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Abstract In this paper, we consider boundary value problems for nonlinear differential

equations on the semi axis (0,∞) and also on the whole axis (−∞,∞), under the assumption

that the left-hand side being a second order linear differential expression belongs to the

Weyl limit-circle case. The boundary value problems are considered in the Hilbert spaces

L2(0,∞) and L2(−∞,∞), and include boundary conditions at infinity. The existence and

uniqueness results for solutions of the considered boundary value problems are established.
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1 INTRODUCTION

Consider the second order nonlinear differential equation

−[p(x)y′]′ + q(x)y = f(x, y), 0 ≤ x <∞, (1.1)

where y = y(x) is a desired solution.
Let L2(0,∞) be the Hilbert space of real-valued functions y(x) on [0,∞) such

that
∫∞
0 |y(x)|2dx < ∞ with the inner product (y, z) =

∫∞
0 y(x)z(x)dx and norm

∥y∥ = {
∫∞
0 |y(x)|2dx}1/2.

We will assume that the following conditions are satisfied.

(C1) The coefficients p(x) and q(x) are real-valued measurable functions on [0,∞)
such that

∫ b
0

dx
|p(x)| <∞,

∫ b
0 |q(x)|dx <∞

for each finite positive number b. Moreover, the functions p(x) and q(x) are such that
all solutions of the second order linear differential equation
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−[p(x)y′]′ + q(x)y = 0, 0 ≤ x <∞, (1.2)

belong to L2(0,∞).

(C2) The function f(x, ξ) is real-valued and continuous in (x, ξ) ∈ [0,∞) × R,
and

|f(x, ξ)| ≤ g(x) + d|ξ| (1.3)

for all (x, ξ) in [0,∞)×R, where g(x) ≥ 0, g ∈ L2(0,∞), and d is positive constant.

Remark 1.1 A function y = y(x) defined on [0,∞) is called a solution of equation
(1.1) if y has the first derivative y′, the product p(x)y′(x) is absolutely continuous on
each finite interval [0, b] ⊂ [0,∞), and (1.1) holds almost everywhere on [0,∞).

Remark 1.2 The condition (C1) means that for the differential expression Ly =
−[p(x)y′]′ + q(x)y the so-called Weyl limit-circle case holds (see [3, 11]). If p(x) ≡ 1
and q(x) = −e2x, then the condition (C1) holds (see [11, p.93]).

Remark 1.3 If we define the operator F taking each function y(x) to the function
f(x, y(x)), then the condition (1.3) is necessary and sufficient for F to map L2(0,∞)
into itself (see [9, Chapter 1]).

Let D be the linear manifold of all elements y ∈ L2(0,∞) such that Ly =
−[p(x)y′]′ + q(x)y is defined and Ly ∈ L2(0,∞). Denote y[1](x) = p(x)y′(x), the
quasi-derivative of y(x). For given two differentiable functions y = y(x) and z = z(x)
we define the Wronskian of y and z by

Wx(y, z) = y(x)z[1](x)− y[1](x)z(x)

= p(x)[y(x)z′(x)]− y′(x)z(x)], x ∈ [0,∞).

It follows from the Green’s formula

∫ b
0 [(Ly)z − y(Lz)](x)dx = Wb(y, z)−W0(y, z) (1.4)

that, for all y, z ∈ D the limit

W∞(y, z) = lim
b→∞

Wb(y, z)

exists as a finite number.
Let u = u(x) and v = v(x) be solutions of (1.2) satisfying the initial conditions

u(0) = 0, u[1](0) = 1; v(0) = −1, v[1](0) = 0. (1.5)

By the constancy of the Wronskian of any two solutions of (1.2) we haveWx(u, v) = 1.
Consequently, u and v are linearly independent and they form a fundamental system
of solutions of (1.2). It follows from the condition (C1) that u, v ∈ L2(0,∞) and
moreover u, v ∈ D. Therefore for each y ∈ D the values W∞(y, u) and W∞(y, v) exist
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and are finite. For these values we can get, by using Green’s formula (1.4) and the
initial conditions (1.5), the formulas

W∞(y, u) = y(0)+
∫∞
0 u(x)Ly(x)dx, W∞(y, v) = y[1](0)+

∫∞
0 v(x)Ly(x)dx. (1.6)

Our boundary value problem (BVP) consists of finding a function y = y(x), x ∈
[0,∞), such that y ∈ L2(0,∞) and y satisfies the equation (1.1) [consequently y ∈ D
by (1.3)] and the boundary conditions

αy(0) + βy[1](0) = d1, γW∞(y, u) + δW∞(y, v) = d2, (1.7)

where α, β, γ, and δ are given real numbers satisfying the condition

(C3) ω := αδ − βγ ̸= 0,
and d1, d2 are arbitrary given real numbers.

