1-C8	6,3(2)	-6,304	-9,053	6,295
	02-C8-N1-C9	-86,69(16)	-70,710	-72,508	-86,673
	C7-C8-N1-C9	156,75(12)	171,831	170,774	156,743
	N1-C8-O2-C1	-127,39(12)	-124,501	-124,473	-127,394

c) Torsiyon Açısı (°)

Şekil 4.2: 3-((5-metilpiridin-2-il)amino) isobenzofuran-1(3*H*)-on (I) kristalinin deneysel ve teorik değerleri arasındaki korelasyon grafikleri a) bağ uzunluğu, b) bağ açısı, c) torsiyon açı

(B3LYP/6-311G(d, p)) yöntemiyle elde edilen sonuçların teorik ve deneysel değerleri arasındaki korelasyon grafikleri (Şekil 4.2), teorik değerlerin (gaz fazı) deneysel olarak elde edilen değerlerle ne kadar uyum sağladığını anlamak için hazırlanmıştır. Korelasyon grafiği hesaplamasında, doğrusal korelasyon değeri (\mathbb{R}^2), I bileşiğinin x ışınları verileriyle hesaplanan değerlerin birbirlerine yakın olduğunu göstermektedir (\mathbb{R}^2 (bağ uzunluğu için) = 0,978; \mathbb{R}^2 (bağ açıları için) = 0,932; \mathbb{R}^2 (torsiyon açıları için) = 0,992). Sonuç olarak, (B3LYP/6-311G(d,p)) yönteminin deneysel değerlerle uyumlu olduğu görülmüştür. I bileşiğinin bağ uzunluğu, bağ açısı ve torsiyon açıları için hesaplanan korelasyon değeri sentezlenen diğer ftalitler için de yapılmış ve sonuçlar ilgili bölümlerde verilmiştir.

Deneysel ve teorik olarak elde edilen geometrik yapıların karşılaştırılmasında izlenen yollardan biri de molekül iskeletlerinin birbirleriyle örtüştürülmesidir. Şekil 4.3, X-ışını geometrisinin ve gaz fazındaki optimize edilmiş geometrilerin birbiriyle çakıştığını göstermektedir. İki yapıdaki molekülün ftalit kısımları tamamen örtüşürken, piridil kısımları açısal sapma göstermiştir. Bu aynı zamanda bağ açıları için bulunan R² (0,932) değeri ile desteklenir. Bu sapma, kristal yapıda moleküller arası etkileşmenin varlığına delil olarak gösterilebilir.

Şekil 4.3: 3-((5-metilpiridin-2-il)amino) isobenzofuran-1(3*H*)-on (I) bileşiğinin teorik (gaz fazı) ve deneysel geometri (kırmızı) ile çizilen molekülleri çakıştırma

I bileşiğinde moleküllerin kristal yapıda oluşturduğu N—H…N ve C—H…O hidrojen bağları etkileşimiyle $R_2^2(8)$ halka ve C(6) zincir motiflerini meydana getirmiştir (Etter 1990). Moleküller arası hidrojen bağları üç boyutlu bir ağ oluşturur ve zayıf C—H… π ve C—O… π etkileşimleri ile bu yapı güçlendirilir (Tablo 4.5, Şekil 4.4). Bu etkileşimler, I bileşiğinin katı halde kararlılığını arttırır.

D—HA	D —Н (Å)	HA (Å)	D —A (Å)	D—HA (°)
N1—H4N2	0,84	2,18	3,0215(3)	174
C8—H1O1 ⁱⁱ	1,00	2,59	3,2063(3)	120
Х—Н	Cg	HCg (Å)	X—HCg (°)	XCg (Å)
C10—H2	Cg1 ⁱ	2,94	146	3,7861(3)
YX	Cg	XCg (Å)	Y—XCg (°)	YCg (Å)
C101	Cg2 ⁱⁱ	3,0952(3)	138,65(1)	4,0775(4)

Tablo 4.5: 3-((5-metilpiridin-2-il)amino) isobenzofuran-1(3*H*)-on (I) kristaline ait moleküler etkileşim geometrisi (Å, °)

Simetri kodları: (i) -x, -y, -z; (ii) 1/2-x, 1/2 + y, 1/2-z, Cg1 = C2-C7 halkasının merkezi; Cg2 = C1-O1 halkasının merkezi

Şekil 4.4: 3-((5-metilpiridin-2-il)amino) isobenzofuran-1(3*H*)-on (I) bileşiği için N— H...N, C—H...O hidrojen bağları ve C—H... π etkileşimlerinin gösterimi [Cg1 = C2-C7 halkasının merkezi; Cg2 = C1-O1 halkasının merkezi]

Benzer moleküllerde olduğu gibi, C7-C8 (1,4938(1) Å) bağı C1-C2 (1,4690(1) Å) bağından daha büyüktür. Bununla birlikte, C1-C2 bağındaki kısalma bağlandığı aromatik halkayı neredeyse hiç etkilemez. Sübstitüe grupların aromatik halkaların aromatikliği üzerinde etkili olup olmadıkları HOMA (The harmonic oscillator model of aromaticity index) indeksi ile incelenebilir. Halkalar için HOMA indeksi eşitliği aşağıda verilmiştir (Kruszewski ve Krygowski 1972; Krygowski 1993):

$$HOMA = 1 - \left[\frac{\alpha}{n} \sum_{i=1}^{n} (R_i - R_{opt})^2\right]$$
(1)

(1) eşitliğinde, n halkadaki bağların sayısı, α =257,7, C-C bağları için R_{opt} =1,388 Å'a eşit sabitlerdir. Saf aromatik bileşikler için, HOMA indeksi 1'e, aromatik olmayan bileşikler için 0'a eşittir. HOMA indeksleri, 0,800-0,990 veya 0,500-0,800 aralığında ise bu değerler sırasıyla aromatik veya nonaromatik halkalara karşılık gelir (Filarowski ve diğ. 2002; 2008). I molekülünde C2-C7 halkası için hesaplanan HOMA indeksleri 0,998'dir. Bu sonuç, C2-C7 halkasının aromatik olduğunu ve aromatik yapının özellikle konjuge C = O grubundan etkilenmediğini gösterir.

Mulliken yük dağılımı en eski ve hala en yaygın kullanılan yöntemdir (Mulliken 1955). Mulliken yükleri deneysel sonuçları kantitatif olarak tahmin etmekten ziyade kalitatif tahminler yapmak için kullanılır (Hohenberg ve Kohn 1964). I bileşiğinin mulliken yük analizi, B3LYP/6-311G(d, p) yöntemiyle gaz fazı ve etanol çözeltisinde hesaplatılmıştır ve atomik yük değerleri Tablo 4.6'da verilmiştir. Bu sonuçlara göre, negatif yükler incelenen molekülün en yüksek elektronegatifliğe sahip O ve N atomları üzerindedir. Pozitif yükler, elektronegatifliği düşük olan H atomları üzerinde yer alır. Ayrıca, iskelet atomlarında en yüksek pozitif yükler sırasıyla C1 (+0,405 a.u.) ve C9 (+0,373 a.u.) karbonlarında bulunur. Bu sonuç, I molekülünde nükleofillerden en çok etkilenen merkezlerin bu karbon atomları olduğunu göstermektedir. Bu veriler, Tablo 4.5'teki moleküller arası etkileşimleri açıkça ortaya koyar. O ve N atomları üzerinde büyük miktarda negatif yük ve H atomları üzerinde net pozitif yükün varlığı, kristal yapıda moleküller arası hidrojen bağlarının oluşabileceğini gösterir.

Atom	Mulliken Yükleri (Gaz fazı)	Mulliken Yükleri (Etanol)
C1	0,405	0,404
C2	-0,160	-0,157
C3	-0,029	-0,040
C4	-0,086	-0,096
C5	-0,080	-0,087
C6	-0,051	-0,049
C7	-0,135	-0,118
C8	0,264	0,262
С9	0,373	0,366
C10	0,090	0,076
C11	-0,213	-0,225
C12	0,019	0,013
C13	-0,197	-0,200
C14	-0,259	-0,257
N1	-0,430	-0,430
N2	-0,351	-0,377
01	-0,302	-0,357
02	-0,328	-0,347

Tablo 4.6: 3-((5-metilpiridin-2-il)amino) isobenzofuran-1(3*H*)-on (I) için atomlar üzerindeki teorik kısmi yükler

Moleküler elektrostatik potansiyel (MEP), moleküler davranışların reaktivitesini, moleküler aktiviteyi ve hidrojen bağı etkileşimlerini görsel olarak sunmak için kullanılan bir yöntemdir (Tamer 2016). MEP yüzeyinde elektrostatik potansiyelin değerleri renk kodlama sistemi ile belirlenir. MEP haritası üzerinde en negatif potansiyel (molekülün tamamı üzerinden çekirdeğe göre elektron yoğunluğunun fazla olduğu bölge) kırmızı ile gösterilirken en pozitif potansiyeli (kısmi pozitif yüklerin olduğu bölge) göstermek için mavi renk kullanılır (Saraç 2018). B3LYP/6-311G(d, p) yöntemi ile optimize edilen I bileşiği için moleküler elektrostatik potansiyel hesaplanmıştır ve üç boyutlu yüzey haritası Şekil 4.5'de gösterilmektedir.

Molekülün elektrostatik potansiyeli, -5,877e⁻² ile +5,877e⁻² arasında değişmektedir. Molekül üzerindeki en negatif bölge ftalit halkasındaki oksijenlerde pozitif bölge ise NH grubunda yer alır.

Şekil 4.5: 3-((5-metilpiridin-2-il)amino) isobenzofuran-1(3*H*)-on (I) bileşiğinin moleküler elektrostatik potansiyeli (gaz)

Gaz fazında optimize geometrideki molekülün toplam enerjisi -800,9 hartree, dipol momenti 4,1349 debye, çözelti ortamında ise molekülün toplam enerjisi -800,91 hartree, dipol momenti 5,7053 debye olarak hesaplanmıştır.

Moleküler orbital teorisine göre; en yüksek enerjili dolu moleküler orbital HOMO (En yüksek dolu moleküler orbital), en düşük enerjili boş moleküler orbital LUMO (En düşük boş moleküler orbital) olarak adlandırılır. HOMO ve LUMO orbitalleri kimyasal reaksiyonlarda önemli rol oynarlar. HOMO ve LUMO enerji değerleri arasındaki fark, molekülün kimyasal kararlılığı olarak tanımlanabilir. Gaz fazındaki HOMO ve LUMO enerji değerleri arasındaki farkı (ΔE) belirlemek için yapılan hesaplamalar ve orbital şekilleri Şekil 4.6'da gösterilmiştir. I bileşiğinin UV spektrumu etanolde, NMR spektrumu ve biyolojik aktivitesi DMSO içerisinde ölçüldüğünden bileşiğin HOMO ve LUMO enerjileri de bu çözücülerde hesaplanmıştır. HOMO ve LUMO enerji değerleri arasındaki en küçük AE değeri DMSO'da bulunmuştur ($\Delta E_{(gaz fazi)}$ = 7,0706 eV; $\Delta E_{(etanol)}$ = 6,9667 eV; $\Delta E_{(DMSO)}$ = 6,4804 eV). ΔE değerlerindeki farklılık, çözücü polaritesinden π^* orbitallerinin etkileşiminin bir sonucudur. π^* orbitalleri, kolayca polarize olabilen bir yapıya sahiptir. Bu nedenle, çözücü polaritesi arttıkça π^* orbitallerin kararlılığı artar (Silverstein ve diğ. 1991). Başka bir deyişle, π^* orbitalinin enerjisi düştüğü için polar çözücülerde ΔE küçülür (Dielektrik sabiti_(etanol)= 24,3; Dielektrik sabiti_(DMSO)= 47,2).

Şekil 4.6: 3-((5-metilpiridin-2-il)amino) isobenzofuran-1(3*H*)-on (I) bileşiğinin gaz fazındaki moleküler orbital yüzeyleri

Bir molekülün HOMO ve LUMO enerji değerleri biliniyorsa, molekülün elektronik reaktivite parametreleri bulunabilir. Yoğunluk fonksiyoneli yönteminden elde edilen verilerle kimyasal reaktivite anlaşılabilir ayrıca elektron ilgisi (A=- E_{LUMO}), iyonlaşma potansiyeli (I=- E_{HOMO}), kimyasal sertlik ($\eta=\Delta E/2$), kimyasal yumuşaklık ($\sigma=1/2\eta$), elektronegatiflik ($\chi=(I+A)/2$), elektrofilite indeksi ($\omega=\mu^2/2\eta$), kimyasal potansiyel ($\mu=-\chi$) ve elektronik yapılara ve kimyasal reaktiviteye bağlı olan nükleofilite indeksi ($N=1/\omega$) gibi birçok özellik belirlenebilir (Pearson 1986, 1989; Parr ve Pearson 1983; Geerlings ve diğ. 2003; Parr ve diğ. 1999; Ghiasi ve Parseh 2014; Landeros-Martinez ve diğ. 2017; Parr ve Yang 1989; Aboelnaga ve diğ. 2016). I bileşiğine ait elektronik reaktivite parametreleri, Tablo 4.7'de gösterilmiştir.

Tablo 4.7: 3-((5-metilpiridin-2-il)amino) isobenzofuran-1(3*H*)-on (I) için elektronik reaktivite parametreleri

E _{(HOMO})	E _(LUMO)	<u>Δ</u> <i>E</i>		I	A
(eV)	(eV)	(eV)		(eV)	(eV)
-6,8869	0,1837	7,0	706	6,8869	-0,1837
χ	η	σ	ω	μ	N
(eV)	(eV)	(eV ⁻¹)	(eV)	(eV)	(eV)
3,3516	3,5353	0,1414	1,5887	-3,3516	0,6294
Bir molekülün kimyasal sertliği ve yumuşaklığı, molekülün kimyasal kararlılığının iyi bir göstergesidir. HOMO–LUMO enerji farkından, molekülün sert mi yoksa yumuşak mı olduğu tespit edilebilir. Orbitaller arasında büyük enerji farkına sahip moleküller sert, küçük enerji farkına sahip moleküller yumuşak moleküller olarak tanımlanır. Küçük bir HOMO-LUMO enerji farkı elektronik uyarılma için küçük enerji gerektiği anlamına gelir. Bu nedenle, HOMO-LUMO orbitaller arasında küçük enerji farkına sahip yumuşak moleküller, sert moleküllerden daha kolay polarize olurlar (Pearson 1986, 1989; Parr ve Pearson 1983; Geerlings ve diğ. 2003; Parr ve diğ. 1999; Ghiasi ve Parseh 2014; Landeros-Martinez ve diğ. 2017; Parr ve Yang 1989; Aboelnaga ve diğ. 2016). Nispeten büyük HOMO-LUMO enerji farkı, I bileşiğinin kimyasal olarak sert bir molekül olduğunu gösterir.

Bir molekülün Lewis asidi veya bazı olup olmadığı elektronegatiflik (χ) değeri ile belirlenir. Büyük χ değeri asitleri, küçük χ değeri bazları karakterize eder. Tablo 4.7'ye göre, I bileşiği Lewis asidi olarak tanımlanabilir (Pearson 1986, 1989; Parr ve Pearson 1983; Geerlings ve diğ. 2003; Parr ve diğ. 1999; Ghiasi ve Parseh 2014; Landeros-Martinez ve diğ. 2017; Parr ve Yang 1989; Aboelnaga ve diğ. 2016).

Domingo ve diğ. (2002, 2008), elektrofillerin sınıflandırılmasını elektrofilite indeksine göre güçlü (ω > 1.50 eV), orta (1.50> ω > 0.80 eV) ve marjinal (ω <0.80 eV) olarak sınıflandırır. Ayrıca, sınıflandırma nükleofilite indeksine göre de yapılır. Buna göre nükleofiller güçlü (N> 3.00 eV), orta (3.00> N> 2.00 eV) ve marjinal (N <2.00 eV) olarak tanımlanır (Jaramillo ve diğ. 2008). Tablo 4.7'ye göre, I bileşiği güçlü bir elektrofil ve marjinal bir nükleofildir.

I molekülü için yapılan tüm hesaplamalar sentezlenen diğer ftalit molekülleri için de yapılmıştır. Sentezlenen bileşiklerin kristal yapılarına ait veriler, atomik yer değiştirme parametreleri, moleküllerin çakıştırılması, mulliken yük dağılımları, moleküler elektrostatik potansiyelleri, moleküller arası etkileşmeleri, HOMO ve LUMO arasındaki enerji farkları ve elektronik reaktivite parametreleri ilgili bölümlerde verilmektedir.

4.1.2 3-(Pirimidin-2-ilamino) isobenzofuran-1(3H)-on (II) Bileşiğinin İncelenmesi

Şekil 4.7: 3-(Pirimidin-2-ilamino) isobenzofuran-1(3*H*)-on (II) bileşiğinin molekül yapısı

Şekil 4.7'de II molekülünün kristal yapısı görülmektedir. Ölçümler 293(2) K'de yapılmıştır. II molekülüne ait kimyasal veriler Tablo 4.8, atomik koordinatlar ve izotropik veya ekivalent izotropik yer değiştirme parametreleri Tablo 4.9, atomik yer değiştirme parametreleri Tablo 4.10 ve seçilmiş deneysel ve teorik bağ uzunlukları, bağ açıları ve torsiyon açılarının karşılaştırılması Tablo 4.11'de verilmiştir.

Şekil 4.7'de gösterildiği gibi molekül yapısı bir ftalit grubu ve azot atomuyla birbirine bağlanmış bir 2-amino pirimidin grubundan oluşur. Ftalit grubu (C7-C8/O2) düzlemseldir, ortalama düzlemden en büyük sapma 0,026 Å (C4 için)'dır. Düzlemsel ftalit grubu ile pirimidin halkası arasındaki açı 73.33(6)°'dir. C7-O1 bağ uzunluğu (1,1895(16) Å) çift bağa karşılık gelir ve I bileşiğindeki gibi benzofuranon karbonil grubunun özelliklerini taşımaktadır. 1,4073(15) Å olan C8—N3 arasındaki bağ uzunluğunun, I bileşiğindeki C—N tekli bağ uzunluğu ile uyumlu olduğu görülmüştür. Bu bağın uzunluğu 1,4016(1) Å'dır. II molekülü için C7-O1, C7-O2 ve C8-O2 bağ uzunlukları sırasıyla (1,1895(16) Å), (1,3371(17) Å), (1,4610(15) Å)'dır.

II bileşiğinin deneysel ve teorik olan karakteristik bazı bağ uzunluklarının kıyaslanmasından şu sonuçlar çıkarılır. Deneysel olarak C7-O1 için gözlenen bağ uzunluğu 1,1895(16) Å iken bu değer teorik olarak hesaplanan gaz fazı, etanol

çözeltisi ve DMSO'da sırasıyla 1,198 Å, 1,206 Å, 1,18951 Å olduğu tespit edilmiştir. Deneysel olarak C8-N3 için gözlenen bağ uzunluğu 1,4073(15) Å iken bu değer teorik olarak hesaplanan gaz fazı, etanol ve DMSO çözeltisinde sırasıyla 1,422 Å, 1,416 Å, 1,40726 Å olduğu görülmüştür. Teorik olarak hesaplanan bağ uzunlukları değerleri, deneysel değerlerle karşılaştırıldığında teorik değerlerin daha uzun olduğu görülmüştür ve deneysel sonuçlara en yakın olarak DMSO çözeltisinde bulunan değerler olduğu gözlenmiştir. Bunun nedeni teorik değerlerin gaz halindeki moleküllerden, deneysel değerlerin ise katı haldeki moleküllerden hesaplanmasından kaynaklanmaktadır.

Tablo 4.8: 3-(Pirimidin-2-ilamino) isobenzofuran-1(3*H*)-on (II) bileşiğinin kristal yapısına ait veriler

Kapalı formül	$C_{12}H_9N_3O_2$
Molekül ağırlığı	227,22
Kristal sistemi	Monoklinik
Uzay grubu	P21/c
Birim hücre boyutları (a, b, c)	12,1963(6), 7,6336(3), 11,6896(6) Å
Birim hücre hacmi (V)	1088,29(9) Å ³
Birim hücredeki molekül sayısı (Z)	4
α	90°
β	90,400(4)°
γ	90°
Birim hücredeki elektron sayısı (F ₀₀₀)	472
Yoğunluk (D _x)	1,387 Mg m ⁻³
Radyasyon çeşidi	Μο Κ\α
Radyasyon dalga boyu (λ)	0,71073 Å
Soğurma Katsayısı (µ)	0,098 mm ⁻¹
Ortam sıcaklığı (T)	293(2) K
Kristal ve rengi	Prizma ve renksiz
Kristal boyutları (max, mid, min)	0,80*0,617*0,490 mm
T_{\min}, T_{\max}	0,9471, 0,9660
Kırınım ölçüm metodu	ω scan
Kırınım ölçüm metodu aralığı	$h=-15\rightarrow 15, k=-9\rightarrow 9, l=-15\rightarrow 15$
$\theta_{\min}, \theta_{\max}$	1,74-28,05°
Ölçülen yansıma	17478
Bağımsız yansıma	2507
2σ(I)dan büyük yansımalar	2047
R _{int}	0,047
Parametre Sayısı	155
S	1,044
$\mathbf{R}[\mathbf{F}^2 > 2\sigma(\mathbf{F}^2)]$	0,0376
$wR(F^2)$	0,1051
W	$1/[\sigma^2(F_o^2) + (0.0509P)^2 + 0.1123P]$ where $P=(F_o^2+2F_c^2)/3$
$\Delta \rho_{\min}, \Delta \rho_{\max}$	-0,122-0,136 e Å ⁻³
Sönüm metodu	SHELXL-2016/6 (Sheldrick 2016)
Sönüm katsayısı	0,020(3)

Atom	X	у	Z	U _{iso} *U _{eq}
C1	0,81006(9)	0,47206(17)	0,51826(10)	0,0554(3)
C2	0,81167(12)	0,3204(2)	0,58256(13)	0,0735(4)
C3	0,86707(14)	0,1781(2)	0,54164(16)	0,0885(5)
C4	0,92014(13)	0,1867(2)	0,44048(16)	0,0897(5)
C5	0,92075(11)	0,3380(2)	0,37717(13)	0,0785(5)
C6	0,86377(8)	0,48125(18)	0,41753(10)	0,0583(3)
C7	0,84567(10)	0,6559(2)	0,36807(12)	0,0672(4)
C8	0,75252(10)	0,64198(17)	0,53715(10)	0,0587(3)
C9	0,57046(10)	0,74570(16)	0,58254(9)	0,0546(3)
C10	0,54752(15)	1,0067(2)	0,66702(13)	0,0844(5)
C11	0,43603(14)	0,9865(2)	0,66102(12)	0,0800(4)
C12	0,39786(12)	0,8358(2)	0,61235(11)	0,0698(4)
H2	0,775751	0,315125	0,652389	0,088
H3	0,868294	0,074643	0,583623	0,106
H3A	0,610132	0,522702	0,518011	0,073
H4	0,956811	0,088429	0,413446	0,108
H5	0,958717	0,343991	0,308562	0,094
H8	0,779450	0,697827	0,607406	0,070
H10	0,575621	1,108543	0,699515	0,101
H11	0,388589	1,071539	0,688832	0,096
H12	0,322431	0,819349	0,607149	0,084
N1	0,46310(8)	0,71144(14)	0,57204(9)	0,0598(3)
N2	0,61695(10)	0,88770(16)	0,62865(10)	0,0734(3)
N3	0,63810(8)	0,61961(14)	0,54180(9)	0,0605(3)
01	0,87919(9)	0,71798(19)	0,28178(10)	0,0987(4)
02	0,78086(7)	0,74797(12)	0,43758(9)	0,0709(3)

Tablo 4.9: 3-(Pirimidin-2-ilamino) isobenzofuran-1(3*H*)-on (II) için atomik koordinatlar ve izotropik veya ekivalent izotropik yer değiştirme parametreleri ($Å^2$)

Tablo 4.10: 3-(Pirimidin-2-ilamino) isobenzofuran-1(3*H*)-on (II) kristali için atomik yer değiştirme parametreleri ($Å^2$)

Atom	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
C1	0,0454(5)	0,0650(7)	0,0559(6)	-0,0008(5)	0,0038(4)	0,0072(5)
C2	0,0680(8)	0,0810(10)	0,0717(8)	0,0146(7)	0,0074(6)	0,0175(7)
C3	0,0776(9)	0,0792(10)	0,1087(12)	0,0144(9)	-0,0035(9)	0,0289(8)
C4	0,0729(9)	0,0921(12)	0,1041(12)	-0,0151(10)	-0,0056(8)	0,0403(8)
C5	0,0503(7)	0,1142(13)	0,0710(8)	-0,0173(8)	0,0063(6)	0,0210(7)
C6	0,0406(5)	0,0775(8)	0,0568(6)	-0,0026(6)	0,0032(4)	0,0049(5)
C7	0,0459(6)	0,0880(10)	0,0677(8)	0,0096(7)	0,0060(5)	-0,0076(6)
C8	0,0536(6)	0,0613(7)	0,0611(7)	-0,0041(5)	0,0069(5)	0,0026(5)
C9	0,0608(7)	0,0544(7)	0,0486(6)	0,0007(5)	0,0103(5)	0,0104(5)
C10	0,1029(12)	0,0733(10)	0,0771(9)	-0,0255(7)	0,0099(8)	0,0136(8)
C11	0,0941(10)	0,0789(10)	0,0670(8)	-0,0121(7)	0,0122(7)	0,0352(8)
C12	0,0674(8)	0,0806(9)	0,0615(7)	0,0002(6)	0,0111(6)	0,0259(7)
N1	0,0571(5)	0,0623(6)	0,0603(6)	-0,0001(5)	0,0123(4)	0,0134(5)
N2	0,0772(7)	0,0693(7)	0,0738(7)	-0,0196(6)	0,0083(5)	0,0068(6)
N3	0,0519(5)	0,0543(6)	0,0754(6)	-0,0092(5)	0,0146(4)	0,0051(4)
01	0,0745(6)	0,1361(11)	0,0858(7)	0,0382(7)	0,0172(5)	-0,0140(7)
O2	0,619(5)	0,0622(6)	0,0887(6)	0,0113(5)	0,0120(5)	-0,0013(4)

Tablo 4.11: 3-(Pirimidin-2-ilamino) isobenzofuran-1(3H)-on (II) kristali için bağ uzunluğu, bağ açısı ve torsiyon açıları (Å, °)

Geometrik Parametreler	Atom Grupları	X-ışınları (Deneysel)	Gaussian (Teorik) Gaz Fazı	Gaussian (Teorik) Etanol	Gaussian (Teorik) DMSO
	C7-O1	1,1895(16)	1,198	1,206	1,18951
	C7-O2	1,3371(17)	1,372	1,364	1,33706
	C7-C6	1,469(2)	1,484	1,478	1,46930
Dož	C8-O2	1,4610(15)	1,466	1,481	1,46099
Бад	C6-C1	1,3533(16)	1,386	1,388	1,35329
Uzunlukları	C1-C8	1,4919(17)	1,510	1,508	1,49193
	C8-N3	1,4073(15)	1,422	1,416	1,40726
	C9-N3	1,3562(14)	1,379	1,379	1,35626
	C9-N1	1,3401(16)	1,343	1,344	1,34010
	C9-N2	1,3352(17)	1,339	1,339	1,33512
	01-C7-O2	120,94(15)	123,084	122,315	120,941
	O1-C7-C6	130,05(14)	129,501	129,685	130,055
D ×	C7-O2-C8	109,70(10)	111,474	111,218	109,709
вад	O2-C8-N3	109,77(10)	111,881	111,786	109,767
Açıları	C8-N3-H3A	118,9	118,147	118,606	118,889
	C8-N3-C9	122,22(11)	123,531	123,872	122,220
	N3-C9-N1	115,20(11)	115,238	115,325	115,196
	N3-C9-N2	117,41(11)	118,094	118,120	117,408
	01-C7-O2-C8	-179,51(13)	-178,731	-178,893	-179,515
Torsiyon	N3-C8-O2-C7	-119,50(11)	-125,149	-124,794	119,496
Aalam	O2-C8-N3-C9	-79,45(14)	-85,613	-84,064	-79,450
Açıları	N1-C9-N3-C8	174,28(11)	165,512	170,716	174,280
	N2-C9-N3-C8	-6,12(17)	-16,146	-10,455	-6,123

II molekülü için bağ uzunluğu, bağ açısı ve torsiyon açılarının deneysel ve teorik sonuçları arasındaki korelasyon (\mathbb{R}^2) değerleri sırasıyla 0,979; 0,933; 0,995 olarak bulunmuştur. Teorik değerlerin deneysel sonuçlar ile uyumlu olduğu görülmüştür.

Şekil 4.8, X-ışını geometrisinin ve gaz fazındaki optimize edilmiş geometrinin birbiriyle çakıştığını göstermektedir. İki yapıdaki molekülün ftalit ve pirimidin kısmı hemen hemen örtüşmüştür.

Şekil 4.8: 3-(Pirimidin-2-ilamino) isobenzofuran-1(3*H*)-on (II) bileşiğinin teorik (gaz fazı) ve deneysel geometri (kırmızı) ile çizilen molekülleri çakıştırma

II bileşiğine ait hidrojen bağ geometrisi ve gösterimi sırasıyla Tablo 4.12 ve Şekil 4.9'da verilmiştir. II bileşiğinde moleküller, kristal yapıda N—H \cdots N ve C— H \cdots O hidrojen bağlarını oluştururlar.

