T.C. PAMUKKALE ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ FİZİK ANABİLİM DALI

AZO BOYAR MADDELERİN YAPISAL VE BAZI SPEKTROSKOPİK ÖZELLİKLERİNİN ab-*initio* YÖNTEMİ İLE İNCELENMESİ

YÜKSEK LİSANS TEZİ

ÖZLEM TUĞRUL

DENİZLİ, HAZİRAN- 2018

T.C. PAMUKKALE ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ FİZİK ANABİLİM DALI

AZO BOYAR MADDELERİN YAPISAL VE BAZI SPEKTROSKOPİK ÖZELLİKLERİNİN ab-*initio* YÖNTEMİ İLE İNCELENMESİ

YÜKSEK LİSANS TEZİ

ÖZLEM TUĞRUL

DENİZLİ, HAZİRAN- 2018

KABUL VE ONAY SAYFASI

ÖZLEM TUĞRUL tarafından hazırlanan "Azo Boyar Maddelerin Yapısal ve Bazı Spektroskopik Özelliklerinin ab-initio Yöntemi ile İncelenmesi" adlı tez çalışmasının savunma sınavı 19.06.2018 tarihinde yapılmış olup aşağıda verilen jüri tarafından oy birliği / oy çokluğu ile Pamukkale Üniversitesi Fen Bilimleri Enstitüsü Fizik Anabilim Dalı Yüksek Lisans Tezi olarak kabul edilmiştir.

Jüri Üyeleri

İmza

Danışman Prof. Dr. Sevgi ÖZDEMİR KART

Üye Doç. Dr. Pınar TUNAY TAŞLI

Üye Dr. Öğr. Üyesi Çiğdem KARABACAK ATAY

Pamukkale Üniversitesi Fen Bilimleri Enstitüsü Yönetim Kurulu'nun $\mathcal{O}_{1,0}$ tarih ve ... $\mathcal{O}_{2,0}$ tarih ve ... $\mathcal{O}_{2,0}$ sayılı kararıyla onaylanmıştır.

Prof. Dr. Uğur YÜCEL

Fen Bilimleri Enstitüsü Müdürü

Bu tezin tasarımı, hazırlanması, yürütülmesi, araştırmalarının yapılması ve bulgularının analizlerinde bilimsel etiğe ve akademik kurallara özenle riayet edildiğini; bu çalışmanın doğrudan birincil ürünü olmayan bulguların, verilerin ve materyallerin bilimsel etiğe uygun olarak kaynak gösterildiğini ve alıntı yapılan çalışmalara atfedildiğine beyan ederim.

ÖZLEM TUĞRUL

ÖZET

AZO BOYAR MADDELERİN YAPISAL VE BAZI SPEKTROSKOPİK ÖZELLİKLERİNİN ab-*initio* YÖNTEMİ İLE İNCELENMESİ YÜKSEK LİSANS TEZİ ÖZLEM TUĞRUL PAMUKKALE ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ FİZİK ANABİLİM DALI (TEZ DANIŞMANI:PROF. DR. SEVGİ ÖZDEMİR KART) DENİZLİ, HAZİRAN - 2018

Bu tez çalışmasında, A ve B olarak adlandırılan yeni mono azo boyar maddelerinin yapı ve bazı spektroskopik özellikleri, FT-IR, ¹H-NMR, ¹³C-NMR ve UV-vis spektroskopik yöntemler yardımı ile karakterize edildi. İlgili bileşiklerin molekül seviyesinde yapısal ve titreşim özelliknlerini ve öncü molelüler orbitalleri incelemek için, 6-31G(d) temel setini kullanarak Yoğunluk Fonksiyonu Teorisi (DFT) ve Hartree-Fock (HF) yöntemlerine dayalı hesaplamalı, kuantum kimyası simülasyonları gerçekleştirildi. Ab-*initio* hesaplama sonuçları deney sonuçları ile karşılaştırıldı. FT-IR titreşim modları, potansiyel enerji dağılımı (PED) temeline göre tayin edildi. Ölçülen ve tahmin edilen titreşim frekanslarının korelasyonları birbiriyle iyi bir şekilde uyum içindedir. Deneysel ve teorik sonuçlar arasındaki uyum, DFT ve HF yöntemlerinin yapısal, spektroskopik ve elektronik özellikler için tatmin edici sonuçlar sağlayabildiğini göstermektedir.

ANAHTAR KELİMELER: Kuantum Kimyasal Hesaplama, Ab-initio Hesaplama Yöntemleri, Hartree-Fock Yöntemi, Yoğunluk Fonksiyonel Teorisi, Azo Boyar Madde.

ABSTRACT

INVESTIGATION OF STRUCTURAL AND SOME SPECTROSCOPIC PROPERTIES OF AZO DYESTUFFS BY ab-*initio* METHOD

MSC THESIS ÖZLEM TUĞRUL PAMUKKALE UNIVERSITY INSTITUTE OF SCIENCE PHYSICS (SUPERVISOR:PROF.DR. SEVGİ ÖZDEMİR KART)

DENİZLİ, JUNE 2018

The structural and some spectroscopic properties of new mono azo dyes molecules called as **A** and **B** are characterized via FT-IR, ¹H-NMR, ¹³C-NMR and UV–vis spectroscopic techniques, in this thesis. Computational quantum chemistry simulations based on Density Functional Theory (DFT) and Hartree-Fock (HF) methods, utilizing the basis set of 6-31G(d), are performed to study the molecular structure and vibrational properties and frontier molecular orbitals of the title compounds. The results of ab-*initio* computation are compared with those of the experiment. The FT-IR vibrational modes are assigned on the basis of potential energy distribution (PED). The correlations of the measured and predicted vibrational frequencies are discovered to be in good agreement with each other. A comparison between the experimental and theoretical results indicate that DFT and HF methods are able to provide satisfactory results for structural, spectroscopic and electronic properties.

KEYWORDS: Quantum Chemical Calculations, Ab-Initio Calculation Methods, Hartree-Fock Method, Density Functional Theory, Azo Dyes.

İÇİNDEKİLER

ÖZET	i
ABSTRACT	ii
İÇİNDEKİLER	iii
ŞEKİL LİSTESİ	v
TABLO LİSTESİ	vi
SEMBOL LİSTESi	vii
ÖNSÖZ	viii
1. GİRİŞ	1
2. TEORİK BİLGİLER	5
2.1 Elektromanyetik Dalgalar	5
2.2 Elektromanyetik Spektrum Bölgeleri	6
2.2.1 Radyo Dalgaları Bölgesi	6
2.2.2 Mikro Dalga Bölgesi	7
2.2.3 Kızıl Ötesi Bölgesi	7
2.2.4 Görünür ve Morötesi (UV) Bölgesi	7
2.2.5 X-Işınları Bölgesi	7
2.2.6 γ-Işınları Bölgesi	8
2.3 Molekül Titreşim Spektroskopisi	8
2.4 Molekül Titreşim Türleri	9
2.4.1 Gerilme Titreşimleri (Streching)	9
2.4.2 Açı Bükülme Titreşimleri (Bending)	9
2.4.3 Düzlem Dışı Açı Bükülmesi (out of plane wending)	10
2.4.4 Burulma (Torsion)	10
2.5 Kızılötesi Spektroskopisi	11
2.6 Morötesi ve Görünür Bölge (UV-Vis) Spektroskopisi	14
2.6.1 Morötesi ve Görünür Bölge (UV-Vis) Soğurma Türleri	16
2.7 Nükleer Manyetik Rezonans (NMR) Spektroskopisi	17
3. HESAPLAMA YÖNTEMİ	22
3.1 Bilgisayar Hesaplamalı Moleküler Spektroskopi	22
3.1.1 Moleküler Mekanik Metot	22
3.1.2 Elektronik Yapı Metodu	23
3.2 Yarı Deneysel Metotlar	23
3.3 ab-initio Metotları	23
3.4 Hartree-Fock Yöntemi	25
3.5 Yoğunluk Fonksiyonel Teorisi (DFT)	28
3.6 B3LYP Karma – Yoğunluk Fonksiyonel Teorisi	30
3.7 Temel Setler	31
3.8 HOMO-LUMO Moleküler Orbitalleri	32
4. MATERYAL ve HESAPLAMA DETAYLARI	34
4.1 5-amino-4-[4-(dimetilamino)fenil]diazenil]-pirazol-3-ol	
molekülünün (A Molekülü) sentezlenmesi	34
4.2 5-amino-4-[4-(dimetilamino)fenil]diazenil]-2-fenil-pirazol-3-on	
molekülünün (B Molekülü) sentezlenmesi	34
4.3 Deneysel Ekipmanlar	35
4.4 Çalışmada İzlenen Hesaplama Yöntemleri	36

5. BULGULAR	
5.1 Moleküllerin Yapısal Özellikleri	
5.2 Titreşim Spektroskopi Analizi	
5.2.1 O-H Titreșimleri	
5.2.2 N-H Titreşimleri	
5.2.3 C-H Titreşimleri	61
5.2.4 N=N Titreşimleri	61
5.3 NMR Spektrum Analizi	
5.4 Morötesi ve Görünür (UV-Vis) Bölge Spektroskopi Analizi	
5.5 HOMO-LUMO Moleküler Orbital Analiz	73
5.6 Moleküler Elektrostatik Potansiyel Yüzey Analizi	76
6. SONUC VE ÖNERİLER	
7. KAYNAKLAR	
8. ÖZGEÇMİŞ	

ŞEKİL LİSTESİ

Şekil 2.1: Elektromanyetik dalgalar.	5
Şekil 2.2: Moleküler titreşim türleri	.11
Şekil 2.3: Fourier dönüşümlü IR spektrofotometresinin şematik gösterimi	.13
Şekil 2.4 :Tek ve çift ışınlı fotometrelerin şematik görünümleri	.15
Şekil 2.5: NMR spektrometresinin şematik gösterimi	.18
Şekil 2.6: Manyetik alanda nükleer Zeeman seviyelerinin yarılması	.21
Sekil 3.1: Temel Setlerin Tanımlanması	.32
Şekil 4.1: A ve B moleküllerinin sentezlenme şeması	.35
Şekil 4.2: A ve B bileşiklerinin tautomerik yapıları.	.36
Şekil 5.1 : Molekül A için DFT/B3LYP/6-31G(d) metodu ile dengeye gelmiş	Ş
moleküler yapı.	, .39
Şekil 5.2: Molekül B için DFT/B3LYP/6-31G(d) metodu ile dengeye gelmiş	
moleküler yapı.	. 39
Şekil 5.3: A molekülü a) DFT/B3LYP/6-31G(d) ve b) HF/6-31G(d) teorik	
FT-IR spektrumları	.48
Şekil 5.4: B molekülü a) DFT/B3LYP/6-31G(d) ve b) HF/6-31G(d) teorik	
FT-IR spektrumları	.49
Şekil 5.5: A molekülü için teorik a) DFT/B3LYP ve b) HF metotları ile	
hesaplanmış dalga sayılarının deneysel değerleri ile korelasyon	
ilişkisi.	.63
Şekil 5.6: B molekülü için teorik a) DFT/B3LYP ve b) HF metotları ile	
hesaplanmış dalga sayılarının deneysel değerleri ile korelasyon	
ilişkisi.	. 64
Şekil 5.7: Deneysel ¹ H-NMR spektrumları a) A molekülü b) B molekülü	.65
Şekil 5.8: A molekülü Farklı çözücülerde UV-Vis Spektrumu a) Deneysel	
b)DFT/B3LYP c) HF	.70
Şekil 5.9: B molekülü Farklı çözücülerde UV-Vis Spektrumu a)Deneysel	
b)DFT/B3LYP c)HF.	.71
Şekil 5.10: A molekülünün a) DFT/B3LYP b)HF B3LYP seviyesiyle	
hesaplanmış HOMO-LUMO orbitalleri.	.74
Şekil 5.11 : B molekülünün a) DFT/B3LYP b)HF B3LYP seviyesiyle	
hesaplanmış HOMO-LUMO orbitalleri	.75
Şekil 5.12 : a) A Molekülüne, b) B Molekülüne ait DFT/ B3LYP seviyesi ile	
hesaplanmış MEPs haritası.	.77

TABLO LÍSTESÍ

Tablo 2.1: Elektromanyetik spektrum bölgeleri	6
Tablo 2.2 :Bazı fonksiyonel grupların frekansları	14
Tablo 3.1: Enerji türevlerinden fiziksel büyüklüklerin hesaplanması	24
Tablo 5.1: DFT/B3LYP ve HF metodları ile hesaplanan A molekülünün bağ	
uzunluğu (A^0)	40
Tablo 5.2: DFT/B3LYP ve HF metodları ile hesaplanan A molekülünün bağ	
açıları (⁰)	41
Tablo 5.3: DFT/B3LYP ve HF metodları ile hesaplanan A molekülünün	
dihedral açıları (⁰)	42
Tablo 5.4: DFT/B3LYP ve HF metodları ile hesaplanan B molekülünün bağ	
uzunluğu (A ⁰).	43
Tablo 5.5: DFT/B3LYP ve HF metodları ile hesaplanan A molekülünün bağ	
açıları (⁰)	44
Tablo 5.6: DFT/B3LYP ve HF metodları ile hesaplanan B molekülünün	
dihedral açıları([°])	45
Tablo 5.7: A molekülüne ait deneysel ve 6-31G(d) baz setini kullanarak	
DFT/B3LYP ve HF metoduyla hesaplanmış teorik FT-IR (cm ⁻¹),	
IR şiddetleri (km/mol) ve DFT/B3LYP ile elde edilen titreşim	
dalga sayılarının PED ile işaretlemeleri	50
Tablo 5.8: B molekülüne ait deneysel ve 6-31G(d) baz setini kullanarak	
DFT/B3LYP ve HF metoduyla hesaplanmış teorik FT-IR (cm-1)	,
IR şiddetleri (km/mol) ve DF I/B3L YP ile elde edilen titreşim	- 1
dalga sayılarının PED ile işaretlemeleri.	54
1 abio 5.9: DF1/B3LYP ve HF yontemierinden eide editenterie F1-IK	60
Table 5 10: A ve B meleküllerinin DMSO eğrücüsü erteminde öleülmüs	00
DET vo HE motodlari ilo hosonlanmis ¹ U NMP kimvasal kavma	
değerleri d (npm)	66
Tablo 5 11: A molekülü join DMSO cözücü ortamında denevsel	00
DET/B3I VP ve HE metodlarivla hesanlanan 1 H ve 13 C NMR 'in	
TMS 've göre kimvasal kavma değerleri d (nnm)	67
Tablo 5 12. B molekülü icin DMSO cözücü ortamında denevsel	07
DET/B3LYP ve HF metodlarivla hesaplanan 1 H ve 13 C NMR 'in	
TMS 've göre kimvasal kavma değerleri d (ppm)	58
Tablo 5.13: A ve B moleküllerinin UV-vis dalgalarını maksimum soğurduğu	,0
dalga boylarının λ_{max} (nm), denevsel ve DFT/B3LYP metodu ile	•
hesaplanan değerleri	'2
Tablo 5.14: Gaz fazında belirlenen DFT ve HF yöntemleri ile A ve B	
moleküllerinin hesaplanmış toplam (E _{toplam}), HOMO (E _{HOMO})	
ve LUMO (E_{LUMO}) energi düzeyleri, energi band aralığı (ΔE) ve	
dipol momoenleri (μ)	3
•	

SEMBOL LİSTESi

ν	:	Gerilme	
δ	:	Düzlem içi açı bükülme	
γ	:	Düzlemdışı açı bükülme	
τ	:	Burulma	
ρ	:	Elektron yoğunluğu	
$\stackrel{{}_\circ}{H}$:	Hamiltonyen işlemcisi	
Ψ	:	Dalga fonksiyonu	
Ε	:	Molekülün toplam enerjisi	
E ^X	:	Değiş-tokuş enerjisi	
E _{B3LYP}	:	B3LYP enerjisi	
λ	:	Dalga boyu	
V	:	Frekans	
k	:	Dalga sayısı	
XC	:	Değiş-tokuş korelasyon terimi	
FT-IR	:	Fourier Dönüşümlü Kızılötesi spektrumu	
UV-vis	:	Morötesi ve Görünür Bölge Spektrumu	
NMR	:	Nükleer Manyetik Rezonans	
PED	:	Potential Energy Distrubution	
		(Potansiyel Enerji Dağılımı)	
GTO	:	Gaussian Tipi Orbitaller	
STO	:	Slater Tipi Orbitaller	
HOMO	:	Elektronlar tarafından doldurulmuş en üst orbital	
LUMO	:	Elektronlar tarafından doldurulmamış en alt orbital	
MEPs	:	Moleküler elektrostatik potansiyel haritaları	
HF	:	Hartree-Fock (Öz-Uyumlu Alan)Teorisi	
DFT	:	Density Functional Theory	
		(Yoğunluk Fonksiyonel Teori)	

ÖNSÖZ

Çalışmalarım sırasında her türlü desteğini aldığım, bilgi ve tecrübelerinden faydalandığım, ilgi ve yardımlarını esirgemeyen, değerli danışmanım Prof. Dr. Sevgi ÖZDEMİR KART' a ve yardımlarından dolayı hocam Doç. Dr. H. Hüseyin KART' a teşekkürlerimi sunarım.

Bu tez çalışmasında kullanılan kimyasal moleküllerin sentezi ve deneysel karekterizasyonunda büyük emeği geçen değerli hocalarım Dr. Öğr.Üyesi Çiğdem KARABACAK ATAY ve Prof. Dr.Tahir TİLKİ' ye teşekkürü bir borç bilirim.

Maddi, manevi desteklerini esirgemeyen; canım çocuklarıma, değerli eşime, varlığıyla güç veren anne ve babama teşekkürlerimi sunmayı bir borç bilirim.

1. GİRİŞ

Doğal boyar maddeler çok eski tarihlere dayanmakla birlikte, sentetik olanların tarihi ancak 1856 yılına kadar uzanmaktadır. Bu tarihten sonra çok hızlı bir gelişim süreci gösteren boyar madde endüstrisi, günümüzde çok farklı türde boyar madde üretebilmektedir. Azo boyar maddelerin üretimi 1870 yılında başlamış ve 1880 yılında tekstil ürünleri üzerinde geliştirilirken, 1912 yıllarında azo boyar maddelerinin metal kompleksleri sentezlenmeye başlanmıştır. 1950'den sonra ise heterosiklik bileşiklerden reaktif boyar maddeler elde edilebilmiş böylece dayanıklılıkları (haslıkları) çok daha artan boyar maddelerin en önemli sınıfını oluşturan, azo boyalarının sayısı, diğer boyar madde sınıflarının tümünün toplamına eşittir. Kükürt ve küpe (karbonil grubu içeren ve suda çözünmeyen) boyar maddeleri dışında, diğer tüm boyama yöntemlerinde kullanılan boyarmaddelerin yapısında azo grubuna rastlanır.

Azo boyar maddeler, yapılarındaki kromofor grubu olan, azo (-N = N-)grubu ile karakterize edilmektedirler. Karbon atomları, sp² hibritleşmesine uğrayan azot atomları ile bağlanır. Azo grubuna bağlanan bu karbon atomlarından biri aromatik veya heterosiklik halka, diğeri ise enolleşebilen alifatik zincire bağlı bir grup olabilir. Bu nedenle, azo boyar moleküllerde en az bir aril grubu bulunur. Enol, bir alken molekülünde ikili bağın bulunduğu karbon atomlarından birine hidroksil grubunun bağlanmasıyla oluşan bileşiktir. Azo boyar maddeleri genel olarak, Ar - N = N - R biçiminde formülize edilmektedir. Burada Ar; Aromatik halkayı ve R; Aril, heteroaril veya enolleşebilen alkil grubunu ifade eder. Doğal boyar maddelerin hiçbirinde azo grubuna rastlanmaz. Başka bir deyişle, bu sınıf boyar maddelerin hepsi sentetik olarak elde edilir. Ayrıca, sentezlerinin sulu çözelti içinde ve basit olarak elde edilebilmesi, başlangıç maddelerinin sınırsız olarak değiştirilebilmesi, çok sayıda azo bayar molekülün elde edilebilmesini mümkün kılmaktadır (Başer ve İnanıcı 1990). Azo boyar maddeler, yapısında bulunan azo grubun sayısına bağlı olarak isimlendirilirler:

- Monoazo boyar maddeler: Bir azo grubu taşır.
- Diazo boyar maddeler: İki azo grubu taşır.
- Triazo boyar maddeler: Üç azo grubu taşır.
- > Poliazo boyar maddeler: Üçten fazla azo grubu taşır.