Notice that the first boundary condition in (1.7) can be written as

αW0(y, u) + βW0(y, v) = d1.

Also notice that since in (1.7) the function y satisfies the equation (1.1), taking into
account (1.6) we have the following formulas for the values W∞(y, u) and W∞(y, v):

W∞(y, u) = y(0) +
∫∞
0 u(x)f(x, y(x))dx, W∞(y, v) = y[1](0) +

∫∞
0 v(x)f(x, y(x))dx.

In Section 2 we construct an appropriate Green’s function by means of which the
BVP (1.1), (1.7) is reduced to a fixed point problem.

In Section 3 by using the Contraction Mapping Theorem (Banach Fixed Point
Theorem) we show that there is a unique solution of the BVP (1.1), (1.7) if f(x, ξ)
satisfies a Lipschitz condition.

In Section 4 a theorem based on the Schauder Fixed Point Theorem is proved
which gives a result that yields existence of solutions without the implication that
solutions must be unique.

Finally, in Section 5, we deal with BVPs on the whole axis.
For the other formulations of BVPs on infinite intervals we refer to [1, 2]. The

way giving ”boundary conditions at infinity” used in the present paper was employed
earlier in [4− 8, 10].

2 GREEN’S FUNCTION AND THE OPERATOR A

For h ∈ L2(0,∞) consider the linear BVP

−[p(x)y′]′ + q(x)y = h(x), 0 ≤ x <∞, (2.1)

αy(0) + βy[1](0) = 0, γW∞(y, u) + δW∞(y, v) = 0, (2.2)

where y ∈ L2(0,∞) is a desired solution, u and v are solutions of (1.2) under the
initial conditions (1.5).

Let us set

3



φ(x) = αu(x) + βv(x), ψ(x) = γu(x) + δv(x). (2.3)

These functions (together with u and v) are solutions of (1.2) and are in L2(0,∞).
Besides, we have

φ(0) = Wx(φ, u) = −β, φ[1](0) = Wx(φ, v) = α; (2.4)

ψ(0) = Wx(ψ, u) = −δ, ψ[1](0) = Wx(ψ, v) = γ. (2.5)

Therefore φ satisfies the boundary condition at zero in (2.2), and ψ satisfies the
boundary condition at infinity. The Wronskian of φ and ψ is

Wx(φ, ψ) = αδ − βγ = ω (2.6)

and hence it is different from zero by the condition (C3). Let

G(x, s) = − 1
ω

{
φ(x)ψ(s), if 0 ≤ x ≤ s <∞,
φ(s)ψ(x), if 0 ≤ s ≤ x <∞.

(2.7)

Since φ,
psi ∈ L2(0,∞), we have

∫∞
0

∫∞
0 |G(x, s)|2dxds <∞. (2.8)

Theorem 2.1 The nonhomogeneous BVP (2.1), (2.2) has a unique solution y ∈
L2(0,∞) for which the formula

y(x) =
∫∞
0 G(x, s)h(s)ds, 0 ≤ x <∞ (2.9)

holds, where the function G(x, s) is defined by (2.7) , and G(x, s) is called the Green’s
function of the BVP (2.1), (2.2).

Proof. Under the condition (C3), by (2.6), the solutions φ(x) and ψ(x) of the
homogeneous equation (1.2) are linearly independent and therefore by a variation of
constants formula the general solution of the nonhomogeneous equation (2.1) has the
form

y(x) = c1φ(x) + c2ψ(x) +
1
ω

∫ x
0 [φ(x)ψ(s)− φ(s)ψ(x)]h(s)ds, (2.10)

where c1 and c2 are arbitrary constants. Now we try to choose the constants c1 and
c2 so that the function y(x) satisfies also the boundary conditions (2.2).

From (2.10) we have

y[1](x) = c1φ
[1](x) + c2ψ

[1](x) + 1
ω

∫ x
0 [φ

[1](x)ψ(s)− φ(s)ψ[1](x)]h(s)ds. (2.11)

Consequently,

y(0) = c1φ(0) + c2ψ(0) = −c1β − c2δ,
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y[1](0) = c1φ
[1](0) + c2ψ

[1](0) = c1α + c2γ.