D –Н···A	D– H (Å)	H…A (Å)	D····A (Å)	D –H···A (°)
C8-H8…O1 ⁱ	0,98	2,45	3,4125(18)	166,4 4
C10-H10…N1 ⁱⁱ	0,93	2,83	3,4308(17)	123,7 2
C11–H11…O2 ⁱⁱⁱ	0,93	2,88	3,5203(17)	126,9 3
N3–H3A…N1 ^{iv}	0,86	2,263	3,1077(16)	170,9 3

Tablo 4.12: 3-(Pirimidin-2-ilamino) isobenzofuran-1(3*H*)-on (II) kristaline ait moleküler etkileşim geometrisi (Å, °)

Simetri kodları: (i) x,-y+3/2, z+1/2; (ii) -x+1, y+1/2, -z+3/2; (iii)-x+1, -y+2, -z+1; (iv)-x+1,-y+2,-z+1

Şekil 4.9: 3-(Pirimidin-2-ilamino) isobenzofuran-1(3*H*)-on (II) bileşiği için hidrojen bağ gösterimi

II molekülünde de I molekülünde olduğu gibi C1-C8 (1,4919(17) Å) bağı C7-C6 (1,469(2) Å) bağından daha büyüktür. II molekülünde C1-C6 halkası için hesaplanan HOMA indeksi 0,864'dür (Filarowski ve diğ. 2002, 2008). Bu sonuç, C1-C6 halkasının aromatik olduğunu gösterir.

II bileşiğinin mulliken yük analizi, gaz fazı ve etanol ortamında hesaplatılmıştır ve atomik yük değerleri Tablo 4.6'da verilmiştir. Bu sonuçlara göre, negatif yükler incelenen molekülün en yüksek elektronegatifliğe sahip O ve N atomları üzerindedir. Pozitif yükler, elektronegatifliği düşük olan H atomları üzerindedir. Ayrıca, en yüksek pozitif yükler sırasıyla C7 (+0,400 a.u.) ve C9 (+0,469 a.u.) karbonlarında bulunur. Bu sonuç, II molekülündeki nükleofillerden en çok etkilenen merkezlerin bu karbon atomları olduğunu göstermektedir. Bu veriler, Tablo 4.12'deki moleküller arası etkileşimleri açıkça ortaya koyar. O ve N atomları üzerinde büyük miktarda negatif yük ve H atomları üzerinde net pozitif yükün varlığı, kristal yapıda moleküller arası hidrojen bağlarının oluşabileceğini gösterir.

Atom	Mulliken Yükleri (Gaz fazı)	Mulliken Yükleri (Etanol)
C1	-0,137	-0,124
C2	-0,046	-0,047
C3	-0,080	-0,087
C4	-0,088	-0,097
C5	-0,027	-0,039
C6	-0,163	-0,158
C7	0,400	0,402
C8	0,266	0,280
С9	0,469	0,471
C10	0,106	0,102
C11	-0,238	-0,242
C12	0,096	0,094
N1	-0,339	-0,364
N2	-0,355	-0,379
N3	-0,407	-0,416
01	-0,303	-0,357
02	-0,319	-0,342

Tablo 4.13: 3-(Pirimidin-2-ilamino) isobenzofuran-1(3*H*)-on (II) için atomlar üzerindeki teorik kısmi yükler

II bileşiğinin 3D moleküler elektrostatik potansiyel yüzey haritası Şekil 4.10'da gösterilmektedir. Molekülün elektrostatik potansiyeli, $-6,043e^{-2}$ ile $+6,04e^{-2}$ arasında değişmektedir.

Şekil 4.10: 3-(Pirimidin-2-ilamino) isobenzofuran-1(3*H*)-on (II) bileşiğinin moleküler elektrostatik potansiyeli (gaz)

Gaz fazında optimize geometride molekülün toplam enerjisi -777,62 hartree, dipol momenti 4,8427 debye, çözelti halinde optimize geometride ise -777,63 hartree, 6,5633 debye olarak elde edilmiştir.

Gaz fazındaki HOMO ve LUMO enerji değerleri arasındaki farkı (ΔE) belirlemek için yapılan hesaplamalar ve orbital şekilleri Şekil 4.11'de gösterilmiştir. HOMO ve LUMO enerji değerleri arasındaki en küçük ΔE değeri gaz fazında bulunmuştur ($\Delta E_{(gaz fazı)} = 6,5811$ eV; $\Delta E_{(etanol)} = 6,7852$ eV; $\Delta E_{(DMSO)} = 6,9058$ eV).

Şekil 4.11: 3-(Pirimidin-2-ilamino) isobenzofuran-1(3*H*)-on (II) bileşiğinin gaz fazındaki moleküler orbital yüzeyleri

II bileşiği için elektronik reaktivite parametreleri, Tablo 4.14'de gösterilmiştir.

Tablo 4.14: 3-(Pirimidin-2-ilamino) isobenzofuran-1(3*H*)-on (II) için elektronik reaktivite parametreleri

E _{(HOMO})	$E_{(LUMO)}$	Δ	E	I	A
(eV)	(eV)	(e [']	V)	(eV)	(eV)
-6,9667	-0,3856	6,5	811	6,9667	0,3856
χ	η	σ	ω	μ	N
(eV)	(eV)	(eV ⁻¹)	(eV)	(eV)	(eV)
3,6762	3,2906	0,1519	2,0535	-3,6762	0,4869

Nispeten büyük HOMO-LUMO enerji farkı, I bileşiğinde olduğu gibi II bileşiğininde kimyasal olarak sert bir molekül olduğunu gösterir. Tablo 4.14'e göre, II bileşiği Lewis asidi olarak tanımlanır (Pearson 1986, 1989; Parr ve Pearson 1983; Geerlings ve diğ. 2003; Parr ve diğ. 1999; Ghiasi ve Parseh 2014; Landeros-Martinez ve diğ. 2017; Parr ve Yang 1989; Aboelnaga ve diğ. 2016). Ayrıca Tablo 4.14'e göre, II bileşiği güçlü bir elektrofil ve marjinal bir nükleofildir (Jaramillo ve diğ. 2008).

4.1.3 3-(Piridin-3-ilamino) isobenzofuran-1(3H)-on (III) Bileşiğinin İncelenmesi

Şekil 4.12: 3-(Piridin-3-ilamino) isobenzofuran-1(3*H*)-on (III) bileşiğinin molekül yapısı

Şekil 4.12'de III molekülünün kristal yapısı görülmektedir. III bileşiği, 2006 yılında moleküler ve kristal yapısı X-ışınları difraksiyonuyla incelenmiştir (Odabaşoğlu ve Büyükgüngör 2006^d). Ölçümler, oda sıcaklığında (296 K) yapılmıştır. III molekülüne ait kimyasal veriler Tablo 4.15, atomik koordinatlar ve izotropik veya ekivalent izotropik yer değiştirme parametreleri Tablo 4.16, atomik yer değiştirme parametreleri Tablo 4.17 ve seçilmiş deneysel ve teorik bağ uzunlukları, bağ açıları ve torsiyon açılarının karşılaştırılması Tablo 4.18'de verilmiştir.

III bileşiğine ait karakteristik X-ışınları verileri sentezlenen diğer bileşiklerden önemli farklılıklar göstermemektedir (Tablo 4.18, Tablo 4.57).

Kapalı formül	$C_{13}H_{10}N_2O_2$
Molekül ağırlığı	226,23
Kristal sistemi	Ortorombik
Uzay grubu	P 2 ₁ 2 ₁ 2 ₁
Birim hücre boyutları (a, b, c)	5,8236 (5), 7,9820 (7), 24,5229 (17) Å
Birim hücre hacmi (V)	1139,92 (16) Å ³
Birim hücredeki molekül sayısı (Z)	4
α	90°
β	90°
γ	90°
Yoğunluk (D _x)	1,318 Mg m ⁻³
Radyasyon çeşidi	ΜοΚ\α
Radyasyon dalga boyu (λ)	0,71073 Å
Soğurma Katsayısı (μ)	$0,09 \text{ mm}^{-1}$
Ortam sıcaklığı (T)	296 K
Kristal ve rengi	Kare levha ve renksiz
Kristal boyutları (max, mid, min)	0,74*0,52*0,09 mm
T_{min}, T_{max}	0,939, 0,992
Kırınım Ölçüm Metodu	ω scan
$\theta_{\min}, \theta_{\max}$	1,66- 26,0°
Ölçülen Yansıma	9694
Bağımsız Yansıma	1327
2σ(I)dan Büyük Yansımalar	1110
R _{int}	0,040
Parametre Sayısı	159
S	1,07
$R[F2 > 2_(F2)]$	0,034
$\mathbf{wR}(\mathbf{F}^2)$	0,091
w	$1/[\sigma^2(F_o^2) + (0.0563P)^2 + 0.0337P]$ where $P=(F_o^2+2F_c^2)/3$
$\Delta \rho_{\min}, \Delta \rho_{\max}$	-0,12- 0,11e Å ⁻³
Sönüm metodu	SHELXL97 (Sheldrick, 1997)
Sönüm katsayısı	0,047(8)

Tablo 4.15: 3-(Piridin-3-ilamino) isobenzofuran-1(3*H*)-on (III) bileşiğinin kristal yapısına ait veriler

Tablo 4.16: 3-(Piridin-3-ilamino) isobenzofuran-1(3*H*)-on (III) için atomik koordinatlar ve izotropik veya ekivalent izotropik yer değiştirme parametreleri ($Å^2$)

Atom	Х	у	Z	U _{iso} *U _{eq}
C1	0,2401(4)	0,2490(3)	0,05503(7)	0,0543(5)
C2	0,2727(4)	0,4295(2)	0,06127(7)	0,0522(5)
C3	0,1410(5)	0,5606(3)	0,04184(9)	0,0654(6)
C4	0,2130(6)	0,7198(3)	0,05356(10)	0,0756(8)
C5	0,4089(6)	0,7475(3)	0,08402(10)	0,0790(8)
C6	0,5407(5)	0,6165(3)	0,10350(9)	0,0678(6)
C7	0,4696(4)	0,4560(2)	0,09120(7)	0,0525(5)
C8	0,5744(4)	0,2909(2)	0,10526(8)	0,0536(5)
C9	0,6961(4)	0,1211(2)	0,18322(7)	0,0537(5)
C10	0,6318(4)	0,0685(3)	0,23493(9)	0,0678(6)
C11	0,8877(5)	-0,1442(4)	0,23544(11)	0,0820(8)
C12	0,9634(5)	-0,1051(3)	0,18464(10)	0,0797(7)
C13	0,8636(5)	0,0293(3)	0,15747(9)	0,0684(6)
H3	0,0086	0,5414	0,0216	0,079
H4	0,1288	0,8108	0,0408	0,091
H5	0,4532	0,8570	0,0916	0,095
H6	0,6721	0,6357	0,1241	0,081
H8	0,7252	0,2809	0,0879	0,064
H10	0,5170	0,1283	0,2527	0,081
H11	0,9555	-0,2340	0,2534	0,098
H12	1,0799	-0,1671	0,1683	0,096
H13	0,9098	0,0568	0,1223	0,082
N1	0,5958(4)	0,2655(2)	0,16186(7)	0,0588(5)
N2	0,7229(4)	-0,0611(3)	0,26056(8)	0,0804(6)
01	0,0884(3)	0,1719(2)	0,03293(6)	0,0754(5)
02	0,4132(3)	0,16902(16)	0,08073(5)	0,0603(4)
H1	0,470(5)	0,312(3)	0,1835(10)	0,084(8)

Tablo 4.17: 3-(Piridin-3-ilamino) isobenzofuran-1(3*H*)-on (III) kristali için atomik yer değiştirme parametreleri ($Å^2$)

Atom	U ¹¹	U ²²	U ³³	U ¹²	U ¹³	U ²³
C1	0,0645(13)	0,0467(10)	0,0516(10)	-0,0008(10)	-0,005(9)	0,0010(8)
C2	0,0614(13)	0,0462(9)	0,0489(9)	0,0026(10)	0,0053(9)	0,0022(7)
C3	0,0746(16)	0,0563(11)	0,0654(11)	0,0139(13)	0,0015(11)	0,0076(9)
C4	0,105(2)	0,0490(12)	0,0729(14)	0,0181(14)	0,0103(16)	0,0108(10)
C5	0,120(2)	0,0399(10)	0,0776(14)	-0,0022(14)	0,0156(16)	-0,0008(10)
C6	0,0878(18)	0,0491(11)	0,0666(12)	-0,0095(12)	-0,0002(13)	-0,0026(9)
C7	0,0644(13)	0,0420(9)	0,0511(9)	-0,0004(10)	0,0039(9)	0,0010(8)
C8	0,0624(12)	0,0472(10)	0,0511(10)	-0,0006(9)	-0,0008(9)	0,0004(8)
C9	0,0574(12)	0,0521(10)	0,0517(9)	-0,0045(9)	-0,0076(10)	0,0027(8)
C10	0,0678(14)	0,0720(14)	0,0635(11)	0,0058(13)	0,0051(11)	0,0135(11)
C11	0,0752(17)	0,0887(17)	0,0821(16)	0,0186(15)	0,0003(14)	0,026914)
C12	0,0765(17)	0,0829(16)	0,0797(15)	0,0208(14)	0,0060(14)	0,0128(13)
C13	0,0792(15)	0,0677(13)	0,0583(11)	0,0065(13)	0,0057(11)	0,0079(10)
N1	0,0742(12)	0,0537(9)	0,0484(8)	0,0063(9)	-0,0028(8)	0,0005(7)
N2	0,0808(14)	0,0863(14)	0,0742(12)	0,0096(14)	0,0075(11)	0,0289(11)
01	0,0881(12)	0,0645(9)	0,0737(10)	-0,0148(10)	-0,0183(9)	0,0017(8)
O2	0,0809(11)	0,0399(7)	0,0600(7)	0,0026(8)	-0,0110(8)	-0,0004(6)

Tablo 4.18: 3-(Piridin-3-ilamino) isobenzofuran-1(3H)-on (III) kristali için bağ uzunluğu, bağ açısı ve torsiyon açıları (Å, °)

Geometrik Parametreler	Atom Grupları	X-ışınları (Deneysel)	Gaussian (Teorik) Gaz Fazı	Gaussian (Teorik) Etanol	Gaussian (Teorik) DMSO
	C1-01	1,206(3)	1,197	1,205	1,205
Daž	C1-O2	1,350(3)	1,372	1,363	1,349
вад	C2-C7	1,377(3)	1,386	1,388	1,378
Uzunlukları	C7-C8	1,493(3)	1,509	1,508	1,493
	C8-N1	1,408(2)	1,415	1,411	1,408
	C9-N1	1,395(3)	1,403	1,396	1,394
	01-C1-O2	121,04(19)	123,156	122,401	121,062
Bağ	01-C1-C2	130,2(2)	129,467	129,590	130,220
	N1-C8-O2	111,24(16)	113,612	112,808	111,232
Açıları	C8-N1-H1	114,6(15)	115,302	115,871	114,455
	C9-N1-C8	121,75(17)	122,965	123,675	121,761
	01-C1-O2-C8	-179,00(19)	178,913	179,083	-179,001
Torsiyon	N1-C8-O2-C1	122,35(19)	124,776	124,461	122,355
4 I	O2-C8-N1-C9	66,5(3)	69,535	71,544	66,532
Açıları	C10-C9-N1-C8	-153,5(2)	175,234	-178,111	-153,570
	N1-C9-C10-N2	-176,4(2)	-178,208	-178,075	-176,443

Şekil 4.13, X-ışını geometrisinin ve gaz fazındaki optimize edilmiş geometrinin birbiriyle çakıştığını göstermektedir. İki yapıdaki molekülün ftalit kısımları I bileşiğinde olduğu gibi tamamen örtüşürken, piridil kısımları açısal sapma göstermiştir. Bu sapma bağ açıları için bulunan R² (0,983) değeri ile desteklenir ve kristal yapıda moleküller arası etkileşmenin olduğunu gösterir. Bağ uzunlukları ve torsiyon açılarının korelasyon değerleri Tablo 4.57'de verilmiştir.

Şekil 4.13: 3-(Piridin-3-ilamino) isobenzofuran-1(3*H*)-on (III) bileşiğinin teorik (gaz fazı) ve deneysel geometri (kırmızı) ile çizilen molekülleri çakıştırma

III bileşiğine ait moleküler etkileşim geometrisi ve gösterimi sırasıyla Tablo 4.19 ve Şekil 4.14'de verilmiştir. III bileşiğinde moleküllerin kristal yapıda oluşturduğu N—H…N ve C—H…O hidrojen bağları etkileşimi, $R_3^3(19)$ motiflerini meydana getirmiştir (Etter 1990). C—H… π etkileşimleri ile bu yapı güçlendirilmiştir (Tablo 4.19, Şekil 4.14).

Tablo 4.19: 3-(Piridin-3-ilamino) isobenzofuran-1(3*H*)-on (III) kristaline ait moleküler etkileşim geometrisi (Å, °)

D –Н…А	D –H (Å)	H…A (Å)	D …A (Å)	D-H…A (°)
$N1-H1\cdots N2^{i}$	0,98	2,04(3)	2,996(3)	165(2)
C5-H5···O2 ⁱⁱ	0,93	2,52	3,366	152
C13-H13…O1 ⁱⁱⁱ	0,93	2,59	3,512(3)	170
C4-H4…Cg1 ^{iv}	0,93	3,35	4,075(3)	137
C11-H11····Cg2 ^v	0,93	2,83	3,746(3)	170

Simetri kodları: (i) -x+1, y+1/2, -z+1/2; (ii) x, y+1, z; (iii) x+1, y, z; (iv) x-1/2, -y+3/2, -z; (v) -x+2, y-1/2, -z+1/2, Cg1 = C9-C13 halkasının merkezi; Cg2 = C2-C7 halkasının merkezi

Şekil 4.14: 3-(Piridin-3-ilamino) isobenzofuran-1(3*H*)-on (III) kristaline ait hidrojen bağları ve C—H... π etkileşimlerinin gösterimi [Cg1 = C9-C13 halkasının merkezi; Cg2 = C2-C7 halkasının merkezi]

III bileşiğinin mulliken yük analizi, gaz fazı ve etanol ortamında hesaplatılmıştır ve atomik yük değerleri Tablo 4.20'de verilmiştir.

Atom	Mulliken Yükleri	Mulliken Yükleri
	(Gaz fazi)	(Etanol)
C1	0,408	0,407
C2	-0,160	-0,157
C3	-0,028	-0,040
C4	-0,086	-0,095
C5	-0,079	-0,087
C6	-0,053	-0,050
C7	-0,138	-0,121
C8	0,251	0,257
C9	0,090	0,010
C10	0,053	0,044
C11	0,053	0,034
C12	-0,180	-0,191
C13	-0,011	-0,026
N1	-0,452	-0,455
N2	-0,287	-0,327
01	-0,299	-0,356
02	-0,332	-0,348

Tablo 4.20: 3-(Piridin-3-ilamino) isobenzofuran-1(3*H*)-on (III) için atomlar üzerindeki teorik kısmi yükler

III bileşiğinin 3D moleküler elektrostatik potansiyel yüzey haritası Şekil 4.15'de gösterilmektedir. Molekülün elektrostatik potansiyeli, -5,518e⁻² ile +5,518e⁻² arasında değişmektedir.

Şekil 4.15: 3-(Piridin-3-ilamino) isobenzofuran-1(3*H*)-on (III) bileşiğinin moleküler elektrostatik potansiyeli (gaz)

III bileşiğinin gaz fazındaki HOMO ve LUMO enerji değerleri arasındaki farkı (ΔE) belirlemek için yapılan hesaplamalar ve orbital şekilleri Şekil 4.16'da gösterilmiştir.

Şekil 4.16: 3-(Piridin-3-ilamino) isobenzofuran-1(3*H*)-on (III) bileşiğinin gaz fazındaki moleküler orbital yüzeyleri

III molekülünün yoğunluk fonksiyoneli yönteminden elde edilen verilere göre bulunan HOMO ve LUMO enerji değerleri, kimyasal reaktivite ile ilgili elektron ilgisi, iyonlaşma potansiyeli, kimyasal sertlik, kimyasal yumuşaklık, elektronegatiflik, elektrofilite indeksi, kimyasal potansiyel, nükleofilite indeksi gibi veriler Tablo 4.57'de verilmiştir.

4.1.4 3-((4,6-dimetil pirimidin-2-il)amino) isobenzofuran-1(3H)-on (IV) Bileşiğinin İncelenmesi

Şekil 4.17: 3-((4,6-dimetil pirimidin-2-il)amino) isobenzofuran-1(3*H*)-on (IV) bileşiğinin molekül yapısı

Şekil 4.17'de IV molekülünün kristal yapısı görülmektedir. Ölçümler, oda sıcaklığında (296 K) yapılmıştır. IV molekülüne ait kimyasal veriler Tablo 4.21, atomik koordinatlar ve izotropik veya ekivalent izotropik yer değiştirme parametreleri Tablo 4.22, atomik yer değiştirme parametreleri Tablo 4.23 ve seçilmiş deneysel ve teorik bağ uzunlukları, bağ açıları ve torsiyon açılarının karşılaştırılması Tablo 4.24'de verilmiştir.

IV bileşiğine ait karakteristik X-ışınları verileri sentezlenen diğer bileşiklerden önemli farklılıklar göstermemektedir (Tablo 4.24, Tablo 4.57).

Kapalı formül	$C_{14}H_{13}N_3O_2$
Molekül ağırlığı	255,27
Kristal sistemi	Triklinik
Uzay grubu	P -1
Birim hücre boyutları (a, b, c)	7,9351(4), 11,1687(6), 16,1281(9) Å
Birim hücre hacmi (V)	1305,59(13) Å ³
Birim hücredeki molekül sayısı (Z)	4
Birim hücredeki elekton sayısı (F000)	536
α	73,713(5)
β	80,362(5)
γ	72,882(4)
Yoğunluk (D _x)	1,299Mg m ⁻³
Kristal ve rengi	prizma ve renksiz
Kristal boyutları (max, mid, min)	0,64*0,55*0,46mm
Radyasyon çeşidi	MoK\α
Radyasyon dalga boyu (λ)	0,71073 Å
Soğurma Katsayısı (µ)	$0,090 \text{ mm}^{-1}$
Ortam sıcaklığı (T)	296 K
T _{min} , T _{max}	0,9543, 0,9682
Kırınım Ölçüm Metodu	ω scan
Kırınım ölçüm metodu aralığı	$h=-9\rightarrow 10, k=-14\rightarrow 14, l=-20\rightarrow 20$
$\theta_{\min}, \theta_{\max}$	1,97-28,03°
Ölçülen Yansıma	18886
Bağımsız Yansıma	6022
2σ(I)dan Büyük Yansımalar	4173
R _{int}	0,0695
Parametre Sayısı	399
S	1,042
$\mathbf{R}[\mathbf{F}^2 > 2\sigma(\mathbf{F}^2)]$	0,0464
$wR(F^2)$	0,1434
W	$1/[\sigma^2(F_o^2) + (0.0854P)^2 + 0.0326P]$ where $P = (F_o^2 + 2F_c^2)/3$
$\Delta ho_{\min}, \Delta ho_{\max}$	-0,240- 0,278e Å ⁻³

Tablo 4.21: 3-((4,6-dimetil pirimidin-2-il)amino) isobenzofuran-1(3*H*)-on (IV) bileşiğinin kristal yapısına ait veriler

Tablo 4.22: 3-((4,6-dimetil pirimidin-2-il)amino) isobenzofuran-1(3*H*)-on (IV) için atomik koordinatlar ve izotropik veya ekivalent izotropik yer değiştirme parametreleri ($Å^2$)

Atom	Х	у	Z	U _{iso} *U _{eq}
C1	0,2491(3)	0,49635(18)	0,48462(12)	0,0642(4)
C2	0,1546(2)	0,56644(16)	0,40887(11)	0,0568(4)
C3	0,1005(3)	0,69850(18)	0,37258(14)	0,0698(5)
C4	0,0163(3)	0,7391(2)	0,29923(15)	0,0797(6)
C5	-0,0135(3)	0,6514(2)	0,26171(16)	0,0834(6)
C6	0,0389(3)	0,5189(2)	0,29742(13)	0,0705(5)
C7	0,1222(2)	0,47824(15)	0,37252(11)	0,0548(4)
C8	0,1838(3)	0,34609(16)	0,42889(11)	0,0590(4)
C9	0,3049(2)	0,12427(15)	0,41763(10)	0,0523(4)
C10	0,4134(2)	-0,07787(15)	0,39666(11)	0,0559(4)
C11	0,3374(2)	-0,12656(17)	0,47773(12)	0,0595(4)
C12	0,2415(2)	-0,04032(17)	0,52661(11)	0,0579(4)
C13	0,5157(3)	-0,16385(18)	0,33934(14)	0,0787(6)
C14	0,1553(3)	-0,0842(2)	0,61492(13)	0,0783(6)
C15	0,5978(2)	-0,10713(15)	0,10874(10)	0,0501(3)
C16	0,4034(2)	-0,07008(14)	0,10826(9)	0,0471(3)
C17	0,2904(3)	-0,14089(18)	0,10171(11)	0,0594(4)
C18	0,1147(3)	-0,0800(2)	0,10023(13)	0,0713(5)
C19	0,0497(3)	0,0461(2)	0,10693(15)	0,0766(6)
C20	0,1614(3)	0,1160(2)	0,11463(14)	0,0681(5)
C21	0,3404(2)	0,05571(15)	0,11408(10)	0,0491(3)
C22	0,4941(2)	0,10980(15)	0,10987(10)	0,0502(4)
C23	0,5592(2)	0,27907(14)	0,15554(10)	0,0473(3)
C24	0,5963(2)	0,44365(16)	0,20100(11)	0,0546(4)
C25	0,6825(2)	0,48523(17)	0,12052(12)	0,0606(4)

C26	0,7031(2)	0,41597(15)	0,05965(11)	0,0539(4)
C27	0,5649(3)	0,5151(2)	0,27036(15)	0,0804(6)
C28	0,7946(3)	0,4519(2)	-0,02935(13)	0,0745(5)
H1	0,353(3)	0,2775(18)	0,3417(13)	0,059(5)
H3	0,117(3)	0,765(2)	0,4016(16)	0,098(7)
H4	-0,023(3)	0,836(2)	0,2746(15)	0,087(6)
H4A	0,461(3)	0,1406(19)	0,2268(14)	0,069(6)
H5	-0,073(4)	0,676(3)	0,2104(19)	0,107(8)
H6	0,026(2)	0,4502(18)	0,2704(13)	0,068(5)
H8	0,087(3)	0,3054(18)	0,4665(13)	0,069(5)
H11	0,345(3)	-0,213(2)	0,5010(13)	0,069(5)
H13A	0,518827	-0,252035	0,368520	0,118
H13B	0,459809	-0,140456	0,286613	0,118
H13C	0,634348	-0,154425	0,325989	0,118
H14A	0,176098	-0,176482	0,629339	0,117
H14B	0,204048	-0,059846	0,656384	0,117
H14C	0,030188	-0,044622	0,615980	0,117
H17	0,340(3)	-0,224(2)	0,0969(13)	0,071(6)
H18	0,044(3)	-0,121(2)	0,0916(17)	0,099(8)
H19	-0,077(4)	0,087(2)	0,1060(16)	0,096(7)
H20	0,122(3)	0,198(2)	0,1186(14)	0,081(7)
H22	0,515(2)	0,1647(16)	0,0520(11)	0,051(4)
H25	0,723(3)	0,5637(19)	0,1082(13)	0,074(6)
H27A	0,615643	0,587427	0,249872	0,121
H27B	0,439846	0,545339	0,284644	0,121
H27C	0,619055	0,458274	0,321038	0,121
H28A	0,833364	0,527889	-0,035219	0,112
H28B	0,895188	0,382021	-0,037828	0,112
H28C	0,713958	0,468936	-0,071997	0,112
N1	0,2904(2)	0,25445(13)	0,38525(10)	0,0612(4)
N2	0,39681(18)	0,04910(12)	0,36506(9)	0,0537(3)
N3	0,22549(19)	0,08702(13)	0,49594(9)	0,0568(3)
N4	0,4878(2)	0,17563(14)	0,17367(10)	0,0583(4)
N5	0,53313(17)	0,33948(12)	0,21957(8)	0,0502(3)
N6	0,64185(18)	0,31117(12)	0,07700(8)	0,0527(3)
01	0,2992(2)	0,53787(17)	0,53505(10)	0,0928(5)
O2	0,27703(19)	0,36823(12)	0,49315(8)	0,0699(3)
03	0,70328(18)	-0,20781(12)	0,10465(9)	0,0708(4)
04	0,64768(15)	-0,00419(11)	0,11464(7)	0,0546(3)

Tablo 4.22 (devam): 3-((4,6-dimetil pirimidin-2-il)amino) isobenzofuran-1(3*H*)-on (IV) için atomik koordinatlar ve izotropik veya ekivalent izotropik yer değiştirme parametreleri ($Å^2$)

Tablo 4.23: 3-((4,6-dimetil pirimidin-2-il)amino) isobenzofuran-1(3*H*)-on (IV) için kristali için atomik yer değiştirme parametreleri ($Å^2$)

Atom	U ¹¹	U ²²	U ³³	U^{23}	U ¹³	U^{12}
C1	0,0740(12)	0,0632(10)	0,0562(10)	-0,0226(8)	0,0028(9)	-0,0166(8)
C2	0,0591(9)	0,0557(9)	0,0519(9)	-0,0156(7)	0,0097(7)	-0,0156(7)
C3	0,0780(12)	0,0538(9)	0,0703(12)	-0,0178(9)	0,0178(10)	-0,0176(9)
C4	0,0835(14)	0,0603(11)	0,0758(14)	-0,0051(10)	0,0068(11)	-0,0085(10)
C5	0,0787(14)	0,0869(15)	0,0652(13)	-0,0003(11)	-0,0124(11)	-0,0071(11)
C6	0,0734(12)	0,0751(12)	0,0633(11)	-0,0150(9)	-0,0080(9)	-0,207(9)
C7	0,0549(9)	0,0543(9)	0,0520(9)	-0,0135(7)	0,0045(7)	-0,0142(7)
C8	0,0683(10)	0,0529(9)	0,0530(9)	-0,0146(7)	0,0041(8)	-0,0157(8)
C9	0,0570(9)	0,0504(8)	0,0497(9)	-0,0125(7)	-0,0023(7)	-0,0157(7)
C10	0,0628(10)	0,0488(8)	0,0567(9)	-0,0144(7)	-0,0122(8)	-0,0104(7)
C11	0,0698(11)	0,0476(9)	0,0606(10)	-0,0095(7)	-0,0120(8)	-0,0148(8)
C12	0,0604(10)	0,0599(9)	0,0532(9)	-0,0078(7)	-0,0083(8)	-0,0195(7)
C13	0,1044(16)	0,0548(10)	0,0689(12)	-0,0192(9)	-0,0039(11)	-0,0074(10)
C14	0,0898(14)	0,0743(12)	0,0617(12)	-0,0030(9)	0,0053(10)	-0,0278(11)
C15	0,0618(9)	0,0496(8)	0,0448(8)	-0,0130(6)	-0,0065(7)	-0,0215(7)
C16	0,0591(9)	0,0508(8)	0,0386(7)	-0,0096(6)	-0,0046(6)	-0,0265(7)
C17	0,0786(12)	0,0634(10)	0,0497(9)	-0,0129(8)	-0,0047(8)	-0,0404(9)
C18	0,0715(12)	0,0943(15)	0,0652(11)	-0,0138(10)	-0,0072(9)	-0,0524(11)