Kimyasal bileşiklerin bir sınıfı olan azo bileşikleri, bilimsel çalışmaların yoğun bir şekilde dikkatini çekmektedir (Kirkan ve Gup 2008; Seferoğlu 2009). Genelde azo bileşikleri molekülün yapısına bağlı olarak sarı, kırmızı, turuncu, mavi ve yeşil parlak renkli bileşiklerdir. Uzun süreden beri, bu renkli özelliklerinden dolayı bu maddeler boya ve pigment olarak oldukça öneme sahiptir (Ebenso ve diğ. 2008).

Son yıllarda, organik boya olarak azo bileşikleri moleküler bilgi depolama, lineer olmayan optik elamanları ve organik foto iletkenlerle ilgili uygulama alanlarında ilginç elektronik özellikler göstermelerinden dolayı oldukça dikkat çekmişlerdir. Bugün kullanılan diazonyum tuzlarından elde edilen azo boyaların yarısına yakını endüstride kullanılmaktadır (Robert ve diğ. 2011; Zollinger 2003). Azo boyaları, duyarlı güneş pilleri (Prajongtat ve diğ. 2017), doğrusal olmayan optik sistemler (Borbone ve diğ. 2011), metalokromik indikatörler (Woodward ve diğ. 1973), algılayıcılar (Coelho ve diğ. 2018), fotokromik malzemeler (Mahmoodi ve diğ. 2017) gibi uygulamalarından dolayı sentezlenmiş endüstriyel organik boyalar olarak yaygın şekilde kullanılmaktadır. Bunun yanında, sıvı kristalli ekran (Huang ve diğ. 2004), foto-duyarlaştırıcılar (Adilee ve diğ. 2016), biyolojik-tıbbi çalışmalar (El-Sonbati ve diğ. 2017) ve elektro-optik cihazlar ve mürekkep püskürtmeli yazıcılarda (Kiani ve diğ. 2016) da kullanılmaktadır. Ayrıca azo boyaları optik kayıt ortamı (Samieh ve diğ. 2008), toner (Kirkan ve Gup 2008), ink-jet yazıcı (Gregory ve diğ. 1990), yağ çözücü olarak uygulama alanı bulan termal ve optik özelliklerinden dolayı yaygın bir şekilde çalışılmaktadır. Ek olarak, azo boyaları pamuk, ipek, yün, viskoz ve sentetik lifler gibi tekstil liflerinin boyanmasında kullanılır (Chen ve diğ. 2017). Bu kimyasal materyallerin kullanımı kolaydır, nispeten ucuzdur ve güçlü renkler sağlarlar. Son olarak, azo boyaları kimyasal maddeler, anti-bakteriyel, antifungal, anti-tümör, antioksidan aktiviteler gibi tıbbi ve farmakoloji gibi

potansiyel uygulamalara da sahiptir (Khanmohammadi ve diğ. 2017; Mohammadi ve diğ. 2015; Gouda ve diğ. 2016).

Azo boyalarının yapılarında, foto-fiziksel ve foto-kimyasal özelliklerinin eşsiz bir şekilde ortaya çıktığı proton (tautomerizasyon) süreci olduğu bilinmektedir (Gilani ve diğ. 2017). Azo boya malzemeleri üzerine birçok çalışma olmasına rağmen, azo boyar malzemelerinin yapısal ve elektronik özelliklerini açıklığa kavuşturmak için hem deneysel teknikleri hem de teorik yöntemleri kullanarak yeni azo boyalarını sentezlemek ve bunları karakterize etmek gereklidir. Kuantum kimyasal hesaplama yöntemleri (Ramachandran ve diğ. 2008; Jensen 2007; Cramer 2004; Lewars 2016) malzemelerin yapısal, titreşimsel ve elektronik özelliklerini tanımlamak ve aydınlatmak için çok yararlı araçlardır.

Deneysel veriler, makul doğrulukla teorik hesaplamalar ile güçlendirilebilir. Bu noktada, deneysel çalışmaların veya bulguların güvenilirliği, teorik yöntemlerin bulgularla desteklendiği zaman artmaktadır. Bu nedenlerle teorik çalışmalara ilgi her geçen gün artmaktadır. Hesaplamalı kuantum kimyası yöntemleri azo boyalarının ve diğer birçok kimyasal bileşiklerin yapılarını ve spektroskopik özelliklerini tayin etmek için kullanılır.

Önceki çalışmalarda, (Karabacak ve Dilek 2014; Karabacak Atay ve diğ. 2016; Karabacak Atay ve diğ. 2017), bir dizi disazo ve mono azo boyasının yapısal ve spektroskopik özellikleri kuantum kimyasal hesaplama yöntemleri kullanarak araştırıldı. Şener ve diğerleri, pirazol iskeleti ile disazo boyalarını sentezlemişlerdir ve FT-IR, ¹H-NMR ve ¹³C-NMR gibi deneysel karakterizasyon teknikleri ve teorik yaklaşımları kullanarak yapılarını ve spektroskopik özelliklerini karakterize etmişlerdir (Şener ve diğ. 2017). Yıldırım ve diğerleri yeni kumarin bazlı di-azo boyaları sentezlemiş ve teorik kuantum hesaplama yöntemlerinin yanı sıra deneysel tekniklerle yapısal ve spektroskopik özelliklerini netleştirmişlerdir (Yıldırım ve diğ. 2016).

Bu çalışmanın temel amacı, yeni sentezlenmiş monoazo boyaların yapısal ve bazı spektroskopik özelliklerini, Yoğunluk Fonksiyonel Teorisi (Density Functional Theory, DFT) ve Hartree-Fock (HF) Teorisi bazlı ab-*initio* kuantum hesaplama yöntemlerini kullanarak incelemektir. Yeni sentezlenen iki monoazo boyar maddeler aşağıda verilmektedir;

A Molekülü: 5-amino-4- [4- (dimetilamino) fenil] diazenil] pirazol-3-ol,

B Molekülü: 5-amino-4- [4- (dimetilamino) fenil] diazenil] -2-fenil-pirazol-3-on.

Bu çalışmada, bu moleküllerin bağ uzunluğu, bağ açısı ve dihedral açısı gibi yapısal özellikler, titreşim frekansları, FT-IR, ¹H-NMR, ¹³C-NMR ve UV-vis gibi spektroskopik özellikleri ilk defa karakterize edildi.

Gaussian 09 hazır paket programında (Frisch ve diğ. 2009) uyarlanan ab*initio* hesaplama yöntemi kullanılarak, A ve B azo boyar molekülleri karakterize edebilmek için aşağıdaki işlem sıralamaları uygulandı:

- Üç boyutlu şekli oluşturuldu,
- Denge durum geometrisi elde edildi,
- Denge durum enerjisi hesaplandı,
- FT-IR, UV-vis ve NMR spektroskopik yöntemleri ile enerjileri, bağ uzunlukları, bağ açıları, titreşim modlarına ilişkin veriler elde edildi,
- Elde edilen bulguların deneysel verileriyle karşılaştırılması yapıldı.

Bu tez çalışmasında, Bölüm 2'de temel bilgiler verilip, bazı spektroskopik yöntemler açıklanmış olup, Bölüm 3'de teorik hesaplama yöntemleri olan DFT ve HF teoremleri tanıtıldı. Bölüm 4'de bu çalışmada kullanılan materyal ve hesaplama detayları hakkında detaylı bilgi verildi. Bölüm 5'de elde edilen teorik hesaplama bulguları verilip, deneysel verilerle karşılaştırıldı ve yorumlandı. Son olarak, çalışmanın önemi ve elde edilen sonuçlar Bölüm 6'da verildi.

2. TEORİK BİLGİLER

2.1 Elektromanyetik Dalgalar

Durgun bir q yükü, kendisinden r kadar uzaklıkta statik bir elektrik alan oluşturur. Hareketli bir elektrik yükü ise etrafında, elektrik alanın yanında bir de manyetik alan meydana getirir. Bu elektrik ve manyetik alanın bileşkesi, elektromanyetik dalgayı üretir (Alonso ve Finn, 1975). Elektromanyetik dalga, maddesel ortama ihtiyaç duymadan, elektrik alan ile manyetik alanın birbirine dik, sinüzoidal bir şekilde ilerlediği ve yayıldığı maddesel dalgalardır.

Şekil 2.1: Elektromanyetik dalgalar.

Şekil 2.1'de, λ elektromanyetik dalga boyunu, E elektrik alanı ve B manyetik alanı temsil etmektedir. İvmeli olarak hareket eden q yükünün meydana getirdiği elektromanyetik dalga bir enerji taşır. Elektromanyetik dalga tarafından taşınan enerjiye, elektromanyetik ışıma denir. Bir yükün sabit hızla ilerlemesi veya durgun olması durumunda elektromanyetik ışıma olmaz. Bunun nedeni, zamanla elektromanyetik dalga enerjisinin değişmemesidir.

2.2 Elektromanyetik Spektrum Bölgeleri

Maddeyi oluşturan moleküllerle elektromanyetik dalganın etkileşmesi sonucunda molekülün değişik enerji düzeyleri arasında geçişine sebep olur. Bu geçişler maddeye gönderilen elektromanyetik dalganın enerjisine bağlı olarak değişik spektrum bölgeleri meydana getirir (Chang 1971). Elektromanyetik dalgalar oluşma biçimlerine göre isimlendirilerek frekanslarıyla ya da dalgaboylarıyla tanımlanırlar. Tablo 2.1'de elektromanyetik spektrum bölgeleri ve ilgili spektrosopi türü verildi.

BÖLGE	DALGABOYU	FREKANS ARALIĞI	SPEKTROSKOPİ TÜRÜ
Radyo dalgaları	10 m - 1m	$10^{6} - 10^{8}$	NMR ve NQR
Mikrodalga	1 cm – 100 μm	$10^{10} - 10^{12}$	ESR ve Moleküler Dönme
Kızılötesi	$100~\mu-1~\mu m$	$10^{12} - 3.10^{14}$	Moleküler titreşim spektroskopisi
Görünür ve morötesi	$1 \mu m - 10 n$	$3.10^{14} - 10^{16}$	Mor ötesi -Görünür bölge spektroskopisi
X- ışınları	100 nm – 100 pm	$3.10^{14} - 10^{18}$	X- ışınları
γ- ışınları	100 pm – 1pm	$3.10^{18} - 10^{20}$	Mössbauer spektroskopisi

Tablo 2.1: Elektromanyetik spektrum bölgeleri.

2.2.1 Radyo Dalgaları Bölgesi

Dalga boyu 10 m - 1 m ve frekansı $10^6 - 10^8 Hz$ aralığında olan bölgedir. En uzun dalga boyuna sahiptirler, bu nedenle de sıcaklıkları ve enerjileri en düşüktür. Enerji değişimi 0,001-10 J/mol aralığındadır ve bu aralık, Elektron Spin Rezonans (ESR) ve Nükleer Manyetik Rezonans (NMR) spektroskopilerinin çalışması için uygundur (Apaydın 1991).

2.2.2 Mikro Dalga Bölgesi

Dalga boyu 1 $cm - 100 \mu m$ ve frekansı $10^{10} - 10^{12} Hz$ aralığında olan bölgedir. Bu bölgede, molekülün dönme hareketinden kaynaklanan dönme enerji seviyeleri incelenir. Mikrodalgalar, atom ve moleküllerle etkileşerek, onların hareketleri sırasında sürtünme nedeniyle ısı enerjisinin çıkmasına neden olurlar.

2.2.3 Kızıl Ötesi Bölgesi

Dalga boyları $100 \mu - 1 \mu m$ ve frekansları $10^{12} - 3 \times 10^{14} Hz$ frekans aralığında olan bölgedir. Sıcak cisimler tarafından oluşturulan bu dalgalar, çoğu maddelerce kolaylıkla soğurulurlar. Kızıl ötesi ışınları soğuran cisimlerde de ısı enerjisi olarak kendini gösterirken, buna bağlı olarak sıcaklığı artar.

2.2.4 Görünür ve Morötesi (UV) Bölgesi

Spektrumun bu bölgesi, atom veya molekülün dış kabuğundaki elektronların farklı enerji düzeyleri arasındaki geçiş esasına dayanır. Bu nedenle, bu bölgedeki spektroskopiye "elektron spektroskopisi" denir. Mor-ötesi ışınlar görünür bölge dışındadır ve insan gözü tarafından algılanmaz.

2.2.5 X-Işınları Bölgesi

X-ışınları, atom ya da moleküllerde, iç yörüngelerdeki elektronların seviye atlamalarıyla oluşur. Spektrumun bu bölgesindeki ışınlar yüksek enerji taşıdıklarından canlılara zarar verir. X ışınlarının dalga boyları, kristal yapıdaki atomlar arası uzaklık (d \approx 1 Å) boyutunda olduğu için, kristal yapı incelemelerinde kullanılır.

2.2.6 γ-Işınları Bölgesi

 $100 \ pm - 1 \ pm$ dalga boylu ve $10^{18} \ Hz - 10^{20} \ Hz$ frekans değerleri ile en geniş aralıktaki spektrum bölgesidir. Radyoaktif çekirdeklerin belirli nükleer tepkimeler boyunca yaydığı elektromanyetik dalgalardır. Canlılar, dokularınca emildiğinde zarar gördüğü bu ışınlardan, kurşun bloklar ile korunurlar.

2.3 Molekül Titreşim Spektroskopisi

Spektroskopi, madde ile elektromanyetik dalganın etkileşmesini inceleyen bilim dalına denir (Woodward 1972). Söz konusu madde; atom, molekül, elektron ya da iyon olabilir. Maddenin, elektromanyetik ışıma ile kendine özgü bir ilişkisi vardır. Bu tür incelemelerin sonucunda, molekülün yapısıyla ilgili olarak; simetri, bağ uzunluğu, bağlar arasındaki açılar hakkında bilgilerle birlikte, molekülün fiziksel ve kimyasal yapısı hakkında da bilgi elde edilir. Moleküler yapının taban durumu geometrisine bağlı olarak molekülün titreşim modlarını bulmak, titreşim analizinde temel amaçtır.

Serbest bir molekül için toplam enerji; öteleme, dönme, titreşim, elektronik ve nükleer dönme enerjileri olmak üzere beş kısımda ele alınır. Bunlardan öteleme enerjisi sürekli bir enerji olduğu için dikkate alınmaz. Nükleer dönme enerjisi ise diğerlerinin yanında çok küçük olduğundan ihmal edilebilir (Whiffen 1971).

Born-Oppenheimer yaklaşımı, titreşim, dönme ve elektronik enerjilerinin birbirinden çok farklı olduğunu varsayar. Buna göre toplam enerji; titreşim, dönme ve elektronik enerjilerinin toplamı şeklinde yazılabilir (Bransden ve Joachim 1983).

$$E_T = E_{tit} + E_{don} + E_{elek} \qquad (2.1)$$

Titreşim seviyeleri elektronik seviyelerinden 10³ kez daha yakındır. Yaklaşık olarak, bu enerji aralıklarının birbiriyle karşılaştırılması;

$$\Delta E_{elek} \approx \Delta E_{tit} \times 10^3 \approx \Delta E_{dön} \times 10^6 , \qquad (2.2)$$

biçimindedir (Banwell 1983).

2.4 Molekül Titreşim Türleri

N tane atoma sahip bir molekül ekseni, doğrusal ise 3N-5 tane, doğrusal değilse 3N-6 tane türde titreşim kipine sahiptir. Çok atomlu moleküllerin titreşim hareketini dört gruba ayırarak incelenebilir (Alpert ve diğ. 1964):

- 1. Gerilme titreşimleri;
 - a-) Simetrik gerilme,
 - b-) Anti simetrik (asimetrik) gerilme.
- 2. Açı bükülme titreşimleri;
 - a-) Makaslama,
 - b-) Sallanma,
 - c-) Dalgalanma,
 - d-) Kıvrılma.
- 3. Düzlem dışı açı bükülmesi.
- 4. Burulma.

Moleküler titreşim türlerinin davranış biçimleri Şekil 2.2'de gösterildi (Bishop 1973; Gündüz 2002; Pavia ve diğ. 2009; Ertuğrul 2011; Öztürk 2011).

2.4.1 Gerilme Titreşimleri (Streching)

Bağ ekseni doğrultusunda bulunan molekülün, periyodik olarak uzama kısalma hareketidir. Yer değiştirme vektörü bağ uzunluğundaki değişmeyi verir. Molekülün tüm bağlarının uzaması ya da kısalması hareketine simetrik gerilme titreşimi denir. Bağların biri veya birkaçı uzarken diğerinin kısalmasına durumunda ise harekete asimetrik gerilme denir. Gerilme titreşimleri, v ile gösterilir.

2.4.2 Açı Bükülme Titreşimleri (Bending)

Molekülde üç atomu birbirine bağlayan, iki bağ arasındaki açının periyodik olarak değişmesi sonucu oluşan titreşim hareketidir. Yer değiştirme vektörleri, bağ doğrultusuna diktir. Açı bükülme titreşimleri, δ ile gösterilir ve dört grupta incelenir: **a) Makaslama (Scissoring):** Molekülün bulunduğu düzlem içinde, bağ uzunlukları değişmeden, iki bağ arasındaki açının periyodik olarak artıp azaldığı titreşim hareketidir. Yer değiştirme vektörleri bağa dik doğrultuda ve zıt yöndedir. δ ile gösterilir.

b) Sallanma (Rocking): İki bağ arasındaki veya bir bağ ile bir grup atom arasındaki açının yer değiştirmesidir. Yer değiştirme vektörleri birbirini takip edecek yöndedir. Bağ uzunluğu ve açının değeri değişmez. ρ ile gösterilir.

c) **Dalgalanma (Wagging):** Bir bağa bağlı atom ya da atom grubu ile molekül düzlemi arasındaki açının değişimi olarak tanımlanır. Molekülün tüm atomları denge konumunda düzlemsel iken, bir atomun bu düzleme dik hareket etmesidir ve *w* ile gösterilir.

d) **Kıvırma (Twisting):** Doğrusal ve düzlemsel olmayan moleküllerde bağların atom tarafından bükülmesi ile oluşan titreşim türüdür. Yer değiştirme vektörü bağ doğrultusuna diktir. Burada bağın deformasyonu söz konusu değildir ve *t* ile gösterilir.

2.4.3 Düzlem Dışı Açı Bükülmesi (out of plane angle bending)

Atomların düzleme dik bir biçimde, birbirlerine zıt yönde hareket etmeleri sonucunda oluşan ve düzlemin yok olmasına neden olan titreşim hareketidir. Düzlem dışı açı bükülme hareketi γ ile gösterilir.

2.4.4 Burulma (Torsion)

İki düzlem arasındaki açının bir bağ veya açıyı deforme ederek, periyodik olarak değişim hareketi olarak tanımlanır ve τ ile gösterilir.

Şekil 2.2: Moleküler titreşim türleri (Öztürk, 2011).