Substituting these values of y(0) and y[1](0) into the first condition of (2.2) we get

−c2(αδ − βγ) = 0, that is, −c2ω = 0.

Therefore c2 = 0 and (2.10), (2.11) become

y(x) = c1φ(x) +
1
ω

∫ x
0 [φ(x)ψ(s)− φ(s)ψ(x)]h(s)ds, (2.12)

y[1](x) = c1φ
[1](x) + 1

ω

∫ x
0 [φ

[1](x)ψ(s)− φ(s)ψ[1](x)]h(s)ds.

Hence,

Wx(y, u) = y(x)u[1](x)− y[1](x)u(x)

= c1Wx(φ, u) +
1
ω

∫ x
0 [Wx(φ, u)ψ(s)− φ(s)Wx(ψ, u)]h(s)ds

= −c1β + 1
ω

∫ x
0 [−βψ(s) + δφ(s)]h(s)ds

= −c1β +
∫ x
0 u(s)h(s)ds.

Therefore
W∞(y, u) = −c1β +

∫ ∞

0
u(s)h(s)ds.

Likewise

W∞(y, v) = c1α +
∫ ∞

0
v(s)h(s)ds.

Substituting these values ofW∞(y, u) andW∞(y, v) into the second condition of (2.2)
we get

c1(−βγ + αδ) +
∫ ∞

0
[γu(s) + δv(s)]h(s)ds = 0.

Hence,

c1 = − 1

ω

∫ ∞

0
ψ(s)h(s)ds.

Putting this value of c1 in (2.12) we obtain

y(x) = − 1

ω

∫ ∞

x
φ(x)ψ(s)h(s)ds− 1

ω

∫ x

0
φ(s)ψ(x)h(s)ds,

that is, the formulas (2.9), (2.7) hold. The theorem is proved.

Corollary 2.1 The unique solution y(x) of the nonhomogeneous equation (2.1) under
the nonhomogeneous boundary conditions

αy(0) + βy[1](0) = d1, γW∞(y, u) + δW∞(y, v) = d2 (2.13)

is given by the formula

y(x) = w(x) +
∫ ∞

0
G(x, s)h(s)ds,
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where the function G(x, s) is defined by (2.7), and

w(x) = d2
ω
φ(x)− d1

ω
ψ(x). (2.14)

Proof. The function w(x) defined by (2.14) is a unique solution of the homoge-
neous equation (1.2) satisfying, by (2.4) and (2.5), the nonhomogeneous boundary
conditions (2.13), while the function

∫∞
0 G(x, s)h(s)ds is, by Theorem 2.1, a unique

solution of the nonhomogeneous equation (2.1) satisfying the homogeneous boundary
conditions (2.2). Hence the desired result holds.

By Corollary 2.1 the nonlinear BVP (1.1), (1.7) in L2(0,∞) is equivalent to the
nonlinear integral equation

y(x) = w(x) +
∫∞
0 G(x, s)f(s, y(s))ds, 0 ≤ x <∞, (2.15)

where the functions w(x) and G(x, s) are defined by (2.14) and (2.7), respectively.
So we have to investigate the equation (2.15) in L2(0,∞). By (1.3), (2.8), and

w ∈ L2(0,∞) we can define the operator A : L2(0,∞) → L2(0,∞) by the formula

Ay(x) = w(x) +
∫∞
0 G(x, s)f(s, y(s))ds, 0 ≤ x <∞, (2.16)

where y ∈ L2(0,∞). Then the equation (2.15) can be written as y = Ay. Therefore
solving equation (2.15) in L2(0,∞) is equivalent to finding fixed points of the operator
A.

3 THE LIPSCHITZ CASE

In this section we will use the following well-known Contraction Mapping Theorem
named also as the Banach Fixed Point Theorem: Let B be a Banach space and S a
nonempty closed subset of B. Assume A : S → S is a contraction, i.e. there is a
λ, 0 < λ < 1, such that ∥Au − Av∥ ≤ λ∥u − v∥ for all u, v in S. Then A has a
unique fixed point in S.