C19	0,0559(11)	0,0936(15)	0,0829(14)	-0,0134(11)	-0,0095(10)	-0,0294(10)
C20	0,0624(11)	0,0643(11)	0,0774(13)	-0,0178(9)	-0,0063(9)	-0,0159(9)
C21	0,0555(9)	0,0514(8)	0,0459(8)	-0,0110(6)	-0,0030(6)	-0,0239(7)
C22	0,0632(9)	0,0513(8)	0,0455(8)	-0,0160(7)	0,0015(7)	-0,0288(7)
C23	0,0536(8)	0,0465(7)	0,0487(8)	-0,0161(6)	-0,0013(6)	-0,0212(6)
C24	0,0560(9)	0,0565(9)	0,0630(10)	-0,0275(7)	-0,0004(7)	-0,0230(7)
C25	0,0686(11)	0,0541(9)	0,0710(11)	-0,0228(8)	0,0045(9)	-0,0330(8)
C26	0,0573(9)	0,0521(8)	0,0583(9)	-0,0161(7)	0,0017(7)	-0,0246(7)
C27	0,0962(15)	0,0880(13)	0,0856(14)	-0,0534(12)	0,0155(11)	-0,0497(12)
C28	0,0910(14)	0,0799(12)	0,0643(11)	-0,0176(9)	0,0130(10)	-0,0509(11)
N1	0,0771(10)	0,0494(7)	0,0530(8)	-0,0149(6)	0,0164(8)	-0,0207(7)
N2	0,0620(8)	0,0496(7)	0,0503(7)	-0,0137(6)	-0,0046(6)	-0,0147(6)
N3	0,0640(8)	0,0515(7)	0.,0529(8)	-0,0118(6)	0,0023(6)	-0,0175(6)
N4	0,0853(10)	0,0578(8)	0,0462(8)	-0,0207(6)	0,0086(7)	-0,0408(7)
N5	0,0555(7)	0,0520(7)	0,0515(7)	-0,0215(6)	0,0004(6)	-0,0213(6)
N6	0,0634(8)	0,0534(7)	0,0501(7)	-0,0185(6)	0,0053(6)	-0,0288(6)
01	0,1141(12)	0,1030(11)	0,0754(10)	-0,0382(9)	-0,0129(9)	-0,0320(9)
O2	0,0863(9)	0,0612(7)	0,0544(7)	-0,0143(6)	-0,0096(6)	-0,0059(6)
03	0,0742(8)	0,0573(7)	0,0804(9)	-0,0207(6)	-0,0123(7)	-0,0097(6)
O4	0,0530(6)	0,0606(6)	0,0612(7)	-0,0236(5)	-0,0020(5)	-0,0250(5)

Tablo 4.23 (devam): 3-((4,6-dimetil pirimidin-2-il)amino) isobenzofuran-1(3H)-on
(IV) için kristali için atomik yer değiştirme parametreleri (Å ²)

Tablo 4.24: 3-((4,6-dimetil pirimidin-2-il)amino) isobenzofuran-1(3H)-on (IV)kristali için bağ uzunluğu, bağ açısı ve torsiyon açıları (Å, °)

Geometrik	Atom	Y-isinlari	Gaussian	Gaussian	Gaussian
Parametrolor	Grunlari	(Denevsel)	(Teorik)	(Teorik)	(Teorik)
1 arametrerer	Orupiari	(Deneyser)	Gaz Fazı	Etanol	DMSO
	C1-01	1,210(2)	1,200	1,207	1,209
	C1-O2	1,352(2)	1,368	1,361	1,352
	C1-C2	1,446(3)	1,483	1,479	1,447
	C2-C7	1,380(2)	1,386	1,388	1,380
	O2-C8	1,480(2)	1,473	1,487	1,480
	C7-C8	1,488(2)	1,510	1,508	1,488
	C8-N1	1,398(2)	1,419	1,414	1,398
	N1-C9	1.377(2)	1,377	1,378	1,377
	C9-N2	1,337(2)	1,348	1,346	1,337
	C9-N3	1,326(2)	1,335	1,336	1,326
	N2-C10	1,340(2)	1,338	1,340	1,340
	C10-C13	1,491(2)	1,503	1,502	1,491
Ъž	N3-C12	1,343(2)	1,338	1,340	1,343
Вад	C12-C14	1,489(3)	1,503	1,502	1,489
Uzunlukları	C15-O3	1,199(2)	1,200	1,207	1,199
	C15-O4	1,3528(18)	1,368	1,361	1,353
	C15-C16	1,475(2)	1,483	1,479	1,475
	C16-C21	1,370(2)	1,386	1,388	1,370
	C21-C22	1,496(2)	1,510	1,508	1,497
	O4-C22	1,475(2)	1,473	1,487	1,475
	C22-N4	1,4095(19)	1,419	1,413	1,4097
	N4-C23	1,3718(19)	1,377	1,378	1,372
	C23-N5	1,3422(18)	1,348	1,346	1,342
	N5-C24	1,3385(19)	1,338	1,340	1,339
	C24-C27	1,497(2)	1,503	1,502	1,497
	C23-N6	1,330(2)	1,335	1,336	1,330
	N6-C26	1,3381(19)	1,338	1,340	1,338
	C26-C28	1,500(2)	1,503	1,502	1,499
	•				
	01-C1-O2	122,12(19)	123,132	122,427	122,134
	01-C1-C2	129,09(18)	129,259	129,507	129,093
	C1-O2-C8	110,27(14)	111,445	111,193	110,278
Bağ	O2-C8-N1	112,88(15)	112,092	112,142	112,892
Acıları	C8-N1-H1	119,4(13)	118,241	119,010	119,372
3 **	C8-N1-C9	121,96(15)	122,304	122,410	121,962
	N1-C9-N2	115,46(14)	115,344	115,468	115,467
	N1-C9-N3	117,43(14)	118,495	118,311	117,422

	O3-C15-O4	121,90(15)	123,131	122,427	121,924
	O3-C15-C16	129,82(14)	129,261	129,508	129,797
	C15-O4-C22	110,37(11)	111,445	111,194	110,377
Bağ	O4-C22-N4	111,98(14)	112,092	112,140	111,965
Açıları	C22-N4-H4A	118,9(13)	118,238	119,014	118,965
	C22-N4-C23	121,10(14)	122,307	122,414	121,110
	N4-C23-N5	115,41(13)	115,345	115,468	115,406
	N4-C23-N6	117,66(13)	118,494	118,312	117,656
	01-C1-O2-C8	173,40(18)	178,989	178,046	173,368
	C1-O2-C8-N1	133,00(16)	127,267	127,448	132,992
	O2-C8-N1-C9	87,3(2)	91,673	84,605	87,249
	C8-N1-C9-N2	173,44(16)	-175,199	-177,865	173,466
Torsiyon	C8-N1-C9-N3	-5,6(3)	6,270	3,022	5,608
Açıları	O3-C15-O4-C22	174,36(15)	178,987	178,047	174,353
	C15-O4-C22-N4	134,52(13)	127,265	127,445	134,536
	O4-C22-N4-C23	94,74(18)	91,694	84,637	94,747
	C22-N4-C23-N5	175,22(15)	-175,199	-177,891	175,197
	C22-N4-C23-N6	-3,1(2)	6,271	2,993	3,117

Tablo 4.24 (devam): 3-((4,6-dimetil pirimidin-2-il)amino) isobenzofuran-1(3*H*)-on (IV) kristali için bağ uzunluğu, bağ açısı ve torsiyon açıları (Å, °)

Şekil 4.18, X-ışını geometrisinin ve gaz fazındaki optimize edilmiş geometrinin birbiriyle çakıştığını göstermektedir. IV bileşiğinin (1) nolu molekülünde, iki yapıdaki molekülün ftalit ve pirimidin kısımları tamamen örtüşürken (2) nolu molekülünde ise sadece ftalit kısımları örtüşmüştür. Pirimidin kısmı açısal sapma göstermiştir. Bu sapma (2) nolu molekülün bağ açıları için bulunan R² (0,972) değeri ile desteklenir ve Bu farklılık, moleküller arası etkileşmenin bir sonucu olrak değerlendirilir. Bağ uzunlukları ve torsiyon açılarının korelasyon değerleri Tablo 4.57'de verilmiştir.

Şekil 4.18: 3-((4,6-dimetil pirimidin-2-il)amino) isobenzofuran-1(3H)-on (IV) bileşiğinin teorik (gaz fazı) ve deneysel geometri (kırmızı) ile çizilen molekülleri çakıştırma

IV bileşiğine ait moleküler etkileşim geometrisi ve gösterimi sırasıyla Tablo 4.25, Şekil 4.19 ve Şekil 4.20'de verilmiştir. IV bileşiğinde moleküllerin kristal yapıda oluşturduğu N—H…N ve C—H…N hidrojen bağları etkileşimi, $R_2^2(8)$ ve S5 halka motifini meydana getirmiştir (Etter 1990). C—H… π etkileşimleri ile bu yapı güçlendirilir (Tablo 4.26, Şekil 4.19). Ayrıca moleküller arası C—H…O hidrojen bağ etkileşimleri de mevcuttur.

D—HA	D—H (Å)	HA (Å)	D —A (Å)	D—HA (°)
N1—H1N5 ⁱ	0,81	2,30	3,1115(2)	179
N4—H4A…N2 ⁱ	0,86	2,22	3,0747(2)	179
С5—Н5…О3 ^{іі}	0,95	2,48	3,3958(2)	161
C8—H8N3	1,03	2,31	2,7299(2)	103
C22—H22N6	0,98	2,31	2,7183(2)	104
C25—H25O3 ⁱⁱⁱ	0,98	2,50	3,4164(2)	157
C27—H27CO1 ^{iv}	0,96	2,53	3,3286(2)	141
Х—Н	Cg	HCg (Å)	X—HCg (°)	XCg (Å)
C13—H13B	Cg1 ⁱ	2,83	141	3,6212(2)
C13—H13B	Cg1 ⁱ	2,99	163	3,9206(2)
C14—H14C ^v		2,98	150	3,8415(2)
С27—Н27В	$Cg2^{i}$	2,84	174	3,8004(2)
С27—Н27В	$Cg2^{i}$	2,71	156	3,6053(2)
C28—H28C ^{vi}		2,89	147	3,7279(2)

Tablo 4.25: 3-((4,6-dimetil pirimidin-2-il)amino) isobenzofuran-1(3H)-on (IV) kristaline ait moleküler etkileşim geometrisi (Å, °)

Simetri kodları: (i) x, y, z; (ii) -1+x, 1+y, z; (iii) x, 1+y, z; (iv) 1-x, 1-y, 1-z; (v) -x, -y, 1-z; (vi) 1-x, 1-y, -z, Cg1=C16-C21 halkasının merkezi, Cg2=C2-C7 halkasının merkezi

Şekil 4.19: 3-((4,6-dimetil pirimidin-2-il)amino) isobenzofuran-1(3*H*)-on (IV) bileşiği için N—H···N, C—H... π hidrojen bağ etkileşimlerinin gösterimi [Cg1= C16-C21 halkasının merkezi, Cg2= C2-C7 halkasının merkezi]

Şekil 4.20: 3-((4,6-dimetil pirimidin-2-il)amino) isobenzofuran-1(3*H*)-on (IV) bileşiği için asimetrik birimlerin O3…H5 hidrojen bağlarıyla birbirine bağlanmasının gösterimi

IV bileşiğinin mulliken yük analizi, gaz fazı ve etanol ortamında hesaplatılmıştır ve atomik yük değerleri Tablo 4.26'da verilmiştir.

Atom	Mulliken Yükleri	Mulliken Yükleri (Etapol)		
C1	0.402	0.405		
	-0.158	-0.165		
C3	-0.037	-0.051		
C4	-0.087	-0.091		
C5	-0.083	-0.094		
<u> </u>	-0.045	-0.050		
C7	-0.116	-0.115		
C8	0.254	0.277		
C9	0.516	0.509		
C10	0.142	0.134		
C11	-0.175	-0.176		
C12	0.103	0.102		
C13	-0,277	-0,265		
C14	-0,234	-0,240		
C15	0,402	0,405		
C16	-0,158	-0,165		
C17	-0,037	-0,051		
C18	-0,087	-0,091		
C19	-0,083	-0,094		
C20	-0,045	-0.050		
C21	-0,116	-0,115		
C22	0,254	0,277		
C23	0,516	0,509		
C24	0,142	0,134		
C25	-0,175	-0,176		
C26	0,103	0,102		
C27	-0,277	-0,265		
C28	-0,234	-0,240		
N1	-0,442	-0,451		
N2	-0,440	-0,448		
N3	-0,398	-0,417		
N4	-0,442	-0,451		
N5	-0,439	-0,448		
N6	-0,398	-0,417		
01	-0,315	-0,362		
02	-0,326	-0,347		
03	-0,315	-0,362		
04	-0,326	-0,347		

Tablo 4.26: 3-((4,6-dimetil pirimidin-2-il)amino)) isobenzofuran-1(3H)-on (IV) için
atomlar üzerindeki teorik kısmi yükler	

IV bileşiğinin 3D moleküler elektrostatik potansiyel yüzey haritası Şekil 4.21'de gösterilmektedir. Molekülün elektrostatik potansiyeli, -5,888e⁻² ile +5,888e⁻² arasında değişmektedir.

Şekil 4.21: 3-((4,6-dimetil pirimidin-2-il)amino) isobenzofuran-1(3*H*)-on (IV) bileşiğinin moleküler elektrostatik potansiyeli (gaz)

IV bileşiğinin gaz fazındaki HOMO ve LUMO enerji değerleri arasındaki farkı (ΔE) belirlemek için yapılan hesaplamalar ve orbital şekilleri Şekil 4.22'de gösterilmiştir.

Şekil 4.22: 3-((4,6-dimetil pirimidin-2-il)amino) isobenzofuran-1(3*H*)-on (IV) bileşiğinin gaz fazındaki moleküler orbital yüzeyleri

IV molekülünün yoğunluk fonksiyoneli yönteminden elde edilen verilere göre bulunan HOMO ve LUMO enerji değerleri, kimyasal reaktivite ile ilgili elektron ilgisi, iyonlaşma potansiyeli, kimyasal sertlik, kimyasal yumuşaklık, elektronegatiflik, elektrofilite indeksi, kimyasal potansiyel, nükleofilite indeksi gibi veriler Tablo 4.57'de verilmiştir.

4.1.5 3-((4,6-dimetoksi pirimidin-2-il)amino) isobenzofuran-1(3H)-on(V) Bileşiğinin İncelenmesi

Şekil 4.23: 3-((4,6-dimetoksi pirimidin-2-il)amino) isobenzofuran-1(3*H*)-on (V) bileşiğinin molekül yapısı

Şekil 4.23'de V molekülünün kristal yapısı görülmektedir. Ölçümler, oda sıcaklığında (296 K) yapılmıştır. V molekülüne ait kimyasal veriler Tablo 4.27, atomik koordinatlar ve izotropik veya ekivalent izotropik yer değiştirme parametreleri Tablo 4.28, atomik yer değiştirme parametreleri Tablo 4.29 ve seçilmiş deneysel ve teorik bağ uzunlukları, bağ açıları ve torsiyon açılarının karşılaştırılması Tablo 4.30'da verilmiştir.

V bileşiğine ait karakteristik X-ışınları verileri sentezlenen diğer bileşiklerden önemli farklılıklar göstermemektedir (Tablo 4.30, Tablo 4.57).

Kapalı formül	$C_{14}H_{13}N_3O_4$
Molekül ağırlığı	287,27
Kristal sistemi	Monoklinik
Uzay grubu	P 21/c
Birim hücre boyutları (a, b, c)	7,9540(4), 21,4378(13), 7,8969(4) Å
Birim hücre hacmi (V)	1346,55(13) Å ³
Birim hücredeki molekül sayısı (Z)	4
α	90°
β	90,013(4)°
γ	90°
Birim hücredeki elekton sayısı (F ₀₀₀)	600
Yoğunluk (D _x)	1,417Mg m ⁻³
Kristal ve rengi	prizma ve renksiz
Kristal boyutları (max, mid, min)	0,71*0,37*0,16mm
Radyasyon çeşidi	MoK\α
Radyasyon dalga boyu (λ)	0,71073 Å
Soğurma Katsayısı (μ)	0,106 mm ⁻¹
Ortam sıcaklığı (T)	296 K
T _{min} , T _{max}	0,9446, 0,9841
Kırınım Ölçüm Metodu	ω scan
Kırınım ölçüm metodu aralığı	$h=-10\rightarrow 10, k=-27\rightarrow 27, l=-10\rightarrow 10$
$\theta_{\min}, \theta_{\max}$	1,90-28,06°
Ölçülen Yansıma	22293
Bağımsız Yansıma	3114
2σ(I)dan Büyük Yansımalar	2107
R _{int}	0,0732
Parametre Sayısı	190
S	0,951
$\mathbf{R}[\mathbf{F}^2 > 2\boldsymbol{\sigma}(\mathbf{F}^2)]$	0,0403
$wR(F^2)$	0,0925
W	$1/[\sigma^2(F_o^2) + (0.0501P)^2]$ where P= $(F_o^2 + 2F_c^2)/3$
Anning Annay	-0.161-0.152 e Å ⁻³

Tablo 4.27: 3-((4,6-dimetoksi pirimidin-2-il)amino) isobenzofuran-1(3*H*)-on (V) bileşiğinin kristal yapısına ait veriler

Tablo 4.28: 3-((4,6-dimetoksi pirimidin-2-il)amino) isobenzofuran-1(3*H*)-on (V) için atomik koordinatlar ve izotropik veya ekivalent izotropik yer değiştirme parametreleri ($Å^2$)

Atom	X	у	Z	U _{iso} *U _{eq}
C1	0,22731(18)	0,28638(7)	0,30658(19)	0,0436(3)
C2	0,40041(17)	0,30495(7)	0,34876(18)	0,0405(3)
C3	0,5514(2)	0,27823(8)	0,2997(2)	0,0517(4)
C4	0,6970(2)	0,30692(9)	0,3524(2)	0,0609(5)
C5	0,6912(2)	0,36085(10)	0,4471(2)	0,0650(5)
C6	0,5397(2)	0,38772(8)	0,4947(2)	0,0543(4)
C7	0,39344(18)	0,35812(7)	0,44514(17)	0,0401(3)
C8	0,21226(18)	0,37274(7)	0,48399(18)	0,0408(3)
C9	0,17196(18)	0,46537(6)	0,30438(17)	0,0387(3)
C10	0,12396(18)	0,55308(7)	0,15437(18)	0,0409(3)
C11	0,21127(18)	0,52965(7)	0,01758(18)	0,0443(3)
C12	0,27404(17)	0,47015(7)	0,03978(17)	0,0403(3)
C13	0,0742(2)	0,65080(8)	0,0198(2)	0,0577(4)
C14	0,4154(2)	0,38152(8)	-0,0678(2)	0,0586(4)
H1	0,104304	0,452898	0,535279	0,057
H3	0,554190	0,242306	0,233714	0,062
H4	0,800531	0,289728	0,323700	0,073
H5	0,791258	0,379706	0,480050	0,078
H6	0,536707	0,424357	0,557634	0,065
H8	0,192212	0,363048	0,603566	0,049
H11	0,226681	0,552159	-0,081874	0,053
H13A	0,015710	0,689223	0,040501	0,087
H13B	0,191964	0,659129	0,005638	0,087
H13C	0,030797	0,631663	-0,080991	0,087
H14A	0,472515	0,367869	-0,168224	0,088
H14B	0,491303	0,380013	0,026625	0,088

Tablo 4.28 (devam): 3-((4,6-dimetoksi pirimidin-2-il)amino) isobenzofuran-1(3*H*)on (V) için atomik koordinatlar ve izotropik veya ekivalent izotropik yer değiştirme parametreleri ($Å^2$)

H14C	0,321158	0,354670	-0,046260	0,088
N1	0,15439(16)	0,43397(6)	0,45360(15)	0,0473(3)
N2	0,10180(15)	0,52171(5)	0,29860(15)	0,0418(3)
N3	0,25684(15)	0,43691(5)	0,18007(14)	0,0413(3)
01	0,17743(16)	0,24426(5)	0,22042(17)	0,0655(3)
02	0,12023(12)	0,32687(5)	0,38145(13)	0,0445(3)
03	0,05069(14)	0,60973(5)	0,16028(14)	0,0533(3)
O4	0,35714(14)	0,44436(5)	-0,09097(13)	0,0530(3)

Tablo 4.29: 3-((4,6-dimetoksi pirimidin-2-il)amino) isobenzofuran-1(3*H*)-on (V) kristali için atomik yer değiştirme parametreleri ($Å^2$)

Atom	U ¹¹	U ²²	U ³³	U^{23}	U ¹³	U^{12}
C1	0,0469(8)	0,0359(8)	0,0479(8)	0,0027(7)	0,0011(6)	-0,0009(7)
C2	0,0408(8)	0,0387(8)	0,0419(8)	0,0057(6)	0,0029(6)	0,0003(6)
C3	0,0519(9)	0,0488(9)	0,0543(9)	0,0057(7)	0,0099(7)	0,0097(7)
C4	0,0401(9)	0,0766(13)	0,0661(11)	0,0161(10)	0,0097(8)	0,0083(8)
C5	0,0406(9)	0,0856(14)	0,0687(11)	0,0118(11)	-0,0038(8)	-0,0151(9)
C6	0,0558(10)	0,0578(10)	0,0494(9)	0,0001(8)	-0,0024(7)	-0,0128(8)
C7	0,0427(8)	0,0408(8)	0,0369(7)	0,0046(6)	0,0022(6)	-0,0020(6)
C8	0,0462(8)	0,0390(8)	0,0374(7)	0,0033(6)	0,0063(6)	0,0017(6)
C9	0,0425(7)	0,0368(7)	0,0366(7)	-0,0002(6)	0,0059(6)	-0,0002(6)
C10	0,0417(7)	0,0363(8)	0,0446(8)	0,0007(6)	0,0029(6)	0,0003(6)
C11	0,0474(8)	0,0454(9)	0,0402(7)	0,0071(7)	0,0062(6)	0,0005(7)
C12	0,0406(8)	0,0434(8)	0,0369(7)	-0,0028(6)	0,0064(6)	-0,0019(6)
C13	0,0611(10)	0,0455(9)	0,0665(11)	0,0152(8)	0,0043(8)	0,0072(8)
C14	0,0720(11)	0,0518(10)	0,0520(9)	-0,0048(8)	0,0191(8)	0,0117(8)
N1	0,0635(8)	0,0406(7)	0,0378(6)	0,0027(5)	0,0158(6)	0,0128(6)
N2	0,0487(7)	0,0361(7)	0,0406(6)	0,0016(5)	0,0078(5)	0,0043(5)
N3	0,0475(7)	0,0380(7)	0,0383(6)	-0,0002(5)	0,0084(5)	0,0024(5)
01	0,0667(8)	0,0506(7)	0,0792(9)	-0,0161(7)	-0,0057(6)	-0,0084(6)
O2	0,0366(5)	0,0440(6)	0,0529(6)	0,0020(5)	0,0025(4)	0,0002(4)
03	0,0649(7)	0,0409(6)	0,0540(7)	0,0091(5)	0,0116(5)	0,0128(5)
O4	0,0645(7)	0,0527(7)	0,0417(6)	0,0023(5)	0,0174(5)	0,0108(5)

Tablo 4.30: 3-((4,6-dimetoksi pirimidin-2-il)amino) isobenzofuran-1(3*H*)-on (V) kristali için bağ uzunluğu, bağ açısı ve torsiyon açıları(Å, °)

Geometrik Parametreler	Atom Grupları	X-ışınları (Deneysel)	Gaussian (Teorik) Gaz Fazı	Gaussian (Teorik) Etanol	Gaussian (Teorik) DMSO
	C1-01	1,1983(18)	1,199	1,206	1,198
	C1-O2	1,3523(18)	1,373	1,365	1,352
	C1-C2	1,471(2)	1,482	1,476	1,471
	C2-C7	1,372(2)	1,384	1,386	1,372
	O2-C8	1,4692(18)	1,46	1,472	1,469
	C7-C8	1,506(2)	1,513	1,512	1,506
n ×	C8-N1	1,4113(18)	1,426	1,422	1,412
вад	N1-C9	1,3643(18)	1,384	1,379	1,364
Uzunlukları	C9-N2	1,3313(18)	1,33	1,33	1,331
	C9-N3	1,3387(17)	1,339	1,340	1,339
	N2-C10	1,3345(18)	1,335	1,338	1,334
	C10-O3	1,3478(17)	1,346	1,344	1,348
	O3-C13	1,4284(18)	1,426	1,434	1,429
	N3-C12	1,3244(18)	1,328	1,329	1,324
	C12-O4	1,3450(16)	1,339	1,339	1,345
	O4-C14	1,4362(19)	1,438	1,44	1,436

	01-C1-O2	121,57(14)	122,844	122,050	121,568
	O1-C1-C2	129,95(15)	129,575	129,820	129,956
	C1-O2-C8	110,91(11)	111,331	111,174	110,905
	O2-C8-N1	111,49(12)	112,875	112,336	111,491
	C8-N1-C9	124,91(12)	125,310	126,219	124,906
Bağ	N1-C9-N2	115,74(12)	114,672	114,897	115,740
Aalam	N1-C9-N3	117,41(12)	117,940	118,016	117,407
Açıları	C9-N2-C10	115,54(12)	115,982	116,058	115,536
	C9-N3-C12	114,86(12)	115,178	115,311	114,861
	N2-C10-O3	111,55(12)	113,176	113,008	111,550
	C10-O3-C13	118,15(12)	118,475	118,618	118,145
	N3-C12-O4	118,15(13)	119,630	119,631	118,154
	C12-O4-C14	116,51(12)	117,888	118,245	116,510
	01-C1-O2-C8	178,20(14)	-178,646	-179,888	178,197
	C1-O2-C8-N1	133,40(12)	129,120	130,326	133,397
	O2-C8-N1-C9	-66,50(18)	-58,881	-61,423	-66,496
	C8-N1-C9-N2	176,98(14)	166,909	171,105	176,974
Torsiyon	C8-N1-C9-N3	-3,0(2)	-13,558	-9,201	-3,046
A	N1-C9-N3-C12	-178,23(13)	-179,240	-179,092	-178,239
Açıları	N1-C9-N2-C10	177,91(13)	179,029	179,193	177,910
	C9-N2-C10-O3	-179,28(12)	-179,971	179,961	-179,278
	C9-N3-C12-O4	-179,60(12)	-179,439	-179,897	-179,610
	N2-C10-O3-C13	175,37(14)	-179,447	-179,777	175,384
	N3-C12-O4-C14	2,0(2)	1,988	0,42	2,035

Tablo 4.30 (devam): 3-((4,6-dimetoksi pirimidin-2-il)amino) isobenzofuran-1(3H)- on (V) kristali için bağ uzunluğu, bağ açısı ve torsiyon açıları(Å, °)

Şekil 4.24, X-ışını geometrisinin ve gaz fazındaki optimize edilmiş geometrinin birbiriyle çakıştığını göstermektedir. İki yapıdaki molekülün ftalit kısımları tamamen örtüşürken, pirimidin kısımları açısal sapma göstermiştir. Bu sapma bağ açıları için bulunan R² (0,953) değeri ile desteklenir ve kristal yapıda moleküller arası etkileşmenin bir sonucu olarak değerlendirilir. Bağ uzunlukları ve torsiyon açılarının korelasyon değerleri Tablo 4.57'de verilmiştir.

Şekil 4.24: 3-((4,6-dimetoksi pirimidin-2-il)amino) isobenzofuran-1(3*H*)-on (V) bileşiğinin teorik (gaz fazı) ve deneysel geometri (kırmızı) ile çizilen molekülleri çakıştırma

V bileşiğine ait hidrojen bağ geometrisi ve gösterimi sırasıyla Tablo 4.31, Şekil 4.25 ve Şekil 4.26'da verilmiştir. Moleküllerin kristal yapıda oluşturduğu C— H…O hidrojen bağları, C5 zincirlerini oluşturmuştur (Şekil 4.25). N—H…N hidrojen bağlarının etkileşimi ise $R_2^2(8)$ motifini meydana getirmiştir (Şekil 4.26) (Etter 1990). C—O… π etkileşimleri ile bu yapı güçlendirilir.

Tablo 4.31: 3-((4,6-dimetoksi pirimidin-2-il)amino) isobenzofuran-1(3*H*)-on (V) kristaline ait moleküler etkileşim geometrisi (Å, °)

D—HA	D —H (Å)	HA (Å)	D —A (Å)	D—HA (°)
N1—H1N2 ⁱ	0,86	2,17	2,9810(2)	157
C8—H8O1 ⁱⁱ	0,98	2,48	3,1393(2)	124
YX	Cg	XCg (Å)	Y—XCg (°)	YCg (Å)
C101	Cg1 ⁱⁱⁱ	3,1227(2)	140,76(1)	4,1209(2)

Simetri kodları: (i) -x, -y, 2-z; (ii) x, 1/2-y, 1/2+z (iii) x, 1/2-y, -1/2+z, Cg1=C1-O2 halkasının merkezi

Şekil 4.25: 3-((4,6-dimetoksi pirimidin-2-il)amino) isobenzofuran-1(3*H*)-on (V) bileşiğinin C5 zincir oluşumunun gösterimi

Şekil 4.26: 3-((4,6-dimetoksi pirimidin-2-il)amino) isobenzofuran-1(3*H*)-on (V) bileşiğinin C5 zincirlerinin $R_2^2(8)$ motifli hidrojen bağlarıyla bağlanışının gösterimi [Cg1=C1-O2 halkasının merkezi]

V bileşiğinin mulliken yük analizi, gaz fazı ve etanol ortamında hesaplatılmıştır ve atomik yük değerleri Tablo 4.32'de verilmiştir.