2.5 Kızılötesi Spektroskopisi

Kızılötesi (IR) bölgede elektromanyetik ışının madde ile etkileşimini, kızılötesi spektroskopisi inceler. Kızılötesi spektroskopinde, kızılötesi bölgede elektromanyetik ışın, numune üzerine gönderilir, geçen ya da soğurulan ışın incelenir (Atkins 1985). Bir elektromanyetik dalga numuneye gönderildiği zaman, numune elektromanyetik dalganın bir bölümünü enerji olarak soğurur. Soğurulan bu enerji, soğurma spektrumudur. Kızılötesi spektroskopisi kimyasal yapının incelenmesinde kullanılan önemli tekniklerden birisidir. En önemli avantajlarından birisi de molekülün her faz durumunda çalışılması için imkân sağlamasıdır (Stuart 2004). Soğurulma miktarı incelenen numuneye göre değişiklik gösterir. Bu değişim numunenin miktarına, yapısına ve gönderilen ışının dalga boyuna bağlıdır. Geçen ışık şiddetinin, dalga sayısının fonksiyonu olarak çizilmesi ile kızılötesi spektrumu elde edilir. Dalga sayısı birimi (cm⁻¹) ve birim uzunluk başına düşen dalga sayısı olarak tanımlanır. Dalga sayısı (\hbar) ve dalga boyu (λ) birbirine dönüştürülebilir:

$$k = 1/\lambda \qquad (2.3)$$

İki atomlu bir molekülün, basit harmonik osilatör gibi davrandığı kabulü ile titreşim enerjisi, Schrödinger dalga denkleminin çözümünden:

$$E_{tit} = (n + 1/2)hv$$
, (2.4)

olarak bulunur. Bu durumda frekans:

$$v = \frac{1}{2\pi} \sqrt{\frac{k}{\mu}} \quad , \tag{2.5}$$

ile verilir. Burada, *k* kuvvet sabiti, μ sistemin indirgenmiş kütlesidir. Bu ifadede n sıfırdan itibaren tüm sayıları alabilen kuantum sayısıdır. $\Delta \upsilon = \pm 1$ geçiş kuralı olmak üzere dalga sayısı cinsinden titreşim enerjisi:

$$\bar{E} = \Re \left(n + \frac{1}{2} \right)$$
 (2.6)

şeklindedir. Böylece dalga sayısı da aşağıdaki denklem ile verilir:

$$\mathscr{k} = \frac{1}{2\pi c} \sqrt{\frac{k}{\mu}} \qquad . \tag{2.7}$$

Taban durumunda (n=0) titreşim enerjisi $E_{tit} = \frac{1}{2}hv$ olup, sıfır nokta enerjisidir. Dönme enerjisinin en küçük değeri de sıfırdır, fakat en küçük titreşim enerjisi $E_{tit} = \frac{1}{2}hv$ olup, mutlak sıfırda bile sıfır değildir. Bu Heisenberg belirsizlik ilkesine de uygundur (Yurdakul 2010). Kızılötesi spektrumları alınırken, sağladığı avantajlar nedeniyle Fourier dönüşümlü spektrometreler (FT-IR) tercih edilmektedir. FT-IR yönteminde her dalga boyu tek tek tarama gerektirmez. Böylece yarık veya prizma kullanılmadığından, duyarlık değişmez ve yüksek ayırmalı spektrum birkaç saniyede kaydedilir (Woodward 1972). IR spektroskopisinde monokromatörden geçirilen ışın tek dalga boyuna indirilir. FT-IR spektrometresinde ise ışık iki demete ayrılır, sonra bu kısımlar birleştirilip girişim deseni oluşturan Michelson interferometresi (girişim ölçeri) kullanılır.

Şekil 2.3'de görüldüğü gibi, kaynağın yayınladığı monokromatik ışın, B'nin M1 ve M2 aynalarına olan uzaklığına bağlı olarak, yapıcı veya yıkıcı girişim meydana getirir. Burada, B'de yol farkı dalga boyunun tam katları ise yapıcı girişim, eğer yol farkı dalga boyunun katları değilse yıkıcı girişim oluşur. Hareketli olan M2 aynası B'den uzaklaştıkça ya da B'ye yaklaştıkça dedektör ışınımın şiddetindeki değişimi algılanır. Kaynağın v_1 ve v_2 frekanslı iki farklı monokromatik ışın yayması durumunda, M1 ve M2 aynaları tarafından gerçekleştirilen girişim v_1 ve v_2 frekanslarının farklı olması ile daha karmaşık bir hal alır. Bu da matematiksel Fourier dönüşüm yapılarak basitleştirilir. Burada aynanın zamana karşı hareketi çok-kanallı bilgisayar yardımıyla dedektörden gelen sinyalleri toplar.

Şekil 2.3: Fourier dönüşümlü IR spektrofotometresinin şematik gösterimi.

Buradan elde edilen bilgilerle, numuneye ait molekülün analizi yapılır. Fiziksel ve kimyasal özellikleri bu bilgilerle birleştirilir. Böylece, molekülün yapısı belirlenir. Son olarak, elde edilen spektrum ile aynı koşullarda bilinen bileşiklerin çekilmiş spektrumları karşılaştırılır. Organik bileşiklerin yapısında, fonksiyonel gruplar vardır. Bu yüzden numunenin kızılötesi spektrumunu değerlendirip ve güvenilirliği fazla olan soğurma bantlarından, maddede bulunan fonksiyonel grupların varlığını tespit edebilmek için fonksiyonel grupların frekansları ile karşılaştırılır. Buradan hareketle maddenin hangi madde olduğu belirlenir. Tablo 2.2'de bazı fonksiyonel grupların frekansları verildi.

GRUP	GÖSTERİM	TİTREŞİM DALGA SAYISI (CM ⁻¹)
-O-H gerilme	ν(OH)	3640 - 3600
-N-H gerilme	v(NH)	3500 - 3380
-C-H gerilme (aromatik halkalarda)	v(CH)	3100 - 3000
-C-H gerilme	v(CH)	3000 - 2900
-CH ₃ gerilme	$\nu(CH_3)$	$2962 \pm 10 - 2872 \pm 5$
-CH ₂ gerilme	$\nu(CH_2)$	$2926 \pm 10 - 2853 \pm 10$
-C=C gerilme	v(CC)	2260 - 2100
-C≡N gerilme	v(CN)	2200 - 2000
-C≡O gerilme	v(CO)	1800 - 1600
-NH ₂ bükülme	$\delta(NH_2)$	1600 - 1540
-CH ₂ bükülme	$\delta(CH_2)$	1465 - 1450
-CH ₃ bükülme	$\delta(CH_3)$	1450 - 1375
C-CH ₃ bükülme	$\rho(CH_3)$	1150 - 850
-S=O gerilme	v(SO)	1080 - 1000
-C=S gerilme	v(CS)	1200 - 1050
-C-H düzlem dışı açı bükülme	γ(CH)	650 - 800

Tablo 2.2 : Bazı fonksiyonel grupların frekansları (Rao 1963).

2.6 Morötesi ve Görünür Bölge (UV-Vis) Spektroskopisi

Morötesi ve görünür bölge (UV-Vis) spektroskopisi moleküllerde elektronik geçişlerin sebep olduğu spektrumları inceler. Bu bölge 100 – 700 nm aralığını kapsar ki, 100 – 200 nm aralığı Vakum UV, 200-400 nm aralığı UV ve 400 – 700 nm aralığı ise görünür bölge olarak adlandırılır. Morötesi ve görünür bölge spektrometreleri genellikle üç kısımdan meydana gelirler. Bunlar; ışıma kaynağı, monokromatör ve detektördür. Işıma kaynağı olarak morötesi ve görünür bölgede dalga yayan kaynak

kullanılır. Monokromatör olarak prizma ya da kırınım ızgaraları kullanılır. Fotoelektrik tüp veya foto çoğaltıcı tüpler de dedektör olarak kullanılmaktadır. UV-Vis spektrofotometrelerinde kullanılacak ışık herhangi bir frekanslı morötesi veya görünür bölgeden seçilir. Işık numuneden geçtikten sonra geçirgenliği ya da soğurganlığı tespit edilir. Şekil 2.4'de tek ve çift kanallı fotometrelerin çalışma prensibi şematik olarak gösterildi. Tek ışık yollu spektrofotometrelerde kaynaktan çıkan ışık monokromotöre gönderilir ve bir aralıktan geçirilerek numune üzerine düşürülür. Çift ışık yollu spektrofotometrelerde ise iki farklı monokrometre vardır; iki farklı dalga boyunda ışık, dönebilen bir ışık bölücü yardımıyla numune ile ard arda etkileşir.

Şekil 2.4 :Tek ve çift ışınlı fotometrelerin şematik görünümleri (http://www.bayar.edu.tr/besergil/7_BOLUM_4.pdf).

Mor ötesi ve görünür bölge ışınları maddeyi oluşturan atomların bağ elektronlarının uyarılmasına neden olur. Bu uyarılma, temel halden uyarılmış haldeki titreşim ve dönme enerji seviyelerine dolacak şekilde gerçekleşir. Temel enerji seviyesi E₀, moleküllerin titreşim ve dönme enerjilerinin toplamına eşittir:

$$\Delta E_0 = E_v + E_r \qquad . \tag{2.8}$$

Burada v; v_0, v_1, v_2, \dots titreşim enerji seviyelerini ve r; r_0, r_1, r_2, \dots titreşim enerji seviyeleri arasındaki dönme enerji seviyelerini gösterir. Burada her titreşim enerji seviyesi alt enerji seviyesinde dönme enerji seviyesine sahiptir. Aynı şekilde birinci uyarılmış enerji seviyesi E_1 de yine titreşim ve dönme enerji seviyelerini içerir. İşte bu uyarılma, elektronların temel enerji E_0 seviyesinden, bir üst enerji E_1 seviyesine geçmesidir. Bunun sonucunda da, test edilen maddede bulunan bağların tipleri ile ilişkili dalga boylarında soğurma pikleri elde edilir. Bu dalga boyu, bir elektronik geçiş için ihtiyaç duyulan enerjiyi ifade eder. Elektronik geçişler üç grupta incelenir:

- > π , σ , ve n elektronları,
- ➢ d ve f elektronları,
- ➢ yük-transfer elektronları.

Organik moleküllerde dört tür elektronik geçiş olasıdır. Bunlar: $\pi \to \pi^*$, $n \to \pi^*$, $n \to \sigma^*$ ve $\sigma \to \sigma^*$ dır. Burada, π elektronları, çift ya da üçlü bağlarda bulunur ve σ bağlardan daha zayıftır. σ elektronları, çoklu bir bağın en kuvvetli elemanıdır. Tek ya da çoklu bağlarda bulunur. n elektronlar ise bağ oluşturmaya yatkın değildirler, bunlara serbest elektronlar da denir.

2.6.1 Morötesi ve Görünür Bölge (UV-Vis) Soğurma Türleri

 $\pi \rightarrow \pi^*$ soğurması: Doymamış bileşiklerin yapısında bulunan, π bağlarındaki elektronlar ile gerçekleşen soğurmadır.

 $n \rightarrow \pi^*$ soğurması: Doymamış bileşiklerde, bağ oluşumunda kullanılmayan elektronlara sahip çok atomlu yapılarda bulunan, n elektronları ile gerçekleşen soğurmadır.

 $n \rightarrow \sigma^*$ soğurması: Doymuş bileşiklerde, bağ oluşumunda kullanılmayan elektronlara sahip çok atomlu yapılarda bulunan n elektronları ile gerçekleşen soğurmadır.

 $\sigma \rightarrow \sigma^*$ soğurması: Doymuş bileşiklerde yani alkanlarda C-C ve C-H arasındaki σ bağlarındaki elektronlar ile gerçekleşen soğurmadır.

 $\sigma \rightarrow \pi^*$ ve $\pi \rightarrow \sigma^*$ soğurmaları: Yapısında doymuş ve doymamış bağ içeren bileşiklerin σ ve π elektronları ile gerçekleşen soğurmadır.

Soğurma şiddeti geçirgenlik T ile gösterilir ve aşağıda verilen denklem ile tanımlanır:

$$T = \frac{I}{I_0} \qquad . \tag{2.9}$$

Burada, I_0 radyasyonun örneğe çarpmadan önceki şiddeti, I radyasyonun örneğe çarptıktan sonraki şiddetidir (Beşergil 2015).

2.7 Nükleer Manyetik Rezonans (NMR) Spektroskopisi

En genel ifadesi ile Nükleer Manyetik Rezonans (NMR); analiz edilecek numunenin içindeki hidrojen atomu çekirdeğinde protonların bir radyo frekans kaynağından gelen belirli frekansta bir elektromanyetik enerjiyle karşılaştığında enerjiyi soğurması olayıdır.

NMR yöntemi ile bir çekirdeğin spininin, uygulanan bir dış manyetik alan yardımıyla değiştirilip rezonansı sağlanır. Rezonans iki farklı enerji seviyesi arasındaki geçiş ile yani alt enerji seviyesinden üst enerji seviyesine geçiş sağladığında meydana gelir. Bu geçiş için gerekli olan enerjiye rezonans enerjisi denir. Manyetik rezonans görüntülemede ve NMR spektroskopisinde bu enerji kullanılır. Şekil 2.5'den de görüldüğü gibi, bir NMR spektrometresi, bir mıknatıs, radyo frekans vericisi, dedektör/radyo frekans alıcısı ve kaydedeci olmak üzere dört kısımdan oluşur. Burada numune (proton içeren bir bileşik) homojen alan içine yerleştir ve daha homojen bir alan elde etmek için döndürülür. Proton manyetik alanda farklı enerji seviyelerine dağılır. Radyo frekans vericisinin meydana getirdiği değişken alan numuneye gönderilir ve bu alan frekansı rezonanas sağladığında enerji soğrulur. Radyo frekans alıcısı kaybolan enerjiyi ölçer, kaydedici de bunu sinyal olarak kaydeder. Elektronlar ve protonlar kendi eksenleri etrafında dönen, yani spin hareketi yapan yüklü taneciklerdir. Bu nedenle dönme hareketi sırasında etraflarında bir elektrik alan oluştururlar. Elektrik alan mutlaka bir manyetik alan doğurduğundan, her iki parçacık da meydana getirdiği manyetik alanda manyetik dipole sahiptir.

Şekil 2.5: NMR spektrometresinin şematik gösterimi (http://w3.balikesir.edu.tr/~hnamli/oya/nmr/hnmr.php).

Spinlerinden dolayı manyetik momente sahip olan elektron ve çekirdekler, bir dış manyetik alana girdiği zaman belirli bir potansiyel enerjiye sahip olurlar. Parçacığın manyetik momenti ve uygulanan manyetik alanın şiddetine bağlı olarak, bu potansiyel enerjiyi değiştirir (Yurdakul 2010). Protonun spin hareketi, çembersel akım gibidir ve etrafında bir manyetik alan oluşturur. Bir dış manyetik alan yokken, nükleer spinlerin dağılımı rastgeledir. Sisteme bir dış manyetik alan uygulandığında, spinler uygulanan alana paralel ve antiparalel olarak yönlenerek nükleer manyetik momentler oluştururlar:

$$\mu_l = g_N \; \frac{e\hbar}{2m_p c} \; [l(l+1)]^{\frac{1}{2}} \qquad . \tag{2.10}$$

Bağıntıda geçen; g_N çekirdek (nükleer) çarpanı, m_p protonun kütlesi, c ışık hızı ve e elektronun yükü l spin kuantun sayısı ve $\hbar[l(l+1)]^{\frac{1}{2}}$ ise çekirdeğin spin açısal momentum vektörünün büyüklüğüdür.

Protonun H_0 şiddetinde homojen bir manyetik alana maruz kalması durumunda, çekirdek manyetik dipolü, alan ekseni etrafında presesyon hareketi yapar. Bu hareket nedeniyle manyetik alanda, parçacık belirli bir potansiyel enerjiye sahip olur:

$$E = -\vec{\mu} \cdot \vec{H}_0 \qquad . \tag{2.11}$$

Burada, μ manyetik moment ve H_0 uygulanan manyetik alan şiddetidir ve E potansiyel enerjidir. Presesyon hareketinin açısal hızı *w*, Larmor frekansı olarak adlandırılır.

$$w = \gamma H_0 \qquad . \tag{2.12}$$

Burada, γ ' ya jiromanyetik oran denir. Bu oran manyetik dipol momentumun açısal momentuma oranıdır:

$$\gamma = \frac{\mu_l}{\hbar \, [l(l+1)]^2} \qquad . \tag{2.13}$$

Çekirdeğin manyetik momenti, çekirdeğin γ jiromanyetik sabitine ve m manyetik kuantum sayısına bağlıdır:

$$\mu = \gamma \frac{\hbar m}{2\pi} \quad . \tag{2.14}$$

Denklem (2.14)'deki μ değeri, Denklem (2.11) enerji formülünde yerine konulduğunda, manyetik alanın etkisindeki bir çekirdeğin, kaç farklı enerji düzeyinde olabileceği, spin kuantum sayısı ile belirlenebilir:

$$E_{\zeta} = \frac{\gamma \hbar H_0 m}{2\pi} \quad . \tag{2.15}$$

Burada, E_{ζ} çekirdeğin potansiyel enerjisidir. Bir çekirdeğin *m* manyetik kuantum sayısı ile *l* spin kuantum sayısı arasında aşağıdaki gibi bir ilişki vardır:

$$m = -l, (-l+1), (-l+2), \dots, 0, \dots, (l-1), (l-2), l \qquad (2.16)$$

Her bir atomun, vereceği pik sayısı NMR spektroskopisinde (3l + 1) eşitliği ile bulunur. Spin 1/2 için $\mu_I = -1/2$ ve $\mu_I = +1/2$ olmak üzere iki manyetik kuantum sayısına sahip olan çekirdek için iki enerji seviyesi (E_1 ve E_2) elde edilir:

$$E_{1} = -\frac{1}{2} \frac{\gamma \hbar H_{0}}{2\pi}$$
(2.17)

ve

$$E_1 = -\frac{1}{2} \frac{\gamma \hbar H_0}{2\pi}$$

İki enerji seviyesi farkı;

$$\Delta E = E_2 - E_2 = \gamma \, \frac{\hbar H_0}{2\pi} \tag{2.18}$$

ifadesi ile tanımlanır.

Elektronlar veya çekirdekler bir dış manyetik alanın etkisinde olmadıkları zaman enerji düzeyleri arasında bir fark yoktur, yani bu parçacıkların enerjileri katlıdır. Ancak manyetik momenti olan bu parçacıklar bir manyetik alan ile etkileştirildiğinde belirli enerji düzeylerine yarılabilirler (Zeeman yarılması). Şekil 2.6'da manyetik alanda nükleer Zeeman seviyelerinin yarılması şematik olarak gösterildi. M_l , μ_l 'nin H üzerindeki izdüşüm manyetik spin kuantum sayısıdır, β_N ise nükleer magnetondur ($\beta_N = \frac{eh}{2m_oc}$).

Şekil 2.6: Manyetik alanda nükleer Zeeman seviyelerinin yarılması.

Elektromanyetik dalganın frekansı v rezonans şartını sağladığı zaman, ΔE enerji farkı,

$$\Delta E = h \Delta v = g_N \beta_N H_0 \tag{2.19}$$

şeklinde yazılır. Bu durumda, en basit nükleer manyetik rezonans elde edilmiş olur.

Özetlersek organik bileşiklerde yapı aydınlatılmasında, kullanılan en güçlü teknik NMR spektroskpisidir. Manyetik alanda tutulan ve spini yani dönme hareketi olan bir çekirdeğin, uygun frekanstaki bir radyo dalgası ile rezonansa girmesi ilkesine dayanmaktadır. Günümüzde yapı tayininde çok sıklıkla kullanılan NMR analizleri ¹H ve ¹³C-NMR analizleridir. Farklı radyo dalgaları ile farklı kimyasal çevreye sahip çekirdeklerin, uygulanan manyetik alanlarda rezonansa girmesine kimyasal kayma denir. İncelenen madde ile karşılaştırma maddelerinin kimyasal kayma değerleri kıyaslanarak yapı analizi yapılabilinir (Ersöz 2010).

3. HESAPLAMA YÖNTEMİ

3.1 Bilgisayar Hesaplamalı Moleküler Spektroskopi

Moleküllerin yapısı ve spektroskopik özellikleri incelenirken, bilgisayar hesaplamalı moleküler spektroskopi iki ana grupta incelenir. Bunlar, Moleküler Mekanik ve Elektronik Yapı metodlarıdır. Her bir metod, benzer tip hesaplamalar yapar;

Molekülün enerjisini hesaplar,

➢ Geometrik optimizasyon yapar. Molekülün en düşük enerjili yani denge durumu geometrisi, geometrik optimizasyondur. Bu da temelde enerjinin atomik koordinatlara göre birinci türevi ile bulunur.

Molekülün titreşim frekanslarını hesaplar. Moleküldeki atomların hareketinden kaynaklanan molekülün titreşim frekanslarının hesabı da enerjinin atomik koordinatlara göre ikinci türevinden elde edilmektedir.