Theorem 3.1 Assume conditions (C1), (C2), and (C3) are satisfied. In addition,
let the function f(x, ξ) satisfy the following Lipschitz condition: there is a constant
K > 0 so that

∫∞
0 |f(x, y(x))− f(x, z(x))|2dx ≤ K2

∫∞
0 |y(x)− z(x)|2dx (3.1)

for all y and z in L2(0,∞). If

K{
∫∞
0

∫∞
0 |G(x, s)|2dxds}1/2 < 1, (3.2)

then the BVP (1.1), (1.7) has a solution in L2(0,∞).

Proof. It will be sufficient to show that under the conditions of the theorem, the
operator A : L2(0,∞) → L2(0,∞) defined by (2.16) is a contraction mapping. For
y, z ∈ L2(0,∞) we have
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|Ay(x)− Az(x)|2 = |
∫∞
0 G(x, s)[f(s, y(s))− f(s, z(s))]ds|2

≤
∫∞
0 |G(x, s)|2ds

∫∞
0 |f(s, y(s))−f(s, z(s))|2ds ≤ K2

∫∞
0 |y(s)−z(s)|2

∫∞
0 |G(x, s)|2ds

= K2∥y − z∥2
∫∞
0 |G(x, s)|2ds

for x in [0,∞). Hence ∥Ay − Az∥ ≤ λ∥y − z∥, where

λ = K{
∫ ∞

0

∫ ∞

0
|G(x, s)|2dxds}1/2 < 1

by (3.2). So, A is a contraction mapping and the theorem is proved.

Remark 3.1 The condition (3.1) is satisfied if |f(x, ξ1) − f(x, ξ2)| ≤ K|ξ1 − ξ2| for
all x in [0,∞) and all ξ1, ξ2 in R.

In the next theorem, the function f(x, ξ) satisfies a Lipschitz condition not on
whole L2(0,∞) but on a subset.

Theorem 3.2 Assume conditions (C1), (C2), and (C3) are satisfied. In addition,
let there exist a number R > 0 such that

∫∞
0 |f(x, y(x))− f(x, z(x))|2dx ≤ K2

∫∞
0 |y(x)− z(x)|2dx (3.3)

for all y and z in S = {u ∈ L2(0,∞) : ∥u∥ ≤ R}, where K > 0 is a constant which
may depend on R. If

{
∫ ∞

0
|w(x)|2dx}1/2+{

∫ ∞

0

∫ ∞

0
|G(x, s)|2dxds}1/2{sup

y∈S

∫ ∞

0
|f(s, y(s))|2ds}1/2 ≤ R (3.4)

and

K{
∫∞
0

∫∞
0 |G(x, s)|2dxds}1/2 < 1, (3.5)

then the BVP (1.1), (1.7) has a unique solution y ∈ L2(0,∞) with∫ ∞

0
|y(x)|2dx ≤ R2.

Proof. Obviously, S is a closed subset of L2(0,∞). Let A : L2(0,∞) → L2(0,∞) be
the operator defined by (2.16). For y and z in S, taking into account (3.3) and (3.5), in
exactly the same way as in the proof of Theorem 3.1, we can get ∥Ay−Az∥ ≤ λ∥y−z∥,
where λ < 1.

It remains to show that A maps S into itself. For y in S, we have

∥Ay∥ = ∥w(x) +
∫∞
0 G(x, s)f(s, y(s))ds∥ ≤ ∥w∥+ ∥

∫∞
0 G(x, s)f(s, y(s))ds∥

≤ ∥w∥+ {
∫∞
0

∫∞
0 |G(x, s)|2dxds}1/2{

∫∞
0 |f(s, y(s))|2ds}1/2 ≤ R (3.6)

by (3.4). Therefore A : S → S.
Now the contraction mapping theorem can be applied to obtain a unique solution

of equation (2.15) in S, and the proof is complete.
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4 EXISTENCE OF SOLUTIONS

An operator (nonlinear, in general) acting in a Banach space is said to be com-
pletely continuous if it is continuous and maps bounded sets into relatively compact
sets.

To get an existence theorem without uniqueness of solution, we will apply in this
section the following Schauder Fixed Point Theorem: Let B be a Banach space and
S a nonempty bounded, convex, and closed subset of B. Assume A : B → B is a
completely continuous operator. If the operator A leaves the set S invariant, i.e. if
A(S) ⊂ S, then A has at least one fixed point in S.

Passing on to the BVP (1.1), (1.7) let A : L2(0,∞) → L2(0,∞) be the operator
defined by (2.16).