Atom	Mulliken Yükleri (Gaz fazı)	Mulliken Yükleri (Etanol)
C1	0,412	0,408
C2	-0,123	-0,12
C3	-0,050	-0,054
C4	-0,091	-0,099
C5	-0,081	-0,088
C6	-0,057	-0,064
C7	-0,094	-0,099
C8	0,233	0,256
С9	0,469	0,467
C10	0,366	0,362
C11	-0,281	-0,286
C12	0,381	0,378
C13	-0,143	-0,147
C14	-0,121	-0,118
N1	-0,408	-0,419
N2	-0,367	-0,398
N3	-0,426	-0,431
01	-0,315	-0,366
02	-0,322	-0,342
03	-0,302	-0,325
04	-0,34	-0,351

Tablo 4.32: 3-((4,6-dimetoksi pirimidin-2-il)amino) isobenzofuran-1(3*H*)-on (V) için atomlar üzerindeki teorik kısmi yükler

V bileşiğinin 3D moleküler elektrostatik potansiyel yüzey haritası Şekil 4.27'de gösterilmektedir. Molekülün elektrostatik potansiyeli, -5,973e⁻² ile +5,973e⁻² arasında değişmektedir.

Şekil 4.27: 3-((4,6-dimetoksi pirimidin-2-il)amino) isobenzofuran-1(3*H*)-on (V) bileşiğinin moleküler elektrostatik potansiyeli (gaz)

V bileşiğinin gaz fazındaki HOMO ve LUMO enerji değerleri arasındaki farkı (ΔE) belirlemek için yapılan hesaplamalar ve orbital şekilleri Şekil 4.28'de gösterilmiştir.

Şekil 4.28: 3-((4,6-dimetoksi pirimidin-2-il)amino) isobenzofuran-1(3*H*)-on (V) bileşiğinin gaz fazındaki moleküler orbital yüzeyleri

V molekülünün yoğunluk fonksiyoneli yönteminden elde edilen verilere göre bulunan HOMO ve LUMO enerji değerleri, kimyasal reaktivite ile ilgili elektron ilgisi, iyonlaşma potansiyeli, kimyasal sertlik, kimyasal yumuşaklık, elektronegatiflik, elektrofilite indeksi, kimyasal potansiyel, nükleofilite indeksi gibi veriler Tablo 4.57'de verilmiştir.

4.1.6 3-((4-klor-6-metil pirimidin-2-il)amino) isobenzofuran-1(3H)-on (VI) Bileşiğinin İncelenmesi

Şekil 4.29: 3-((4-kloro-6-metil pirimidin-2-il)amino) isobenzofuran-1(3*H*)-on (VI) bileşiğinin molekül yapısı

Şekil 4.29'da VI molekülünün kristal yapısı görülmektedir. Ölçümler, 293(2) K'de yapılmıştır. VI molekülüne ait kimyasal veriler Tablo 4.33, atomik koordinatlar ve izotropik veya ekivalent izotropik yer değiştirme parametreleri Tablo 4.34, atomik yer değiştirme parametreleri Tablo 4.35 ve seçilmiş deneysel ve teorik bağ uzunlukları, bağ açıları ve torsiyon açılarının karşılaştırılması Tablo 4.36'da verilmiştir.

VI bileşiğine ait karakteristik X-ışınları verileri sentezlenen diğer bileşiklerden önemli farklılıklar göstermemektedir (Tablo 4.36, Tablo 4.57).

Tablo 4.33: 3-((4-kloro-6-metil	l pirimidin-2-il)amino)	isobenzofuran-1(3H)-on (VI)
bileşiğinin kristal yapısına ait ve	riler		

Kapalı formül	$C_{13}H_{10}CIN_{3}O_{2}$
Molekül ağırlığı	275,69
Kristal sistemi	Monoklinik
Uzay grubu	P21/c
Birim hücre boyutları (a, b, c)	10,0168(6), 9,7511(7), 14,2392(8) Å
Birim hücre hacmi (V)	1316,94(15) Å ³
Birim hücredeki molekül sayısı (Z)	4
α	90°
β	108,758(5)
γ	90°
Birim hücredeki elekton sayısı (F ₀₀₀)	568
Yoğunluk (D _x)	1,390 Mg m ⁻³
Radyasyon çeşidi	MoK\α
Radyasyon dalga boyu (λ)	0,71073 Å
Soğurma Katsayısı (µ)	$0,291 \text{ mm}^{-1}$
Sıcaklık (T)	293(2) K
Kırınım Ölçüm Metodu	() scan
Kırınım ölçüm metodu aralığı	$h=-12\rightarrow 12, k=-12\rightarrow 12, l=-18\rightarrow 17$
$\theta_{\min}, \theta_{\max}$	2,15-27,12°
Ölçülen Yansıma	9915
Bağımsız Yansıma	2885
2σ(I)dan Büyük Yansımalar	1795
R _{int}	0,1020
Parametre Sayısı	173
S	1,064
$\mathbf{R} \left[\mathbf{F}^2 > 2\sigma(\mathbf{F}^2)\right]$	0,0678
$wR(F^2)$	0,2486
W	$1/[\sigma^{2}(F_{o}^{2})+(0.1566P)^{2}]$ where $P=(F_{o}^{2}+2F_{c}^{2})/3$
$\Delta \rho_{\min}, \Delta \rho_{\max}$	-0,525-0,535e Å ⁻³
Sönme düzeltmesi	SHELXL-2016/6 (Sheldrick 2016)
Sönme katsayısı	0,005(5)

Tablo 4.34: 3-((4-kloro-6-metil pirimidin-2-il)amino) isobenzofuran-1(3*H*)-on (VI) için atomik koordinatlar ve izotropik veya ekivalent izotropik yer değiştirme parametreleri ($Å^2$)

Atom	X	У	Z	Uiso *Ueq
C1	0,6825(3)	0,2301(3)	0,1773(2)	0,0520(7)
C2	0,7065(4)	0,1315(4)	0,1153(3)	0,0634(9)
C3	0,6214(5)	0,1305(4)	0,0181(3)	0,0744(11)
C4	0,5146(4)	0,2244(4)	-0,0168(3)	0,0746(11)
C5	0,4882(4)	0,3241(4)	0,0451(3)	0,0677(9)
C6	0,5759(3)	0,3234(3)	0,1419(2)	0,0546(8)
C7	0,5773(4)	0,4159(4)	0,2243(3)	0,0637(9)
C8	0,7595(3)	0,2609(3)	0,2849(2)	0,0513(7)
C9	0,8490(3)	0,1535(3)	0,4459(2)	0,0493(7)
C10	1,0414(4)	0,2388(4)	0,5622(3)	0,0630(9)
C11	1,0230(4)	0,1461(4)	0,6304(3)	0,0682(10)
C12	0,9118(4)	0,0582(3)	0,5967(2)	0,0602(9)
C13	1,1650(3)	0,3425(4)	0,5920(3)	0,0641(9)
H2	0,778312	0,067367	0,138662	0,076
H3	0,704543	0,083027	0,330118	0,065
H3A	0,636335	0,065063	-0,024952	0,089
H4	0,458804	0,221372	-0,083066	0,090
H5	0,415475	0,387386	0,022323	0,081
H8	0,856676	0,287861	0,292570	0,062
H11	1,082955	0,143845	0,695604	0,082
H13A	1,221209	0,327406	0,659787	0,096
H13B	1,222248	0,330226	0,549945	0,096
H13C	1,128213	0,434218	0,584586	0,096
N1	0,8230(3)	0,0565(3)	0,50560(18)	0,0538(7)
N2	0,9522(3)	0,2448(3)	0,47025(19)	0,0558(7)
N3	0,7605(3)	0,1515(3)	0,35063(19)	0,0540(7)
01	0,6831(3)	0,3787(2)	0,30517(16)	0,0597(6)
O2	0,5052(3)	0,5138(3)	0,2259(2)	0,0961(11)
Cl1	0,88216(14)	-0,06103(12)	0,67637(8)	0,0944(5)

Atom	U ¹¹	U^{22}	U ³³	U^{23}	U ¹³	U ¹²
C1	0,0600(18)	0,0532(16)	0,0476(16)	0,0030(12)	0,0240(14)	-0,0065(14)
C2	0,078(2)	0,0593(19)	0,061(2)	0,0006(14)	0,0345(17)	0,0020(16)
C3	0,105(3)	0,070(2)	0,058(2)	-0,0098(17)	0,041(2)	-0,015(2)
C4	0,089(3)	0,087(3)	0,0448(17)	-0,0024(17)	0,0165(17)	-0,020(2)
C5	0,068(2)	0,077(2)	0,0521(18)	0,0038(16)	0,0120(16)	-0,0066(17)
C6	0,0575(17)	0,0586(17)	0,0487(16)	0,0033(13)	0,0184(14)	-0,0019(14)
C7	0,066(2)	0,066(2)	0,0568(19)	0,0008(15)	0,0176(16)	0,0105(17)
C8	0,0537(17)	0,0522(16)	0,0482(15)	0,0044(12)	0,0166(13)	-0,0027(13)
C9	0,0521(16)	0,0488(15)	0,0497(16)	-0,0015(12)	0,0202(13)	0,0062(13)
C10	0,062(2)	0,070(2)	0,0560(19)	-0,0138(15)	0,0177(15)	0,0067(16)
C11	0,072(2)	0,081(2)	0,0469(17)	-0,0071(16)	0,0115(15)	0,0143(19)
C12	0,072(2)	0,0626(19)	0,0521(17)	0,0027(14)	0,0282(15)	0,0202(17)
C13	0,0528(17)	0,081(2)	0,0585(19)	-0,0185(16)	0,0170(15)	-0,0238(17)
Cl1	0,1262(10)	0,0955(8)	0,0720(7)	0,0238(5)	0,0464(7)	0,0268(7)
N1	0,0629(16)	0,0537(14)	0,0470(13)	0,0056(10)	0,0209(11)	0,0082(12)
N2	0,0570(15)	0,0579(15)	0,0540(15)	-0,0074(11)	0,0200(12)	-0,0017(12)
N3	0,0567(15)	0,0534(14)	0,0494(14)	0,0056(11)	0,0135(11)	-0,0083(11)
01	0,0711(14)	0,0566(12)	0,0481(12)	-0,0031(9)	0,0144(10)	0,0091(10)
02	0,097(2)	0,100(2)	0,0792(19)	-0,0130(16)	0,0110(15)	0,0462(17)

Tablo 4.35: 3-((4-kloro-6-metil pirimidin-2-il)amino) isobenzofuran-1(3*H*)-on (VI) için kristali için atomik yer değiştirme parametreleri ($Å^2$)

Tablo 4.36: 3-((4-kloro-6-metil pirimidin-2-il)amino) isobenzofuran-1(3*H*)-on (VI) kristali için bağ uzunluğu, bağ açısı ve torsiyon açıları(Å, °)

Geometrik Parametreler	Atom Grupları	X-ışınları (Deneysel)	Gaussian (Teorik) Gaz Fazı	Gaussian (Teorik) Etanol	Gaussian (Teorik) DMSO
	C7-O2	1,201(4)	1,197	1,205	1,201
	O1-C7	1,340(4)	1,373	1,365	1,340
	C6-C7	1,476(5)	1,484	1,478	1,476
	C6-C1	1,369(4)	1,386	1,388	1,369
	C1-C8	1,507(4)	1,510	1,508	1,507
D-×	O1-C8	1,460(4)	1,463	1,476	1,459
Бад	C8-N3	1,417(4)	1,424	1,419	1,417
Uzunlukları	C9-N3	1,361(4)	1,376	1,373	1,361
	C9-N1	1,352(4)	1,347	1,349	1,352
	C9-N2	1,323(4)	1,333	1,333	1,323
	C12-N1	1,316(4)	1,311	1,312	1,316
	Cl1-C12	1,716(4)	1,759	1,766	1,716
	N2-C10	1,328(4)	1,339	1,341	1,328
	C10-C13	1,549(5)	1,502	1,501	1,549
	O2-C7-O1	120,9(3)	123,011	122,229	120,849
	O2-C7-C6	130,4(3)	129,610	129,812	130,455
	C7-O1-C8	111,3(2)	111,458	111,199	111,302
	O1-C8-N3	110,7(2)	111,798	111,590	110,749
n v	C8-N3-H3	119,6	118,326	118,726	119,624
Вад	C9-N3-C8	120,7(2)	123,620	123,980	120,746
Açıları	N3-C9-N1	114,9(3)	114,896	115,052	114,891
	N3-C9-N2	118,4(3)	118,644	118,735	118,363
	C9-N1-C12	113,9(3)	115,188	115,028	113,897
	N1-C12-Cl1	115,9(3)	116,731	116,310	115,931
	C9-N2-C10	116,8(3)	116,855	117,097	116,757
	N2-C10-C13	117,8(3)	116,593	116,839	117,772
	O2-C7-O1-C8	-177,7(4)	-178,819	-178,933	-177,687
	N3-C8-O1-C7	-123,3(3)	-124,724	-124,482	-123,352
	O1-C8-N3-C9	-77,4(3)	-85,55	-85,565	-77,444
Torsiyon	N1-C9-N3-C8	168,8(3)	167,277	172,433	168,847
Aarlam	N2-C9-N3-C8	-13,0(4)	-14,296	-8,674	-13,013
Açıları	N3-C9-N2-C10	-176,3(3)	-178,571	-178,265	-176,263
	N3-C9-N1-C12	178,5(3)	178,474	178,548	178,451
	C9-N1-C12-Cl1	179,0(2)	-179,937	179,888	179,023
	C9-N2-C10-C13	178,7(3)	-179,596	179,823	178,701

Şekil 4.30, X-ışını geometrisinin ve gaz fazındaki optimize edilmiş geometrinin birbiriyle çakıştığını göstermektedir. İki yapıdaki molekülün ftalit kısımları tamamen örtüşürken, pirimidin kısımları açısal sapma göstermiştir. Bağ açıları, bağ uzunlukları ve torsiyon açılarının korelasyon değerleri Tablo 4.57'de verilmiştir.

Şekil 4.30: 3-((4-kloro-6-metil pirimidin-2-il)amino) isobenzofuran-1(3*H*)-on (VI) bileşiğinin teorik (gaz fazı) ve deneysel geometri (kırmızı) ile çizilen molekülleri çakıştırma

VI bileşiğine ait hidrojen bağ geometrisi ve gösterimi sırasıyla Tablo 4.37 ve Şekil 4.31'de verilmiştir. Moleküllerin kristal yapıda oluşturduğu N—H…O hidrojen bağları etkileşimi, C(6) zincir motiflerini meydana getirmiştir (Şekil 4.30) (Etter 1990).

Tablo 4.37: 3-((4-kloro-6-metil pirimidin-2-il)amino) isobenzofuran-1(3*H*)-on (VI) kristaline ait hidrojen bağ geometrisi (Å, °)

D —HA	D —H (Å)	HA (Å)	D —A (Å)	D—HA (°)
$N3$ — $H3$ ···· $O2^{i}$	0,86	2,10	2,8653(2)	147
Cincertari les alleres (i) 1 au 1/	1/2 =			

Simetri kodları: (i) 1-x, -1/2+y, 1/2-z

Şekil 4.31: 3-((4-kloro-6-metil pirimidin-2-il)amino) isobenzofuran-1(3*H*)-on (VI) bileşiği için N—H \cdots O hidrojen bağ etkileşiminin gösterimi

VI bileşiğinin mulliken yük analizi, gaz fazı ve etanol ortamında hesaplatılmıştır ve atomik yük değerleri Tablo 4.38'de verilmiştir.

Tablo	4.38:	3-((4-kloro-6-meti	l pirimidin-2-il)ami	no) isobenzofuran-	-1(3H)-on
(VI) iç	in ator	nlar üzerindeki teor	ik kısmi yükler		

Atom	Mulliken Yükleri (Gaz fazı)	Mulliken Yükleri (Etanol)	
C1	-0,140	-0,128	
C2	-0,046	-0,046	
C3	-0,080	-0,087	
C4	-0,087	-0,096	
C5	-0,026	-0,038	
C6	-0,161	-0,156	
C7	0,400	0,402	
C8	0,266	0,280	
C9	0,491	0,499	
C10	0,103	0,106	
C11	-0,099	-0,092	
C12	0,081	0,081	
C13	-0,234	-0,238	
N1	-0,333	-0,356	
N2	-0,389	-0,406	
N3	-0,415	-0,422	
01	-0,319	-0,340	
02	-0,300	-0,355	
Cl	-0,049	-0,070	

VI bileşiğinin 3D moleküler elektrostatik potansiyel yüzey haritası Şekil 4.32'de gösterilmektedir. Molekülün elektrostatik potansiyeli, -5,787e⁻² ile +5,787e⁻² arasında değişmektedir.

Şekil 4.32: 3-((4-kloro-6-metil pirimidin-2-il)amino) isobenzofuran-1(3*H*)-on (VI) bileşiğinin moleküler elektrostatik potansiyeli (gaz)

VI bileşiğinin gaz fazındaki HOMO ve LUMO enerji değerleri arasındaki farkı (ΔE) belirlemek için yapılan hesaplamalar ve orbital şekilleri Şekil 4.33'de gösterilmiştir.

Şekil 4.33: 3-((4-kloro-6-metil pirimidin-2-il)amino) isobenzofuran-1(3*H*)-on (VI) bileşiğinin gaz fazındaki moleküler orbital yüzeyleri

VI molekülünün yoğunluk fonksiyoneli yönteminden elde edilen verilere göre bulunan HOMO ve LUMO enerji değerleri, kimyasal reaktivite ile ilgili elektron ilgisi, iyonlaşma potansiyeli, kimyasal sertlik, kimyasal yumuşaklık, elektronegatiflik, elektrofilite indeksi, kimyasal potansiyel, nükleofilite indeksi gibi veriler Tablo 4.57'de verilmiştir.
4.1.7 3-((6-metil piridin-2-il)amino) isobenzofuran-1(3*H*)-on (VII) Bileşiğinin İncelenmesi

Şekil 4.34: 3-((6-metil piridin-2-il)amino) isobenzofuran-1(3*H*)-on (VII) bileşiğinin molekül yapısı

Şekil 4.34'de VII molekülünün kristal yapısı görülmektedir. VII bileşiği, 2007 yılında moleküler ve kristal yapısı X-ışınları difraksiyonuyla incelenmiştir (Odabaşoğlu ve Büyükgüngör 2007^h). Ölçümler, oda sıcaklığında (296 K) yapılmıştır. VII molekülüne ait kimyasal veriler Tablo 4.39, atomik koordinatlar ve izotropik veya ekivalent izotropik yer değiştirme parametreleri Tablo 4.40, atomik yer değiştirme parametreleri Tablo 4.41 ve seçilmiş deneysel ve teorik bağ uzunlukları, bağ açıları ve torsiyon açılarının karşılaştırılması Tablo 4.42'de verilmiştir.

VII bileşiğine ait karakteristik X-ışınları verileri sentezlenen diğer bileşiklerden önemli farklılıklar göstermemektedir (Tablo 4.42, Tablo 4.57).

Kapalı formül	$C_{14}H_{12}N_2O_2$
Molekül ağırlığı	240,26
Kristal sistemi	Ortorombik
Uzay grubu	Pbca
Birim hücre boyutları (a, b, c)	10,1367 (7), 22,519 (2), 10,8253 (8) Å
Birim hücre hacmi (V)	2471,0(3) Å ³
Birim hücredeki molekül sayısı (Z)	8
Birim hücredeki elekton sayısı (F ₀₀₀)	1008
Yoğunluk (D _x)	1,292 Mg m ⁻³
Radyasyon çeşidi	MoK\α
Radyasyon dalga boyu (λ)	0,71073 Å
Soğurma Katsayısı (µ)	0,09 mm ⁻¹
Sıcaklık (T)	296 K
Kristal ve rengi	prizma ve renksiz
Kristal boyutları (max, mid, min)	0,64*0,36*0,14 mm
T _{min} , T _{max}	0,970, 0,990
Kırınım Ölçüm Metodu	(i) scan
Kırınım ölçüm metodu aralığı	$h=-12\rightarrow 12, k=-27\rightarrow 27, l=-13\rightarrow 13$
$\theta_{\min}, \theta_{\max}$	1,8-27,2°
Ölçülen Yansıma	17021
Bağımsız Yansıma	2437
2σ(I)dan Büyük Yansımalar	1265
R _{int}	0,056
Parametre Sayısı	212
S	0,89
$\mathbf{R}[\mathbf{F}^2 > 2\boldsymbol{\sigma}(\mathbf{F}^2)]$	0,037
$wR(F^2)$	0,095
W	$1/[\sigma^2(F_o^2) + (0,0472P)^2]$ where $P=(F_o^2+2F_c^2)/3$
$\Delta ho_{\min}, \Delta ho_{\max}$	-0,09-0,09 e Å ⁻³
Sönme düzeltmesi	SHELXL97 (Sheldrick, 1997)
Sönme katsayısı	0,0065 (8)

Tablo 4.39: 3-((6-metil piridin-2-il)amino) isobenzofuran-1(3*H*)-on (VII) bileşiğinin kristal yapısına ait veriler

Tablo 4.40: 3-((6-metil piridin-2-il)amino) isobenzofuran-1(3*H*)-on (VII) için atomik koordinatlar ve izotropik veya ekivalent izotropik yer değiştirme parametreleri ($Å^2$)

Atom	Х	у	Z	U _{iso} *U _{eq}
C1	0,9574(2)	0,06011(9)	0,3292(2)	0,0861(6)
C2	0,89111(19)	0,00431(7)	0,35851(16)	0,0757(5)
C3	0,9070(3)	-0,05216(11)	0,3075(2)	0,0988(7)
C4	0,8291 (4)	-0,09672(11)	0,3527(3)	0,1144(9)
C5	0,7376(3)	-0,08594(11)	0,4421(3)	0,1152(9)
C6	0,7198(3)	-0,03037(10)	0,4921(2)	0,0935(7)
C7	0,79959(19)	0,01458(7)	0,44879(16)	0,0699(5)
C8	0,80476(19)	0,07843(7)	0,48549(19)	0,0697(5)
C9	0,66928(16)	0,16633(7)	0,51600(16)	0,0662(5)
C10	0,56963(19)	0,20219(10)	0,4707(2)	0,0774(5)
C11	0,5581(2)	0,25831(10)	0,5175(2)	0,0854(6)
C12	0,6424(2)	0,27651(10)	0,6096(2)	0,0822(6)
C13	0,73612(17)	0,23811(8)	0,65240(16)	0,0698(5)
C14	0,8268(3)	0,25249(12)	0,7571(2)	0,0890(6)
H1	0,642(2)	0,0998(9)	0,402(2)	0,101(7)*
H3	0,975(2)	-0,0544(9)	0,2473(19)	0,097(7)*
H4	0,846(2)	-0,1345(13)	0,322(3)	0,149(10)*
H5	0,681(2)	-0,1199(13)	0,470(2)	0,145(9)*
H6	0,652(2)	-0,0223(10)	0,555(2)	0,127(9)*
H8	0,8356(16)	0,0860(7)	0,5700(17)	0,075(5)*
H10	0,5152(18)	0,1888(8)	0,4067(18)	0,092(6)*
H11	0,489(2)	0,2842(10)	0,4852(17)	0,104(7)*
H12	0,6383(19)	0,3151(9)	0,6451(19)	0,104(7)*
H14A	0,796(2)	0,2350(10)	0,839(2)	0,125(8)*
H14B	0,838(2)	0,2951(12)	0,767(2)	0,133(8)*
H14C	0,914(3)	0,2369(10)	0,741(2)	0,131(9)*
N1	0,68545(16)	0,10890(7)	0,46993(17)	0,0761(4)

Tablo 4.40 (devam): 3-((6-metil piridin-2-il)amino) isobenzofuran-1(3*H*)-on (VII) için atomik koordinatlar ve izotropik veya ekivalent izotropik yer değiştirme parametreleri ($Å^2$)

N2	0,75182(13)	0,18310(6)	0,60452(13)	0,0676(4)
01	1,04032(18)	0,07038(8)	0,25289(16)	0,1286(6)
O2	0,90927(13)	0,10288(5)	0,40304(13)	0,0841(4)

Tablo 4.41: 3-((6-metil piridin-2-il)amino) isobenzofuran-1(3*H*)-on (VII) kristali için atomik yer değiştirme parametreleri ($Å^2$)

Atom	U ¹¹	U ²²	U ³³	U^{12}	U ¹³	U ²³
C1	0,0979(15)	0,0846(14)	0,0760(13)	0,0008(12)	0,0063(12)	0,0061(11)
C2	0,0993(14)	0,0608(11)	0,0671(11)	0,0033(10)	-0,0075(10)	0,0013(9)
C3	0,132(2)	0,0886(17)	0,0760(14)	0,0162(15)	-0,0067(15)	-0,0102(12)
C4	0,173(3)	0,0621(15)	0,108(2)	0,0023(17)	-0,029(2)	-0,0098(14)
C5	0,156(3)	0,0672(16)	0,123(2)	-0,0222(16)	-0,0116 (19)	0,0085 (15)
C6	0,1133(18)	0,0702(14)	0,0970(16)	-0,0151(12)	0,0007(14)	0,0097(12)
C7	0,0862(12)	0,0593(10)	0,0641(10)	-0,0044(9)	-0,0073(10)	0,0030(9)
C8	0,0821(12)	0,0608(10)	0,0662(12)	-0,0044(9)	-0,0026(10)	-0,0005(9)
C9	0,0693(11)	0,0625(11)	0,0669(11)	-0,0044(9)	0,0053(9)	0,0021(8)
C10	0,0692(12)	0,0848(14)	0,0781(12)	0,0037(10)	-0,0038(11)	0,0058(11)
C11	0,0792(14)	0,0812(14)	0,0958(16)	0,0155(11)	0,0072(12)	0,0070(12)
C12	0,0846(14)	0,0691(13)	0,0930(15)	0,0054(11)	0,0195(12)	-0,0039(11)
C13	0,0717(11)	0,0647(11)	0,0730(11)	-0,0081(9)	0,0128(9)	-0,0058(9)
C14	0,0944(17)	0,0871(15)	0,0855(16)	-0,0145(14)	0,0044(13)	-0,0210(12)
N1	0,0799(11)	0,0667(9)	0,0816(11)	0,0010(8)	-0,0150(9)	-0,0069(8)
N2	0,0709(9)	0,0630(9)	0,0688(9)	-0,0049(7)	-0,0005(7)	-0,0018(7)
01	0,1376(13)	0,1322(14)	0,1159(12)	-0,0053(11)	0,0510(11)	0,0183(10)
O2	0,0910(9)	0,0629(7)	0,0984(9)	-0,0112(7)	0,0080(8)	0,0032(7)

Tablo 4.42: 3-((6-metil piridin-2-il)amino) isobenzofuran-1(3*H*)-on (VII) kristali için bağ uzunluğu, bağ açısı ve torsiyon açıları (Å, °)

Geometrik Parametreler	Atom Grupları	X-ışınları (Deneysel)	Gaussian (Teorik) Gaz Fazı	Gaussian (Teorik) Etanol	Gaussian (Teorik) DMSO
	C1-O1	1,201(2)	1,199	1,207	1,200
	C1-O2	1,343(2)	1,370	1,361	1,342
	C1-C2	1,460(3)	1,485	1,479	1,462
Bağ	C2-C7	1,367(2)	1,386	1,388	1,360
Uzunlukları	C7-C8	1,493(2)	1,509	1,507	1,497
Ozumukiari	C8-O2	1,491(2)	1,471	1,489	1,484
	C8-N1	1,401(2)	1,422	1,413	1,399
	C9-N1	1,396(2)	1,396	1,394	1,393
	C9-N2	1,327(2)	1,330	1,332	1,323
	01-C1-O2	121,7(2)	123,174	122,437	121,862
	01-C1-C2	129,6(2)	129,363	129,477	129,373
Bağ	N1-C8-O2	111,15(15)	112,096	112,187	111,131
Aalam	C8-N1-H1	114,8(13)	115,497	116,685	114,789
Açnarı	C9-N1-C8	120,81(16)	122,199	122,879	120,946
	N2-C9-N1	116,60(16)	117,373	117,553	116,723
	C9-N2-C13	117,60(15)	119,132	119,029	118,255
	O1-C1-O2-C8	177,9(2)	-178,891	-178,852	178,426
Tansiyan	N1-C8-O2-C1	-122,34(17)	-125,286	-125,232	-122,350
rorsiyon	02-C8-N1-C9	-73,3(2)	-83,690	-81,702	-73,312
Açıları	C10-C9-N1-C8	160,99(17)	163,269	169,525	160,814
	N2-C9-N1-C8	-20,1(2)	-18,992	-12,210	-20,242
	N1-C9-N2-C13	-178,60(15)	-177,814	-177,696	-178,488

Şekil 4.35, X-ışını geometrisinin ve gaz fazındaki optimize edilmiş geometrinin birbiriyle çakıştığını göstermektedir. İki yapıdaki molekülün ftalit kısımları tamamen örtüşürken, piridin kısımları açısal sapma göstermiştir. Bağ açıları, bağ uzunlukları ve torsiyon açılarının korelasyon değerleri Tablo 4.57'de verilmiştir.

Şekil 4.35: 3-((6-metil piridin-2-il)amino) isobenzofuran-1(3*H*)-on (VII) bileşiğinin teorik (gaz fazı) ve deneysel geometri (kırmızı) ile çizilen molekülleri çakıştırma

VII bileşiğine ait hidrojen bağ geometrisi ve gösterimi sırasıyla Tablo 4.43 Şekil 4.36'da verilmiştir.