3.1.1 Moleküler Mekanik Metot

Bir molekülün yapısını ve enerjisini belirlemek için kullanılan hesaplama metotlarından biri de Moleküler mekanik metotdur. Sistem atomlarının arasındaki etkileşmeleri klasik mekanik kanunları ile tanımlar. Bu metotla hesaplamalar yapılırken, elektron etkileşimleri doğrudan hesaba katılmaz. Onun yerine sistemin iyonları arasındaki etkileşmeler dikkate alınır. Elektronik etkiler ise hesaplamaya dolaylı bir şekilde dahil edilmektedir. Bu nedenle, yapılan hesaplamalar oldukça hızlıdır, bu da metot için önemli bir avantajdır. Öte yandan elektronik etkilerin hesaba katılmaması nedeniyle kimyasal problemlerin çözümü bu yöntemle başarısızdır (Foresman ve Frisch 1996).

3.1.2 Elektronik Yapı Metodu

Elektronik yapı metotları, Moleküler mekanik metodların tersine, klâsik fizik yasalarının yerine kuantum mekaniksel yasaları kullanarak çalışır. Elektronik yapı metotları iki kısma ayrılır:

- ➢ Yarı deneysel metotlar,
- Ab-initio metotları.

3.2 Yarı Deneysel Metotlar

Yarı deneysel metotlarda, hesaplamaları kolaylaştırmak için deneysel verilerden elde edilen parametreler, yarı-deneysel (semiemprical) yöntemlerde kullanılmaktadır. Diğer bir deyişle, bilinen bazı deneysel ölçüm sonuçları, teorik hesaplamalarda kullanılır ve Schrödinger denklemine yaklaşık çözümler elde edilmeye çalışılır. Yarı- deneysel hesaplama tekniklerinin pek çoğunda, sistemin sahip olduğu orbitaller küresel simetrik olarak ele alınırken, sadece valans elektronlarını göz önünde bulundurulur. Yarı- deneysel hesaplama metodları yüzlerce atomdan meydana gelen büyük sistemlerin özelliklerini incelemede bir öngörü ortaya koymak amacıyla yaygın olarak kullanılmaktadır.

3.3 ab-initio Metotları

Latincede "başlangıçtan itibaren" anlamında kullanılan ab-*initio* terimi, deneysel verileri içermeyen, direkt teorik prensiplerden meydana gelen hesaplamalar için kullanılan kuantum mekaniksel yaklaşımlardır. Bu yaklaşımların kullanılması sonucu molekül yapısı ve buna bağlı olarak değişim gösteren parametrelerle ilgili önemli sonuçlar elde edilir.

Ab-*initio* hesaplamalarda sıklıkla kullanılan yaklaşımlar, Hartree-Fock Öz Uyumlu Alan (SCF) ve Yoğunluk Fonksiyon Teorisidir (Young 2001). Ab-*initio* hesapları genel olarak oldukça iyi sonuçlar verir. Molekül küçüldükçe sonuçların kesinliği de artar. Ab-*initio* yöntemlerinin avantajı, bütün yaklaşımlar yeterli küçüklükten yola çıkılarak yapıldığı zaman, kesin bir sonuca yaklaşıyor olması, dezavantajı ise hesaplama süresinin oldukça uzun olmasıdır.

GAUSSIAN, GAMESS, HYPERCHEM, CACHE vs... ab-*initio* yöntemlerinin kullanıldığı bazı paket programlardır. Bu paket programların tamamı yukarıda bahsedildiği üzere, değişik mertebelerden analitik türevler kullanır. Tablo 3.1'de enerjinin türevlerinden hangi büyüklüklerin hesaplanabileceği yer almaktadır.

TÜREV	HESAPLANABİLEN BÜYÜKLÜKLER
$\frac{\partial E_e}{\partial R}$	Atomlara etki eden kuvvetler, Molekülün geometrisi, Kararlı noktalar.
$\frac{\partial^2 E_e}{\partial R_i \partial R_J}$	Kuvvet sabitleri, Temel titreşim frekansları, Kızıl ötesi ve Raman spektrumları, Titreşim genlikleri.
$\frac{\partial^2 E_e}{\partial R_i \partial \epsilon_j}$	Dipol moment türevleri, Harmonik yaklaşımda Kızıl ötesi şiddeti.
$\frac{\partial^3 \mathbf{E}_{\mathbf{e}}}{\partial \mathbf{R}_{\mathbf{i}} \partial \boldsymbol{\varepsilon}_{\mathbf{j}} \partial \boldsymbol{\varepsilon}_{\mathbf{k}}}$	Kutuplanabilirlik türevleri, Harmonik yaklaşımda Raman şiddetleri.

Tablo 3.1: Enerji türevlerinden fiziksel büyüklüklerin hesaplanması (Pulay, 1987; Bahat, 2000).

Tablo 3.1'de, E_e Toplam enerji, R Atomik koordinatlar, ε : Elektrik alan bileşenlerine karşılık gelir (Pulay 1969).

Doğadaki, sistemler hem parçacık hem de dalga karakteri gösterirler. Bu durum klasik yöntemler ile açıklanamaz. Enerjinin kesikliliği, parçacıkların girişim yapması veya tünelleme gibi konuların açıklanması kuantum mekaniği ve onun temel denklemi olan Schrödinger denklemi ile mümkündür. Schrödinger denkleminin
çözümü ψ dalga fonksiyonunu verir. Sistemin bütün fiziksel özellikleri bu dalga fonksiyonundan çıkarılabilir. Schrödinger denklemi en genel olarak,

$$\hat{H} \Psi = E \Psi \tag{3.1}$$

şeklindedir. Burada \hat{H} moleküler etkileşmeleri tanımlayan bir operatör, Ψ moleküler dalga fonksiyonu, E ise moleküler sistemin kararlı durumlarına karşılık gelen enerjisidir. Schrödinger denklemi bir elektronlu atomlar için tam çözümlenebilir. Schrödinger denkleminin çok parçacıklı atomlar için çözülebilir olması için bazı yaklaşımların yapılması gerekir. Çok parçacıklı Shrödinger denklemini bir-elektron denklemine dönüştürmek için birçok yöntem geliştirilmiştir. Hartree-Fock Yöntemi ve Yoğunluk Fonksiyonel Teorisi bunlara örnek olarak verilebilir.

3.4 Hartree-Fock Yöntemi

Hartree-Fock yaklaşımı ab-*initio* yöntemlerin en yaygın türü ve merkezi alan yaklaşımının öncüsüdür. Merkezi alan yaklaşımı, atom ya da moleküldeki bir elektronun, çekirdek ve diğer elektronların oluşturduğu bir ortalama küresel potansiyel içinde hareket ettiğini kabul eder ve Coloumb elektron-elektron itme potansiyelini, başlangıçta hesaba katılmaz. Ancak, daha sonra elektron korelasyonu olarak hesaba alınır (Brasden 1999). HF yönteminin temel noktası, çok elektron problemini tek elektron problemine indirgemektir. Bunun için üç temel yaklaşım kullanılarak çözüme ulaşılmaya çalışılır. İlk olarak, çekirdek ve elektronların hareketlerini ayırır. Çekirdeğin hızını elektronların hızı yanında çok düşük olduğundan ihmal eder. Buna "Born-Oppenheimer " yaklaşımı denir. Schrödinger denkleminin kütleden bağımsız bu yeni şekline elektronik Schrödinger denklemi oldukça zordur. Rölativistik olmayan Schrödinger denkleminin bu durumda şu halde olacaktır:

$$\left(\hat{T}_e + \hat{V}_{ee} + \hat{V}_{ei}\right)\Psi_e = E_e \Psi_e \quad . \tag{3.2}$$

Burada, hamiltonyeni ifade eden ilk terim elektronların kinetik enerjisini terimi, ikinci terim elektron-elektron etkileşim enerjisini ve üçüncü terim elektron-iyon etkileşim enerjisini ifade eder.

$$\left(-\frac{1}{2}\sum_{i=1}^{N}\nabla_{i}^{2}-\sum_{i=1}^{N}\sum_{\alpha=1}^{M}\frac{Z_{\alpha}}{\begin{vmatrix}\mathbf{r} & \mathbf{r} \\ \mathbf{r}_{i}^{*}-\mathbf{R}_{\alpha}\end{vmatrix}}+\sum_{i< j}^{N}\frac{1}{\begin{vmatrix}\mathbf{r} & \mathbf{r} \\ \mathbf{r}_{i}^{*}-\mathbf{r}_{j}\end{vmatrix}}\right)\Psi_{e}=E_{e}\Psi_{e} \qquad .$$
(3.3)

Born-Oppenheimer yaklaşımı ile değişken sayısında azalma olsa da bu yaklaşım, moleküler enerji seviyeleri ve dalga fonksiyonlarının hesaplanmasında yeterli değildir. Bu problemin aşılmasında, ikinci yaklaşım olarak atomik orbital lineer kombinasyonu (linear combination of atomic orbitals, LCAO) yaklaşımı kullanılmıştır. Bu yaklaşımında atomların lineer kombinasyonları dikkate alınır. Bir molekülde bulunan çekirdekler birbirlerinden ne kadar uzakta ise kovalent bağı meydana getiren elektronlar atomik orbitallerde bulunur. Buna göre, molekülün dalga fonksiyonu kendini oluşturan atomların dalga fonksiyonlarının toplamı olacak şekilde LCAO yönteminde yazılır (Lveine 1983).

Hartree-Fock yaklaşımı denilen üçüncü yaklaşımda, elektronların hareketlerinin ayrıştırılması yöntemi ele alınır. Çok elektronlu dalga fonksiyonu, tek elektronlu dalga fonksiyonlarının çarpımlarının toplamları halinde yazılır:

$$\Psi(\vec{r}_1, \vec{r}_2, \dots, \vec{r}_N, r) = \prod_{i=1}^N \Psi_i(\vec{r}_i) \quad .$$
(3.4)

i. sıradaki elektrona etki eden potansiyel aşağıdaki eşitlik ile verilir :

$$V_i(\vec{r}) = V_{iyon}(\vec{r}) + V_H(\vec{r})$$
 (3.5)

Burada, iyon ve Hartree potansiyelleri aşağıdaki gibi ifade edilir:

$$V_{iyon}(\mathbf{r}) = -\sum_{\alpha} \frac{Z_a}{\left| \mathbf{r} - \mathbf{r}_{\alpha} \right|}$$

ve

$$V_{H}(\vec{r}) = -\int d\vec{r} \, \frac{\rho(\vec{r}')}{|\vec{r} - \vec{r}'|}$$
(3.6)

i. elektrona etkiyen Hartree potansiyelindeki yoğunluk terimi;

$$\rho(\vec{r}') = \sum_{i \neq j} \left| \Psi_j(\vec{r}') \right|^2 \tag{3.7}$$

ile verilir. Sistemin Hamiltoniyeni aşağıdaki eşitlik ile tanımlanır.

$$\hat{H} = -\sum_{i=1}^{N} \frac{1}{2} \nabla_i^2 + V_i(r) \qquad (3.8)$$

Toplam enerjinin beklenen değerini en küçük yapan tek elektron dalga fonksiyonları Hartree denklemi ile verilir:

$$\left[-\frac{1}{2}\nabla^{2}+V_{iyon}(\mathbf{r})\right]\Psi_{i}(\mathbf{r})+\sum_{j\neq i}\int d\mathbf{r}\cdot\frac{\Psi_{j}(\mathbf{r}')^{2}}{|\mathbf{r}-\mathbf{r}'|}\Psi_{i}(\mathbf{r})=\varepsilon_{i}\Psi_{i}(r)\quad\cdot\qquad(3\cdot9)$$

(3.9) denklemi orbitaller için öz uyumlu (self consistent) olarak çözüldüğünde, sistemin dalga fonksiyonu elde edilir. Hartree-Fock yaklaşımında sistemin dalga fonksiyonu, antisimetri özelliğini de sağlayacak şekilde seçilir. Elektronlardan oluşan sistemin dalga fonksiyonu, Pauli dışarlama ilkesi gereği, sistemdeki iki elektronun yer değiştirmesi altında antisimetrik olmalıdır:

$$\chi(\vec{r}_{1},\vec{r}_{2},...,\vec{r}_{i},...,\vec{r}_{j},...,\vec{r}_{N}) = -\chi(\vec{r}_{1},\vec{r}_{2},...,\vec{r}_{j},...,\vec{r}_{i},...,\vec{r}_{N}) \quad \cdot \quad (3\cdot10)$$

Bu denklemi sağlayan en basit dalga fonksiyonu, Slater determinantı ifadesini oluşturur;

$$\Psi(\stackrel{\mathbf{r}}{r_{1}}, \stackrel{\mathbf{r}}{r_{2}}, ..., \stackrel{\mathbf{r}}{r_{N}}) = \frac{1}{\sqrt{N!}} \begin{vmatrix} \chi_{1}(\stackrel{\mathbf{r}}{r_{1}}) & \chi_{1}(\stackrel{\mathbf{r}}{r_{2}}) & \mathbf{L} & \chi_{1}(\stackrel{\mathbf{r}}{r_{N}}) \\ \chi_{2}(\stackrel{\mathbf{r}}{r_{1}}) & \chi_{2}(\stackrel{\mathbf{r}}{r_{2}}) & \mathbf{L} & \chi_{2}(\stackrel{\mathbf{r}}{r_{N}}) \\ \mathbf{M} & \mathbf{M} & \mathbf{M} \\ \chi_{N}(\stackrel{\mathbf{r}}{r_{1}}) & \chi_{N}(\stackrel{\mathbf{r}}{r_{2}}) & \mathbf{L} & \chi_{N}(\stackrel{\mathbf{r}}{r_{N}}) \end{vmatrix} .$$
(3.11)

Burada, χ_i (i = 1, 2, ...N) atomik orbitalleri, r_j (j = 1, 2, ..., N) elektronların konum vektörlerini ve N sistemdeki parçacık sayısını ifade etmektedir. $1/\sqrt{N!}$ sabiti ise normalizasyon katsayısıdır. Her sütun indisi elektronlardan birini, her satır indisi de tek-parçacık durumlarından birini göstermektedir. Aradığımız antisimetri özelliği bu dalga fonksiyonunda bulunmaktadır. Her iki elektron yer değiştirdiğinde determinantın iki sütunu yer değiştirmiş olur. İki sütunun yer değiştirmesiyle determinant işaret değiştirdiği için, bu dalga fonksiyonu antisimetrik özelliğini taşır (Karaoğlu 2008). Buradan hareketle Hartree-Fock denklemini tekrar düzenleyecek olursak (3.12) Denklemi elde edilir;

$$\begin{bmatrix} \left(-\frac{1}{2}\nabla^{2}+V_{iyon}(\vec{r})\right)+\sum_{j}\int d\vec{r}\cdot\frac{|\Psi_{j}(\vec{r}\,)|^{2}}{|\vec{r}-\vec{r}\,|}\end{bmatrix}\Psi_{i}(\vec{r}) \\ -\sum_{j}\delta_{\sigma i,\sigma j}\int d\vec{r}\cdot\frac{\Psi_{j}^{*}(\vec{r}\,)\Psi_{i}(\vec{r}\,)}{|\vec{r}-\vec{r}\,|}\Psi_{j}(\vec{r}\,)=\varepsilon_{i}\Psi_{i}(\vec{r}\,) \qquad (3.12)$$

Son terim değiştokuş terimidir, σ_i , σ_j spinleri aynı olduğunda sıfırdan farklıdır. Değiş-tokuş terimi yerel olmadığından Hartree Fock denkleminin çözümü oldukça zordur. Hartree-Fock yaklaşımının dezavantajı, elektronlar arasındaki korelasyon etkileşimi göz önüne almamasıdır. Korelasyon hesaba katılmadığı için bu yöntemle yapılan hesaplamala değerlerinde, enerji gerçek değerinden daha büyük çıkar (Sholl ve Steckel 2009).

3.5 Yoğunluk Fonksiyonel Teorisi (DFT)

Bu modelde molekül dalga fonksiyonları ve elektron yoğunluğu $\rho(r)$ hesaplanır. Bu metot ile HF potansiyelinde eksik olan değiş-tokuş korelasyon etkileşmesi hesaba katılır. N elektronlu bir sistem için yazılan Schrodinger denklemi, N tane tek elektron Schrodinger denklemine indirgenir (Hohenberg ve Kohn 1964):

$$\left[-\frac{1}{2}\nabla^2 + V(r)\right]\Psi_i(r) = \varepsilon \Psi_i(r) \qquad (3.13)$$

Buradaki $\Psi_i(\vec{r})$ 'ler tek elektron dalga fonksiyonları ve $V(\vec{r})$ tek elektronun tüm etkileşimlerini içeren potansiyel terimidir:

$$V(r) = V_d(r) + V_H(r) + V_{XC}(r)$$
(3.14)

Buradaki potansiyel ifadesinde ilk terim elektronların iyonlarla olan etkileşimi, ikinci terim diğer elektronlarla olan etkileşimi, üçüncü terim ise değiş-tokuş ve korelasyon etikleşimidir. Bu yöntemde, enerji ifadesi yoğunluğun fonksiyonu cinsinden, Kohn ve Sham, (Kohn ve Sham 1965) Denklemler (3.13) ve (3.14) de verilen teoremleri kullanarak bugün Kohn Sham denklemleri olarak bilinen, enerji fonksiyonelini minimum yapan yoğunluğun bulunabileceği denklemleri vermiştir:

$$E[\rho(\mathbf{r})] = T[\rho(\mathbf{r})] + \int d\mathbf{r}' d\mathbf{r} \frac{\rho(\mathbf{r}')\rho(\mathbf{r})}{|\mathbf{r} - \mathbf{r}'|} + E_{XC}[\rho(\mathbf{r})] + \int \rho(\mathbf{r})V_{ext}(\mathbf{r})d\mathbf{r} \quad . (3.15)$$

Burada, ilk terim elektronların kinetik enerji terimi, ikinci terim elektronelektron etkileşmesinden kaynaklanan potansiyel enerji, üçüncü terim ise değiş-tokuş ve korelasyon enerjisi ve son terim de dış potansiyelden kaynaklanan enerji terimidir.

DFT teorisinde yoğunluk fonksiyonelleri ab-initio yöntemindeki temel fonksiyonlara benzer şekildedir. Gerçek yoğunlukları tam olarak anlaşılabilen basit sistemlerin yoğunluğunu elde edilebilecek şekilde uygun parametreler denenerek türetilirler. Bunlar BLYP, B3LYP (Becke 1993; Lee ve diğ. 1988) gibi kısaltılmış isimler programlarda fonksiyonel olarak bulunurlar.

Birçok molekül için DFT metodunun, HF hesaplamalarını daha ileriye taşıdığı ve hassaslaştırdığı gözlenmiştir. Ab-initio yöntemine göre zamandan daha çok tasarruf edildiğinden, büyük moleküllere uygulama imkanı sunmuştur. DFT, atom ve moleküllerin elektronik yapılarını daha iyi anlamak için oluşturulmuş bir yaklaşımdır. 1990'larda ilgi görmeye başlamış ve önemli gelişmeler kaydedilmiştir. HF metodundan farkı ise şöyledir: HF teorisinde çok-elektronlu dalga fonksiyonu, Slater determinantı ile ifade edilir ki, bu determinant N tane dalga fonksiyonunu hesaplayacak şekilde kurulur ve N-elektronlu dalga fonksiyonu hesaplanır. Kohn ve Sham, HF eşitliklerindeki değiş- tokuş potansiyel teriminden farklı, sadece elektron yoğunluğunun bir fonksiyonu olan daha genel bir değiş-tokuş korelasyon (ilgisi) potansiyel terimi geliştirerek Schrödinger denklemini çözmeyi başardılar (Kohn ve Sham 1965). DFT metodunda korelasyon potansiyelinin, yük yoğunluğuna bağımlılığı sistemin toplam enerjisinde yer almaktadır:

$$E_{DFT} = E_{ic} + E_{Cekirdek} + E_{Coulomb} + E_{XC}(\rho)$$
(3.16)

Burada, E_{ic} çekirdekle tek elektronun etkileşme enerjisi, $E_{cekirdek}$ çekirdeğin konumu için çekirdekler arası itici enerji, $E_{coulomb}$ elektronlar arasındaki itme enerjisi ve $E_{xc}(\rho)$ elektron yük yoğunluğuna bağlı olan değiş tokuş korelasyon enerjisidir. Denklem (3.16)'da verilen, E_{xc} ifadesi, "değiş-tokuş" ve "korelasyon" olarak iki kısma ayrılır:

$$E_{xc}[\rho] = E_x[\rho] + E_c[\rho]$$
 . (3.17)

Bu denklemdeki her terim yine birer fonksiyoneldir. $E_X[\rho]$ değiş-tokuş fonksiyoneli, $E_C[\rho]$ ise korelasyon fonksiyonelidir. Bu fonksiyonellerin formu bilinmediğinden, yoğunluğun fonksiyoneli olarak yazmak zordur. Bunun için iki yaklaşım olan yerel yoğunluk yaklaşımı (local density approximation, LDA) (Sholl ve Steckel 2009) ve genelleştirilmiş gradiyent yaklaşımı (generalized gradient approximation, GGA) (Perdew ve diğ. 1996) geliştirilmiştir. LDA yaklaşımı, yalnızca elektron yoğunluğuna bağlıdır. GGA yaklaşımı, hem elektron yoğunluğuna, hem de onun gradyentine bağlıdır.