Lemma 4.1 Under the conditions (C1), (C2), and (C3) the operator A is completely
continuous.

Proof. Consider ϵ > 0 and y0 ∈ L2(0,∞). We want to show that there exists δ > 0
such that

y ∈ L2(0,∞) and ∥y − y0∥ < δ imply ∥Ay − Ay0∥ < ϵ. (4.1)

We have

|Ay(x)− Ay0(x)|2 ≤
∫ ∞

0
|G(x, s)|2ds

∫ ∞

0
|f(s, y(s))− f(s, y0(s))|2ds.

Hence

∥Ay − Ay0∥2 ≤M
∫∞
0 |f(s, y(s))− f(s, y0(s))|2ds

=M
∫N
0 |f(s, y(s))− f(s, y0(s))|2ds+M

∫∞
N |f(s, y(s))− f(s, y0(s))|2ds, (4.2)

where
M =

∫ ∞

0

∫ ∞

0
|G(x, s)|2dxds

and N is an arbitrary positive number. Further, by the condition (1.3) and the
elementary inequalities

(a+ b)2 ≤ 2(a2 + b2), (a+ b+ c)2 ≤ 3(a2 + b2 + c2),

we have

∫∞
N |f(s, y(s))− f(s, y0(s))|2ds ≤

∫∞
N [|f(s, y(s))|+ |f(s, y0(s))|]2ds

≤
∫∞
N [2g(s) + d|y(s)|+ d|y0(s)|]2ds ≤

∫∞
N [12g2(s) + 3d2|y(s)|2 + 3d2|y0(s)|2]ds

≤ 12
∫∞
N g2(s)ds+ 6d2

∫∞
0 |y(s)− y0(s)|2ds+ 9d2

∫∞
N |y0(s)|2ds.

Choose N such that∫ ∞

N
g2(s)ds <

ϵ2

48M
,

∫ ∞

N
|y0(s)|2ds <

ϵ2

36d2M
.
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Then we get

∫∞
N |f(s, y(s))− f(s, y0(s))|2ds < ϵ2

4M
+ 6d2δ2 + ϵ2

4M
. (4.3)

It is known (see [9, Chapter 1]) that under the condition (C2) the operator F defined
by Fy(x) = f(x, y(x)) is continuous in L2(0,∞). Therefore after choosing N as
above, we can find a δ0 > 0 such that ∥y − y0∥ < δ0 implies

∫N
0 |f(s, y(s))− f(s, y0(s))|2ds < ϵ2

4M
. (4.4)

Now setting

δ2 = min{ ϵ2

24d2M
, δ20},

we get from (4.2), (4.3), and (4.4) the desired result (4.1). Thus, the operator A is
continuous.

Next, let Y ⊂ L2(0,∞) be a bounded set:

∥y∥ ≤ c1 for all y ∈ Y.

We must show that A(Y ) is a relatively compact set in L2(0,∞), that is, every infinite
subset of A(Y ) has a limit point in L2(0,∞). To this end, we use the following known
criterion for relatively compactness in L2(0,∞): A set S ⊂ L2(0,∞) is relatively
compact if and only if S is bounded and for every ϵ > 0 (i) there exists a δ > 0 such
that

∫∞
0 |y(x + h) − y(x)|2dx < ϵ for all y ∈ S and all h ≥ 0 with h < δ, (ii) there

exists a number N > 0 such that
∫∞
N |y(x)|2dx < ϵ for all y ∈ S.

For all y ∈ Y , we have [see (3.6)]

∥Ay∥ ≤ ∥w∥+ {M
∫ ∞

0

∫ ∞

0
|f(s, y(s))|2ds}1/2.

On the other hand using (1.3) we have∫ ∞

0
|f(s, y(s))|2ds ≤

∫ ∞

0
[g(s) + d|y(s)|]2ds ≤ 2

∫ ∞

0
[g2(s) + d2|y(s)|2]ds

= 2(∥g∥2 + d2∥y∥2) ≤ 2(∥g∥2 + d2c21).

Therefore ∥Ay∥ ≤ ∥w∥ + {2M(∥g∥2 + d2c21)}1/2 for all y ∈ Y , that is, A(Y ) is a
bounded set in L2(0,∞).