VII bileşiğinde moleküllerin kristal yapıda oluşturduğu N—H…O ve C— H…N hidrojen bağları etkileşimi, $R_2^{1}(6) R_4^{4}(24) R_2^{1}(6)$ halka motiflerini meydana getirmiştir (Tablo 4.43, Şekil 4.36) (Etter 1990). Moleküller arası hidrojen bağları üç boyutlu bir ağ oluşturur ve C—H… π ve π … π etkileşimleri ile bu yapı güçlendirilir (Tablo 4.43, Şekil 4.36). π … π etkileşimleri C2-C7 ve C9-C14 halkaları arasında oluşur.

Tablo 4.43: 3-((6-metil piridin-2-il)amino) isobenzofuran-1(3*H*)-on (VII) kristaline ait hidrojen bağ geometrisi (Å, °)

$D - H \cdots A$	<i>D</i> – H	Н…А	D····A	$D - H \cdots A$
$N1-H1\cdots O1^{i}$	0,88(2)	2,08(2)	2,955(2)	174,9(19)
$C4-H4\cdots N2^{ii}$	0,93(3)	2,78(3)	3,417(3)	126,99(18)
C11-H11····N2 ⁱⁱⁱ	0,97(2)	2,70(2)	3,623(2)	158,83(19)
$C14\text{-}H14A^{\dots}Cg1^{i\nu}$	1,02(2)	2,98(2)	3,780(3)	136,3(2)

Simetri kodları: (i) x-1/2, y, -z+1/2; (ii) -x+3/2, -y, z-1/2; (iii) x-1/2, -y+1/2, -z+1; (iv) x, -y+1/2, z+1/2

Şekil 4.36: 3-((6-metil piridin-2-il)amino) isobenzofuran-1(3*H*)-on (VII) bileşiğinin $R_4^4(24)$ halka motifinin oluşumu gösteren kısmi diyagram

VII bileşiğinin mulliken yük analizi, gaz fazı ve etanol ortamında hesaplatılmıştır ve atomik yük değerleri Tablo 4.44'de verilmiştir.

Tablo 4.44: 3-((6-metil piridin-2-il)amino) isobenzofuran-1(3*H*)-on (VII) için atomlar üzerindeki teorik kısmi yükler

Atom	Mulliken Yükleri (Gaz fazı)	Mulliken Yükleri (Etanol)
C1	0,398	0,401
C2	-0,165	-0,160
C3	-0,029	-0,041
C4	-0,089	-0,098
C5	-0,081	-0,088
C6	-0,046	-0,049
C7	-0,134	-0,121
C8	0,255	0,273
C9	0,405	0,391
C10	-0,178	-0,184
C11	-0,006	-0,019
C12	-0,155	-0,168
C13	0,076	0,068
C14	-0,235	-0,243
N1	-0,424	-0,438
N2	-0,407	-0,427
01	-0,306	-0,361
02	-0,321	-0,345

VII bileşiğinin 3D moleküler elektrostatik potansiyel yüzey haritası Şekil 4.37'de gösterilmektedir. Molekülün elektrostatik potansiyeli, -6,155e⁻² ile +6,155e⁻² arasında değişmektedir.

Şekil 4.37: 3-((6-metil piridin-2-il)amino) isobenzofuran-1(3*H*)-on (VII) bileşiğinin moleküler elektrostatik potansiyeli (gaz)

Gaz fazındaki HOMO ve LUMO enerji değerleri arasındaki farkı (ΔE) belirlemek için yapılan hesaplamalar ve orbital şekilleri Şekil 4.38'de gösterilmiştir.

Şekil 4.38: 3-((6-metil piridin-2-il)amino) isobenzofuran-1(3*H*)-on (VII) bileşiğinin gaz fazındaki moleküler orbital yüzeyleri

VII molekülünün yoğunluk fonksiyoneli yönteminden elde edilen verilere göre bulunan HOMO ve LUMO enerji değerleri, kimyasal reaktivite ile ilgili elektron ilgisi, iyonlaşma potansiyeli, kimyasal sertlik, kimyasal yumuşaklık, elektronegatiflik, elektrofilite indeksi, kimyasal potansiyel, nükleofilite indeksi gibi veriler Tablo 4.57'de verilmiştir.

4.1.8 3-((5-metiltiyazol-2-il)amino) isobenzofuran-1(3*H*)-on (VIII) Sentezi Bileşiğinin İncelenmesi

Şekil 4.39: 3-((5-metiltiyazol-2-il)amino) isobenzofuran-1(3*H*)-on (VIII) bileşiğinin molekül yapısı

Şekil 4.39'da VIII molekülünün kristal yapısı görülmektedir. Ölçümler, oda sıcaklığında (296 K) yapılmıştır. VIII molekülüne ait kimyasal veriler Tablo 4.45, atomik koordinatlar ve izotropik veya ekivalent izotropik yer değiştirme parametreleri Tablo 4.46, atomik yer değiştirme parametreleri Tablo 4.47 ve seçilmiş deneysel ve teorik bağ uzunlukları, bağ açıları ve torsiyon açılarının karşılaştırılması Tablo 4.48'de verilmiştir.

VIII bileşiği bir ftalit grubu ile azot atomuyla bağlanmış tiyazol grubundan oluşmasıyla diğer bileşiklerden hetaril grubu bakımından farklıdır. Bileşiğe ait diğer karakteristik X-ışınları verileri, sentezlenen diğer bileşiklerden önemli farklılıklar göstermemektedir (Tablo 4.48, Tablo 4.57).

Kapalı formül	$C_{12}H_{10}N_2O_2S$
Molekül ağırlığı	246,28
Kristal sistemi	Monoklinik
Uzay grubu	P 21/c
Birim hücre boyutları (a, b, c)	8,0550(6), 6,1386(3), 23,3228(18) Å
Birim hücre hacmi (V)	1142,77(14) Å3
Birim hücredeki molekül sayısı (Z)	4
α	90°
β	97,724(6)
γ	90°
Birim hücredeki elektron sayısı (F ₀₀₀)	512
Yoğunluk (D _x)	1,431Mg m ⁻³
Radyasyon çeşidi	ΜοΚ\α
Radyasyon dalga boyu (λ)	0,71073 Å
Soğurma Katsayısı (µ)	0,273mm ⁻¹
Ortam sıcaklığı (T)	296 K
Kristal ve rengi	prizma ve renksiz
Kristal boyutları (max, mid, min)	0,59*0,56*0,52mm
T_{min}, T_{max}	0,9034, 0,9305
Kırınım Ölçüm Metodu	ω scan
Kırınım ölçüm metodu aralığı	$h=-10\rightarrow 10, k=-7\rightarrow 7, l=-29\rightarrow 28$
$\theta_{\min}, \theta_{\max}$	1,76- 27,27°
Ölçülen Yansıma	6272
Bağımsız Yansıma	2359
2σ(I)dan Büyük Yansımalar	1656
R _{int}	0,0618
Parametre Sayısı	155
S	0,989
$\mathbf{R}[\mathbf{F}^2 > 2\sigma(\mathbf{F}^2)]$	0,0428
$wR(F^2)$	0,1200
W	$1/[\sigma^2(F_o^2) + (0.0683P)^2]$ where P=(F_o^2+2F_c^2)/3
$\Delta \rho_{\min}, \Delta \rho_{\max}$	-0,266- 0,187e Å ⁻³

Tablo 4.45: 3-((5-metiltiyazol-2-il)amino) isobenzofuran-1(3*H*)-on (VIII) bileşiğinin kristal yapısına ait veriler

Tablo 4.46: 3-((5-metiltiyazol-2-il)amino) isobenzofuran-1(3*H*)-on (VIII) için atomik koordinatlar ve izotropik veya ekivalent izotropik yer değiştirme parametreleri ($Å^2$)

Atom	Х	у	Z	U _{iso} */ U _{eq}
01	0,4042(2)	0,8338(3)	0,72214(6)	0,0714(5)
O2	0,41832(18)	0,5465(3)	0,66401(6)	0,0570(4)
N1	0,5113(2)	0,4081(3)	0,57834(6)	0,0558(5)
N2	0,3755(2)	0,2486(3)	0,49429(6)	0,0516(4)
S1	0,31838(8)	0,04665(10)	0,58578(2)	0,0610(2)
C1	0,4876(3)	0,7179(4)	0,69565(8)	0,0546(5)
C2	0,6677(2)	0,7272(4)	0,68998(7)	0,0524(5)
C3	0,7867(3)	0,8779(5)	0,71159(9)	0,0667(6)
C4	0,9480(3)	0,8461(5)	0,69927(10)	0,0748(7)
C5	0,9862(3)	0,6701(5)	0,66673(9)	0,0743(8)
C6	0,8657(3)	0,5190(5)	0,64523(9)	0,0663(7)
C7	0,7049(3)	0,5532(4)	0,65734(8)	0,0526(5)
C8	0,5490(3)	0,4232(4)	0,63900(8)	0,0531(5)
C9	0,4093(2)	0,2547(3)	0,55033(7)	0,0496(5)
C10	0,2769(3)	0,0694(4)	0,47758(9)	0,0549(5)
C11	0,2336(3)	-0,0598(4)	0,51934(9)	0,0561(5)
C12	0,1353(3)	-0,2667(4)	0,51531(11)	0,0695(6)
H1	0,555790	0,502184	0,557725	0,067
H3	0,759649	0,996013	0,733537	0,080
H4	1,031749	0,944472	0,713072	0,090
H5	1,095683	0,652182	0,659000	0,089
H6	0,892269	0,399772	0,623588	0,080
H8	0,560367	0,277038	0,656000	0,064
H10	0,241874	0,039712	0,438736	0,066
H12A	0,053398	-0,261024	0,541608	0,104
H12B	0,209503	-0,387291	0,525203	0,104
H12C	0,079833	-0,284728	0,476523	0,104

Tablo 4.47: 3-((5-metiltiyazol-2-il)amino) isobenzofuran-1(3*H*)-on (VIII) kristali için atomik yer değiştirme parametreleri ($Å^2$)

Atom	U ¹¹	U^{22}	U ³³	U ²³	U ¹³	U ¹²
01	0,0660(10)	0,0919(12)	0,0579(8)	-0,0181(8)	0,0138(7)	0,0092(9)
O2	0,0550(8)	0,0735(10)	0,0436(7)	-0,0051(7)	0,0113(6)	-0,0028(7)
N1	0,0710(12)	0,0621(12)	0,0349(7)	0,0020(7)	0,0093(7)	-0,0085(9)
N2	0,0604(10)	0,0566(11)	0,0386(8)	-0,0004(7)	0,0102(7)	0,0035(9)
S1	0,0756(4)	0,0624(4)	0,0466(3)	0,0064(2)	0,0141(3)	-0,0043(3)
C1	0,0579(12)	0,0690(14)	0,0371(9)	-0,0001(9)	0,0078(8)	0,0028(11)
C2	0,0535(11)	0,0657(14)	0,0380(9)	0,0001(9)	0,0066(8)	-0,0005(10)
C3	0,0666(14)	0,0805(17)	0,0525(11)	-0,0090(11)	0,0062(10)	-0,0059(13)
C4	0,0609(14)	0,106(2)	0,0569(13)	-0,0037(14)	0,0049(11)	-0,0165(15)
C5	0,0536(13)	0,120(2)	0,0499(12)	0,0059(13)	0,0099(10)	0,0006(15)
C6	0,0605(14)	0,0940(18)	0,0454(11)	-0,0009(11)	0,0112(10)	0,0097(14)
C7	0,0551(12)	0,0692(14)	0,0338(8)	0,0057(9)	0,0071(8)	0,0047(10)
C8	0,0644(13)	0,0594(14)	0,0360(9)	0,0024(8)	0,0082(8)	0,0024(10)
C9	0,0547(11)	0,0543(12)	0,0413(9)	0,0004(9)	0,0118(8)	0,0063(10)
C10	0,0581(12)	0,0607(14)	0,0459(10)	-0,0072(9)	0,0076(9)	0,0045(11)
C11	0,0582(13)	0,0544(13)	0,0572(11)	-0,0024(10)	0,0130(9)	0,0075(11)
C12	0,0692(15)	0,0581(15)	0,0824(15)	-0,0065(12)	0,0146(12)	-0,0021(12)

Tablo 4.48: 3-((5-metiltiyazol-2-il)amino) isobenzofuran-1(3*H*)-on (VIII) kristali için bağ uzunluğu, bağ açısı ve torsiyon açıları (Å, °)

Geometrik	Atom	X-isinlari	Gaussian	Gaussian	Gaussian
Parametreler	Gruplari	(Denevsel)	(Teorik)	(Teorik)	(Teorik)
	0.1	(2 010 5 00)	Gaz Fazı	Etanol	DMSO
	C1-01	1,204(2)	1,197	1,204	1,204
	C1-02	1,361(3)	1,375	1,367	1,361
	C1-C2	1,476(3)	1,484	1,478	1,475
	C2-C7	1,368(3)	1,386	1,388	1,368
	C7-C8	1,501(3)	1,51	1,508	1,501
Doğ	C8-O2	1,478(2)	1,466	1,478	1,479
Dag	C8-N1	1,409(2)	1,421	1,418	1,410
Uzunlukları	C9-N1	1,358(3)	1,386	1,382	1,358
	C9-N2	1,299(2)	1,294	1,298	1,299
	C9-S1	1,736(2)	1,766	1,766	1,736
	C11-S1	1,735(2)	1,764	1,765	1,735
	C10-N2	1,382(3)	1,379	1,383	1,382
	C10-C11	1,338(3)	1,357	1,357	1,338
	C11-C12	1,492(3)	1,495	1,495	1,493
	O1-C1-O2	121,3(2)	123,055	122,23	121,233
	O1-C1-C2	130,2(2)	129,601	129,875	130,240
	N1-C8-O2	111,16(17)	113,164	112,5	111,151
	C8-N1-H1	117,9	116,388	116,821	117,854
n ×	C9-N1-C8	124,26(17)	123,391	123,653	124,278
вад	N1-C9-S1	123,21(13)	122,569	122,532	123,209
Açıları	C9-S1-C11	89,57(10)	88,467	88,653	89,561
	S1-C11-C12	121,23(16)	121,9	121,882	121,230
	N2-C9-N1	122,34(17)	122,409	122,653	122,361
	C9-N2-C10	109,94(17)	110,616	110,628	109,962
	N2-C10-C11	117,58(19)	117,537	117,548	117,559
	C10-C11-C12	130,3(2)	129,648	129,710	130,260
	01-C1-O2-C8	-176,39(18)	-178,791	-179,032	-176,380
	N1-C8-O2-C1	-123,81(18)	-125,064	-124,659	-123,832
	O2-C8-N1-C9	-84,4(2)	-72,294	-73,204	-84,394
	S1-C9-N1-C8	-3,1(3)	-22,765	-18,278	-3,122
Torsiyon	N2-C9-N1-C8	178,84(19)	160,819	164,510	178,826
Açıları	N1-C9-N2-C10	176,62(18)	176,274	176,913	176,610
	N1-C9-S1-C11	-176,47(18)	-176,23	-176,910	-176,475
	C9-S1-C11-C12	177,04(18)	-179,401	-179,852	177,037
	C9-N2-C10-C11	0,5(3)	0,122	0,215	0,571
	N2-C10-C11-C12	-177,39(19)	179,175	179,614	-177,414

Şekil 4.40, X-ışını geometrisinin ve gaz fazındaki optimize edilmiş geometrinin birbiriyle çakıştığını göstermektedir. İki yapıdaki molekülün ftalit kısımları tamamen örtüşürken, tiyazol kısımları açısal sapma göstermiştir. Bu sapma bağ açıları için bulunan R² (0,925) değeri ile desteklenir. Bağ açıları, bağ uzunlukları ve torsiyon açılarının korelasyon değerleri Tablo 4.57'de verilmiştir.

Şekil 4.40: 3-((5-metiltiyazol-2-il)amino) isobenzofuran-1(3*H*)-on (VIII) bileşiğinin teorik (gaz fazı) ve deneysel geometri (kırmızı) ile çizilen molekülleri çakıştırma

VIII bileşiğine ait moleküler arası etkileşim geometrisi ve gösterimi sırasıyla Tablo 4.49 ve Şekil 4.41'de verilmiştir.

VIII bileşiğinde moleküllerin kristal yapıda oluşturduğu N—H…N hidrojen bağ etkileşimleri $R_2^2(8)$ halka motifini meydana getirmiştir (Tablo 4.49, Şekil 4.41) (Etter 1990). C—O… π etkileşimleri ile bu yapı güçlendirilir.

Tablo 4.49: 3-((5-metiltiyazol-2-il)amino) isobenzofuran-1(3*H*)-on (VIII) kristaline ait moleküler etkileşim geometrisi (Å, °)

D—HA	D —H (Å)	HA (Å)	D —A (Å)	D—HA (°)
N1—H1N2 ⁱ	0,86	2,07	2,9253(2)	171
YX	Cg	XCg (Å)	Y—XCg (°)	YCg (Å)
C1—01	Cg1 ⁱⁱ	2,9764(2)	139,99(1)	3,9750(3)

Simetri kodları: (i) 1-x, -y, -z; (ii) 1-x, -1/2+y, 1/2-z, Cg1=C1-O2 halkasının merkezi

Şekil 4.41: 3-((5-metiltiyazol-2-il)amino) isobenzofuran-1(3*H*)-on (VIII) bileşiğinin N—H...N hidrojen bağ ve C—O... π etkileşiminin gösterimi [Cg1= C1-O2 halkasının merkezi]

VIII bileşiğinin mulliken yük analizi, gaz fazı ve etanol ortamında hesaplatılmıştır ve atomik yük değerleri Tablo 4.50'de verilmiştir.

Tablo 4.50: 3-((5-metiltiyazol-2-il)amino) isobenzofuran-1(3*H*)-on (VIII) için atomlar üzerindeki teorik kısmi yükler

Atom	Mulliken Yükleri (Gaz fazı)	Mulliken Yükleri (Etanol)
C1	0,405	0,407
C2	-0,159	-0,155
C3	-0,027	-0,037
C4	-0,086	-0,095
C5	-0,80	-0,086
C6	-0,045	-0,044
C7	-0,147	-0,131
C8	0,226	0,231
C9	0,205	0,196
C10	0,089	0,069
C11	-0,357	-0,364
C12	-0,243	-0,242
N1	-0,381	-0,387
N2	-0,326	-0,356
01	-0,297	-0,351
02	-0,315	-0,337
S1	0,226	0,228

VIII bileşiğinin 3D moleküler elektrostatik potansiyel yüzey haritası Şekil 4.42'de gösterilmektedir. Molekülün elektrostatik potansiyeli, -5,736e⁻² ile +5,736e⁻² arasında değişmektedir.

Şekil 4.42: 3-((5-metiltiyazol-2-il)amino) isobenzofuran-1(3*H*)-on (VIII) bileşiğinin moleküler elektrostatik potansiyeli (gaz)

VIII bileşiğinin gaz fazındaki HOMO ve LUMO enerji değerleri arasındaki farkı (ΔE) belirlemek için yapılan hesaplamalar ve orbital şekilleri Şekil 4.43'de gösterilmiştir.

Şekil 4.43: 3-((5-metiltiyazol-2-il)amino) isobenzofuran-1(3*H*)-on (VIII) bileşiğinin gaz fazındaki moleküler orbital yüzeyleri

VIII molekülünün yoğunluk fonksiyoneli yönteminden elde edilen verilere göre bulunan HOMO ve LUMO enerji değerleri, kimyasal reaktivite ile ilgili elektron ilgisi, iyonlaşma potansiyeli, kimyasal sertlik, kimyasal yumuşaklık, elektronegatiflik, elektrofilite indeksi, kimyasal potansiyel, nükleofilite indeksi gibi veriler Tablo 4.57'de verilmiştir.

4.1.9 3-((4,6-dimetilpirimidin-2-il)amino)-6,7-dimetoksi isobenzofuran-1(3H)-on (IX) Bileşiğinin İncelenmesi

Şekil 4.44: 3-((4,6-dimetilpirimidin-2-il)amino)-6,7-dimetoksi isobenzofuran-1(3*H*)on (IX) bileşiğinin molekül yapısı

Şekil 4.44'de IX molekülünün kristal yapısı görülmektedir. Ölçümler, 293(2) K'de yapılmıştır. IX molekülüne ait kimyasal veriler Tablo 4.51, atomik koordinatlar ve izotropik veya ekivalent izotropik yer değiştirme parametreleri Tablo 4.52, atomik yer değiştirme parametreleri Tablo 4.53 ve seçilmiş deneysel ve teorik bağ uzunlukları, bağ açıları ve torsiyon açılarının karşılaştırılması Tablo 4.54'de verilmiştir.

IX bileşiğine ait karakteristik X-ışınları verileri sentezlenen diğer bileşiklerden önemli farklılıklar göstermemektedir (Tablo 4.54, Tablo 4.57).

Kapalı formül	$C_{16}H_{17}N_3O_4$
Molekül ağırlığı	315,32
Kristal sistemi	Monoklinik
Uzay grubu	P 21/c
Birim hücre boyutları (a, b, c)	7,9788(5), 26,7305(11), 8,0241(5) Å
Birim hücre hacmi (V)	1560,56(16) Å ³
Birim hücredeki molekül sayısı (Z)	4
α	90°
β	114,233(4)°
γ	90°
Birim hücredeki elekton sayısı (F ₀₀₀)	664
Yoğunluk (D _x)	1,342Mg m ⁻³
Radyasyon çeşidi	ΜοΚ\α
Radyasyon dalga boyu (λ)	0,71073 Å
Soğurma Katsayısı (µ)	0,098mm ⁻¹
Sıcaklık (T)	293(2)K
Kırınım Ölçüm Metodu	ω scan
Kırınım ölçüm metodu aralığı	$h=-10\rightarrow 10, k=-33\rightarrow 32, l=-9\rightarrow 10$
$\theta_{\min}, \theta_{\max}$	1,524-26,79°
Ölçülen Yansıma	10626
Bağımsız Yansıma	3233
2σ(I)dan Büyük Yansımalar	2403
R _{int}	0,0543
Parametre Sayısı	209
S	1,069
$\mathbf{R}[\mathbf{F}^2 > 2\sigma(\mathbf{F}^2)]$	0,0395
$wR(F^2)$	0,1173
W	$1/[\sigma^2(F_o^2) + (0.0663P)^2 + 0.0626P]$
**	where $P = (F_o^2 + 2F_c^2)/3$
$\Delta \rho_{\min}, \Delta \rho_{\max}$	-0,127- 0,171e Å ⁻³
Sönüm methodu	SHELXL-2016/6 (Sheldrick 2016)
Sönüm katsavısı	0,0092(19)

Tablo 4.51: 3-((4,6-dimetilpirimidin-2-il)amino)-6,7-dimetoksi isobenzofuran-1(3*H*)-on (IX) bileşiğinin kristal yapısına ait veriler

Tablo 4.52: 3-((4,6-dimetilpirimidin-2-il)amino)-6,7-dimetoksi isobenzofuran-1(3*H*)-on (IX) için atomik koordinatlar ve izotropik veya ekivalent izotropik yer değiştirme parametreleri ($Å^2$)

Atom	Х	у	Z	$U_{iso} * U_{eq}$
C1	0,18632(19)	0,67156(5)	0,5538(2)	0,0467(3)
C2	0,02531(19)	0,69261(5)	0,5429(2)	0,0500(4)
C3	0,00404(19)	0,74379(5)	0,5181(2)	0,0507(4)
C4	0,14076(19)	0,77322(5)	0,5030(2)	0,0468(3)
C5	0,30121(18)	0,75146(5)	0,50748(19)	0,0454(3)
C6	0,32212(18)	0,70037(5)	0,53654(19)	0,0456(3)
C7	0,4832(2)	0,66815(6)	0,5731(2)	0,0573(4)
C8	0,2545(2)	0,61876(5)	0,6012(2	0,0542(4)
C9	-0,0116(3)	0,84983(6)	0,5097(3)	0,0742(5)
C10	0,5622(3)	0,80224(10)	0,6383(3)	0,1018(8)
C11	0,2565(2)	0,55509(5)	0,8230(2)	0,0505(4)
C12	0,2591(2)	0,47241(5)	0,7671(2)	0,0582(4)
C13	0,2675(2)	0,46275(6)	0,9379(3)	0,0624(4)
C14	0,2649(2)	0,50236(6)	1,0473(2)	0,0588(4)
C15	0,2573(3)	0,43174(6)	0,6374(3)	0,0843(6)
C16	0,2679(3)	0,49496(8)	1,2328(3)	0,0844(6)
H1	0,250582	0,626977	0,841964	0,073
H2	-0,066941	0,673007	0,551824	0,060
H3	-0,103674	0,758790	0,511555	0,061
H8	0,179342	0,595879	0,503695	0,065
H9A	0,000021	0,885090	0,494251	0,111
H9B	-0,127819	0,838327	0,420509	0,111
H9C	-0,004718	0,843545	0,630150	0,111
H10A	0,645873	0,821622	0,606225	0,153
H10B	0,502575	0,823598	0,693492	0,153
H10C	0,628727	0,776509	0,723095	0,153

Tablo 4.52 (devam): 3-((4,6-dimetilpirimidin-2-il)amino)-6,7-dimetoksi isobenzofuran-1(3*H*)-on (IX) için atomik koordinatlar ve izotropik veya ekivalent izotropik yer değiştirme parametreleri (Å²)

H13	0,274726	0,430012	0,979566	0,075
H15A	0,261119	0,399731	0,693068	0,126
H15B	0,147221	0,434248	0,527074	0,126
H15C	0,362559	0,435231	0,609074	0,126
H16A	0,272069	0,459829	1,259044	0,127
H16B	0,374431	0,511033	1,322268	0,127
H16C	0,159075	0,509263	1,236458	0,127
N1	0,2534(2)	0,60390(4)	0,76848(19)	0,0609(4)
N2	0,25427(18)	0,51950(4)	0,70648(19)	0,0547(3)
N3	0,25902(18)	0,54955(5)	0,98994(19)	0,0580(3)
01	0,44242(16)	0,62129(4)	0,61007(18)	0,0692(4)
O2	0,63094(17)	0,67788(5)	0,5765(2)	0,0816(4)
03	0,42960(15)	0,78027(4)	0,48029(16)	0,0605(3)
04	0,13304(16)	0,82396(4)	0,48629(17)	0,0624(3)

Tablo 4.53: 3-((4,6-dimetilpirimidin-2-il)amino)-6,7-dimetoksi isobenzofuran 1(3H)-on (IX) kristali için atomik yer değiştirme parametreleri (Å²)

Atom	U ¹¹	U^{22}	U ³³	U^{23}	U ¹³	U ¹²
C1	0,0542(8)	0,0398(7)	0,0481(9)	0,0034(6)	0,0230(6)	0,0005(5)
C2	0,0493(7)	0,0435(7)	0,0605(10)	0,0025(6)	0,0259(7)	-0,0051(6)
C3	0,0464(7)	0,0478(8)	0,0600(10)	0,0042(6)	0,0239(7)	0,0051(6)
C4	0,0569(8)	0,0381(7)	0,0475(9)	0,0053(6)	0,0235(7)	0,0012(5)
C5	0,0500(7)	0,0460(7)	0,0424(8)	0,0031(6)	0,0210(6)	-0,0055(6)
C6	0,0484(7)	0,0472(8)	0,0439(8)	0,0038(6)	0,0216(6)	0,0019(5)
C7	0,0590(9)	0,0604(9)	0,0610(11)	0,0100(7)	0,0332(8)	0,0108(7)
C8	0,0675(9)	0,0418(7)	0,0614(10)	0,0054(6)	0,0348(8)	0,0068(6)
C9	0,0834(12)	0,0478(9)	0,1045(16)	0,0048(9)	0,0519(11)	0,0128(8)
C10	0,0845(14)	0,1191(18)	0,0957(18)	-0,0229(14)	0,0309(12)	-0,0511(13)
C11	0,0567(8)	0,0414(7)	0,0581(10)	0,0074(6)	0,0284(7)	0,0055(6)
C12	0,0650(9)	0,0400(7)	0,0700(11)	0,0052(7)	0,0280(8)	-0,0013(6)
C13	0,0699(10)	0,0440(8)	0,0762(12)	0,0165(8)	0,0330(9)	0,0009(7)
C14	0,0587(8)	0,0592(9)	0,0636(11)	0,0175(8)	0,0302(8)	0,0064(7)
C15	0,1243(17)	0,0428(9)	0,0887(16)	-0,0028(8)	0,0465(13)	-0,0054(9)
C16	0,0996(14)	0,0893(14)	0,0763(14)	0,0270(11)	0,0481(11)	0,0125(11)
N1	0,0945(10)	0,0368(6)	0,0649(9)	0,0056(6)	0,0464(8)	0,0082(6)
N2	0,0675(8)	0,0388(6)	0,0608(9)	0,0053(5)	0,0293(6)	0,0027(5)
N3	0,0672(8)	0,0533(7)	0,0599(9)	0,0094(6)	0,0327(7)	0,0082(6)
01	0,0765(7)	0,0545(6)	0,0931(10)	0,0189(6)	0,0514(7)	0,0219(5)
02	0,0621(7)	0,0905(9)	0,1073(11)	0,0190(8)	0,0502(7)	0,0152(6)
03	0,0647(6)	0,0598(6)	0,0654(8)	0,0018(5)	0,0351(6)	-0,0159(5)
04	0,0776(7)	0,0381(5)	0,0853(9)	0,0094(5)	0,0472(6)	0,0058(5)

Geometrik	Atom	X-ışınları	Gaussian (Teorik)	Gaussian (Teorik)	Gaussian (Teorik)
Parametreler	Grupları	(Deneysel)	Gaz Fazi	Etanol	DMSO
	C7-O2	1,1963(19)	1.201	1.205	1.196
	C7-01	1.3573(19)	1.367	1.365	1.357
	C7-C6	1.473(2)	1.488	1.482	1.473
	C6-C5	1.3839(19)	1.398	1.392	1.384
	C5-O3	1,3688(16)	1,352	1,362	1,369
	O3-C10	1,403(2)	1,439	1,442	1,403
	C5-C4	1,3930(19)	1,420	1,416	1,393
	C4-O4	1,3618(15)	1,357	1,356	1,362
Bağ	O4-C9	1,4227(19)	1,421	1,431	1,423
Ull-l	O1-C8	1,4730(19)	1,465	1,479	1,473
Uzuniukiari	C8-N1	1,404(2)	1,421	1,416	1,404
	N1-H1	0,8600	1,010	1,010	0,86
	N1-C11	1,3732(18)	1,381	1,382	1,373
	C11-N2	1,329(2)	1,336	1,336	1,329
	C11-N3	1,339(2)	1,340	1,341	1,339
	N3-C14	1,3371(19)	1,336	1,338	1,337
	C14-C16	1,492(2)	1,504	1,503	1,492
	N2-C12	1,3442(18)	1,338	1,341	1,344
	C12-C15	1,501(2)	1,503	1,502	1,501
	O2-C7-O1	121,20(14)	121,730	121,557	121,200
	O2-C7-C6	130,43(15)	130,412	130,659	130,430
	C7-C6-C5	130,19(12)	130,870	129,767	130,194
	C6-C5-O3	122,40(12)	125,977	121,241	122,396
	C5-O3-C10	115,30(14)	118,479	115,943	115,303
	C6-C5-C4	117,54(12)	117,179	117,502	117,544
	C5-C4-O4	114,99(12)	115,100	115,426	114,992
Bağ Açıları	C4-O4-C9	118,53(12)	118,609	118,742	118,534
_	C7-O1-C8	111,25(11)	111,724	111,595	111,256
	O1-C8-N1	111,32(12)	112,017	111,871	111,865
	C8-N1-C11	124,57(13)	123,779	123,992	124,568
	N1-C11-N2	117,55(14)	117,961	117,996	117,553
	N1-C11-N3	114,50(13)	115,075	115,092	114,498
	02-C7-O1-C8	178,82(16)	-177,643	-179,707	178,823
	O2-C7-C6-C5	-4,7(3)	1,166	0,382	-4,655
	C7-01-C8-N1	-119,93(15)	-124,850	-124,527	-119,926
Torsiyon	01-C8-N1-C11	-84,89(19)	-85,146	-82,953	-84,889
Açıları	C8-N1-C11-N2	-2,3(2)	-15,385	-10,894	-2,349
3	C8-N1-C11-N3	178,54(14)	166,210	170,298	178,536
	C7-C6-C5-O3	10,6(2)	-0,229	4,812	10,589
	C7-C6-C5-C4	-170,63(15)	176,931	-178,168	-170,634
	C6-C5-C4-O4	175,78(13)	179,733	-179,474	175,776

Tablo 4.54: 3-((4,6-dimetilpirimidin-2-il)amino)-6,7-dimetoksi isobenzofuran-
1(3H)-on (IX) kristali için bağ uzunluğu, bağ açısı ve torsiyon açıları (Å, °)

Şekil 4.45, X-ışını geometrisinin ve gaz fazındaki optimize edilmiş geometrinin birbiriyle çakıştığını göstermektedir. İki yapıdaki molekülün ftalit kısımları tamamen örtüşürken, pirimidin kısımları açısal sapma göstermiştir. Bu sapma bağ açıları için bulunan R² (0,973) değeri ile desteklenir. Bağ açıları, bağ uzunlukları ve torsiyon açılarının korelasyon değerleri Tablo 4.57'de verilmiştir.