3.6 B3LYP Karma – Yoğunluk Fonksiyonel Teorisi

Deneylerle uyumlu ve en çok kabul gören değiş-tokuş ve korelasyon enerjisini tanımlamak için oluşturulmuş üç parametreli B3LYP olarak da bilinen Becke karma metodudur. Becke'nin geliştirdiği üç parametreli hibrit fonksiyonelleri (Becke 1993) Lee, Yang ve Parr tarafından (Lee ve diğ. 1988) tanımlanan korelasyon fonksiyonelleri ile birleştirilerek, değiş-tokuş ve korelasyon enerjisi için karma bir model geliştirilmiştir:

$$E_{B3LYP}^{xc} = C_{HF}E_{HF}^X + C_{DFT}E_{DFT}^{XC} \qquad (3.18)$$

Denklem (3.18)'deki *C* katsayıları deneyler ile belirlenen sabitlerdir. Bu modelde değiş tokuş ve korelasyon enerjisi aşağıdaki eşitlik ile verilir:

$$E_{B3LYP}^{xc} = E_{LDA}^{X} + c_0(E_{HF}^{X} + E_{LDA}^{X}) + c_1(E_{B88}^{X} + E_{VWN3}^{c}) + c_2(E_{LYP}^{c} + E_{VWN3}^{c}).$$
(3.19)

Burada, c_0 , c_1 ve c_2 terimleri sabittir. Becke'nin yaptığı çalışmalara göre (Becke 1993) öne çıkan karma modeller BLYP ve B3LYP olarak bilinir:

$$E_{B3LYP} = E_{v} + E_{j} + E_{B3LYP}^{xc} . (3.20)$$

Bu modelde, Schrödinger denklemi ve benzer denklemler, elektron yoğunluğu değişimini tanımlayan, fonksiyoneller kullanılarak çözülür ve buradan çok elektronlu sistemlerin temel özellikleri saptanır.

3.7 Temel Setler

Kısmi bir diferansiyel denklemin çözümünde kullanılan, matematiksel fonksiyonun sınıflandırılması, temel set olarak ifade edilir. Sistemin istenilen kimyasal özelliklerinin oluşturulabilmesi için optimize edilen atomik orbitaller daraltılmış Gaussian tipi fonksiyonların toplamıyla temsil edilir. Molekül orbital, atomik orbitallerin lineer kombinasyonu olarak ifade edilir. Başka bir değişle, temel set, moleküler orbitallerin elde edilmesinde kullanılan atomik orbitallerden oluşan fonksiyon seti olarak tanımlanabilir (Dorsett ve White 2000).

Slater tipi orbitaller (STO) genel olarak iki atomlu moleküllerde, küresel simetriye sahip orbitalleri ifade etmede kullanılırken, Gaussian tipi orbitaller (GTO) ise eksenel simetrideki elektron dağılımına sahip moleküler orbitallerin oluşturulmasında kullanılır. Kuramsal hesaplamalarda amaç, moleküllerin özelliklerini matematiksel olarak ifade edebilmektir. Bu özelliği taşıyan ve en önemlilerinden birisi de moleküler orbitallerdir. Bu orbitalleri tanımlayabilmek için temel setler kullanılır. Temel setler iki kısımda incelenir: Minimal temel setler ve genişletilmiş temel setlerdir. Minimal temel setler orbitallerin en temel durumlarını tanımlarlar. Genişletilmiş temel setler ise atom çekirdeğinden düzensiz yük değişmelerinin uzaklaşmasına ve böylece kimyasal bağın türünün düzeltmesini sağlayan polarizasyon fonksiyonları eklenmesiyle oluşan baz setidir. Her bir temel setin nasıl okunacağını anlamak önemlidir. Şekil 3.1'da gösterildiği gibi, temel set iç yörüngedeki orbitallerin üç Gaussian fonksiyonundan, valans yörüngesindekilerin ise iç p-fonksiyonu iki, dış p-fonksiyonu ise bir Gaussian fonksiyonundan oluşmuş anlamına gelmektedir.

Şekil 3.1: Temel Setlerin Tanımlanması.

Bu tez çalışmasında kullandığımız 6-31G(d) temel setinde ise iç kabuk temel fonksiyonlar altı GTO'dan oluşmuş olup, iç valans orbitali üç tane GTO ve dış valans orbitali ise bir tane GTO içerir. Ayrıca 3-21G, 4-31G, 6-21G, 6-31G ve 6-311G temel setleri en çok tercih edilen oluşturulmuş valans temel setlerine örnek verilebilir.

3.8 HOMO-LUMO Moleküler Orbitalleri

Moleküler orbitaller (HOMO-LUMO) ve enerjileri, molekülün optik ve elektriksel özelliklerinin belirlenmesinde rol oynarlar. Ayrıca kuantum kimyası için çok önemli parametrelerdir (Fukui 1982). HOMO (Highest Occupied Molecular Orbital) ve LUMO (Lowest Unoccupied Molecular Orbital) sırasıyla en yüksek moleküler orbital ve en düşük boş moleküler orbitaldir. LUMO bir elektronu kabul etme yeteneğine karşılık gelirken, HOMO bir elektron verme yeteneğini temsil eder. HOMO ve LUMO moleküler orbital arasındaki enerji farkı, bileşiklerin denge koşulu için önemli bir değer olan HOMO-LUMO bant boşluğu olarak adlandırılır. HOMO ve LUMO, sonlu moleküler orbitaller (Finite Molecular Orbital, FMO) olarak bilinirler.

4. MATERYAL ve HESAPLAMA DETAYLARI

Bu tez çalışmasında yeni azo boyar maddeleri olan A Molekülü ve B molekülü Süleyman Demirel Üniversitesi-Kimya Bölümü laboratuvarlarında sentezlenmiş ve tez çalışmasında ilgili yöntemler için kullanılmıştır (Karabacak Atay ve diğ. 2018).

4.1 5-amino-4-[4-(dimetilamino)fenil]diazenil]-pirazol-3-ol molekülünün (A Molekülü) sentezlenmesi

0,02 mol N, N-dimetil-p-fenilendiamin bileşiğine 10 ml hidroklorik asit eklendi ve karışım, bir tuz-buz banyosunda $0-5^{\circ}$ C'de manyetik olarak karıştırıldı. Çözeltiye 1 saat boyunca damla damla 1,4 g NaN0₂ (5 ml su içinde) eklendi ve diazonyum tuzu oluşturuldu. Bir başka beherde, kenetleme bileşiği, $0-5^{\circ}$ C'de 0,02 mol 3-amino-5-hidroksipirazol üzerine 1,2 g Na₂CO₃ + 0,4 g NaOH çözeltileri (su içinde) ilave edilerek hazırlandı. Diazotizasyondan sonra, hazırlanan diazonyum tuzu, kenetleme maddesine damla damla eklendi ve $0-5^{\circ}$ C' de 4 saat boyunca bir tuzbuz banyosunda manyetik olarak karıştırılmaya devam edildi. Karışım, oda sıcaklığında pH 6'ya ayarlandı, karıştırıldı ve vakumda soğuk su ile süzüldü. Uygun çözücüler karışımında kristalize edildi (Karabacak Atay ve diğ. 2018).

4.2 5-amino-4-[4- (dimetilamino)fenil] diazenil]-2-fenil-pirazol-3-on molekülünün (B Molekülü) sentezlenmesi

5-amino-4-[4-(dimetilamino)fenil]diazenil]-2-fenil-pirazol-3-on (B, molekülü) A molekülünde gerçekleştirilen prosedürü izlenerek sentezlendi. Bununla birlikte, 3-amino-5-hidroksipirazol yerine, 3-amino-1-fenil-2-pirazolin-5-on, B molekülünün sentezinde bir kenetleme maddesi olarak kullanıldı (Karabacak Atay ve diğ. 2018). A ve B bileşiklerinin sentez şemaları, Şekil 4.1'de verildi.

Şekil 4.1: A ve B moleküllerinin sentezlenme şeması.

Bir molekülün yapısında bulunan en az bir çift bağ ve bir hidrojen atomunun yer değiştirmesi, yani başka bir moleküle dönüşmesi olayına tautomerleşme ve bu moleküllere de tautomerler adı verildi. Şekil 4.1'de A ve B moleküllerinin totomerik yapıları gösterildi.

4.3 Deneysel Ekipmanlar

IR spektrumları bir Schimadzu IR Prestige-21 Fourier Dönüşüm-Kızılötesi (FT-IR) spektrofotometresinde kaydedildi. A ve B molekülleri için nükleer manyetik rezonans spektrumları Bruker Avance 125 MHz kullanılarak ölçüldü. Tüm dalga boyları Schimadzu UV-1601 çift ışınlı spektrofotometre ile kaydedildi. Moleküllerin

erime noktalar için Smart SMP30 Stuart erime noktası aparatı kullanıldı (Karabacak Atay ve diğ. 2018).

Şekil 4.2: A ve B bileşiklerinin totomerik yapıları.

4.4 Çalışmada İzlenen Hesaplama Yöntemleri

Bu tez çalışmasında, sentezlenen mono azo boyaların yapısal özellikleri ve titreşim frekanslarının elde edilmesi için, DFT ve HF yöntem bazlı ab-initio hesaplamaları gerçekleştirildi (Karabacak Atay ve diğ. 2018). Bu kuantum mekaniksel hesaplamalar, GAUSSIAN 09 hazır paket programı (Frisch ve diğ. 2009) kullanılarak elde edildi. Çalışmada kullanılan moleküller, hesaplamalı kimya yöntemleri ile, C simetrisi göz önünde bulundurularak 6-31G(d) temel seti (Foresman 1996, Frisch 2009) ile DFT/B3LYP ve HF metodlarıyla moleküllerin temel durum kararlı yapısını elde etmek için optimize edildi.

Azo boyar maddelerinin titreşim frekanslarını elde etmek için, optimizasyon işleminde kullanılan temel set, hesaplama yöntemleri kullanıldı ve FT-IR spektrumu oluşturuldu. ¹H-NMR ve ¹³C-NMR manyetik kayma sabitleri, kloroform, asetik asit, metanol, dimetilformamid (DMF) ve dimetilsülfoksit (DMSO) çözücüleri içinde Gauge Atomik Obitaller (GIAO) kapsamında hesaplandı. ¹H-NMR ve ¹³C-NMR kimyasal kayma değerleri, bir referans olarak tetrametilsilan (TMS) dikkate alınarak analiz edildi. Titreşimsel Enerji Dağılımları Analiz programı (VEDA 4) (Jamroz 2004), her bir titreşim frekansı için Potansiyel Enerji Dağılımı (PED) hesaplamasında kullanıldı. PED hesaplamaları, molekülün iç koordinatların herbir titreşim moduna göre göreceli katkısını göstermektedir. Böylece, her modun karakteri açıklanabilir. Deneysel bantlardaki molekül katkılarını belirleyebilmek için moleküllerin PED hesaplamaları ile normal titreşim modları karakterize edildi.

DFT ve HF gibi hesaplamalı kuantum kimya yöntemlerinde, elektron korelasyonunun tam olarak dahil edilmemesi ve sonlu temellerin kullanılması bazı sistematik hatalara yol açmaktadır. Moleküllerin doğru titreşim spektrumlarını belirlemek için DFT ve HF hesaplama yöntemleri sırasıyla, 0,9614 ve 0,8953 düzeltme faktörleri ile çarpıldı (Scott ve diğ. 1996).

Bu çalışmada, göz önüne alınan azo boyaların UV-vis spektrum analizleri, kloroform, metanol, dimetilformamit (DMF) dimetilsülfoksit (DMSO) ve asetik asit gibi farklı çözücülerde 6-31G (d) temel seti ile B3LYP seviyesini kullanan Zamana Bağlı Yoğunluk Fonksiyonel Teorisi (TD-DFT) (https://www.q-chem.com/qchem-website/manual/qchem43_manual/sect-tddft.html) kullanılarak çalışıldı.

Moleküllerin dengeye ulaşmış yapıları kullanılarak moleküler orbital analizi gerçekleştirildi ve elektrostatik potansiyel dağılımı haritası Gauss-View programında görüntülendi.

5. BULGULAR

Bu bölümde, bileşik yapıları Bölüm 4'de verilen A ve B moleküllerinin kuantum kimyasal hesaplama yöntemi ile elde edilen bulgularına yer verildi. Bu azo boyar maddelerin yapısal, FT-IR, UV-Vis ve NMR spektral özellikleri, moleküler elektrostatik yüzey analizi ve HOMO-LUMO enerji band aralığı sunulup, deneysel verilerle karşılaştırıldı.

5.1 Moleküllerin Yapısal Özellikleri

Gaussian 09 paket programında uyarlanmış DFT/B3LYP/6-31G(d) ve HF bazlı yöntemlerini kullanarak, öz-uyumlu alan (self-consistend field) prensibi altında A ve B molekülleri serbest bırakıldı ve optimize edilmiş geometrik yapıları tayin edildi. Gaussian 09 paket programı, çok parçacıklı sistemlerin davranışını temsil eden Schrödinger denklemini çözmek için yaptığı çeşitli yaklaşımlar ile sistemin optimizasyonunu yaparak, taban durumuna ait moleküler geometrisini, bağ açılarını, bağ uzunluklarını ve enerjisini belirleyerek moleküler yapının şekil ve bağlanmalarını öğrenmemizi sağlamıştır.

Şekil 5.1'de A molekülünün, Şekil 5.2'de B molekülünün atomları numaralandırılmış bir şekilde denge halindeki moleküler yapıları gösterildi. Moleküllerin geometrisi C₁ nokta grup simetrisine sahiptir. A molekülü, 32 atom ve 90 temel titreşim moduna sahiptir. Bu atomların 11 tanesi C atomu, 6 tanesi N atomu,14 tanesi H atomu ve 1 tanesi de O atomudur. Diğer bir yanda B molekülü atomların 17 tanesi C atomu, 7 tanesi N atomu, 18 tanesi H atomu ve 1 tanesi de O atomundan oluşan 42 atomlu bir molekül olup,120 temel titreşim modunu ihtiva eder. A molekülünün B molekülü ile yapısındaki temel fark, 29H atomu (Şekil 5.1) yerine, B molekülünde benzen halkasının (Şekil 5.2) bulunmasıdır.

Moleküllerin bağ açısı, bağ uzunluğu ve dihedral açı gibi optimize edilmiş yapısal parametreleri sırasıyla A molekülü için Tablo 5.1, Tablo 5.2 ve Tablo 5.3'de; B molekülü için Tablo 5.4, Tablo 5.5 ve Tablo 5.6'da verildi. A molekülün yapısı 33 bağ uzunluğu, 52 bağ açısı ve 67 dihedral açısıyla ve B Molekülün yapısı 44 bağ uzunluğu, 70 bağ açısı ve 95 dihedral açısı ile belirlendi.

Şekil 5.1: Molekül A için DFT/B3LYP/6-31G(d) metodu ile dengeye gelmiş moleküler yapı.

Şekil 5.2: Molekül B için DFT/B3LYP/6-31G(d) metodu ile dengeye gelmiş moleküler yapı.

Deneysel yapı analizi sonuçları bulunmadığı için, simüle edilen yapısal parametreler deneysel verilerle karşılaştırılamadı. İki faklı yöntem (DFT ve HF) ile elde edilen sonuçlar hemen hemen birbirine yakın çıkmıştır. A molekülündeki 29 H atomu yerine benzen halkası yerleştirildiğinde B molekülü oluşturulduğu ifade edilmişti. Tablo 5.1 ve Tablo 5.4 incelendiğinde, yerleştirilen bu bölge yakınlarındaki C-N ve C-O bağlarının uzunlukları azalırken, diğer bağlarda pek değişme gözlenmemektedir. Bu bağ açılarına bakıldığında, bu benzen halkasına yakın atomlar arasındaki açılarda değişim kaydedilirken, uzak bölgelerde farklılık bulunmamaktadır.

	BAĞ UZUNLUĞU(Å⁰)	SEMBOLIK BAĞ UZUNLUĞU GÖSTERIMI	DFT/ B3LYP/ 6-31G(D)	HF /6-31G(D)
1.	R(1,2)	C1-C2	1,4190	1,4067
2.	R(1,6)	C1-C6	1,4144	1,3997
3.	R(1,7)	C1-N7	1,3868	1,3792
4.	R(2,3)	C2-C3	1,3846	1,3766
5.	R(2,19)	C2-H19	1,0837	1,718
6.	R(3,4)	C3-C4	1,4065	1,3919
7.	R(3,20)	C3-H20	1,0846	1,0729
8.	R(4,5)	C4-C5	1,4012	1,3834
9.	R(4,8)	C4-N8	1,4085	1,4158
10.	R(5,6)	C5-C6	1,3885	1,3826
11.	R(5,21)	C5-H21	1,0869	1,0755
12.	R(6,21)	C6-H21	1,0833	1,0717
13.	R(7,9)	N7-C9	1,4531	1,4437
14.	R(7,10)	N7-C10	1,4523	1,443
15.	R (8,11)	N8-N11	1,2773	1,2288
16.	R(9,23)	C9-H23	1,0917	1,0801
17.	R(9,24)	C9-H24	1,1015	1,087
18.	R(9,25)	C9-H25	1,0968	1,087
19.	R(10,26)	C10-H26	1,0916	1,0801
20.	R(10,27)	C10-H27	1,1017	1,0872
21.	R(10,28)	C10-H28	1,097	1,0872
22.	R(11,12)	N11-C12	1,3732	1,3783
23.	R(12,13)	C12-C13	1,4117	1,3936
24.	R(12,16)	C12-C16	1,430	1,419
25.	R(13,14)	C13-N14	1,3503	1,3302
26.	R(13,18)	C13-N18	1,3691	1,344
27.	R(14,15)	N14-N15	1,390	1,3753
28.	R(14,29)	N14-H29	1,0081	0,9916
29.	R(15,16)	N15-C16	1,3168	1,2884
30.	R(16,17)	C16-O17	1,3481	1,3291
31.	R(17,30)	O17-H30	0,9731	0,9501
32.	R(18,31)	N18-H31	1,0128	0,992
33.	R(18,32)	N18-H32	1,0196	0,994

Tablo 5.1: DFT/B3LYP ve HF metodları ile hesaplanan A molekülünün bağ uzunluğu (A⁰) (Karabacak Atay ve diğ. 2018).

Tablo 5.2: DFT/B3LYP ve HF metodları ile hesaplanan A molekülünün bağ açıları (⁰) (Karabacak Atay ve diğ. 2018).