Further, for all y ∈ Y , we have

∫∞
0 |Ay(x+ h)− Ay(x)|2dx =

∫∞
0 |

∫∞
0 [G(x+ h, s)−G(x, s)]f(s, y(s))ds|2dx

≤
∫∞
0 {

∫∞
0 |G(x+ h, s)−G(x, s)|2ds

∫∞
0 |f(s, y(s))|2ds}dx

≤ 2(∥g∥2 + d2c21)
∫∞
0

∫∞
0 |G(x+ h, s)−G(x, s)|2dxds.

Hence we get by (2.8) that for given ϵ > 0 there exists a δ > 0, depending only on ϵ,
such that ∫ ∞

0
|Ay(x+ h)− Ay(x)|2dx < ϵ2
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for all y ∈ Y and all h ≥ 0 with h < δ.
We also have, for all y ∈ Y ,∫ ∞

N
|Ay(x)|2dx ≤ 2(∥g∥2 + d2c21)

∫ ∞

N

∫ ∞

0
|G(x, s)|2dxds.

Hence we get again by (2.8) that for given ϵ > 0 there exists a positive number N ,
depending only on ϵ, such that

∫∞
N |Ay(x)|2dx < ϵ2 for all y ∈ Y .

Thus, A(Y ) is a relatively compact set in L2(0,∞). The lemma is proved.

Theorem 4.1 Assume conditions (C1), (C2), and (C3) are satisfied. In addition,
let there exist a number R > 0 such that

{
∫ ∞

0
|w(x)|2dx}1/2+{

∫ ∞

0

∫ ∞

0
|G(x, s)|2dxds}1/2{sup

y∈S

∫ ∞

0
|f(s, y(s))|2ds}1/2 ≤ R, (4.5)

where S = {y ∈ L2(0,∞) : ∥y∥ ≤ R}. Then the BVP (1.1), (1.7) has at least one
solution y ∈ L2(0,∞) with ∫ ∞

0
|y(x)|2dx ≤ R2.

Proof. Let A : L2(0,∞) → L2(0,∞) be the operator defined by (2.16). By Lemma
4.1, the operator A is completely continuous. Using (4.5), as in the proof of Theorem
3.2, we can see that A maps the set S into itself. Besides, it is obvious that the set
S is bounded, convex, and closed. Therefore, the Schauder fixed point theorem can
be applied to obtain a solution of the equation (2.15) in S. The theorem is proved.

Remark 4.1 Since for all y in S the left-hand side of (4.5) is less than or equal to

∥w∥+ {
∫ ∞

0

∫ ∞

0
|G(x, s)|2dxds}1/2{2(∥g∥2 + d2R2)}1/2,

it follows that for given R > 0 the condition (4.5) will be satisfied if the numbers d1, d2
in the boundary conditions (1.7), and the numbers ∥g∥, d in the condition (1.3) are
sufficiently small.

5 BOUNDARY VALUE PROBLEMS ON THE WHOLE
AXIS

Consider the equation

−[p(x)y′]′ + q(x)y = f(x, y), −∞ < x <∞. (5.1)

We will assume that the following conditions are satisfied.

(H1) The coefficients p(x) and q(x) are real-valued measurable functions on R =
(−∞,∞) such that ∫ b

a

dx

|p(x)|
<∞,

∫ b

a
|q(x)|dx <∞
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for all finite real numbers a and b with a < b. Moreover, the functions p(x) and q(x)
are such that all solutions of the second order linear differential equation

−[p(x)y′]′ + q(x)y = 0, −∞ < x <∞, (5.2)

belong to L2(−∞,∞).

(H2) The function f(x, ξ) is real-valued and continuous in (x, ξ) ∈ R×R, and

|f(x, ξ)| ≤ g(x) + d|ξ|

for all (x, ξ) in R×R, where g(x) ≥ 0, g ∈ L2(−∞,∞), and d is a positive constant.