Şekil 4.45: 3-((4,6-dimetilpirimidin-2-il)amino)-6,7-dimetoksi isobenzofuran-1(3H)on (IX) bileşiğinin teorik (gaz fazı) ve deneysel geometri (kırmızı) ile çizilenmolekülleri çakıştırma

IX bileşiğine ait hidrojen bağ geometrisi ve gösterimi sırasıyla Tablo 4.55 ve Şekil 4.46'da verilmiştir. Moleküllerin kristal yapıda oluşturduğu N—H···O ve C— H···N hidrojen bağları etkileşimiyle $R_2^2(7)$ halka motiflerini meydana getirmiştir (Tablo 4.55, Şekil 4.46) (Etter 1990).

Tablo4.55: 3-((4,6-dimetilpirimidin-2-il)amino)-6,7-dimetoksiisobenzofuran1(3H)-on (IX) kristaline ait moleküler etkileşim geometrisi (Å, °)

D—H····A	D—H	Н…А	D····A	D—H…A
N1—H1 \cdots O4 ⁱ	0,86	2,20	3,0122(2)	158
C2—H2…O2 ⁱⁱ	0,93	2,50	3,2903(2)	143
C9—H9A…N3 ⁱ	0,96	2,72	3,4930	138

Simetri kodları: (i) x, 1/2-y, -1/2+z (ii) 1+x, y, z

Şekil 4.46: 3-((4,6-dimetilpirimidin-2-il)amino)-6,7-dimetoksi isobenzofuran-1(3*H*)on (IX) için hidrojen bağlarının gösterimi

IX bileşiğinin mulliken yük analizi, gaz fazı ve etanol ortamında hesaplatılmıştır ve atomik yük değerleri Tablo 4.56'da verilmiştir.

Tablo 4.56: 3-((4,6-dimetilpirimidin-2-il)amino)-6,7-dimetoksi isobenzofuran-
1(3H)-on (IX) için atomlar üzerindeki teorik kısmi yükler

	Mulliken Yükleri	Mulliken Yükleri
Atom	(Gaz fazı)	(Etanol)
C1	-0,148	-0,142
C2	-0,041	-0,046
C3	-0,110	-0,103
C4	0,174	0,187
C5	0,167	0,136
C6	-0,153	-0,132
C7	0,433	0,415
C8	0,260	0,278
C9	-0,138	-0,141
C10	-0,349	-0,120
C11	0,486	0,481
C12	0,102	0,101
C13	-0,159	-0,163
C14	0,094	0,095
C15	-0,235	-0,241
C16	-0,236	-0,244
N1	-0,417	-0,427
N2	-0,392	-0,414
N3	-0,377	-0,399
01	-0,315	-0,345
02	-0,317	-0,352
03	-0,349	-0,376
04	-0.326	-0.361

IX bileşiğinin 3D moleküler elektrostatik potansiyel yüzey haritası Şekil 4.47'de gösterilmektedir. Molekülün elektrostatik potansiyeli, $-6,135e^{-2}$ ile $+6,135e^{-2}$ arasında değişmektedir.

Şekil 4.47: 3-((4,6-dimetilpirimidin-2-il)amino)-6,7-dimetoksi isobenzofuran-1(3*H*)on (IX) bileşiğinin moleküler elektrostatik potansiyeli (gaz)

IX bileşiğinin gaz fazındaki HOMO ve LUMO enerji değerleri arasındaki farkı (ΔE) belirlemek için yapılan hesaplamalar ve orbital şekilleri Şekil 4.48'de gösterilmiştir.

Şekil 4.48: 3-((4,6-dimetilpirimidin-2-il)amino)-6,7-dimetoksi isobenzofuran-1(3*H*)on (IX) bileşiğinin gaz fazındaki moleküler orbital yüzeyleri

IX molekülünün yoğunluk fonksiyoneli yönteminden elde edilen verilere göre bulunan HOMO ve LUMO enerji değerleri, kimyasal reaktivite, elektron ilgisi, iyonlaşma potansiyeli, kimyasal sertlik, kimyasal yumuşaklık, elektronegatiflik, elektrofilite indeksi, kimyasal potansiyel, nükleofilite indeksi ile ilgili veriler Tablo 4.57'de verilmiştir.

	I	II	III	IV	V	VI	VII	VIII	IX
Ftalit grubunda düzlemsellikten en çok sapan atom	O2; -0,026	C4; 0,026	C8; 0,014	C8; -0,081 C22; -0,089	C8; 0,073	C1; 0,017	C2; -0,017	O2; -0,038	C6; 0,072
Ftalit grubu ile heteroaromatik halka arasındaki dihedral açı, (°)	62,10	73,33	87,28	(1); 59,24 (2); 70,0	85,81	78,51	83,21	69,41	68,31
R ² (Bağ Uzunluğu)	0,978	0,979	0,977	(1); 0,950 (2); 0,980	0,984	0,983	0,982	0,981	0,985
R ² (Bağ Açıları)	0,932	0,933	0,983	(1); 0,950 (2); 0,980	0,953	0,934	0,988	0,925	0,973
R ² (Torsiyon Açıları)	0,992	0,995	0,984	(1),(2); 0,998	0,994	0,997	0,995	0,983	0,993
НОМА	0,998	0,864	0,971	(1); 0,941 (2); 0,944	0,976	0,954	0,921	0,970	0,984
En yüksek pozitif yükler (a.u.)	C1; (0,405) C9; (0,373)	C7; (0,400) C9; (0,469)	C1; (0,408) C8; (0,251)	C1, C15; (0,402) C9, C23; (0,516)	C1; (0,412) C9; (0,469)	C7;0,400 C9; 0,491	C1; (0,398) C9; (0,405)	C1; (0,405) C8; (0,226)	C7; (0,433) C11; (0,486)
Gaz fazı toplam enerji (hartree)	-800,9	-777,62	-761,56	-1712,58	-1006,75	-1276,57	-800,9	-1121,66	-1085,38
$\Delta \mathbf{E}_{\mathbf{HOMO}} (\mathbf{eV})$	-6,8869	-6,9667	-7,0726	-6,9507	-6,9425	-7,0682	-6,8924	-6,8938	-6,9392
$\Delta \mathbf{E}_{\mathbf{LUMO}} (\mathbf{eV})$	0,1837	-0,3856	0,1382	-0,1298	-0,1303	-0,7336	0,1420	-0,0201	-0,0702
$\Delta \mathbf{E}_{\mathbf{HOMO-LOMO}} \left(\mathbf{eV} \right)$		1	1	r					
Gaz fazı	7,0706	6,5811	7,2108	6,8209	6,8122	6,3346	7,0344	6,8737	6,8690
Etanol	6,9667	6,7852	7,1556	4,8875	6,8557	6,4497	7,0046	6,7446	6,8720
DMSO	6,4804	6,9058	7,3570	5,0187	6,8323	6,3760	7,1920	6,7376	7,0606
1(eV)	0,8869	6,9667	/,0/26	6,9507	6,9425	7,0682	6,8924	6,8938	6,9392
	-0,1037	0,3630	-0,1362	3 5403	3 5364	3 0000	-0,1420	3 4570	3 5047
$\chi(ev)$	3,5310	3,0702	3,4072	3,5405	3,004	3 1673	3,5172	3 / 369	3 /3/5
$\pi(cv)$	0.1414	0.1510	0.1387	0.1466	0.1468	0.1570	0.1422	0.1455	0.1456
	1 5887	2 0535	1 6671	1 8375	1 8358	2 4022	1 6195	1 7386	1 7882
	-3 3516	-3 6762	-3 4672	-3 5403	-3 5364	-3 9009	-3 3752	-3 4570	-3 5047
N(eV)	0,6294	0,4869	0,5998	0,5442	0,5447	0,4163	0,6175	0,5752	0,5592

Tablo 4.57: Tez kapsamında sentezlenen bileşiklerin karakteristik özellikleri

4.2 UV-VIS Spektrumu

4.2.13-((5-metilpiridin-2-il)amino)isobenzofuran-1(3H)-on(I)Bileşiğinin UV-VIS Spektrumu

I bileşiğinin etanolde kaydedilen UV-VIS spektrumunda 205 nm (ε = 14746 litre.mol⁻¹.cm⁻¹), 235 nm (ε =19100 litre.mol⁻¹.cm⁻¹) ve 300 nm (ε =4249 litre. mol⁻¹.cm⁻¹) dalga boylarında absorpsiyon gözlenmiştir (Şekil 4.49a). B3LYP/6311G (d,p) yöntemine göre elde edilen UV-VIS spektrumunda ise 213,81 nm ve 255,54 nm'de absorpsiyonlar gözlenmiştir (Şekil 4.49b). Gözlenen bu değerler aromatik halkaya ait $\pi \rightarrow \pi^*$ geçişleri olduğu ve en şiddetli absorpsiyonun deneysel 235 nm, teorik 213,81 nm'de olduğu belirlenmiştir. Deneysel olarak 300 nm'de gözlenen n $\rightarrow \pi^*$ geçişi teorik hesaplamada net olarak gözlenememiştir.

Şekil 4.49: I bileşiğinin UV-VIS spektrumu a) Deneysel, b) Teorik

Tez kapsamında sentezlenen bileşiklerin UV spektrumları ve aynı bileşiklerin B3LYP/6-311G(d,p) yöntemiyle hesaplanan teorik UV spektrumları aşağıda verilmiştir. UV spektrumlarından elde edilen veriler Tablo 4.58'de özetlenmiştir.

(a)

Şekil 4.50: II bileşiğinin UV-VIS spektrumu a) Deneysel, b) Teorik

(b)

Şekil 4. 51: III bileşiğinin UV-VIS spektrumu a) Deneysel, b) Teorik

Şekil 4.52: IV bileşiğinin UV-VIS spektrumu a) Deneysel, b) Teorik

Şekil 4.53: V bileşiğinin UV-VIS spektrumu a) Deneysel, b) Teorik

Şekil 4.54: VI bileşiğinin UV-VIS spektrumu a) Deneysel, b) Teorik

Şekil 4.55: VII bileşiğinin UV-VIS spektrumu a) Deneysel, b) Teorik

Şekil 4.56: VIII bileşiğinin UV-VIS spektrumu a) Deneysel, b) Teorik

Şekil 4.57: IX bileşiğinin UV-VIS spektrumu a) Deneysel, b) Teorik

Bilosik		UV-VIS		B3LYP/6-311G(d,p)		
Dileşik		$\pi \rightarrow \pi^*$	$n \rightarrow \pi^*$	$\pi \rightarrow \pi^*$		n→π*
Ι	205	235	300	213,81	255,54	-
II	205	230	280	215,06	262,27	-
III	205	235	295	222,22	261,48	-
IV	205	230	280	259,38	-	-
V	205	230	-	222,64	-	-
VI	205	235	280	216,44	257,5	-
VII	205	235	295	217,43	246,43	-
VIII	205	230	260	238,09	-	-
IX		225	285	277,39	-	-

Tablo 4.58: Tez kapsamında sentezlenen bileşiklerin UV-VIS absorpsiyon değerleri ve elektronik geçişleri

4.3 Fourier Dönüşümlü Infrared (FT-IR) Spektrumu

4.3.13-((5-metilpiridin-2-il)amino)isobenzofuran-1(3H)-on(I)Bileşiğinin FT-IR Spektrumu

Sentezlenen bilesiklerin katı halde elde edilen FT-IR spektrumları ve DFT/B3LYP/6311G(d,p) yöntemine göre elde edilen teorik FT-IR spektrumları hesaplanmıştır. I bileşiğinin deneysel ve teorik IR spektrumu, sırasıyla Şekil 4.58 (a) ve (b)'de gösterilmiştir. Deneysel ve teorik IR spektrumları, birbirleriyle karşılaştırmak için skala faktörleri kullanılarak hesaplanmıştır. Gözlenen titreşim bantlarının hangi bağlara ait olduğu belirlenmiş, hesaplanan frekanslarla karşılaştırılmış ve veriler Tablo 4.59'da gösterilmiştir. Çeşitli sebeplerden dolayı hesaplanan frekanslar deneysel frekanslardan farklılık gösterir (Özel ve diğ. 2010; Gökçe ve Bahçeli 2013). Bu nedenle, hesaplanan frekanslar genellikle gözlemlenen frekanslar ile karşılaştırılırken bir ölçeklendirme faktörü kullanılır. Bu amaçla deneysel veriler ile teorik hesaplamalar arasındaki ilişkiyi incelemek için, teorik (gaz fazı) ve deneysel değerler arasında bir korelasyon grafiği çizilmiştir. Hesaplamalar sonucunda elde edilen Pearson korelasyon katsayısı 0,992 olduğundan hesaplamaların deneysel verilerle uyuşmakta olduğu anlaşılmıştır (Şekil 4.59) (Precomputed vibrational scaling factors, https://cccbdb.nist.gov/vibscalejust.asp).

Moleküllerdeki N-H titreşimleri, molekülden moleküle değişiklik göstermektedir. İkincil aminler, 3350-3310 cm⁻¹ bölgesinde zayıf, tek gerilme bandı gösterir. Bu bantlar, hidrojen bağları ile daha uzun dalga boylarına kayar (Silverstein ve diğ. 1981). 3217 cm⁻¹'deki absorpsiyon, yapıdaki güçlü moleküller arası N1-H4...N2 hidrojen bağlarından dolayı gözlenen N1-H4 gerilme titreşim pikidir. N1-H4 piki, B3LYP/6-311G(d,p) ile yapılan hesaplamada 3569 cm⁻¹ olarak bulunmuştur. Deneysel ve teorik değerlerdeki fark, teorik hesaplamaların gaz fazında ve deneysel ölçümlerin ise katı fazda elde edilmesinden kaynaklanmaktadır.

Literatürde, aromatik C-H gerilme bantları 3100-3000 cm⁻¹, düzlem içi eğilme bantları 1300-1000 cm⁻¹ ve düzlem dışı eğilme 900-675 cm⁻¹ bölgesinde görülür. Alkanlarda C-H gerilmesinden kaynaklanan absorpsiyon, 3000-2840 cm⁻¹ bölgesinde meydana gelir. Bir metil grubu için iki eğilme titreşimi vardır. Bunlardan ilki, simetrik eğilme titreşimi (1375 cm⁻¹'e yakın), ikincisi, asimetrik eğilme titreşimidir (1450 cm⁻¹'e yakın) (Silverstein ve diğ. 1981). Hesaplanan aromatik ve alifatik C-H gerilme ve eğilme titreşimleri deneysel değerlerle uyumludur.

İsobenzofuranlar için en önemli gerilme bandı C=O gerilme titreşimidir ve bu bant isobenzofuranon oluşumunu göstermektedir. Laktonların iki farklı C-O gerilme titreşimi vardır; ilki C=O ve ikincisi C-O bağıdır. Doymamış laktonlarda, çift bağ karbonil grubuna komşu olduğunda, karbonil grubu yaklaşık 1750 cm⁻¹'de absorpsiyon yapar. C=O gerilme titreşimlerine göre daha az önemli olan C-O gerilme bantları 1300-1000 cm⁻¹ bölgesinde gözlenir (Silverstein ve diğ. 1981). Molekülün karakteristik titreşim bantlarından biri olan C=O grubunun gerilme titreşimi 1838 cm⁻¹, C-O gerilme titreşimi 1064 cm⁻¹ olarak hesaplanmış, deneysel olarak bu titreşimler 1742 cm⁻¹ ve 1071 cm⁻¹'de gözlenmiştir. Deneysel ve teorik C=O gerilme frekanslarındaki fark, C1-O1...H1 ve C1-O1...Cg1'in etkileşiminden kaynaklanır.

(a)

Şekil 4.58: I bileşiğinin FT-IR Spektrumu a) Deneysel, b) Teorik

Şekil 4.59: I bileşiğinin deneysel ve teorik FT-IR değerleri arasındaki korelasyon grafiği

Grup	Deneysel	Teorik (B3LYP/6311G(d,p))
>N-Н, υ	3217	3569
=C-H, $v_{(C9/N2-C13 halka)}$	3170	3176
=C-H, $v_{(C2-C7 halka)}$	-	3173
=C-H, $v_{(C2-C7 halka)}$	-	3166
=C-H, $v_{(C9/N2-C13 halka)}$	-	3135
=C-H, $v_{(C9/N2-C13 halka)}$	-	3109
C-H, $v_{as(CH3)}$	3000	3045
C-H, v _(C8-H1)	2949	3035
C-H, v _{s(CH3)}	2900	2997
C=Ο, υ	1742	1838
C=N, C=C, $v_{(aromatik)}$	1610	1638
C=N, C=C, $v_{(aromatik)}$	1596	1632
C-H, $\delta_{(aromatik)}$; $\gamma_{(CH3)}$	-	1610
C-H, $\delta_{(aromatik)}$; $\gamma_{((CH3))}$	1483	1406
C-H, $\delta_{(C8-H1)}$	-	1364
=C-H, $\delta_{(aromatik)}$	1388	1332
C-N, υ	1352	1319
=C-H, $\delta_{(aromatik)}$	1283	1293
=C-H, $\delta_{(aromatik)}$	1211	1254
C-O, υ	1071	1064
C-O, υ	-	896
=C-H, $\gamma_{(aromatik)}$	-	886
=C-H, $\gamma_{(aromatik)}$	817	822
=C-H, $\gamma_{(aromatik)}$	-	793
=C-H, $\gamma_{(aromatik)}$	751	756
=C-H, $\gamma_{(aromatik)}$	702	749

Tablo 4.59: I bileşiğinin FT-IR (cm⁻¹) spektrum değerleri

as: Asimetrik; s: Simetrik; υ: Gerilme;δ: Düzlem içi eğilme; γ: Düzlem dışı eğilme

Tez kapsamında sentezlenen diğer bileşiklerin FT-IR spektrumları ve B3LYP/6311G(d,p) yöntemine göre hesaplanan teorik hesaplamaları ile bu spektrumların karşılaştırılması aşağıdaki şekil ve tablolarda verilmiştir. Ayrıca, korelasyon değerleri ve karakteristik absorpsiyonlar Tablo 4.68'de verilmiştir.

Şekil 4.60: II bileşiğinin FT-IR Spektrumu a) Deneysel, b) Teorik

Grup	Deneysel	Teorik (B3LYP/6311G(d,p))
>N-H, v	3220	3581
=C-H, $v_{(C9/N2-C12 halka)}$	3157	3188
=C-H, $v_{(C1-C6 halka)}$	-	3175
=C-H, $v_{(C1-C6 halka)}$	-	3168
=C-H, $v_{(C9/N2-C12 halka)}$	-	3130
=C-H, $v_{(C9/N2-C12 halka)}$	-	3127
C-H, v _(C8-H8)	3020	3089
C=Ο, υ	1751	1841
C=N, C=C, $v_{(aromatik)}$	1581	1620
C=N, C=C, $v_{(aromatik)}$	1531	1601
C-H, $\delta_{(aromatik)}$	1446	1486
C-H, $\delta_{(C8-H8)}$	1339	1373
=C-H, $\delta_{(aromatik)}$	1301	1365
C-N, v	1205	1235
=C-H, $\delta_{(aromatik)}$	-	1156
=C-H, $\delta_{(aromatik)}$	-	1111
C-O, υ	1063	1067
C-O, υ	-	921
=C-H, $\gamma_{(aromatik)}$	-	890
=C-H, $\gamma_{(aromatik)}$	-	821
=C-H, $\gamma_{(aromatik)}$	-	804
=C-H, $\gamma_{(aromatik)}$	-	758
=C-H, $\gamma_{(aromatik)}$	748	698

 Tablo 4.60: II bileşiğinin FT-IR (cm⁻¹) spektrum değerleri

as: Asimetrik; s: Simetrik; v: Gerilme; δ : Düzlem içi eğilme; γ : Düzlem dışı eğilme

Şekil 4.61: III bileşiğinin FT-IR Spektrumu a) Deneysel, b) Teorik

Grup	Deneysel	Teorik (B3LYP/6311G(d,p))
>N-H, υ	3229	3567
=C-H, v _(C9/N2-C13 halka)	3176	3181
=C-H, v _(C2-C7 halka)	-	3177
=C-H, $v_{(C2-C7 halka)}$	-	3170
=C-H, v _(C9/N2-C13 halka)	-	3162
=C-H, v _(C9/N2-C13 halka)	-	3099
C-H, v _(C8-H8)	2990	3037
C=O, v	1742	1842
C=N, C=C, $v_{(aromatik)}$	1597	1619
C=N, C=C, $v_{(aromatik)}$	1582	1606
C-H, $\delta_{(aromatik)}$	1480	1501
C-H, $\delta_{(C8-H8)}$	-	1365
=C-H, $\delta_{(aromatik)}$	-	1347
C-Ν, υ	1351	1309
=C-H, $\delta_{(aromatik)}$	1284	1294
=C-H, $\delta_{(aromatik)}$	1215	1256
C-O, υ	1071	1065
C-O, υ	-	896
=C-H, $\gamma_{(aromatik)}$	-	887
=C-H, $\gamma_{(aromatik)}$	-	812
=C-H, $\gamma_{(aromatik)}$	-	781
=C-H, $\gamma_{(aromatik)}$	751	755
=C-H, $\gamma_{(aromatik)}$	702	723

Tablo 4.61: III bileşiğinin FT-IR (cm⁻¹) spektrum değerleri

as: Asimetrik; s: Simetrik; v: Gerilme; δ : Düzlem içi eğilme; γ : Düzlem dışı eğilme

1	>
1	<u>م</u> ۱
L	aı
`	/

Şekil 4.62: IV bileşiğinin FT-IR Spektrumu a) Deneysel, b) Teorik

Crup	Donovcol	Teorik (B3LYP/6311G(d,p))	
Grup	Deneysei	1	2
>N-H, υ	3240	3354	3354
>N-Н, υ	3240	3334	3334
=C-H, v _(A=C2-C7, B=C16-C21 halka)	-	3190	3190
=C-H, v _(A=C9/N2-C12, B=C23/N5-C26 halka)	3188	3189	3189
=C-H, v _(A=C2-C7, B=C16-C21 halka)	-	3183	3183
=C-H, v _(A=C2-C7, B=C16-C21 halka)	-	3175	3175
=C-H, v _(A=C2-C7, B=C16-C21 halka)	-	3163	3163
C-H, $v_{as(CH3)}$	3050	3132	3132
C-H, v _{as(CH3)}	-	3116	3116
C-H, $\upsilon_{(A=C8-H8, B=C22-H22)}$	-	3103	3103
C-H, v _{as(CH3)}	-	3092	3093
C-H, v _{as(CH3)}	-	3089	3089
C-H, v _{s(CH3)}	-	3040	3040
C-H, v _{s(CH3)}	-	3034	3034
C=Ο, υ	1753	1840	1840
C=C, $v_{(aromatik)}$	1596	1651	1651
C=N, C=C, v _(aromatik)	1542	1604	1604
C-H, $\delta_{(aromatik)}$; $\gamma_{(CH3)}$	-	1495	1495
C-H, $\delta_{(A=C8-H8, B=C22-H22)}$	-	1376	1376
=C-H, $\delta_{(aromatik)}$	1283	1300	1300
C-Ν, υ	1205	1257	1257
=C-H, $\delta_{(aromatik)}$	1160	1179	1182
=C-H, $\delta_{(aromatik)}$	1098	1117	1179
C-Ο, υ	1068	1077	1077
C-O, v	-	925	925
=C-H, $\gamma_{(aromatik)}$	-	887	887
=C-H, $\gamma_{(aromatik)}$	-	844	844
=C-H, $\gamma_{(aromatik)}$	-	810	810
=C-H, $\gamma_{(aromatik)}$	747	760	760
=C-H, $\gamma_{(aromatik)}$	690	753	753

 Tablo 4.62: IV bileşiğinin FT-IR (cm⁻¹) spektrum değerleri

as: Asimetrik; s: Simetrik; v: Gerilme; δ : Düzlem içi eğilme; γ : Düzlem dışı eğilme

Şekil 4.63: V bileşiğinin FT-IR Spektrumu a) Deneysel, b) Teorik

Grup Deneysel		Teorik (B3LYP/6311G(d,p))
>N-H, υ	3248	3597
=C-H, v _(C9/N2-C12 halka)	3190	3218
=C-H, $v_{(C2-C7 halka)}$	-	3170
=C-H, v _(C2-C7 halka)	-	3163
=C-H, v _(C9/N2-C13 halka)	-	3154
=C-H, v _{as(CH3)}	-	3099
=C-H, v _{as(CH3)}	2976	3053
C-H, v _(C8-H8)	2949	3036
C-H, v _{s(CH3)}	-	3024
C-H, v _{s(CH3)}	-	2991
C=O, υ	1752	1835
C=N, C=C, $v_{(aromatik)}$	1612	1618
C=N, C=C, $v_{(aromatik)}$	1577	1604
C-H, $\delta_{(aromatik)}$; $\gamma_{(CH3)}$	1487	1509
C-H, $\delta_{(aromatik)}$; $\gamma_{(CH3)}$	1454	1445
C-H, $\delta_{(aromatik)}$; $\gamma_{(CH3)}$	1407	1407
C-H, $\delta_{(C8-H8)}$	1353	1370
=C-H, $\delta_{(aromatik)}$	1282	1359
C-Ν, υ	1211	1318
=C-H, $\delta_{(aromatik)}$	1154	1310
=C-H, $\delta_{(aromatik)}$	-	1293
C-O, υ	1075	1073
C-Ν, δ	-	988
C-O, v	-	940
C-O, v	-	934
=C-H, $\gamma_{(aromatik)}$	-	904
=C-H, $\gamma_{(aromatik)}$	796	873
=C-H, $\gamma_{(aromatik)}$	750	812
=C-H, $\gamma_{(aromatik)}$	-	804
=C-H, $\gamma_{(aromatik)}$		783
=C-H, $\gamma_{(aromatik)}$		751

Tablo 4.63: V bileşiğinin FT-IR (cm⁻¹) spektrum değerleri

as: Asimetrik; s: Simetrik; v: Gerilme; δ : Düzlem içi eğilme; γ : Düzlem dışı eğilme