1. A(2,1,6) C2-C1-66 117,2757 117,1774 2. A(2,1,7) C2-C1-N7 121,2575 121,2686 3. A(6,1,7) C6-C1-N7 121,4657 121,4545 4. A(1,2,3) C1-C2-C3 121,4113 121,4468 5. A(1,2,3) C1-C2-H19 118,4711 118,2093 7. A(2,3,4) C2-C3-C2-H19 118,4711 118,2093 7. A(2,3,20) C2-C3-H20 120,04077 119,6847 9. A(4,3,20) C2-C3-H20 118,6834 119,4349 10. A(3,4,5) C3-C4-N8 125,0821 124,9514 12. A(5,4,8) C5-C4-N8 116,9009 116,9827 13. A(4,5,5) C1-C4-C5 120,738 119,4492 16. A(1,6,5) C1-C4-C5 120,738 119,4492 16. A(1,6,22) C1-C6-C5 120,738 119,4192 17. A(1,6,22) C1-C6-C5 120,738 119,7617 24. <th></th> <th>BAĞ AÇILARI (⁰)</th> <th>SEMBOLIK BAĞ AÇISI GÖSTERIMI</th> <th>DFT/ B3LYP/ 6-31G(D)</th> <th>HF /6-31G(D)</th>		BAĞ AÇILARI (⁰)	SEMBOLIK BAĞ AÇISI GÖSTERIMI	DFT/ B3LYP/ 6-31G(D)	HF /6-31G(D)
2. $A(2,1,7)$ $C2-C1-N7$ $121,2575$ $121,28686$ 3. $A(1,2,3)$ $C1-C2-C3$ $121,4113$ $121,4567$ $121,554$ 4. $A(1,2,3)$ $C1-C2-C3$ $121,4113$ $121,44687$ 5. $A(1,2,19)$ $C3-C2-H19$ $118,4711$ $118,2093$ 7. $A(2,3,4)$ $C2-C3-C4$ $120,0077$ $119,6847$ 9. $A(4,3,20)$ $C2-C3-C4$ $120,0077$ $119,6847$ 9. $A(4,3,5)$ $C3-C4-N8$ $116,0009$ $116,9827$ 10. $A(3,4,8)$ $C3-C4-N8$ $116,0009$ $116,9827$ 13. $A(4,5,51)$ $C4-C5-H21$ $118,4882$ $118,8001$ 14. $A(4,5,51)$ $C4-C5-H21$ $119,9158$ $119,4492$ 16. $A(1,6,52)$ $C1-C6-H22$ $120,5009$ $120,737$ 18. $A(5,622)$ $C5-C6-H22$ $118,7105$ $118,5233$ 19. $A(1,7,9)$ $C1-N7-C10$ $119,4861$ $120,0083$ 21.	1.	A(2,1,6)	C2-C1-C6	117,2757	117,1774
3. A(6,17) C6-C1-N7 121,467 121,413 121,448 4. A(1,2,19) C1-C2-C13 121,4113 121,448 5. A(1,2,19) C1-C2-H19 120,1175 120,3439 6. A(3,2,19) C2-C3-C4 120,0083 120,8804 8. A(2,3,20) C2-C3-H20 120,4077 119,6847 9. A(4,3,5) C3-C4-C5 118,0162 118,0458 11. A(3,4,8) C3-C4-N8 125,0821 124,9514 12. A(4,5,6) C4-C5-C6 121,5946 121,6906 14. A(4,5,1) C4-C5-C6 121,5946 121,6906 14. A(4,5,21) C4-C5-C6 120,738 119,4492 16. A(1,6,5) C1-C6-C5 120,788 120,739 17. A(1,6,22) C1-C6-H22 118,703 118,5233 19. A(1,7,9) C1-N7-C0 119,4681 120,003 20. A(1,7,9) C1-N7-C10 119,4692 120,2300 <tr< th=""><th>2.</th><th>A(2,1,7)</th><th>C2-C1-N7</th><th>121,2575</th><th>121,2686</th></tr<>	2.	A(2,1,7)	C2-C1-N7	121,2575	121,2686
4. A(1,2,3) C1-C2-C3 121,4113 121,4468 5. A(1,2,19) C1-C2-H19 120,1175 120,3439 6. A(3,2,19) C3-C2-H19 118,4711 118,2093 7. A(2,3,4) C2-C3-H20 120,04077 119,6847 9. A(4,3,20) C2-C3-H20 118,6834 119,4349 10. A(3,4,5) C3-C4-N8 125,0821 124,9514 12. A(5,4,8) C5-C4-N8 116,9009 116,9827 13. A(4,5,1) C4-C5-H21 118,4882 119,4912 16. A(1,6,5) C1-C6-C5 120,7985 120,7377 18. A(5,6,22) C1-C6-C5 120,7885 120,7377 18. A(5,6,22) C1-C6-H22 120,5009 120,7377 18. A(1,7,10) C1-N7-C9 119,4981 120,0083 21. A(0,7,10) C1-N7-C10 119,4861 120,0083 21. A(0,7,10) C1-N7-C20 119,49692 120,2300	3.	A(6,1,7)	C6-C1-N7	121,4657	121,554
5. A(1,2,19) C1-C2-H19 120,1175 120,2439 6. A(3,2,19) C3-C2-H19 118,4711 118,2093 7. A(2,3,4) C2-C3-C4 120,9083 120,8804 8. A(2,3,20) C2-C3-H20 120,4077 119,6847 9. A(4,3,20) C2-C3-H20 118,6834 119,4349 10. A(3,4,5) C3-C4-C5 118,0162 118,0658 11. A(3,4,8) C3-C4-N8 116,9009 116,9827 13. A(4,5,6) C4-C5-C6 121,5946 121,6906 14. A(4,5,21) C4-C5-H21 118,4882 118,8601 15. A(6,521) C6-C5-H21 119,9158 119,4492 16. A(1,6,52) C1-C6-C5 120,7399 17. 7. A(1,6,22) C1-C6-H22 118,703 118,5233 19. A(1,7,10) C1-N7-C9 119,6992 120,2300 20. A(1,7,10) C1-N7-C10 118,6038 119,7617 22	4.	A(1,2,3)	C1-C2-C3	121,4113	121,4468
6. A(2,3,4) C2-C2-H19 118,4711 118,2093 7. A(2,3,4) C2-C3-C4 120,9083 120,8804 8. A(2,3,20) C2-C3-H20 120,4077 119,6847 9. A(4,3,20) C4-C3-H20 118,0162 118,0658 11. A(3,4,8) C3-C4-C5 118,0162 118,0658 12. A(3,4,8) C3-C4-N8 116,9009 116,9827 13. A(4,5,6) C4-C5-C6 121,5946 121,6906 14. A(4,5,21) C4-C5-H21 118,4882 118,8601 15. A(6,5,21) C6-C5 120,7895 120,739 17. A(1,6,22) C1-C6-C5 120,5009 120,7377 18. A(5,6,22) C5-C6-G4H22 118,7105 118,5233 19. A(1,7,10) C1-N7-C10 119,4681 120,0083 21. A(9,7,10) C9-N7-C10 118,6038 119,7617 22. A(4,8,11) C4-N8-N11 114,9755 115,5259	5.	A(1,2,19)	C1-C2-H19	120,1175	120,3439
7. A(2,3,4) C2-C3-C4 120,9083 120,8804 8. A(2,3,20) C2-C3-H20 120,4077 119,6847 9. A(4,3,20) C4-C3-H20 118,6834 119,4349 10. A(3,4,5) C3-C4-C5 118,0162 118,0658 11. A(3,4,8) C3-C4-N8 116,9009 116,9827 13. A(4,5,6) C4-C5-H21 118,4882 118,8601 15. A(6,5,21) C6-C5-H21 119,9158 119,4492 16. A(1,6,52) C1-C6-C5 120,5009 120,7377 18. A(5,6,22) C5-C6-H22 118,7105 118,5233 19. A(1,7,9) C1-N7-C9 119,4692 120,3737 18. A(5,6,22) C5-C6-H22 118,6038 119,7617 22. A(4,8,11) C4-N8-N11 114,9755 115,5259 23. A(7,9,23) N7-C9-H23 109,037 109,2315 24. A(7,9,24) N7-C9-H24 112,7591 111,9403	6.	A(3,2,19)	C3-C2-H19	118,4711	118,2093
8. A(2,3,20) C2-C3-H20 120,4077 119,6847 9. A(4,3,20) C4-C3-H20 118,6834 119,4349 10. A(3,4,5) C3-C4-C5 118,0162 118,0658 11. A(3,4,8) C3-C4-N8 125,0821 124,9514 12. A(5,4,8) C3-C4-N8 116,9009 116,9827 13. A(4,5,6) C4-C5-C6 121,5946 121,6906 14. A(4,5,21) C4-C5-H21 118,4882 118,8601 15. A(1,6,52) C1-C6-C5 120,7385 120,7379 17. A(1,6,22) C1-C6-H22 120,5009 120,7377 18. A(5,6,22) C5-C6-H22 118,7105 118,5233 19. A(1,7,10) C1-N7-C10 119,6992 120,2300 20. A(1,7,10) C1-N7-C10 119,6987 109,2315 21. A(9,7,10) C9-N7-C10 118,6038 119,7617 22. A(4,8,11) C4-N8-N11 114,9755 1115,5259	7.	A(2,3,4)	C2-C3-C4	120,9083	120,8804
9. A(4,3,20) C4-C3-H20 118,6834 119,4349 10. A(3,4,5) C3-C4-C5 118,0162 118,0658 11. A(3,4,8) C3-C4-N8 112,0090 116,9827 12. A(5,4,8) C5-C4-N8 116,0009 116,9827 13. A(4,5,21) C4-C5-H21 118,4882 118,8601 15. A(6,5,21) C4-C5-H21 119,9158 119,4492 16. A(1,6,5) C1-C6-C5 120,7885 120,739 17. A(1,6,22) C1-C6-H22 118,7105 118,5233 19. A(1,7,9) C1-N7-C9 119,6992 120,2300 20. A(1,7,10) C1-N7-C10 118,6038 119,7617 21. A(9,7,10) C9-N7-C10 118,6038 119,7617 22. A(4,8,11) C4-N8-N11 114,9755 115,5259 23. A(7,9,23) N7-C9-H23 109,087 109,2315 24. A(7,9,24) N7-C9-H24 108,255 107,7368	8.	A(2,3,20)	C2-C3-H20	120,4077	119,6847
10.A(3,4,5)C3-C4-C5118,0162118,065811.A(3,4,8)C3-C4-N8125,0821124,951412.A(5,4,8)C5-C4-N8116,9009116,982713.A(4,5,6)C4-C5-C6121,5946121,690614.A(4,5,21)C4-C5-H21118,4882118,860115.A(6,5,21)C6-C5-H21119,9158119,449216.A(1,6,5)C1-C6-C5120,7885120,73917.A(1,6,22)C1-C6-H22120,5009120,737718.A(5,6,22)C5-C6-H22118,7105118,523319.A(1,7,9)C1-N7-C9119,6992120,230020.A(1,7,10)C1-N7-C10119,4861120,008321.A(9,7,10)C9-N7-C10118,6038119,761722.A(4,8,11)C4-N8-N11114,9755115,525923.A(7,9,23)N7-C9-H23109,087109,231524.A(7,9,24)N7-C9-H24112,7591111,940325.A(7,9,25)H23-C9-H24108,2255107,736827.A(23,9,24)H23-C9-H25107,5377108,092329.A(7,10,26)N7-C10-H28112,7315111,907431.A(7,10,26)N7-C10-H28112,7315111,907432.A(26,10,27)H2-C9-H25107,5618107,752633.A(26,10,28)H2-C10-H27108,2319107,752634.A(27,10,28)N7-C10-H28112,7315111,907435.A(26,10,28) <th>9.</th> <th>A(4,3,20)</th> <th>C4-C3-H20</th> <th>118,6834</th> <th>119,4349</th>	9.	A(4,3,20)	C4-C3-H20	118,6834	119,4349
11. $A(3,4,8)$ $C3-C4-N8$ $125,0821$ $124,9514$ 12. $A(4,5,6)$ $C3-C4-N8$ $116,9009$ $116,9827$ 13. $A(4,5,6)$ $C4-C5-C6$ $121,5946$ $121,6906$ 14. $A(4,5,21)$ $C4-C5-H21$ $118,4882$ $118,8601$ 15. $A(6,5,21)$ $C6-C5-H21$ $119,9158$ $119,4492$ 16. $A(1,6,5)$ $C1-C6-C5$ $120,73985$ $120,739$ 17. $A(1,6,22)$ $C1-C6-H22$ $118,7105$ $118,5233$ 19. $A(1,7,9)$ $C1-N7-C9$ $119,6992$ $120,2300$ 20. $A(1,7,10)$ $C1-N7-C10$ $118,6038$ $119,7617$ 21. $A(9,7,10)$ $C9-N7-C10$ $118,6038$ $119,7617$ 22. $A(4,8,11)$ $C4-N8-N11$ $114,9755$ $115,5259$ 23. $A(7,9,23)$ $N7-C9-H23$ $109,087$ $109,2315$ 24. $A(7,9,23)$ $N7-C9-H23$ $109,087$ $109,2315$ 24. $A(7,9,24)$ $N7-C9-H24$ $112,7591$ $111,9403$ 25. $A(7,9,25)$ $H24-C9-H24$ $108,2255$ $107,7368$ 27. $A(23,9,25)$ $H24-C9-H25$ $107,337$ $108,0923$ 28. $A(24,9,25)$ $H24-C9-H25$ $107,337$ $108,0923$ 29. $A7,10,26)$ $N7-C10-H28$ $102,7315$ $111,9074$ 31. $A(7,10,28)$ $N7-C10-H28$ $107,718$ $108,0902$ 39. $A(26,10,27)$ $H26-C10-H27$ $108,2319$ $107,7526$ 33. $A(26,10,27)$ $H26-C10-H27$	10.	A(3,4,5)	C3-C4-C5	118,0162	118,0658
12. A(5,4,8) C5-C4-N8 116,9009 116,9827 13. A(4,5,2) C4-C5-C6 121,5946 121,6906 14. A(4,5,21) C4-C5-H21 118,4882 118,8601 15. A(6,5,21) C6-C5-H21 119,9158 119,4492 16. A(1,6,5) C1-C6-C5 120,7885 120,7377 18. A(5,6,22) C5-C6-H22 118,7105 118,5233 19. A(1,7,9) C1-N7-C9 119,6992 120,2300 20. A(1,7,10) C1-N7-C10 119,4861 120,0083 21. A(9,7,10) C9-N7-C10 118,6038 119,7617 22. A(4,8,11) C4-N8-N11 114,9755 115,5259 23. A(7,9,23) N7-C9-H23 109,087 109,2315 24. A(7,9,24) N7-C9-H24 102,255 111,199 111,9403 25. A(7,9,25) N7-C9-H24 108,2255 107,7368 27. A(23,9,24) H23-C9-H25 107,5791 107,733	11.	A(3,4,8)	C3-C4-N8	125,0821	124,9514
13. A(4,5,6) C4-C5-C6 121,5946 121,6906 14. A(4,5,21) C4-C5-H21 118,4882 118,8601 15. A(6,5,21) C6-C5-H21 119,9158 119,4492 16. A(1,6,5) C1-C6-H22 120,5009 120,7377 18. A(5,6,22) C5-C6-H22 118,7105 118,5233 19. A(1,7,9) C1-N7-C9 119,66992 120,2300 20. A(1,7,10) C1-N7-C10 119,4861 120,0083 21. A(9,7,10) C9-N7-C10 118,6038 119,7617 22. A(4,7,9,23) N7-C9-H23 109,087 109,2315 24. A(7,9,24) N7-C9-H24 112,7591 111,19332 26. A(23,9,24) H23-C9-H24 108,2255 107,7368 27. A(23,9,25) H24-C9-H25 107,9375 108,0923 28. A(24,9,25) H24-C9-H25 107,9375 108,023 30. A(7,10,26) N7-C10-H28 112,7315 111,9074 <	12.	A(5,4,8)	C5-C4-N8	116,9009	116,9827
14. $A(4,5,21)$ $C4-C5-H21$ $118,4882$ $118,8601$ 15. $A(6,5,21)$ $C6-C5-H21$ $119,9158$ $119,4492$ 16. $A(1,6,5)$ $C1-C6-C5$ $120,7885$ $120,7397$ 18. $A(5,6,22)$ $C5-C6-H22$ $118,7105$ $118,5233$ 19. $A(1,7,9)$ $C1-N7-C9$ $119,6992$ $120,2300$ 20. $A(1,7,10)$ $C9-N7-C10$ $118,6038$ $119,7617$ 22. $A(4,8,11)$ $C4-N8-N11$ $114,9755$ $115,5259$ 23. $A(7,9,23)$ $N7-C9-H23$ $109,087$ $109,2315$ 24. $A(7,9,24)$ $N7-C9-H23$ $109,087$ $109,2315$ 25. $A(7,9,24)$ $N7-C9-H23$ $109,087$ $107,3332$ 26. $A(23,9,24)$ $H23-C9-H25$ $111,1199$ $111,9403$ 25. $A(7,10,25)$ $N7-C9-H24$ $108,2255$ $107,7368$ 27. $A(23,9,25)$ $H24-C9-H25$ $107,9375$ $108,0923$ 29. $A(7,10,26)$ $N7-C10-H26$ $109,156$ $109,3025$ 30. $A(7,10,28)$ $N7-C10-H27$ $111,019$ $111,8988$ 32. $A(26,10,27)$ $H26-C10-H27$ $108,2319$ $107,7526$ 33. $A(26,10,28)$ $H27-C10-H27$ $108,2319$ $107,7526$ 33. $A(26,10,28)$ $H26-C10-H27$ $108,2319$ $107,7526$ 33. $A(26,10,28)$ $H26-C10-H27$ $108,2319$ $107,7526$ 35. $A(8,11,12)$ $N8-N11-C12$ $115,0618$ $116,3661$ 36. $A(11,12,13)$ <	13.	A(4,5,6)	C4-C5-C6	121,5946	121,6906
15. $A(6,5,21)$ $C6-C5-H21$ $119,49158$ $119,4492$ 16. $A(1,6,5)$ $C1-C6-C5$ $120,7885$ $120,739$ 17. $A(1,6,22)$ $C1-C6-H22$ $120,7309$ $120,7377$ 18. $A(5,6,22)$ $C5-C6-H22$ $118,7105$ $118,5233$ 19. $A(1,7,9)$ $C1-N7-C9$ $119,6992$ $120,2300$ 20. $A(1,7,10)$ $C1-N7-C10$ $119,4861$ $120,0083$ 21. $A(9,7,10)$ $C9-N7-C10$ $118,6038$ $119,7617$ 22. $A(4,8,11)$ $C4-N8-N11$ $114,9755$ $115,5259$ 23. $A(7,9,23)$ $N7-C9-H23$ $109,087$ $109,2315$ 24. $A(7,9,24)$ $N7-C9-H24$ $112,7591$ $111,9403$ 25. $A(7,9,25)$ $N7-C9-H24$ $108,2255$ $107,7386$ 27. $A(23,9,24)$ $H23-C9-H24$ $108,2255$ $107,7337$ 28. $A(24,9,25)$ $H24-C9-H25$ $107,5375$ $108,0923$ 29. $A(7,10,26)$ $N7-C10-H26$ $109,156$ $109,3025$ 30. $A(7,10,28)$ $N7-C10-H28$ $107,518$ $110,974$ 31. $A(26,10,27)$ $H26-C10-H27$ $108,2319$ $107,7526$ 33. $A(26,10,27)$ $H26-C10-H27$ $108,2319$ $107,7526$ 33. $A(26,10,28)$ $H27-C10-H28$ $107,9183$ $108,6000$ 35. $A(8,11,12)$ $N11-C12-C13$ $130,242$ $130,7726$ 36. $A(11,12,13)$ $N11-C12-C16$ $103,4767$ $103,3878$ 39. $A(12,13,14)$ <	14.	A(4,5,21)	C4-C5-H21	118,4882	118,8601
16. A(1,6,5) C1-C6-C5 120,7885 120,7397 17. A(1,6,22) C1-C6-H22 120,5009 120,7377 18. A(5,6,22) C5-C6-H22 118,7105 118,5233 19. A(1,7,9) C1-N7-C9 119,6992 120,2300 20. A(1,7,10) C1-N7-C10 119,4861 120,0083 21. A(9,7,10) C9-N7-C10 118,6038 119,7617 22. A(4,8,11) C4-N8-N11 114,9755 115,5259 23. A(7,9,23) N7-C9-H23 109,087 109,2315 24. A(7,9,24) N7-C9-H24 112,7591 111,9403 25. A(7,9,25) N7-C9-H25 111,1199 111,9332 26. A(23,9,24) H23-C9-H25 107,5397 107,7337 28. A(24,9,25) H24-C9-H25 107,5397 107,7337 28. A(24,9,25) H24-C9-H25 107,518 111,9074 31. A(7,10,26) N7-C10-H28 112,7315 111,9074 <th>15.</th> <th>A(6,5,21)</th> <th>C6-C5-H21</th> <th>119,9158</th> <th>119,4492</th>	15.	A(6,5,21)	C6-C5-H21	119,9158	119,4492