Denote by D the linear manifold of all elements y ∈ L2(−∞,∞) such that Ly =
−[p(x)y′]′ + q(x)y is defined and Ly ∈ L2(−∞,∞). It follows from the Green’s
formula

∫ b
a [(Ly)z − y(Lz)](x)dx =Wb(y, z)−Wa(y, z) (5.3)

that, for all y, z ∈ D the limits

W−∞(y, z) = lim
a→−∞

Wa(y, z), W∞(y, z) = lim
b→∞

Wb(y, z)

exist as finite numbers.
Let u = u(x) and v = v(x) be solutions of (5.2) satisfying the initial conditions

u(0) = 0, u[1](0) = 1; v(0) = −1, v[1](0) = 0. (5.4)

By condition (H1) the solutions u and v belong to L2(−∞,∞), moreover, they belong
to D. Therefore for each y ∈ D the values W±∞(y, u) and W±∞(y, v) exist and are
finite. Note that for these values we have, from (5.3) and (5.4)

W−∞(y, u) = y(0)−
∫ 0

−∞
u(x)Ly(x)dx, W−∞(y, v) = y[1](0)−

∫ 0

−∞
v(x)Ly(x)dx,

W∞(y, u) = y(0) +
∫ ∞

0
u(x)Ly(x)dx, W∞(y, v) = y[1](0) +

∫ ∞

0
v(x)Ly(x)dx.

Now we supplement equation (5.1) with the following boundary conditions at −∞
and ∞:

αW−∞(y, u) + βW−∞(y, v) = d1, γW∞(y, u) + δW∞(y, v) = d2, (5.5)

where α, β, γ and δ are given real numbers satisfying the condition

(H3) ω := αδ − βγ ̸= 0,
and d1, d2 are arbitrary given real numbers.

So we look for solutions y ∈ L2(−∞,∞) of equation (5.1) satisfying the boundary
conditions (5.5).
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Let us set
φ(x) = αu(x) + βv(x), ψ(x) = γu(x) + δv(x)

and define the function

G(x, s) = − 1

ω

{
φ(x)ψ(s), if −∞ ≤ x ≤ s <∞,
φ(s)ψ(x), if −∞ ≤ s ≤ x <∞,

(1)

w(x) =
d2
ω
φ(x)− d1

ω
ψ(x).

We have ∫ ∞

−∞

∫ ∞

−∞
|G(x, s)|2dxds <∞,

∫ ∞

−∞
|w(x)|2dx <∞.

The BVP (5.1), (5.5) in L2(−∞,∞) is equivalent to the integral equation

y(x) = w(x) +
∫ ∞

−∞
G(x, s)f(s, y(s))ds, −∞ < x <∞.

Reasoning as in the previous sections we can prove the following theorems.

Theorem 5.1 Assume conditions (H1), (H2), and (H3) are satisfied. In addition,
let the function f(x, ξ) satisfy the following Lipschitz condition: there is a constant
K > 0 so that

∫∞
−∞ |f(x, y(x))− f(x, z(x))|2dx ≤ K2

∫∞
−∞ |y(x)− z(x)|2dx

for all y and z in L2(−∞,∞). If

K{
∫ ∞

−∞

∫ ∞

−∞
|G(x, s)|2dxds}1/2 < 1,

then the BVP (5.1), (5.5) has a unique solution in L2(−∞,∞).

Theorem 5.2 Assume conditions (H1), (H2), and (H3) are satisfied. In addition,
let there exist a number R > 0 such that∫ ∞

−∞
|f(x, y(x))− f(x, z(x))|2dx ≤ K2

∫ ∞

−∞
|y(x)− z(x)|2dx

for all y and z in S = {u ∈ L2(−∞,∞) : ∥u∥ ≤ R}, where K > 0 is a constant
which may depend on R. If

{
∫ ∞

−∞
|w(x)|2dx}1/2 + {

∫ ∞

−∞

∫ ∞

−∞
|G(x, s)|2dxds}1/2{sup

y∈S

∫ ∞

−∞
|f(s, y(s))|2ds}1/2 ≤ R

and
K{

∫ ∞

−∞

∫ ∞

−∞
|G(x, s)|2dxds}1/2 < 1,

then the BVP (5.1), (5.5) has a unique solution y ∈ L2(−∞,∞) with ∥y∥ ≤ R.

Theorem 5.3 Assume conditions (H1), (H2), and (H3) are satisfied. In addition,
let there exist a number R > 0 such that

{
∫ ∞

−∞
|w(x)|2dx}1/2 + {

∫ ∞

−∞

∫ ∞

−∞
|G(x, s)|2dxds}1/2{sup

y∈S

∫ ∞

−∞
|f(s, y(s))|2ds}1/2 ≤ R,

where S = {y ∈ L2(−∞,∞) : ∥y∥ ≤ R}. Then the BVP (5.1), (5.5) has at least one
solution y ∈ L2(−∞,∞) with ∥y∥ ≤ R.
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