Şekil 4.64: VI bileşiğinin FT-IR Spektrumu a) Deneysel, b) Teorik

Grup	Deneysel	Teorik (B3LYP/6311G(d,p))
>N-H, υ	3290	3594
=C-H, v _(C9/N1-C12 halka)	-	3216
=C-H, $v_{(C1-C6 halka)}$	-	3186
=C-H, $v_{(C1-C6 halka)}$	-	3178
=C-H, $v_{(C1-C6 halka)}$	-	3169
=C-H, $v_{(C1-C6 halka)}$	-	3158
=C-H, $v_{as(CH3)}$	-	3113
C-H, v _(C8-H8)	2965	3100
=C-H, $v_{as(CH3)}$	-	3085
C-H, v _{s(CH3)}	-	3029
С=О, υ	1743	1848
C=C, $v_{(aromatik)}$	-	1647
C=C, $v_{(aromatik)}$	-	1636
C=N, C=C, $v_{(aromatik)}$	1555	1611
C-H, $\delta_{(aromatik)}$; $\gamma_{(CH3)}$	1517	1589
C-H, $\delta_{(aromatik)}$; $\gamma_{(CH3)}$	1449	1538
C-H, $\delta_{(aromatik)}$; $\gamma_{(CH3)}$	-	1491
C-H, δ _(C8-H8)	1343	1371
=C-H, $\delta_{(aromatik)}$	1291	1313
C-Ν, υ	1207	1254
=C-H, $\delta_{(aromatik)}$	1162	1224
=C-H, $\delta_{(aromatik)}$	-	1106
C-O, υ	1076	1067
C-O, υ	905	934
=C-H, $\gamma_{(aromatik)}$	867	911
=C-H, $\gamma_{(aromatik)}$	749	886
-C-Cl, v	-	872
=C-H, $\gamma_{(aromatik)}$	-	807
=C-H, $\gamma_{(aromatik)}$	691	789
=C-H, $\gamma_{(aromatik)}$	-	760

Tablo 4.64: VI bileşiğinin FT-IR (cm⁻¹) spektrum değerleri

as: Asimetrik; s: Simetrik; v: Gerilme;δ: Düzlem içi eğilme; γ: Düzlem dışı eğilme

1		`
(я	1
ľ	u	1

Şekil 4.65: VII bileşiğinin FT-IR Spektrumu a) Deneysel, b) Teorik

Grup	Deneysel	Teorik (B3LYP/6311G(d,p))
>N-H, υ	3347	3578
=C-H, $v_{(C2-C7 halka)}$	-	3176
=C-H, v _(C9/N2-C13 halka)	-	3173
=C-H, $v_{(C2-C7 halka)}$	-	3168
=C-H, $v_{(C2-C7 halka)}$	-	3159
=C-H, v _(C9/N2-C13 halka)	-	3159
=C-H, $v_{(C2-C7 halka)}$	-	3147
=C-H, v _(C9/N2-C13 halka)	-	3144
C-H, v _{as(CH3)}	-	3094
C-H, v _(C8-H1)	-	3093
C-H, $v_{as(CH3)}$	-	3069
C-H, v _{s(CH3)}	-	3014
C=Ο, υ	1736	1837
C=C, $v_{(aromatik)}$	-	1643
C=C, $v_{(aromatik)}$	-	1632
C=N, C=C, $v_{(aromatik)}$	1600	1627
C=N, C=C, $v_{(aromatik)}$	1580	1619
C-H, $\delta_{(aromatik)}$; $\gamma_{(CH3)}$	1460	1492
C-H, $\delta_{(aromatik)}$; $\gamma_{((CH3))}$	-	1465
C-H, $\delta_{(aromatik)}$; $\gamma_{((CH3))}$	-	1451
C-H, $\delta_{(C8-H8)}$	-	1367
=C-H, $\delta_{(aromatik)}$	1286	1294
C-N, υ	1238	1269
=C-H, $\delta_{(aromatik)}$	1097	1171
=C-H, $\delta_{(aromatik)}$	-	1097
C-O, υ	1075	1070
C-O, v	-	917
=C-H, $\gamma_{(aromatik)}$	794	902
=C-H, $\gamma_{(aromatik)}$	737	882
=C-H, $\gamma_{(aromatik)}$	-	865
=C-H, $\gamma_{(aromatik)}$	680	804
=C-H, $\gamma_{(aromatik)}$	-	758

 Tablo 4.65: VII bileşiğinin FT-IR (cm⁻¹) spektrum değerleri

as: Asimetrik; s: Simetrik; v: Gerilme;δ: Düzlem içi eğilme; γ: Düzlem dışı eğilme

1	>
	a).
١.	aı
1	/

Şekil 4.66: VIII bileşiğinin FT-IR Spektrumu a) Deneysel, b) Teorik

Grup	Deneysel	Teorik (B3LYP/6311G(d,p))
>N-H, υ	3210	3555
=C-H, $v_{(C2-C7 halka)}$	3100	3184
=C-H, v _(C9/N2-C11 halka)	-	3182
=C-H, $v_{(C2-C7 halka)}$	-	3177
=C-H, $v_{(C2-C7 halka)}$	-	3168
=C-H, $v_{(C2-C7 halka)}$	-	3156
C-H, v _{as(CH3)}	2990	3054
C-H, v _(C8-H1)	2960	3047
C-H, v _{s(CH3)}	2920	3006
C=Ο, υ	1754	1849
C=C, $v_{(aromatik)}$	-	1645
C=C, $v_{(aromatik)}$	-	1636
C=N, C=C, $v_{(aromatik)}$	1592	1599
C=N, C=C, $v_{(aromatik)}$	1560	1577
C-H, $\delta_{(CH3)}$	1463	1487
C-H, γ _(CH3)	-	1471
C-H, $\gamma_{(CH3)}$	-	1413
C-H, $\delta_{(C8-H8)}$	-	1356
=C-H, $\delta_{(aromatik)}$	1286	1296
C-N, v	1200	1280
=C-H, $\delta_{(aromatik)}$	1137	1225
=C-H, $\delta_{(aromatik)}$	-	1186
C-O, υ	1060	1065
C-O, υ	-	907
=C-H, $\gamma_{(aromatik)}$	886	887
=C-H, $\gamma_{(aromatik)}$	-	861
=C-H, $\gamma_{(aromatik)}$	-	808
=C-H, $\gamma_{(aromatik)}$	756	797
=C-H, $\gamma_{(aromatik)}$	700	758

Tablo 4.66: VIII bileşiğinin FT-IR (cm⁻¹) spektrum değerleri

as: Asimetrik; s: Simetrik; υ: Gerilme;δ: Düzlem içi eğilme; γ: Düzlem dışı eğilme

1	~
(a)
`	

Şekil 4.67: IX bileşiğinin FT-IR Spektrumu a) Deneysel, b) Teorik

Grup	Deneysel	Teorik (B3LYP/6311G(d,p))
>N-H, υ	3362	3606
=C-H, $v_{(C1-C6 halka)}$	-	3204
=C-H, v _(C11/N2-C14 halka)	-	3192
=C-H, $v_{(C1-C6 halka)}$	-	3181
C-H, $v_{as(CH3)}$	3000	3143
C-H, $v_{as(CH3)}$	2980	3133
C-H, v _(C8-H8)	2940	3108
С-Н, υ _{s(CH3)}	2837	2996
C=O, υ	1748	1829
C=C, $v_{(aromatik)}$	-	1641
C=C, $v_{(aromatik)}$	-	1627
C=N, C=C, $v_{(aromatik)}$	1593	1622
C=N, C=C, $v_{(aromatik)}$	1569	1605
C-H, $\delta_{(aromatik)}$, $\gamma_{(CH3)}$	1496	1528
C-H, $\delta_{(aromatik)}$, $\gamma_{(CH3)}$	-	1486
C-H, $\gamma_{(CH3)}$	-	1423
C-H, γ _(CH3)	-	1405
C-H, $\delta_{(C8-H8)}$	-	1379
=C-H, $\delta_{(aromatik)}$	1258	1317
C-Ν, υ	-	1258
=C-H, $\delta_{(aromatik)}$	1109	1241
=C-H, $\delta_{(aromatik)}$	-	1131
C-O, υ	1035	1060
C-O, υ	-	941
=C-H, $\gamma_{(aromatik)}$	900	940
=C-H, $\gamma_{(aromatik)}$	822	850
=C-H, $\gamma_{(aromatik)}$	-	824
=C-H, $\gamma_{(aromatik)}$	-	793
=C-H, $\gamma_{(aromatik)}$	-	742

 Tablo 4.67: IX bileşiğinin FT-IR (cm⁻¹) spektrum değerleri

as: Asimetrik; s: Simetrik; v: Gerilme; δ: Düzlem içi eğilme; γ: Düzlem dışı eğilme

		$v_{c=0}$		$v_{\text{N-H}}$	
Bileşik	\mathbf{R}^2	FT-IR	B3LYP 6311G(d,p)	FT-IR	B3LYP 6311G(d,p)
Ι	0,992	1742	1838	3217	3569
II	0,998	1752	1789	3230	3214
III	0,993	1742	1842	3229	3567
IV	0,998	1753	1840	3240	3354
V	0,992	1752	1835	3248	3597
VI	0,996	1743	1838	3290	3594
VII	0,993	1736	1837	3347	3578
VIII	0,995	1754	1849	3210	3555
IX	0,998	1748	1829	3362	3606

Tablo 4.68: Tez kapsamında sentezlenen bileşiklerin karakteristik gerilme titreşimleri ve korelasyon değerleri

4.4 Nükleer Manyetik Rezonans (NMR) Spektrumu

4.4.13-((5-metilpiridin-2-il)amino)isobenzofuran-1(3H)-on(I)Bileşiğinin NMR Spektrumu

NMR kimyasal kayma hesaplamaları, büyük moleküler sistemlerin yapılarını tayin etmek için kullanılmaktadır (Tamer 2016). Bu yüzden, bütün organik bileşiklerin sentezinde ¹H-NMR ve ¹³C-NMR spektrumu çok kullanılır. Ayrıca, kaydedilen NMR spektrumları ile teorik olarak hesaplanan NMR verilerinin birlikte kullanımı daha doğru sonuçlar elde edilmesini sağlar.

I bileşiğinin DMSO ortamındaki ¹H-NMR spektrumu Şekil 4.68, ¹³C-NMR spektrumu Şekil 4.69, GIAO/DFT/B3LYP/6311G(d,p) yöntemine göre hesaplanan teorik ¹³C-NMR spektrumu Şekil 4.70, deneysel ve teorik olarak hesaplanan ¹³C-NMR kimyasal kayma değerlerinin karşılaştırılması ise Tablo 4.69'da verilmiştir.

I bileşiğinin DMSO ortamındaki ¹H-NMR spektrumunda, 6,40-8,40 ppm aralığında gözlenen multiplet pikler aromatik protonlara aittir. NH protonundan kaynaklanan sinyal 3,35 ppm ve metil protonlarına ait sinyal ise 2,18 ppm'de gözlenmiştir. Sentezlenen 2-9 nolu bileşiklerin ¹H-NMR spektrumları aşağıda Şekil 4.71-Şekil 4.78'de verilmiş, ¹H-NMR spektrumlarından elde edilen veriler ise Tablo 4.70'de karşılaştırılmıştır. I bileşiğinin deneysel ¹³C-NMR spektrumunda (Şekil 4.69), karbonil grubu karbon atomundan kaynaklanan sinyal 168,9 ppm'de gözlenmiştir. 109-155 ppm aralığında gözlenen pik değerleri ise aromatik karbonlara aittir Metil karbon atomu ise 17,29 ppm'de gözlenmiştir.

Şekil 4.68: I bileşiğinin DMSO ortamındaki ¹H-NMR spektrumu

Şekil 4.69: I bileşiğinin DMSO ortamındaki ¹³C-NMR spektrumu

Şekil 4.70: I bileşiğinin teorik ¹³C-NMR spektrumu

Tablo 4.69: I bileşiğinin deneysel ve teorik ¹³C-NMR (ppm) spektrum değerleri

Atom	¹³ C-NMR	B3LYP 6-311G(d,p)	Atom	¹³ C-NMR	B3LYP 6-311G(d,p)
C1	169,5	168.9	C8	85,83	80.9
C2	131,0	126.0	C9	154,8	154.1
C3	125,2	119.6	C10	146,66	143.9
C4	127,91	125.1	C11	125,83	121.8
C5	135,0	126.5	C12	139,1	128.9
C6	124,37	117.8	C13	109,58	94.9
C7	147,5	144.8	C14	17,29	12.1

Şekil 4.69 ve Şekil 4.70'deki NMR spektrumları Tablo 4.69'da karşılaştırılmıştır. Tablo 4.69'a göre deneysel verilerle teorik hesaplamaların uyumlu olduğu görülmektedir. Tez kapsamında sentezlenen bileşiklerin teorik hesaplamalarla bulunan ¹³C-NMR verileri Tablo 4.71'de verilmiştir.

Şekil 4.71: II bileşiğinin DMSO ortamındaki ¹H-NMR spektrumu

Şekil 4.72: III bileşiğinin DMSO ortamındaki ¹H-NMR spektrumu

Şekil 4.73: IV bileşiğinin DMSO ortamındaki ¹H-NMR spektrumu

Şekil 4.74: V bileşiğinin DMSO ortamındaki ¹H-NMR spektrumu

Şekil 4.75: VI bileşiğinin DMSO ortamındaki ¹H-NMR spektrumu

Şekil 4.76: VII bileşiğinin DMSO ortamındaki ¹H-NMR spektrumu

Şekil 4.77: VIII bileşiğinin DMSO ortamındaki ¹H-NMR spektrumu

Şekil 4.78: IX bileşiğinin deneysel ¹H-NMR spektrumu

Tablo 4.70: Tez kapsamında sentezlenen bileşiklerin DMSO ortamındaki ¹H-NMR (ppm) spektrum değerleri

Bileşik	Aromatik protonlar	NH	CH ₃	OCH ₃
Ι	6,40-8,40 6,55-6,68 (C13-H)*	3,35	2,18	-
Π	6,80-8,80 6,80-7,20 (C11-H)*	3,36	-	-
III	7,0-8,40	3,39	-	-
IV	6,40-8,40 6,66 (C11-H)*	3,34	2,28	-
V	5,60-8,80 5,60 (C11-H)*	2,49	-	3,20-4,00
VI	6,80-9,20 6,94 (C11-H)*	3,35	2,34	-
VII	6,40-8,20	3,36	2,35	-
VIII	6,60-9,0 6,85 (C10-H)*	3,36	2,25	-
IX	6,60-8,30 6,656 (C11-H)*	3,40	2,28	3,80-4,0

*Numaralandırılmış karbon atomuna bağlı proton spektrum değeridir.

Tablo 4.71: Tez kapsamında sentezlenen bileşiklerin teorik ¹³C-NMR (ppm) spektrum değerleri

	II	Ш	IV*	v	VI	VII	VIII	IX
C1	165,9	169,4	127,8 126,3	148,2	168,2	168,1	170,4	166,7
C2	123,7	125,1	88,8 90,4	109,8	125,5	127,8	124,2	119,9
C3	116,9	117,7	83,1 79,4	99,8	119,2	117,4	118,3	147,9
C4	118,8	121,5	83,1 79,8	101,2	123,5	118,5	122,9	157,1
C5	121,8	126,4	86,1 87,1	106,2	124,0	122,9	126,9	109,5
C6	113,2	116,3	84,1 79,2	96,9	114,8	116,7	116,6	111,4
C7	143,6	147,3	105,2 104,8	130,8	143,5	145,4	143,9	139,1
C8	75,7	82,3	49,6 48,8	65,6	76,2	77,9	80,4	75,5
C9	160,1	140,4	115,3 116,2	139,9	159,5	154,4	163,7	160,1
C10	151,7	131,3	122,6 124,9	160,9	172,5	160,9	129,9	171,3
C11	102,7	131,6	71,7 71,9	54,0	102,5	104,9	125,6	100,8
C12	151,1	114,3	126,0 122,4	157,5	164,4	129,2	13,6	169,9
C13		108,9	19,3 19,1	19,9	2,9	97,9		-1,4
C14			19,8 19,1	20,7		-2,2		-0,5
C15								33,7
C16								32,3

*Kristal yapıda iki asimetrik molekül yer alır.

5. SONUÇ VE ÖNERİLER

Tez kapsamında çoğunlukla yüksek verimlerle sentezlenen 9 adet ftalit bileşiğinden elde edilen tek kristallerin yapısal ve moleküler özellikleri, X-ışını kırınım yöntemiyle deneysel ve *Gaussian09* paket programının DFT/B3LYP/6-311G(d,p) yöntemiyle teorik olarak incelenmiştir. Ayrıca ftalit bileşiklerinin erime noktaları, UV-VIS, FT-IR, ¹H-NMR spektrumları kaydedilmiş, teorik ¹³C-NMR spektrumları GIAO/DFT/B3LYP/6-311G(d,p) yöntemiyle hesaplatılmıştır.

Sentezlenen bileşiklerin erime noktaları ve deneysel verimleri Tablo 5.1'de gösterilmiştir.

Bileşik	Erime Noktası (°C)	% Verim
Ι	168-169	82
Π	215,3-216,4	64
III	159,5-160,5	95
IV	177,5-178	90
V	187,8-188,8	89
VI	164,4-165,5	94
VII	152-152,9	66
VIII	197,5-198,2	31
IX	199-203,5	90

Tablo 5.1: Sentezlenen bileşiklerin erime noktası ve verim sonuçları

Oda şartlarında çözücünün uçurulmasıyla tek kristal haline gelen bileşiklerin katı fazdaki moleküler yapılarının belirlenmesi amacıyla X-ışınları difraksiyon analizleri yapılmıştır. Elde edilen verilere göre moleküllerin bağ uzunlukları, bağ açıları ve torsiyon açıları belirlenmiştir. Belirlenmiş moleküller arası etkileşmeler ortaya konulmuştur. Deneysel veriler kullanılarak DFT/B3LYP/6311G(d,p) yöntemiyle teorik hesaplamalar yapılmış, sonuçlar X-ışınları difraksiyon verileri ile karşılaştırılmıştır. Bağ uzunlukları, bağ açıları ve torsiyon açıları karşılaştırılmıştır.

bileşiklerin bağ uzunlukları ve bağ açıları verilerinin uygun olduğu fakat torsiyon açılarında önemli sapmalar olduğu gözlenmiştir. Bu farklılık katı faz ve çözelti ortamında farklı moleküller arası etkileşimlerin meydana gelmesinin bir sonucu olarak yorumlanmıştır. Teorik hesaplamalar gaz fazında, etanol ve DMSO ortamında yapılmıştır. Hesaplanan geometrik parametrelerin deneysel değerlerle uyumluluğu karşılaştırıldığında en yakın değerlerin DMSO ortamında elde edildiği görülmüştür. Deneysel değerlere göre en fazla sapma gaz fazı hesaplamalarında görülmüştür. Bu farklılık, DFT'nin incelenen molekülü gaz fazında tek bir molekül olarak ele almasından ve moleküller arası etkileşmeleri dikkate almamasından kaynaklanır. Deneysel ve teorik olarak elde edilen geometrik yapılar örtüştürülmüştür. Bileşiklerin ftalit kısımları birbirleriyle tamamen örtüşürken hetaril kısımları kısımları açısal sapma göstermiştir. Bu açısal sapma kristal yapıdaki moleküler arası etkileşmelerin bir sonucudur.

Mulliken yük dağılım metodu ile atomlar üzerindeki yük dağılımı ve moleküler yapıların farklı özellikleri hakkında bilgiler elde edilmiştir. Negatif yüklerin incelenen molekülün en yüksek elektronegatifliğe sahip O ve N atomları, pozitif yükler ise elektronegatifliği düşük H atomları üzerinde toplandığı görülmüştür. Molekül üzerindeki reaksiyon noktalarını belirlemek için bileşiklerin MEP haritaları incelendiğinde ise en negatif bölgelerin molekül içi hidrojen bağını doğrulayacak şekilde karbonil grubu oksijen üzerinde yerleştiği görülmüştür. MEP haritasındaki bu sonuca göre, negatif potansiyel bölgesi elektronegatif atomlar üzerinde iken pozitif potansiyel bölgesi hidrojen atomlarının etrafındadır. Bu özellikler, bileşiğin kovalent olmayan etkileşimlere sahip olabileceği bölgeler hakkında bilgi sahibi olmamızı sağlamıştır. Mulliken yük analizi ve MEP verilerine göre karbonil grubu karbon atomu (C1) ile ftalit halkası ve hetaril grubunu birbirine bağlayan azot atomuna bağlı karbonların (C8 veya C9), nükleofillerden en çok etkilenen atomlar olduğunu göstermektedir. Sonuç olarak Mulliken yük analizi ve MEP sonuçları birbirlerini destekler yöndedir.

Daha sonra molekül içi öncü moleküler orbital enerjileri ve toplam enerjileri hesaplanmıştır. Bileşiğin gaz fazı, etanol ve DMSO ortamında HOMO ve LUMO enerji değerleri arasındaki farkı (ΔE) belirlemek için B3LYP/6311G(d,p) metodu kullanılmıştır. Tablo 4.57'de görüldüğü gibi gaz fazında hesaplanan ΔE değeri en

yüksek olanlar piridin türevleridir. İçlerinde en yüksek olan bileşik ise III nolu bileşiktir. AE değeri en düşük bileşik ise VI nolu bileşiktir. Gaz fazı AE değerleriyle çözelti ortamı değerleri karşılaştırıldığında paralellik bulunamamıştır. Bazı moleküllerin gaz fazı ΔE değerleri, ΔE_{etanol} ve ΔE_{DMSO} değerlerinden yüksek iken bazılarının küçüktür. Genelleme yapılabilecek kadar düzenlilik yoktur. Hetarilamino kısmı aynı olan IV ve IX nolu bileşiklerin $\Delta E_{gaz fazı}$ değerleri de birbirine çok yakındır. Birbirine çok benzer olan I ve VII nolu bileşiklerin $\Delta E_{gaz fazı}$ değerleri de çok yakındır (sırasıyla 7,0706 eV ve 7,0344 eV). Gaz fazında hesaplanan enerjilerden yararlanılarak molekülün elektronik reaktivite parametreleri (Elektron ilgisi, iyonlaşma potansiyeli, kimyasal sertlik, kimyasal yumuşaklık, elektronegatiflik, elektrofilite ve nükleofilite indeksi gibi) belirlenmiştir. Bileşiklerin iyonlaşma potansiyeli (I) birbirine yakındır. En yüksek iyonlaşma potansiyeli III nolu bileşik (7,0726 eV), en düşük iyonlaşma potansiyeline sahip olan ise I nolu bileşiktir (6,8869 eV) (Tablo 4.57). Aynı hetarilamino grubu taşıyan IV ve IX için I değerleri de yaklaşık olarak aynıdır (sırasıyla 6,9507 eV ve 6,9392 eV) (Tablo 4.57). Elekton ilgisi negatif olan bileşikler, piridin halkası taşıyanlar I, III ve VII nolu bileşiklerdir (sırasıyla -0,1837 eV, -0,1382 eV, -0,1420 eV) (Tablo 4.57). Pozitif değere sahip olan tiyazol ve pirimidinler içerisinde en yüksek elektron ilgisi değeri II nolu bileşiğe (0,3856 eV) aittir. Elektronegatifliği en yüksek olan bileşik yapısında elektronegatif atom tasıyan VI nolu bilesik, en düsük olan ise I nolu bilesiktir. Kimyasal sertliği en yüksek olan III nolu molekül en düşük olan ise VI nolu moleküldür. Beklenildiği gibi kimyasal yumuşaklığı en yüksek olan molekül, sertliği en düşük olan VI molekülüdür. Elektrofilite indeksi en büyük olan elektron ilgisi en büyük olan VI molekülü, nükleofilite indeksi en büyük olan elektron ilgisi en küçük olan I molekülüdür (Tablo 4.57). Genel olarak HOMO ve LUMO arasındaki enerji farkının büyük olmasıyla sentezlenen bileşiklerin kararlı ve sert yapıda olduğu söylenebilir. Ayrıca elektrofilite ve nükleofilite indeksine göre sentezlenen bileşiklerin güçlü bir elektrofil ve marjinal bir nükleofil olduğu söylenebilir.

Sentezlenen bileşiklerin UV-VIS spektrumu yardımıyla enerji geçişleri hesaplanmıştır. Deneysel UV-VIS spektrumlarında gözlenen elektronik geçişler $\pi \rightarrow \pi^*$ ve $n \rightarrow \pi^*$ geçişleridir. Ancak teorik hesaplamalarda $n \rightarrow \pi^*$ geçişleri net olarak gözlenememiştir. Tablo 5.2'de sentezlenen bileşiklerin deneysel ve teorik $\pi \rightarrow \pi^*$ geçişi dalga boyu değerleri verilmektedir.

Bileşik	UV-VIS Dalga Boyları (nm)			
	UV-VIS Spektrum	B3LYP/6311G(d,p)		
I	$\pi \rightarrow \pi^* = 235$	213,81		
	$n \rightarrow \pi^* = 300$			
П	$\pi \rightarrow \pi^* = 230$	215,06		
	$n \rightarrow \pi^* = 280$			
III	$\pi \rightarrow \pi^* = 235$	222,22		
	$n \rightarrow \pi^* = 295$			
IV	$\pi \rightarrow \pi^* = 230$	259,38		
	$n \rightarrow \pi^* = 280$			
V	$\pi \rightarrow \pi^* = 230$	222,64		
VI	$\pi \rightarrow \pi^* = 235$	216,44		
	$n \rightarrow \pi^* = 280$			
VII	$\pi \rightarrow \pi^* = 235$	217,43		
	$n \rightarrow \pi^* = 295$			
VIII	$\pi \rightarrow \pi^* = 205$	238,09		
	$n \rightarrow \pi^* = 260$			
IX	$\pi \rightarrow \pi^* = 225$	277,39		
	$n \rightarrow \pi^* = 285$			
	1			

Tablo 5.2: Sentezlenen bileşiklerin deneysel ve teorik olarak hesaplanan bileşiklerin karakteristik UV-VIS dalga boyları

Molekülün optimize yapısı kullanılarak titreşim frekansları hesaplanmıştır. Hesaplanan titreşim frekanslarının hangi titreşim türüne ait olduğunu belirleyebilmek Gausssian09-GaussView05 için grafik ara yüzünde bulunan titresim animasyonlarından yararlanılmıştır. Optimize edilen yapıların titreşim frekanslarını deneysel değerler ile uyumlu hale getirebilmek için ölçeklendirme faktörüyle çarpılıp düzeltilmiştir. Ftalit oluşumunu gösteren en önemli IR absorpsiyon karbonil grubu (C=O) gerilme titreşimidir ve sentezlenen bileşiklerin karakteristik karbonil grubuna ait titreşim frekansları Tablo 5.3'de gösterilmiştir. Tablo 5.3'den de görüldüğü gibi hesaplanan değerler deneysel değerlere göre daha büyüktür. Bu durum teorik değerlerin gaz fazında, deneysel değerlerin ise katı fazda elde edilmesindendir.

Bileşik	C=O Gerilme Titreșimi (cm ⁻¹)			
	FT-IR	B3LYP/6311G(d,p)		
Ι	1742	1838		
Π	1752	1789		
III	1742	1842		
IV	1753	1840		
V	1752	1835		
VI	1743	1848		
VII	1736	1837		
VIII	1754	1849		
IX	1748	1829		

Tablo 5.3: Sentezlenen bileşiklerin karakteristik C=O gerilme titreşimleri ve teorik olarak hesaplanmış titreşim değerleri

Sentezlenen bileşiklerin deneysel ¹H-NMR spektrumu ve GIAO/DFT/B3LYP/6311g(d,p) metoduna göre teorik ¹³C-NMR kimyasal kayma değerleri hesaplanmıştır. Aromatik halkaya elekron verici grupların bağlanmasıyla (-CH₃, -OCH₃) halkadaki protonlar daha fazla perdelenir ve böylelikle sinyallerin daha yüksek alana kaydığı görülmüştür. Benzer şekilde elektron çekici gruplar elektron yoğunluğunu azalttığından absorpsiyonlar daha düşük alana kaymıştır (Tablo 4.70).

Sonuç olarak, tez kapsamında 3-sübstitüe ftalit bileşikler sentezlenerek moleküler yapıları deneysel ve teorik olarak aydınlatılmıştır. Bu bileşikler, biyolojik aktif olma ihtimali yüksek olan bileşikler olup literatüre kazandırılarak biyokimya, tıp, eczacılık gibi alanlarda kullanım alanlarının araştırılması yararlı olacağı tahmin edilmektedir.

6. KAYNAKLAR

Aboelnaga, A., Hagar, M., and Soliman, S. M., "Ultrasonic Synthesis, Molecular Structure and Mechanistic Study of 1,3-Dipolar Cycloaddition Reaction of 1-Alkynylpyridinium-3-olate and Acetylene Derivatives", *Molecules*, 21 (7), 848, (2016).

Bayer, E., Hayat, S., Atta-Ur-Rahman, Choudhary, M. I., Khan, K. M., Shah, S. T. A., Imran-Ul-Haq, M., Anwar, M. U., Voelter, W., 'Efficient Synthesis of Isobenzofuran-1(*3H*)-ones (Phthalides) and Selected Biological Evaluations', *Arzneimittelforschung*, 55 (10), 588-597, (2005).

Baytop, T., Türkiye'de Bitkiler ile Tedavi (Geçmişte ve Bugün), İstanbul, (1984).

Beck, J. J., and Chou, S., "The streuctural Diversity of Phthalides from the Apiaceae", *J. Nat. Prod.*, 70, 891-900, (2007).

Bedfordp, C. T., Knittelt, P., Moneyg, T., Phillips, T., and Salisbury, P., *Can. J. Chem.*, 51, 691-697, (1973).

Bjaldanes, L. F., Kim, L. S., "Sedative Activity of Celery Oil Constituents", *J. Food Sci.*, 43, 143-144, (1978).

Bousquet, E. W., Moran, M. D., Harmon, J., Johnson, A. L., and Summers, J. C., *J. Org. Chem.*, 40, 2208-2212, (1975).

Büyükgüngör, O., Odabaşoğlu, M., ''3-Substituted Phthalides: IV 3-(4chlorophenylamino) isobenzofuran-1(*3H*)-one'', *Acta Cryst.*, E62, o2003o2004, (2006^a).

Büyükgüngör, O., Odabaşoğlu, M., ''3-Substituted Phthalides: XII 3-(4-Methyl piperidin-1yl) isobenzofuran-1(3*H*)-one'', *Acta Cryst.*, E62, o2936-o2937, (2006^b).