17. A(1.6.22) C1-C6-H22 120,5009 120,7377 18. A(5,6,22) C5-C6-H22 118,7105 118,5233 19. A(1,7,9) C1-N7-C9 119,6992 120,2300 20. A(1,7,10) C1-N7-C10 118,6038 119,7617 22. A(4,8,11) C4-N8-N11 114,9755 115,5259 23. A(7,9,23) N7-C9-H23 109,087 109,2315 24. A(7,9,24) N7-C9-H23 109,087 109,2315 25. A(7,9,24) H23-C9-H24 102,7591 111,9403 25. A(7,9,25) N7-C9-H25 107,7368 107,7368 27. A(23,9,24) H23-C9-H24 108,2255 107,7368 27. A(23,9,25) H24-C9-H25 107,5397 107,7337 28. A(24,9,25) H24-C9-H25 107,5397 107,7352 30. A(7,10,26) N7-C10-H28 112,7315 111,9074 31. A(26,10,27) N7-C20-H28 107,5518 107,7526	16.	A(1,6,5)	C1-C6-C5	120,7885	120,739
18. A(5,6,22) C5-C6-H22 118,7105 118,5233 19. A(1,7,9) C1-N7-C9 119,6992 120,2300 20. A(1,7,10) C1-N7-C10 119,4861 120,0083 21. A(9,7,10) C9-N7-C10 118,6038 119,7617 22. A(4,8,11) C4-N8-N11 114,9755 115,5259 23. A(7,9,23) N7-C9-H23 109,087 109,2315 24. A(7,9,24) N7-C9-H24 112,7591 111,9403 25. A(7,9,25) N7-C9-H25 111,1199 111,9332 26. A(23,9,25) H23-C9-H24 108,2255 107,7368 27. A(23,9,25) H24-C9-H25 107,5397 107,737 28. A(24,9,25) H24-C9-H25 107,5397 108,0923 30. A(7,10,26) N7-C10-H27 111,8978 31. 31. A(7,10,27) N7-C10-H27 108,2319 107,7526 33. A(26,10,27) H26-C10-H27 108,2319 107,7492 <	17.	A(1,6,22)	C1-C6-H22	120,5009	120,7377
19. A(1,7,9) C1-N7-C9 119,6992 120,2300 20. A(1,7,10) C1-N7-C10 119,4861 120,0083 21. A(9,7,10) C9-N7-C10 118,6038 119,7617 22. A(4,8,11) C4-N8-N11 114,9755 115,5259 23. A(7,9,23) N7-C9-H23 109,087 109,2315 24. A(7,9,23) N7-C9-H24 112,7591 111,9403 25. A(7,9,25) N7-C9-H24 108,2255 107,7368 27. A(23,9,24) H23-C9-H25 107,5397 107,7337 28. A(24,9,25) H24-C9-H25 107,9375 108,0923 30. A(7,10,26) N7-C10-H28 112,7315 111,9074 31. A(7,10,28) N7-C10-H28 107,5168 107,7422 33. A(26,10,27) H26-C10-H27 108,2319 107,7526 33. A(26,10,28) H27-C10-H28 107,9183 108,0600 35. A(8,11,12) N8-N11-C12 115,0618 116,3661<	18.	A(5,6,22)	C5-C6-H22	118,7105	118,5233
20. A(1,7,10) C1-N7-C10 119,4861 120,0083 21. A(9,7,10) C9-N7-C10 118,6038 119,7617 22. A(4,8,11) C4-N8-N11 114,9755 115,5259 23. A(7,9,23) N7-C9-H23 109,087 109,2315 24. A(7,9,24) N7-C9-H24 112,7591 111,9403 25. A(7,9,25) N7-C9-H25 111,1199 11332 26. A(23,9,24) H23-C9-H24 108,2255 107,7368 27. A(23,9,25) H24-C9-H25 107,5397 107,7337 28. A(24,9,25) H24-C9-H25 107,9375 108,0923 29. A(7,10,26) N7-C10-H26 109,156 109,3025 30. A(7,10,27) N7-C10-H27 111,0719 111,8988 32. A(26,10,27) H26-C10-H27 108,2319 107,7526 33. A(26,10,28) H27-C10-H28 107,9183 108,0600 35. A(8,11,12) N11-C12 115,0618 116,3661 <th>19.</th> <th>A(1,7,9)</th> <th>C1-N7-C9</th> <th>119,6992</th> <th>120,2300</th>	19.	A(1,7,9)	C1-N7-C9	119,6992	120,2300
21. $A(9,7,10)$ $C9-N7-C10$ $118,6038$ $119,7617$ 22. $A(4,8,11)$ $C4-N8-N11$ $114,9755$ $115,5259$ 23. $A(7,9,23)$ $N7-C9-H23$ $109,087$ $109,2315$ 24. $A(7,9,24)$ $N7-C9-H24$ $112,7591$ $111,9403$ 25. $A(7,9,25)$ $N7-C9-H25$ $111,1199$ $111,9332$ 26. $A(23,9,24)$ $H23-C9-H24$ $108,2255$ $107,7368$ 27. $A(23,9,25)$ $H24-C9-H25$ $107,9375$ $108,0923$ 29. $A(7,10,26)$ $N7-C10-H26$ $109,156$ $109,3025$ 30. $A(7,10,26)$ $N7-C10-H28$ $112,7315$ $111,9074$ 31. $A(7,10,28)$ $N7-C10-H28$ $112,7315$ $111,9074$ 31. $A(7,10,28)$ $N7-C10-H27$ $110,0719$ $111,8988$ 32. $A(26,10,27)$ $H26-C10-H27$ $108,2319$ $107,7526$ 33. $A(26,10,28)$ $H27-C10-H28$ $107,518$ $107,7492$ 34. $A(27,10,28)$ $H27-C10-H28$ $107,9183$ $108,0600$ 35. $A(8,11,12)$ $N8-N11-C12$ $115,0618$ $116,3661$ 36. $A(11,12,16)$ $N11-C12-C13$ $130,242$ $130,7726$ 37. $A(11,12,16)$ $N11-C12-C16$ $126,164$ $125,8396$ 38. $A(13,12,16)$ $C13-C12-C16$ $103,4767$ $103,3878$ 39. $A(12,13,14)$ $C12-C13-N14$ $106,3628$ $106,3228$ 40. $A(12,13,18)$ $N14-C13-N18$ $125,2704$ $124,2768$ 42.	20.	A(1,7,10)	C1-N7-C10	119,4861	120,0083
22. $A(4,8,11)$ $C4-N8-N11$ $114,9755$ $115,5259$ 23. $A(7,9,23)$ $N7-C9-H23$ $109,087$ $109,2315$ 24. $A(7,9,24)$ $N7-C9-H23$ $112,7591$ $111,9403$ 25. $A(7,9,25)$ $N7-C9-H25$ $111,1199$ $111,9332$ 26. $A(23,9,24)$ $H23-C9-H24$ $108,2255$ $107,7368$ 27. $A(23,9,25)$ $H23-C9-H25$ $107,5397$ $107,7337$ 28. $A(24,9,25)$ $H24-C9-H25$ $107,9375$ $108,0923$ 29. $A(7,10,26)$ $N7-C10-H26$ $109,156$ $109,3025$ 30. $A(7,10,27)$ $N7-C10-H28$ $112,7315$ $111,9074$ 31. $A(7,10,28)$ $N7-C10-H28$ $112,7315$ $111,9074$ 31. $A(7,10,28)$ $N7-C10-H27$ $110,719$ $111,8988$ 32. $A(26,10,27)$ $H26-C10-H27$ $108,2319$ $107,7526$ 33. $A(26,10,28)$ $H27-C10-H28$ $107,9183$ $108,0600$ 35. $A(8,11,12)$ $N8-N11-C12$ $115,0618$ $116,3661$ 36. $A(11,12,13)$ $N11-C12-C13$ $130,242$ $130,7726$ 37. $A(11,12,16)$ $N11-C12-C16$ $126,2164$ $125,8396$ 38. $A(13,12,16)$ $C13-C13-N14$ $106,3628$ $106,3228$ 40. $A(12,13,14)$ $C12-C13-N14$ $106,3628$ $106,3228$ 40. $A(12,13,14)$ $C12-C13-N14$ $124,2768$ 42. $A(13,14,15)$ $C13-N14-N15$ $113,145$ $113,0951$ 43. $A(13,14,29)$	21.	A(9,7,10)	C9-N7-C10	118,6038	119,7617
23. $A(7,9,23)$ $N7-C9-H23$ $109,087$ $109,2315$ 24. $A(7,9,24)$ $N7-C9-H24$ $112,7591$ $111,9403$ 25. $A(7,9,25)$ $N7-C9-H25$ $111,1199$ $111,9332$ 26. $A(23,9,24)$ $H23-C9-H24$ $108,2255$ $107,7368$ 27. $A(23,9,25)$ $H23-C9-H25$ $107,5397$ $107,7337$ 28. $A(24,9,25)$ $H24-C9-H25$ $107,9375$ $108,0923$ 29. $A(7,10,26)$ $N7-C10-H26$ $109,156$ $109,3025$ 30. $A(7,10,27)$ $N7-C10-H28$ $112,7315$ $111,9074$ 31. $A(7,10,28)$ $N7-C10-H27$ $111,0719$ $111,8988$ 32. $A(26,10,27)$ $H26-C10-H27$ $108,2319$ $107,7526$ 33. $A(26,10,28)$ $H26-C10-H28$ $107,9183$ $108,0600$ 35. $A(8,11,12)$ $N8-N11-C12$ $115,0618$ $116,3661$ 36. $A(11,12,16)$ $N11-C12-C13$ $130,242$ $130,7726$ 37. $A(11,2,16)$ $C13-C12-C16$ $103,4767$ $103,3878$ 39. $A(12,13,14)$ $C12-C13-N14$ $106,3628$ $106,3228$ 40. $A(12,13,14)$ $C12-C13-N18$ $128,3764$ $129,4004$ 41. $A(14,13,18)$ $N14-C13-N18$ $125,2704$ $124,2768$ 42. $A(13,14,5)$ $C13-N14-N15$ $113,3633$ $113,2787$ 43. $A(13,14,29)$ $C13-N14-N15$ $113,3683$ $113,2787$ 44. $A(15,16,17)$ $N15-C16-O17$ $124,869$ $122,2487$ 4	22.	A(4,8,11)	C4-N8-N11	114,9755	115,5259
24. $A(7,9,24)$ $N7-C9-H24$ $112,7591$ $111,9403$ 25. $A(7,9,25)$ $N7-C9-H25$ $111,1199$ $111,9332$ 26. $A(23,9,24)$ $H23-C9-H24$ $108,2255$ $107,7337$ 28. $A(24,9,25)$ $H23-C9-H25$ $107,9375$ $108,0923$ 29. $A(7,10,26)$ $N7-C10-H26$ $109,156$ $109,3025$ 30. $A(7,10,27)$ $N7-C10-H26$ $109,156$ $109,3025$ 31. $A(7,10,28)$ $N7-C10-H27$ $111,0719$ $111,8988$ 32. $A(26,10,27)$ $H26-C10-H27$ $108,2319$ $107,7526$ 33. $A(26,10,28)$ $H26-C10-H28$ $107,9183$ $108,0600$ 35. $A(8,11,12)$ $N8-N11-C12$ $115,0618$ $116,3661$ 36. $A(11,12,13)$ $N11-C12-C13$ $130,242$ $130,7726$ 37. $A(11,12,16)$ $C113-C12-C16$ $103,4767$ $103,3878$ 39. $A(12,13,14)$ $C12-C13-N14$ $106,628$ $106,3228$ 40. $A(12,13,18)$ $N14-C13-N18$ $125,2704$ $124,2768$ 42. $A(13,14,29)$ $C13-N14-H29$ $127,4017$ $128,0188$ 44. $A(15,14,29)$ $N15-N14-H29$ $113,145$ $113,0951$ 43. $A(12,16,17)$ $C12-C16-O17$ $123,3683$ $113,2787$ 47. $A(12,16,17)$ $C12-C16-O17$ $124,4727$ $124,4726$ 48. $A(15,16,17)$ $N15-C16-O17$ $121,8869$ $122,2487$ 49. $A(16,17,30)$ $C16-O17-H23$ $106,4947$ $108,3431$ <	23.	A(7,9,23)	N7-C9-H23	109,087	109,2315
25. A(7,9,25) N7-C9-H25 111,1199 111,9332 26. A(23,9,24) H23-C9-H24 108,2255 107,7368 27. A(23,9,25) H23-C9-H25 107,5397 107,7337 28. A(24,9,25) H24-C9-H25 107,9375 108,0923 29. A(7,10,26) N7-C10-H26 109,156 109,3025 30. A(7,10,27) N7-C10-H28 112,7315 111,9074 31. A(7,10,28) N7-C10-H27 108,2319 107,7526 33. A(26,10,27) H26-C10-H27 108,2319 107,7526 34. A(27,10,28) H27-C10-H28 107,518 108,0600 35. A(8,11,12) N8-N11-C12 115,0618 116,3661 36. A(11,12,13) N11-C12-C13 130,242 130,7726 37. A(11,12,16) N11-C12-C16 126,2164 125,8396 38. A(13,12,16) C13-C12-C16 103,4767 103,3878 39. A(12,13,18) C12-C13-N14 106,3628 106,3228 40. A(12,13,18) C13-N14-N15 113	24.	A(7,9,24)	N7-C9-H24	112,7591	111,9403
26. A(23,9,24) H23-C9-H24 108,2255 107,7368 27. A(23,9,25) H23-C9-H25 107,5397 107,7337 28. A(24,9,25) H24-C9-H25 107,9375 108,0923 29. A(7,10,26) N7-C10-H26 109,156 109,3025 30. A(7,10,27) N7-C10-H28 112,7315 111,9074 31. A(7,10,28) N7-C10-H27 111,0719 111,8988 32. A(26,10,27) H26-C10-H27 108,2319 107,7526 33. A(26,10,28) H26-C10-H28 107,518 107,7492 34. A(27,10,28) H27-C10-H28 107,9183 108,0600 35. A(8,11,12) N8-N11-C12 115,0618 116,3661 36. A(13,12,16) N11-C12-C16 126,2164 125,8396 37. A(11,12,13) N11-C12-C16 103,4767 103,3878 39. A(12,13,14) C12-C13-N14 106,3628 106,3228 40. A(12,13,18) C12-C13-N18 128,364 <th>25.</th> <th>A(7,9,25)</th> <th>N7-C9-H25</th> <th>111,1199</th> <th>111,9332</th>	25.	A(7,9,25)	N7-C9-H25	111,1199	111,9332
27. $A(23,9,25)$ $H23-C9-H25$ $107,5397$ $107,7337$ 28. $A(24,9,25)$ $H24-C9-H25$ $107,9375$ $108,0923$ 29. $A(7,10,26)$ $N7-C10-H26$ $109,156$ $109,3025$ 30. $A(7,10,27)$ $N7-C10-H28$ $112,7315$ $111,9074$ 31. $A(7,10,28)$ $N7-C10-H27$ $111,0719$ $111,8988$ 32. $A(26,10,27)$ $H26-C10-H27$ $108,2319$ $107,7526$ 33. $A(26,10,28)$ $H26-C10-H28$ $107,5618$ $107,7492$ 34. $A(27,10,28)$ $H27-C10-H28$ $107,9183$ $108,0600$ 35. $A(8,11,12)$ $N8-N11-C12$ $115,0618$ $116,3661$ 36. $A(11,12,13)$ $N11-C12-C13$ $130,242$ $130,7726$ 37. $A(11,12,16)$ $N11-C12-C16$ $126,2164$ $125,8396$ 38. $A(13,12,16)$ $C13-C12-C16$ $103,4767$ $103,3878$ 39. $A(12,13,14)$ $C12-C13-N14$ $106,3628$ $106,3228$ 40. $A(12,13,18)$ $C12-C13-N18$ $128,3364$ $129,4004$ 41. $A(14,13,18)$ $N14-C13-N18$ $125,2704$ $124,2768$ 42. $A(13,14,15)$ $C13-N14-H29$ $113,145$ $113,0951$ 43. $A(13,14,29)$ $C13-N14-H29$ $118,1751$ $118,8862$ 45. $A(14,15,16)$ $N14-N15-C16$ $103,6076$ $103,9156$ 46. $A(12,16,17)$ $C12-C16-017$ $124,7427$ $124,4726$ 48. $A(15,16,17)$ $N15-C16-017$ $121,8869$ $122,2487$ </th <th>26.</th> <th>A(23,9,24)</th> <th>H23-C9-H24</th> <th>108,2255</th> <th>107,7368</th>	26.	A(23,9,24)	H23-C9-H24	108,2255	107,7368
28. $A(24,9,25)$ $H24-C9-H25$ $107,9375$ $108,0923$ 29. $A(7,10,26)$ $N7-C10-H26$ $109,156$ $109,3025$ 30. $A(7,10,27)$ $N7-C10-H28$ $112,7315$ $111,9074$ 31. $A(7,10,28)$ $N7-C10-H27$ $111,0719$ $111,8988$ 32. $A(26,10,27)$ $H26-C10-H27$ $108,2319$ $107,7526$ 33. $A(26,10,28)$ $H26-C10-H27$ $108,2319$ $107,7492$ 34. $A(27,10,28)$ $H27-C10-H28$ $107,9183$ $108,0600$ 35. $A(8,11,12)$ $N8-N11-C12$ $115,0618$ $116,3661$ 36. $A(11,12,13)$ $N11-C12-C13$ $130,242$ $130,7726$ 37. $A(11,12,16)$ $N11-C12-C16$ $126,2164$ $125,8396$ 38. $A(13,12,16)$ $C13-C12-C16$ $103,4767$ $103,3878$ 39. $A(12,13,14)$ $C12-C13-N14$ $106,3628$ $106,3228$ 40. $A(12,13,18)$ $C12-C13-N18$ $128,3364$ $129,4004$ 41. $A(14,13,18)$ $N14-C13-N18$ $128,3364$ $129,4004$ 41. $A(13,14,29)$ $C13-N14-N15$ $113,145$ $113,0951$ 43. $A(13,14,29)$ $C13-N14-H29$ $117,4017$ $128,0188$ 44. $A(15,14,29)$ $N15-N14-H29$ $118,1751$ $118,8862$ 45. $A(14,15,16)$ $N14-N15-C16$ $103,6076$ $103,9156$ 46. $A(12,16,17)$ $C12-C16-O17$ $124,7427$ $124,4726$ 48. $A(15,16,17)$ $N15-C16-O17$ $124,7427$ $124,4726$	27.	A(23,9,25)	H23-C9-H25	107,5397	107,7337
29.A(7,10,26)N7-C10-H26109,156109,302530.A(7,10,27)N7-C10-H28112,7315111,907431.A(7,10,28)N7-C10-H27111,0719111,898832.A(26,10,27)H26-C10-H27108,2319107,752633.A(26,10,28)H26-C10-H28107,5618107,749234.A(27,10,28)H27-C10-H28107,9183108,060035.A(8,11,12)N8-N11-C12115,0618116,366136.A(11,12,13)N11-C12-C16126,2164125,839638.A(13,12,16)C13-C12-C16103,4767103,387839.A(12,13,14)C12-C13-N14106,3628106,322840.A(12,13,18)C12-C13-N18128,3364129,400441.A(14,13,18)N14-C13-N18125,2704124,276842.A(13,14,15)C13-N14-N15113,145113,095143.A(13,14,29)C13-N14-H29127,4017128,018844.A(15,14,29)N15-N14-H29113,3683113,278747.A(12,16,15)C12-C16-N15113,3683113,278747.A(12,16,17)C12-C16-O17124,7427124,472648.A(15,16,17)N15-C16-O17121,8869122,248749.A(16,17,30)C16-O17+H30106,4947108,343150.A(13,18,31)C13-N18-H31117,2468122,069151.A(13,18,32)C13-N18-H32110,4744117,61952.A(31,18,32)C13-N18-H32 <th>28.</th> <th>A(24,9,25)</th> <th>H24-C9-H25</th> <th>107,9375</th> <th>108,0923</th>	28.	A(24,9,25)	H24-C9-H25	107,9375	108,0923