Büyükgüngör, O., Odabaşoğlu, M., ''3-Substituted Phthalides: XXI 3-(4-iodophenylamino) isobenzofuran-1(3*H*)-one'', *Acta Cryst.*, E63, o25-o27, (2007).

Castaner, J., Roberts, P. J., Drugs Future, 4, 407–410, (1979).

Chang, H., Jeganmohan, M., Cheng, C., "Highly Efficient Cyclization of *o* Iodobenzoates with Aldehydes Catalyzed by Cobalt Bidentate Phosphine Complexes: A Novel Entry to Chiral Phthalides", *Chem. Eur. J.*, 13, 4356-4363, (2007).

Ciamician G., Silber, P., "Ueber die Sedanolsäure und das Sedanolid", *Eur. Jour. Inorg. Chem.*, 30, 1427-1433, (1897).

Cracer, L. E., Simon, J. E., Herbs, Spices and Medicinal Plants (Recent Advances in Botany Horticulture and Pharmacology), 2, USA: Oryx-Press, (1987).

Deng, S., Chen, S. N., Lu, J., Wang, Z. J., Nikolic, D., Van Breemen, R. B., Santarsiero, B. D., Mesecar, A., Fong, H. H. S., Farnsworth, N. R., and Pauli, G. F., *Phytochem. Anal.*, 17, 398–405, (2006).

Dekker, K. A., Inagaki, T., Gootz, T. D., Kaneda, K., Nomura, E., Sakakibara, T., Sakemi, S., Sugie, Y., Yamauchi, Y., Yoshikawa, N., "CJ-12,954 and its congeners, new anti-Helicobacter pylori compounds produced by Phanerochaete velutina: fermentation, isolation, structural elucidation and biological activities", *J Antibiot (Tokyo)*, 50, 833-839, (1997).

Dmitriev, A. S., Pilipenko, A. S., Abaev, V. T., and Butin, A. V., "New Synthesis of 3-(2-Furyl) Phthalides", *Chemistry of Heterocyclic Compounds*, 41, 1102-1110, (2005).

de Koning C. B., Rousseau, A. L., van Otterlo W. A. L., Tetrahedron, 59, 7–36, (2002).

Domingo, L. R., Aurell, M. J., Perez, P., and Contreras, R., "Quantitative Characterization of the Global Electrophilicity Power of Common Diene/Dienophile Pairs in Diels-Ald Reactions", *Tetrahedron*, 58, 4417, (2002).

Domingo, L. R., and Perez, P., "Global and local reactivity indices for electrophilic/nucleophilic free radicals", *Org. Biomol. Chem.*, 11, 4350, (2013).

Elango, V., and Shamma, M., "A pyrolytic route to the phthalideisoquinolines", *The Journal of Organic Chemistry*, 48 (25), 4879-4881, (1983). Etter, M. C., "Encoding and decoding hydrogen-bond patterns of organic compounds", *Acc. Chem. Res.*, 23(4), 120-126, (1990).

Faigl, F., Thurner, A., Molnar, B., Simig, G., and Volk, B., "Manufacturing Synthesis of 5-Substituted Phthalides", *Organic Process Research&Development*, 14, 617-622, (2010).

Fan, J., Wang, P., Wang, J., Zhao, X., Liu, Z., Wei, J., and Shi, X., "Ruthenium (II)-catalyzed synthesis of phthalides via the cascade addition and cyclization of aromatic acids with aldehydes", *Sci. China Chem.*, 61, 153-158, (2018).

Filarowski, A., Koll, A., Glowiak, T., J. Chem. Soc., 2, 835, (2002)

Filarowski, A., Kochel, A., Kluba, M., Kamounah, F. S., "Structural and aromatic aspects of tautomeric equilibrium in hydroxy aryl Schiff bases", *J. Phys. Org. Chem.*, 21, 939, (2008).

Gardner, J. H., and Naylor Jr, C. A., "Phthalide", Org. Synth., 16, 71, (1936).

Geerlings, P., Proft, F. D., and Langenaeker, W., "Conceptual Density Functional Theory", *Chem. Rev.*, 103 (5), 1793, (2003).

Ghiasi, R., Parseh, N., "Quantum Mechanical Study of the Structure, NBO and HOMO–LUMO Analysis of Molecule Oxaliplatinium", *Journal of Applied Chemical Research*, 8, 25-33, (2014).

Gijbels, M. J. M., "Phthalides in Umbelliferae", PhD Thesis, Drukkerij J. H. Pasmans B. V., S-Gravenhage, (1983).

Gökce, H., Bahçeli, S., "Analysis of molecular structure, spectroscopic properties (FT-IR, micro-Raman and UV–vis) and quantum chemical calculations of free and ligand 2-thiopheneglyoxylic acid in metal halides (Cd, Co, Cu, Ni and Zn)", *Spectrochim. Acta Part A*, 116, 242, (2013).

Guenther, E., *The Essential Oils*, 2, 4, USA: D. Von Nostrand Company Inc., (1966).

Hartwell, I. L., "Plants Used Against Cancer", *Lloydia*, 34 (31), 310-344, (1971).

Heravi, M. M., Rasmi, V., Bamoharram, F. F., Sadjadi, S., Fotouhi, L., Sadjadi, S., Bakavoli, M., "Synthesis of Isobenzofuran-1(3H)-ones with the Aid of Silica-Supported Preyssler Nanoparticles", *Synthetic Communications*, 39, 4109–4116, (2009).

Hilden, L., Rummakko, P., Grumann, A., Pietikainen, P., "Process for the preparation of 1-(3-dimethylaminopropyl)-1-(4-fluorophenyl)-1,3 dihydroisobenzofuran-5-carbonitrile", *Chem. Abstr.*, *140*, (2004).

Hohenberg, P., and Kohn, W., "Inhomogeneous Electon Gas", *Phys.*, Rev. 136, B864, (1964).

Hutchings, A., Scott, A. H., Lewis, G., Cunningham, A., Zulu Medicinal Plants, An Inventory, South Africa: University Of Natal Press, (1996).

Jaramillo, P., Domingo, L. R., Chamorro, E., Perez, P., "A further exploration of a nucleophilicity index based on the gas-phase ionization potentials", *Journal of Molecular Structure*-Theochem, 865, 68-72 (2008).

Jia, L., and Han, F., "Sustainable synthesis of 3-substituted phthalides via a catalytic one-pot cascade strategy from 2-formylbenzoic acid with β -keto acids in glycerol", *Beilstein J. Org. Chem.*, 13, 1425-1429, (2017).

Kaouadji, M., Pouget, C., "Additional Phthalide Derivatives from Meum Athamanticum", *J. Nat. Prod.*, 49 (1), 184-185, (1986).

Karmakar, R., Pahari, P., Mal, D., "A synthetic route to 1,3dihydroisobenzofuran natural products: the synthesis of methyl ethers of pestacin", *Tetrahedron Letters*, 50, 4042-4045, (2009).

Klose, M., Naberuchin, J. I., *Wasser-Struktur und Dynamik*, Berlin: Akademie-Verlag, (1986).

Ko, W. C., Whang, Y. T., "Comparison of the Spasmolytic Action Between Ligusticum Wallichii and Cnidium Officinale", *Tai-wan Yao Hsueh Tsa Chih*, 23 (1), 40-48, (1971).

Ko, W. C., Lin, S. C., "Alkyl phthalides isolated from Ligusticum Wallichii Franch and their in vitro Inhibitory Effect on Rat Uterine Contraction Induced by Prostoglandin F2α", *Tai-wan I Hsueh Tsa Chih*, 79 (9), 669-677, (1977).

Ko, W. C., "A Newly Isolated Antispasmodic- Butylidene Phthalide", *Japan J. Pharmacol.*, 30, 85-93, (1980).

Kobayashi, K., Matsumoto, K., and Konishi, H., "An efficient synthesis of 3substituted 3*H*-isobenzofuran-1-ylidenamines by the reaction of 2cyanobenzaldehydes with organolithiums and their conversion into isobenzofuran-1(3*H*)-ones", *Heterocycles*, 83, 99-106, (2011).

Kruszewski, J., Krygowski, T. M., "Definition of aromaticity basing on the harmonic oscillator model", *Tetrahedron Lett.*, 13, 3839, (1972).

Krygowski, T. M., "Crystallographic studies of inter- and intramolecular interactions reflected in aromatic character of .pi.-electron systems", *J. Chem. Inf. Comput. Sci.*, 33(1), 70, (1993).

Kundu, N. G., Pal, M., and Nandi, B., *J. Chem. Soc.*, *Perkin Trans.* 1, 56-568, (1998).

Landeros-Martinez, L-L., Glossman-Mitnik D., Orrantia-Borunda, E., Flores-Holguin, N., "Theoretical calculation of uv-vis, ir spectra and reactivity properties of tamoxifen drug: a methodology comparison", *MOJ Biorg.* & *Org. Chem.*, 1, 87, (2017).

Leon, A., Del-Angel, M., Avila, J. L. and Delgado, G., "Phthalides: Distribution in Nature, Chemical Reactivity, Synthesis, and Biological Activity", *Progress in the Chemistry of Organic Natural Products*, 104, 127-246, (2017).

Le, Q. T., Elliott W. J., "Dose-response relationship of blood pressure and serum cholesterol to 3-n-butylphthalide, a component of celery oil", *Clin Res.*, 39, 750A, (1991^a).

Le, Q. T., Elliott W. J., "Hypotensive and hypocholesterolemic effects of celery oil may be due to BuPh.", *Clin Res.*, 39, 173A, (1991^b).

Li, G., Yin, D., and Liang, X., "A Facile Synthesis of 3-Substituted Phthalides", *Synthetic Communications*, 34 (7), 1183-1189, (2004).

Liberra, K., Jansen, R., and Lindequist, U., "Corollosporine, a new phthalide derivative from the marine fungus Corollospora maritima Werderm. 1069.", *Die Pharmazie*, 53 (8), 578-581, (1998).

Liu, L. et al., Phytochemistry, 23, 2033-2038, (1984).

Mal, D., Pahari, P., and Ranjan De, S., "Regiospecific synthesis of 3-(2,6dihydroxyphenyl)phthalides: application to the synthesis of isopestacin and cryphonectric acid", *Tetrahedron*, 63, 11781-11792, (2007). Maleki, B., Koushki, E., Baghayeri, M., Ashrafi, S. S., "One-Pot Synthesis of Isobenzofuran-1(3H)-ones Using Sulfuric Acid Immobilized on Silica Under Solvent-Free Conditions and Survey Of Third-Order Nonlinear Optical Properties", *J. Chil. Chem. Soc.*, 60, 2827-2831, (2015).

Mali, R. S., and Babu, K. N., J. "Naturally occurring prenylated phthalides: first total synthesis of salfredin B11", *Chem. Research* (*S*), 292-293, (1998).

Mali, R. S., Massey, A. P., Kulkarni, B. K., and Yeola, S. M., *Syn. Comm.* 27, 3449-3455, (1997).

Maslat, A. O., Al-Hamdany, R., Fataftah, Z., Mahrath, A. J., and Abussaud, M. J., "Genotoicity, Antifungl and Antibacterial Activity of Newly Synthesizedn-(3-Phthalidyl) Amines and o-Benzoyl Benzamide Derivatives", *Toxicol. and Environ. Chem.*, 85, 149-157, (2003).

Mitsuhashi, H., Namura, M., "Constituents of Umbelloferous Plants, XII. Biogenesis of 3-butylphthalides", *Chem. Pharm. Bull.*, 14, 777-778, (1966).

Mitsuhashi, H., Muramatsu, T., Nagai, U., Tashiro, H., "Constituents of Umbelliferae Plants", *Chem. Pharm. Bull.*, 8, 243, (1960).

Molnar, B., "Synthesis of Phthalide Buildings Blocks", Doktora Tezi, *Budapest Univesity of Technology and Economics*, Budapest, (2015).

Molnar, B., Simig, G., and Volk, B., "Synthesis of 4,6-Dichloro- and 4,6-Difluorophthalides: a Systematic Study on the Lithiation of 3,5-Dihalo-*N*,*N*-diisopropylbenzamides", *Eur. J. Org. Chem.*, 1728-1735, (2011).

Molnar, B., Simig, G., Bako, T., Dancso, A., Volk, B., "Efficient syntheses of the versatile phthalide building blocks, 5,6-diam-inoisobenzofuran-1(*3H*)-one and 5*H*,7*H*-furo[3,4-f][2,1,3]benzothiadiazol-5-one", *Tetrahedron Letters*, 53, 2922-2924, (2012).

Mulliken, R. S., "Electronic Population Analysis on LCAO–MO Molecular Wave Functions. I", J. Chem. Phys., 23, 1833, (1955).

Nakamura, I., and Yamamoto, Y., "Transition-Metal-Catalyzed Reactions in Heterocyclic Synthesis", *Chem. Rev.*, 104 (5), 2127-2198, (2004).

Nakamura, Y., Yoshida, S., and Hosoya, T., "Facile Synthesis of Phthalides from Methyl *ortho*-Iodobenzoates and Ketones via an Iodine-Magnesium Exchange Reaction Using a Silylmethyl Grignard Reagent", *Chem. Lett.*, 46, 858–861, (2017). Nalini V., P., and Poonam, Y., "Synthesis and Biological activities of some new Phthalides", *Res. J. Chem. Sci.*, 2 (8), 57-61, (2012).

Odabaşoğlu, M., Büyükgüngör, O., ''3-Substituted Phthalides: I 3-(4-hydroxyphenylamino) isobenzofuran-1(3*H*)-one'', *Acta Cryst.*, E62, o1879-o1881, (2006^a).

Odabaşoğlu, M., Büyükgüngör, O., ''3-Substituted Phthalides: II 3-(4methoxyphenylamino) isobenzofuran-1(3*H*)-one'', *Acta Cryst.*, E62, o1882o1883, (2006^b).

Odabaşoğlu, M., Büyükgüngör, O., ''3-Substituted Phthalides: III 3-(2methoxyphenylamino) isobenzofuran-1(3*H*)-one'', *Acta Cryst.*, E62, o1884o1885, (2006^c).

Odabaşoğlu, M., Büyükgüngör, O., ''3-Substituted Phthalides: V 3-(3-pyridylamino) isobenzofuran-1(3*H*)-one'', *Acta Cryst.*, E62, o2088-o2089, (2006^d).

Odabaşoğlu, M., Büyükgüngör, O., ''3-Substituted Phthalides: VI 3-(2-pyridylamino) isobenzofuran-1(3*H*)-one'', *Acta Cryst.*, E62, o2079-o2080, (2006^e).

Odabaşoğlu, M., Büyükgüngör, O., ''3-Substituted Phthalides: VII 3-(4methylpyridin-2-ylamino) isobenzofuran-1(*3H*)-one'', *Acta Cryst.*, E62, o2316-o2317, (2006^f).

Odabaşoğlu, M., Büyükgüngör, O., ''3-Substituted Phthalides: VIII 3-(Thiazol-2-ylamino) isobenzofuran-1(3*H*)-one'', *Acta Cryst.*, E62, o2866-o2868, (2006^g).

Odabaşoğlu, M., Büyükgüngör, O., ''3-Substituted Phthalides: IX 3anilinoisobenzofuran-1(3*H*)-one'', *Acta Cryst.*, E62, o2943-o2944, (2006^h).

Odabaşoğlu, M., Büyükgüngör, O., ''3-Substituted Phthalides: X 3-(4ethoxyanilino) isobenzofuran-1(3*H*)-one'', *Acta Cryst.*, E62, o2558-o2559, (2006ⁱ).

Odabaşoğlu, M., Büyükgüngör, O., ''3-Substituted Phthalides: XI 3-[(2-hydroxy-5-nitrophenyl)amino)]-2-benzofuran-1(3*H*)-one monohydrate'', *Acta Cryst.*, E62, o3042-o3043, (2006^j).

Odabaşoğlu, M., Büyükgüngör, O., ''3-Substituted Phthalides: XIII 3-(4-fluoroanilino) isobenzofuran-1(3*H*)-one'', *Acta Cryst.*, E62, o4138-o4139, (2006^{k}) .

Odabaşoğlu, M., Büyükgüngör, O., ''3-Substituted Phthalides: XIV 3-(4bromoanilino) isobenzofuran-1(3*H*)-one'', *Acta Cryst.*, E62, o4366-o4367, (2006¹).

Odabaşoğlu, M., Büyükgüngör, O., ''3-Substituted Phthalides: XV 3-(2,6-dimethylanilino) isobenzofuran-1(*3H*)-one'', *Acta Cryst.*, E62, o4140-o4141, (2006^m).

Odabaşoğlu, M., Büyükgüngör, O., ''3-Substituted Phthalides: XVI 3-{4-[4-(3-oxo-1,3-dihydroisobenzofuran-1ylamino)benzyl]phenylamino} isobenzofuran-1(3*H*)-one dimethylformamit solvate'', *Acta Cryst.*, E62, o4142-o4144, (2006ⁿ).

Odabaşoğlu, M., Büyükgüngör, O., ''3-Substituted Phthalides: XVII 3-(4-acetyl anilino) isobenzofuran-1(3*H*)-one'', *Acta Cryst.*, E62, o4145-o41479, (2006°).

Odabaşoğlu, M., Büyükgüngör, O., ''3-Substituted Phthalides: XVIII 3-[2-(trifluoro-methyl)anilino] isobenzofuran-1(3*H*)-one'', *Acta Cryst.*, E62, o4148-o4150, (2006^p).

Odabaşoğlu, M., Büyükgüngör, O., ''3-Substituted Phthalides: XIX 3-[3-(trifluoromethyl)anilino] isobenzofuran-1(3*H*)-one'', *Acta Cryst.*, E62, o4151-o4153, (2006^r).

Odabaşoğlu, M., Büyükgüngör, O., '3-Substituted Phthalides: XX [2-Methyl-4-(3-oxo-1,3-dihydroisobenzofuran-1-ylamino)phenyl]isobenzofuran-1(3*H*)-one'', *Acta Cryst.*, E63, o23-o24, (2007^a).

Odabaşoğlu, M., Büyükgüngör, O., ''3-Substituted Phthalides: XXII 3-(Dimethylamino) isobenzofuran-1(3*H*)-one'', *Acta Cryst.*, E63, o1560-o1561, (2007^b).

Odabaşoğlu, M., Büyükgüngör, O., ''3-Substituted Phthalides: XXIII 3-(4-Ethylanilino) isobenzofuran-1(3*H*)-one'', *Acta Cryst.*, E63, o1562-o1564, (2007^c).

Odabaşoğlu, M., Büyükgüngör, O., ''3-Substituted Phthalides: XXIV 3-(4-Methylanilino) isobenzofuran-1(3*H*)-one'', *Acta Cryst.*, E63, o1999-o2001, (2007^d). Odabaşoğlu, M., Büyükgüngör, O., ''3-Substituted Phthalides: XXV 3-[2-(hydroxymethyl)phenylamino]isobenzofuran-1(3*H*)-one'', *Acta Cryst.*, E63, o2159-o2161, (2007^e).

Odabaşoğlu, M., Büyükgüngör, O., ''3-Substituted Phthalides: XXVI 3-(3-Methoxyanilino) isobenzofuran-1(3*H*)-one'', *Acta Cryst.*, E63, o4296-o4297, (2007^f).

Odabaşoğlu, M., Büyükgüngör, O., "3-Substituted Phthalides: XXVII 3-(5-Chloro-2-hydroxyanilino) isobenzofuran-1(3*H*)-one", *Acta Cryst.*, E63, o4343- o4343, (2007^g).

Odabaşoğlu, M., Büyükgüngör, O., ''3-Substituted Phthalides: XXVIII 3-(6-Methyl-2-pyridylamino) isobenzofuran-1(*3H*)-one'', *Acta Cryst.*, E63, o4348-o4348, (2007^h).

Odabaşoğlu, M., Büyükgüngör, O., ''3-Substituted Phthalides: XXVIX 3-(4butylphenylamino) isobenzofuran-1(3*H*)-one'', *Acta Cryst.*, E63, o4510o4511, (2007ⁱ).

Odabaşoğlu, M., Büyükgüngör, O., ''3-Substituted Phthalides: XXX 3-(2-Fluoroanilino) isobenzofuran-1(3*H*)-one'', *Acta Cryst.*, E63, o4401-o4401, (2007^j).

Odabaşoğlu, M., Büyükgüngör, O., ''3-Substituted Phthalides: XXXI 3-(2-Bromoanilino) isobenzofuran-1(3*H*)-one'', *Acta Cryst.*, E63, o4668-o4668, (2007^k).

Odabaşoğlu, M., Büyükgüngör, O., "3-Substituted Phthalides: XXXII 4-Methyl-N-(3-oxo1,3-dihydroisobenzofuran-1-yl)benzenesulfonamide", *Acta Cryst.*, E63, o4730-o4730, (2007¹).

Odabaşoğlu, M., Büyükgüngör, O., '2-(3-Oxo-1,3-dihydro-isobenzofuran-1-ylamino)benzoic acid.'', *Acta Cryst.*, E64, o752-o753, (2008^a).

Odabaşoğlu, M., Büyükgüngör, O., ''3-(2- Chloroanilino) isobenzofuran-1(3*H*)-one.'', *Acta Cryst.*, E64, o754-o754, (2008^b).

Odabaşoğlu, M., Büyükgüngör, O., ''3-(2,4- Dichloroanilino) isobenzofuran-1(*3H*)-one.'', *Acta Cryst.*, E64, o755-o755, (2008^c).

Odabaşoğlu, M., Büyükgüngör, O., ''3-(4-Methylpiperazin-1-yl) isobenzofuran-1(*3H*)-one.'', *Acta Cryst.*, E64, o779-o779, (2008^d).

Odabaşoğlu, M., Büyükgüngör, O., ''3-(2-Hydroxy-5-methylanilino) isobenzofuran-1(*3H*)-one.'', *Acta Cryst.*, E64, o780-o780, (2008^e).

Ono, K., Tokura, O., Tomura, M., ''(3Z,3'Z)-3,3'-(Ethane-1,2-diyl-idene)-bis[isobenzofuran-1(3H)-one]'', *Acta Cryst.*, E65, o2118, (2009).

Ozel, A. E., Celik, S., Akyuz, S., Kecel, S., "Infrared and Raman spectroscopic and quantum chemical investigations of zinc halide complexes of 3-aminoquinoline", *Vib. Spectrosc.*, 53, 151, (2010).

Paixao, D. A., Guilardi, S., Pereira, J. L., Teixeira, R. R., Arantes, J. F., "5-Meth-oxy-2-benzofuran-1(3H)-one", *Acta Cryst.*, E68, o3288, (2012).

Parr, R. G., and Pearson, R. G., "Absolute hardness: companion parameter to absolute electronegativity", *J. Am. Chem. Soc.*, 105 (26), 7512, (1983).

Parr, R. G., Yang, W., *Density-Functional Theory of Atoms and Molecules*, New York: Oxford University Press, (1989).

Parr, R. G., v. Szentpaly, L., and Liu, S., "Electrophilicity Index", J. Am. Chem. Soc., 121 (9), 1922, (1999).

Pearson, R. G., "Absolute electronegativity and hardness correlated with molecular orbital theory", *Proc. Nati. Acad. Sci.*, 83, 8440, (1986).

Pearson, R. G., "Absolute electronegativity and hardness: applications to organic chemistry", *J. Org. Chem.*, 54 (6), 1430, (1989).

Pedrosa, R., Sayalero, S., and Vicente M., "A direct efficient diastereoselective synthesis of enantiopuren 3-substituted-isobenzofuranones", *Tetrahedron*, 62, 10400-10407, (2006).

Perry, L. M., *Medicinal Plants of East and South East Asia: Attributed Properties and Uses*, Cambridge: MIT Press, (1980).

Puzin, Y. I., Chebaeva, T. V., Galinurova, E. I., Muslukhov, R. R., Monakov,Y. B., Syrkin, A. M., "Preparation of Phthalide-containing Methacrylates", *Russian Journal of Organic Chemistry*, 40, 1129-1131, (2004).

Rayabarapu, D. K., Chang, H. T., Cheng, C. H., "Synthesis of phthalide derivatives using nickel-catalyzed cyclization of o-haloesters with aldehydes", *Chem. Eur. J.*, 10 (12), 2991-2996, (2004).

Revolutionary Health Committee of Human Province (Publ.), *Barefoot Doctor's Manual*, London: Routledge and Kegan Paul, (1978).

Saraç, K., ''4-Klorometil-6,8-dimetilkumarin Bileşiğinin Sentezi ve Teorik Kimyasal Hesaplamaları'', *BEÜ Fen Bil. Der.*, 7 (2), 311-319, (2018)

Schmidt, P. J., and Hung, W. M., "3-(pyrrolo and 3-indolyl)-3diphenylamino substituted phthalides", *United States Patent* 4431819, (1984).

Shau, S. J., Ho, Y. S., Chen, Y. P., Hsu, H. Y., "Analysis and Processing of Chinese Herbal Drugs: VI. The Study of Angelicae Radix", *Planta Med.*, 53 (4), 377-378, (1987).

Shi, X., and Li, C., "A Novel Rhodium-Catalyzed Cascade Cyclization: Direct Synthesis of 3-Substituted Phthalides from Aldehydes and Aromatic Acids", *Adv. Synth. Catal.*, 354, 2933-2938, (2012).

Shode, F. O., Mahomed, A. S., Rogers, C. B., "Typhaphthalide and typharin, two phenolic compounds from Typha capensis", *Phytochemistry*, 61, 955-957, (2002).

Silverstein, R. M., Bassler, G. C., and Morrill, T. C., *Spectrometric identification of organic compounds*, New York: John Wiley & Sons, (1981).

Sorbera, L. A., Revel, L., Martin, L., Castaner, J., *Drugs Future*, 26, 115–120, (2001).

Strobel, G., Ford, E., Worapong, J., Harper, J. K., Arif, A. M., Grant, D. M., Fung, P. C., and Ming Wah Chau R., "Isopestacin, an isobenzofuranone from Pestalotiopsis microspora, possessing antifungal and antioxidant activities", *Phytochemistry*, 60 (2), 179-83, (2002).

Şarer, E., Kökdil, G., "Doğal Ftalitler", FABAD Farm. Bil. Der., 17, 87-98, (1992).

Şimşek Kuş, N., "Organic reactions in subcritical and supercritical water", *Tedrahedron*, 68, 949-958, (2012).

Şimşek Kuş, N., "One-step synthesis of substituted isobenzofuran-1(3*H*)ones and isobenzofuran-1,3-diones from indane derivatives in subcritical media", *Monatsh Chem.*, 144, 1183-1186, (2013).

Takahashi, K., Koshino, Y. H., Narita, Y., and Yoshihara, T., *Biosci. Biotechnol. Biochem.*, 69, 1018-1020, (2005).
Tamer, Ö., ''Cis-2,6-bis(2-klorofenil)-3,3-dimetilpiperidin-4-one bileşiği üzerine yapısal, spektroskopik, elektronik ve doğrusal olmayan optiksel araştırmalar'', *SAU Fen Bil. Der.*, 20 (3), 565-571, (2016).

Teixeria, R. R., Pereira, J. L., Da Silva, S. F., Guilardi, S., Paixao, D. A., Anconi, C. P. A., De Almeida, W. B., Ellena, J., Forlani, G., "Synthesis, characterization and phytotoxic activity of hydroxylated isobenzofuran-1(*3H*)-ones", *Journal of Molecular Structure*, 1061, 61-68, (2014).

Tsukamoto, T., Ishikawa, Y., and Miyazawa, M., "Larvicidal and Adulticidal Activity of Alkylphthalide Derivatives from Rhizome of Cnidium officinale against Drosophila melanogaster", *J. Agric. Food Chem.*, 53, 5549-5553, (2005).

Tsukamoto, T., Nakatani, S., Yoshioka, Y., Sakai, N., Ishikawa, Y., and Miyazawa, M., *Biol. Pharm. Bull.*, 29, 592-594, (2006).

Tsi, D., Tan, B. K. H., 'Cardiovascular pharmacology of 3-n-butylphthalide in spontaneously hypertensive rats', *Phytotherapy Research*, 11, 576-582, (1997).

Uhlig, J. W., Chang, A., Jen, J. J., 'Effect of Phthalides on Celery Flavor'', *J. Food Sci.*, 52 (3), 658-660, (1987).

Van Wyk, B. E., Van Oudtshoorn, B., Gericke, N., *Medicinal Plants of South Africa*, South Africa: Briza Publications, (1997).

Wagner, H., Hikino, H., Farnsworth, N. R., *Economic and Medicinal Plants Research*, 1, London: Academic Press, 76-80, (1985).

Watt, J. M., Breyer-Brandwijk, M. G., *The Medicinal and Poisonous Plants of Southern and Eastern Africa*, London: E. & S. Livingstone, (1962).

Xian, D. Z., Yao Yao, L. X., *Contemporary Pharmacology of Chinese Herbs.*, 1290-1291, (1997).

Xing, A-P., Zeng, D., Zhang, S-L., Guo, D-F., Chu, Y-X., "Crystal structure of 3-(benzo[*d*]thiazol-2-ylamino) isobenzofuran-1(3*H*)-one, C₁₅H₁₀N₂O₂S", *Z. Kristallogr.*, 0285, (2018).

Zheng, G., Kenney, P. M., Zhang, J., and Lam, L. K. T., "Chemoprevention of benzo[*a*]pyrene-induced forestomach cancer in mice by natural phthalides from celery seed oil", *Journal Nutrition and Cancer*, 19, 77-86, (1993).

Zhong, H. Y., Xue, Z. Z., Chinese Journal Medicine, 40, 670, (1954).

"Precomputed vibrational scaling factors", (27 Mart 2019), https://cccbdb.nist.gov/vibscalejust.asp

7. ÖZGEÇMİŞ

Adı Soyadı	: Zeynep TANRIKULU
Doğum Yeri ve Tarihi	: BALIKESİR/ 1990
Lisans Üniversite	: GAZİ ÜNİVERSİTESİ
Elektronik posta	: zeyneptanrikulu10@gmail.com
İletişim Adresi	: GAZİ OSMAN PAŞA MAH. 168. SOK.
	NO:11/1 ALTIEYLÜL/BALIKESİR