30. A(7,10,27)N7-C10-H28112,7315111,9074 31. A(7,10,28)N7-C10-H27111,0719111,8988 32. A(26,10,27)H26-C10-H27108,2319107,7526 33. A(26,10,28)H26-C10-H28107,5618107,7492 34. A(27,10,28)H27-C10-H28107,9183108,0600 35. A(8,11,12)N8-N11-C12115,0618116,3661 36. A(11,12,13)N11-C12-C13130,242130,7726 37. A(11,12,16)N11-C12-C16126,2164125,8396 38. A(13,12,16)C13-C12-C16103,4767103,3878 39. A(12,13,14)C12-C13-N14106,3628106,3228 40. A(12,13,18)C12-C13-N18128,3364129,4004 41. A(14,13,18)N14-C13-N18125,2704124,2768 42. A(13,14,15)C13-N14-N15113,145113,0951 43. A(13,14,29)C13-N14-H29127,4017128,0188 44. A(15,14,29)N15-N14-H29118,1751118,862 45. A(14,15,16)N14-N15-C16103,6076103,9156 46. A(12,16,17)C12-C16-O17124,7427124,4726 48. A(15,16,70)C16-O17+130106,4947108,3431 50. A(13,18,31)C13-N18-H31117,2468122,0691 51. A(13,18,32)C13-N18-H32110,4744117,619 52. A(31,18,32)C13-N18-H32110,4744117,619 <th>29.</th> <th>A(7,10,26)</th> <th>N7-C10-H26</th> <th>109,156</th> <th>109,3025</th>	29.	A(7,10,26)	N7-C10-H26	109,156	109,3025
31.A(7,10,28)N7-C10-H27111,0719111,898832.A(26,10,27)H26-C10-H27108,2319107,752633.A(26,10,28)H26-C10-H28107,5618107,749234.A(27,10,28)H27-C10-H28107,9183108,060035.A(8,11,12)N8-N11-C12115,0618116,366136.A(11,12,13)N11-C12-C13130,242130,772637.A(11,12,16)N11-C12-C16126,2164125,839638.A(13,12,16)C13-C12-C16103,4767103,387839.A(12,13,14)C12-C13-N14106,3628106,322840.A(12,13,18)C12-C13-N18128,3364129,400441.A(14,13,18)N14-C13-N18125,2704124,276842.A(13,14,5)C13-N14-N15113,145113,095143.A(13,14,29)C13-N14-H29127,4017128,018844.A(15,14,29)N15-N14-H29118,1751118,86245.A(14,15,16)N14-N15-C16103,6076103,915646.A(12,16,17)C12-C16-017124,7427124,472648.A(15,16,17)N15-C16-017121,8869122,248749.A(16,17,30)C16-O17-H30106,4947108,343150.A(13,18,31)C13-N18-H31117,2468122,069151.A(13,18,32)C13-N18-H32110,4744117,61952.A(31,18,32)C13-N18-H32110,4744117,619	30.	A(7,10,27)	N7-C10-H28	112,7315	111,9074
32. $A(26,10,27)$ $H26-C10-H27$ $108,2319$ $107,7526$ 33. $A(26,10,28)$ $H26-C10-H28$ $107,5618$ $107,7492$ 34. $A(27,10,28)$ $H27-C10-H28$ $107,9183$ $108,0600$ 35. $A(8,11,12)$ $N8-N11-C12$ $115,0618$ $116,3661$ 36. $A(11,12,13)$ $N11-C12-C13$ $130,242$ $130,7726$ 37. $A(11,12,16)$ $N11-C12-C16$ $126,2164$ $125,8396$ 38. $A(13,12,16)$ $C13-C12-C16$ $103,4767$ $103,3878$ 39. $A(12,13,14)$ $C12-C13-N14$ $106,3628$ $106,3228$ 40. $A(12,13,18)$ $C12-C13-N18$ $128,3364$ $129,4004$ 41. $A(14,13,18)$ $N14-C13-N18$ $125,2704$ $124,2768$ 42. $A(13,14,15)$ $C13-N14-N15$ $113,145$ $113,0951$ 43. $A(13,14,29)$ $C13-N14-H29$ $127,4017$ $128,0188$ 44. $A(15,14,29)$ $N15-N14-H29$ $118,1751$ $118,8862$ 45. $A(14,15,16)$ $N14-N15-C16$ $103,6076$ $103,9156$ 46. $A(12,16,15)$ $C12-C16-N15$ $113,3683$ $113,2787$ 47. $A(12,16,17)$ $C12-C16-O17$ $124,7427$ $124,4726$ 48. $A(15,16,17)$ $N15-C16-O17$ $124,7427$ $124,4726$ 48. $A(15,16,17)$ $N15-C16-O17$ $121,8869$ $122,2487$ 49. $A(16,17,30)$ $C16-O17+H30$ $106,4947$ $108,3431$ 50. $A(13,18,31)$ $C13-N18+H32$ $110,4744$	31.	A(7,10,28)	N7-C10-H27	111,0719	111,8988
33. A(26,10,28) H26-C10-H28 107,5618 107,7492 34. A(27,10,28) H27-C10-H28 107,9183 108,0600 35. A(8,11,12) N8-N11-C12 115,0618 116,3661 36. A(11,12,13) N11-C12-C13 130,242 130,7726 37. A(11,12,16) N11-C12-C16 126,2164 125,8396 38. A(13,12,16) C13-C12-C16 103,4767 103,3878 39. A(12,13,14) C12-C13-N14 106,3628 106,3228 40. A(12,13,18) C12-C13-N18 128,3364 129,4004 41. A(14,13,18) N14-C13-N18 125,2704 124,2768 42. A(13,14,15) C13-N14-N15 113,145 113,0951 43. A(13,14,29) C13-N14-H29 127,4017 128,0188 44. A(15,14,29) N15-N14-H29 118,1751 118,8862 45. A(14,15,16) N14-N15-C16 103,6076 103,9156 46. A(12,16,17) C12-C16-O17 124,7427 124,4726 48. A(15,16,17) N15-C16-O17 </th <th>32.</th> <th>A(26,10,27)</th> <th>H26-C10-H27</th> <th>108,2319</th> <th>107,7526</th>	32.	A(26,10,27)	H26-C10-H27	108,2319	107,7526
34. A(27,10,28) H27-C10-H28 107,9183 108,0600 35. A(8,11,12) N8-N11-C12 115,0618 116,3661 36. A(11,12,13) N11-C12-C13 130,242 130,7726 37. A(11,12,16) N11-C12-C16 126,2164 125,8396 38. A(13,12,16) C13-C12-C16 103,4767 103,3878 39. A(12,13,14) C12-C13-N14 106,3628 106,3228 40. A(12,13,18) C12-C13-N18 128,3364 129,4004 41. A(14,13,18) N14-C13-N18 125,2704 124,2768 42. A(13,14,15) C13-N14-N15 113,145 113,0951 43. A(13,14,29) C13-N14-H15 113,145 113,0951 44. A(15,14,29) N15-N14-H29 127,4017 128,0188 44. A(15,14,29) N15-N14-H29 118,1751 118,8862 45. A(14,15,16) N14-N15-C16 103,6076 103,9156 46. A(12,16,17) C12-C16-O17 124,7427 124,4726 48. A(15,16,17) N15-C16-O17 <th>33.</th> <th>A(26,10,28)</th> <th>H26-C10-H28</th> <th>107,5618</th> <th>107,7492</th>	33.	A(26,10,28)	H26-C10-H28	107,5618	107,7492
35. A(8,11,12) N8-N11-C12 115,0618 116,3661 36. A(11,12,13) N11-C12-C13 130,242 130,7726 37. A(11,12,16) N11-C12-C16 126,2164 125,8396 38. A(13,12,16) C13-C12-C16 103,4767 103,3878 39. A(12,13,14) C12-C13-N14 106,3628 106,3228 40. A(12,13,18) C12-C13-N18 128,3364 129,4004 41. A(14,13,18) N14-C13-N18 128,2704 124,2768 42. A(13,14,15) C13-N14-N15 113,145 113,0951 43. A(13,14,29) C13-N14-H29 127,4017 128,0188 44. A(15,14,29) N15-N14-H29 118,1751 118,8862 45. A(14,15,16) N14-N15-C16 103,6076 103,9156 46. A(12,16,17) C12-C16-O17 124,7427 124,4726 47. A(12,16,17) C12-C16-O17 124,7427 124,4726 48. A(15,16,17) N15-C16-O17 121,8869 122,2487 49. A(16,17,30	34.	A(27,10,28)	H27-C10-H28	107,9183	108,0600
36. A(11,12,13) N11-C12-C13 130,242 130,7/26 37. A(11,12,16) N11-C12-C16 126,2164 125,8396 38. A(13,12,16) C13-C12-C16 103,4767 103,3878 39. A(12,13,14) C12-C13-N14 106,3628 106,3228 40. A(12,13,18) C12-C13-N18 128,3364 129,4004 41. A(14,13,18) N14-C13-N18 125,2704 124,2768 42. A(13,14,15) C13-N14-N15 113,145 113,0951 43. A(15,14,29) C13-N14-H29 127,4017 128,0188 44. A(15,14,29) N15-N14-H29 118,1751 118,8862 45. A(14,15,16) N14-N15-C16 103,6076 103,9156 46. A(12,16,17) C12-C16-O17 124,7427 124,4726 48. A(15,16,17) N15-C16-O17 121,8869 122,2487 49. A(16,17,30) C16-O17-H30 106,4947 108,3431 50. A(13,18,31) C13-N18-H31 117,2468 122,0691 51. A(13,18,32) C13-N18-H32	35.	A(8,11,12)	N8-N11-C12	115,0618	116,3661
37. A(11,12,16)N11-C12-C16 $126,2164$ $125,8396$ 38. A(13,12,16)C13-C12-C16 $103,4767$ $103,3878$ 39. A(12,13,14)C12-C13-N14 $106,3628$ $106,3228$ 40. A(12,13,18)C12-C13-N18 $128,3364$ $129,4004$ 41. A(14,13,18)N14-C13-N18 $125,2704$ $124,2768$ 42. A(13,14,15)C13-N14-N15 $113,145$ $113,0951$ 43. A(13,14,29)C13-N14-H29 $127,4017$ $128,0188$ 44. A(15,14,29)N15-N14-H29 $118,1751$ $118,8862$ 45. A(14,15,16)N14-N15-C16 $103,6076$ $103,9156$ 46. A(12,16,15)C12-C16-N15 $113,3683$ $113,2787$ 47. A(12,16,17)C12-C16-O17 $124,7427$ $124,4726$ 48. A(15,16,17)N15-C16-O17 $121,8869$ $122,2487$ 49. A(16,17,30)C16-O17-H30 $106,4947$ $108,3431$ 50. A(13,18,31)C13-N18-H31 $117,2468$ $122,0691$ 51. A(31,18,32)C13-N18-H32 $110,4744$ $117,619$ 52. A(31,18,32)H31-N18-H32 $115,7694$ $120,3119$	36.	A(11,12,13)	N11-C12-C13	130,242	130,7726
38. $A(13,12,16)$ $C13-C12-C16$ $103,4767$ $103,5878$ 39. $A(12,13,14)$ $C12-C13-N14$ $106,3628$ $106,3228$ 40. $A(12,13,18)$ $C12-C13-N18$ $128,3364$ $129,4004$ 41. $A(14,13,18)$ $N14-C13-N18$ $125,2704$ $124,2768$ 42. $A(13,14,15)$ $C13-N14-N15$ $113,145$ $113,0951$ 43. $A(13,14,29)$ $C13-N14-H29$ $127,4017$ $128,0188$ 44. $A(15,14,29)$ $N15-N14-H29$ $118,1751$ $118,8862$ 45. $A(14,15,16)$ $N14-N15-C16$ $103,6076$ $103,9156$ 46. $A(12,16,15)$ $C12-C16-N15$ $113,3683$ $113,2787$ 47. $A(12,16,17)$ $C12-C16-O17$ $124,7427$ $124,4726$ 48. $A(15,16,17)$ $N15-C16-O17$ $121,8869$ $122,2487$ 49. $A(16,17,30)$ $C16-O17-H30$ $106,4947$ $108,3431$ 50. $A(13,18,31)$ $C13-N18-H31$ $117,2468$ $122,0691$ 51. $A(13,18,32)$ $C13-N18-H32$ $110,4744$ $117,619$ 52. $A(31,18,32)$ $H31-N18-H32$ $115,7694$ $120,3119$	37.	A(11,12,16)	N11-C12-C16	126,2164	125,8396
39. $A(12,13,14)$ $C12-C13-N14$ $106,3628$ $106,3228$ 40. $A(12,13,18)$ $C12-C13-N18$ $128,3364$ $129,4004$ 41. $A(14,13,18)$ $N14-C13-N18$ $125,2704$ $124,2768$ 42. $A(13,14,15)$ $C13-N14-N15$ $113,145$ $113,0951$ 43. $A(13,14,29)$ $C13-N14-H29$ $127,4017$ $128,0188$ 44. $A(15,14,29)$ $N15-N14-H29$ $118,1751$ $118,8862$ 45. $A(14,15,16)$ $N14-N15-C16$ $103,6076$ $103,9156$ 46. $A(12,16,15)$ $C12-C16-N15$ $113,3683$ $113,2787$ 47. $A(12,16,17)$ $C12-C16-O17$ $124,7427$ $124,4726$ 48. $A(15,16,17)$ $N15-C16-O17$ $121,8869$ $122,2487$ 49. $A(16,17,30)$ $C16-O17-H30$ $106,4947$ $108,3431$ 50. $A(13,18,31)$ $C13-N18-H31$ $117,2468$ $122,0691$ 51. $A(31,18,32)$ $C13-N18-H32$ $110,4744$ $117,619$ 52. $A(31,18,32)$ $H31-N18-H32$ $115,7694$ $120,3119$	38.	A(13,12,16)	C13-C12-C16	103,4767	103,3878
40. $A(12,13,18)$ $C12-C13-N18$ $128,3364$ $129,4004$ 41. $A(14,13,18)$ $N14-C13-N18$ $125,2704$ $124,2768$ 42. $A(13,14,15)$ $C13-N14-N15$ $113,145$ $113,0951$ 43. $A(13,14,29)$ $C13-N14-H29$ $127,4017$ $128,0188$ 44. $A(15,14,29)$ $N15-N14-H29$ $118,1751$ $118,8862$ 45. $A(14,15,16)$ $N14-N15-C16$ $103,6076$ $103,9156$ 46. $A(12,16,15)$ $C12-C16-N15$ $113,3683$ $113,2787$ 47. $A(12,16,17)$ $C12-C16-O17$ $124,7427$ $124,4726$ 48. $A(15,16,17)$ $N15-C16-O17$ $121,8869$ $122,2487$ 49. $A(16,17,30)$ $C16-O17-H30$ $106,4947$ $108,3431$ 50. $A(13,18,31)$ $C13-N18-H31$ $117,2468$ $122,0691$ 51. $A(31,18,32)$ $C13-N18-H32$ $110,4744$ $117,619$ 52. $A(31,18,32)$ $H31-N18-H32$ $115,7694$ $120,3119$	39.	A(12,13,14)	C12-C13-N14	106,3628	106,3228
41. A(14,13,18) N14-C13-N18 125,2704 124,2768 42. A(13,14,15) C13-N14-N15 113,145 113,0951 43. A(13,14,29) C13-N14-N15 113,145 113,0951 44. A(15,14,29) C13-N14-H29 127,4017 128,0188 44. A(15,14,29) N15-N14-H29 118,1751 118,8862 45. A(14,15,16) N14-N15-C16 103,6076 103,9156 46. A(12,16,15) C12-C16-N15 113,3683 113,2787 47. A(12,16,17) C12-C16-O17 124,7427 124,4726 48. A(15,16,17) N15-C16-O17 121,8869 122,2487 49. A(16,17,30) C16-O17-H30 106,4947 108,3431 50. A(13,18,31) C13-N18-H31 117,2468 122,0691 51. A(13,18,32) C13-N18-H32 110,4744 117,619 52. A(31,18,32) H31-N18-H32 115,7694 120,3119	40.	A(12,13,18)	C12-C13-N18	128,3364	129,4004
42. A(13,14,15) C13-N14-N15 115,145 115,0951 43. A(13,14,29) C13-N14-H29 127,4017 128,0188 44. A(15,14,29) N15-N14-H29 118,1751 118,8862 45. A(14,15,16) N14-N15-C16 103,6076 103,9156 46. A(12,16,15) C12-C16-N15 113,3683 113,2787 47. A(12,16,17) C12-C16-O17 124,7427 124,4726 48. A(15,16,17) N15-C16-O17 121,8869 122,2487 49. A(16,17,30) C16-O17-H30 106,4947 108,3431 50. A(13,18,31) C13-N18-H31 117,2468 122,0691 51. A(13,18,32) C13-N18-H32 110,4744 117,619 52. A(31,18,32) H31-N18-H32 115,7694 120,3119	41.	A(14,15,18) A(12,14,15)	N14-C15-N18	125,2704	124,2708
43. A(13,14,29) C13-N14-H29 127,4017 128,0188 44. A(15,14,29) N15-N14-H29 118,1751 118,8862 45. A(14,15,16) N14-N15-C16 103,6076 103,9156 46. A(12,16,15) C12-C16-N15 113,3683 113,2787 47. A(12,16,17) C12-C16-O17 124,7427 124,4726 48. A(15,16,17) N15-C16-O17 121,8869 122,2487 49. A(16,17,30) C16-O17-H30 106,4947 108,3431 50. A(13,18,31) C13-N18-H31 117,2468 122,0691 51. A(13,18,32) C13-N18-H32 110,4744 117,619 52. A(31,18,32) H31-N18-H32 115,7694 120,3119	42.	A(13,14,15) A(12,14,20)	C13-IN14-IN15	115,145	113,0951
44. A(15,14,29) N15-N14-H29 118,1751 118,8802 45. A(14,15,16) N14-N15-C16 103,6076 103,9156 46. A(12,16,15) C12-C16-N15 113,3683 113,2787 47. A(12,16,17) C12-C16-O17 124,7427 124,4726 48. A(15,16,17) N15-C16-O17 121,8869 122,2487 49. A(16,17,30) C16-O17-H30 106,4947 108,3431 50. A(13,18,31) C13-N18-H31 117,2468 122,0691 51. A(13,18,32) C13-N18-H32 110,4744 117,619 52. A(31,18,32) H31-N18-H32 115,7694 120,3119	43.	A(15,14,29)	CI3-IN14-H29	127,4017	128,0188
45. A(14,15,16) N14-N15-C16 105,6076 105,9136 46. A(12,16,15) C12-C16-N15 113,3683 113,2787 47. A(12,16,17) C12-C16-O17 124,7427 124,4726 48. A(15,16,17) N15-C16-O17 121,8869 122,2487 49. A(16,17,30) C16-O17-H30 106,4947 108,3431 50. A(13,18,31) C13-N18-H31 117,2468 122,0691 51. A(13,18,32) C13-N18-H32 110,4744 117,619 52. A(31,18,32) H31-N18-H32 115,7694 120,3119	44.	A(13,14,29) A(14,15,16)	N13-IN14-H29	110,1731	110,0002
46. A(12,10,13) C12-C10-R13 113,3083 113,2787 47. A(12,16,17) C12-C16-O17 124,7427 124,4726 48. A(15,16,17) N15-C16-O17 121,8869 122,2487 49. A(16,17,30) C16-O17-H30 106,4947 108,3431 50. A(13,18,31) C13-N18-H31 117,2468 122,0691 51. A(13,18,32) C13-N18-H32 110,4744 117,619 52. A(31,18,32) H31-N18-H32 115,7694 120,3119	45.	A(14,15,10) A(12,16,15)	C12 C16 N15	112 2682	112 2787
47. $A(12,10,17)$ $C12-C10-C17$ $124,4/27$ $124,4/26$ 48. $A(15,16,17)$ $N15-C16-O17$ $121,8869$ $122,2487$ 49. $A(16,17,30)$ $C16-O17-H30$ $106,4947$ $108,3431$ 50. $A(13,18,31)$ $C13-N18-H31$ $117,2468$ $122,0691$ 51. $A(13,18,32)$ $C13-N18-H32$ $110,4744$ $117,619$ 52. $A(31,18,32)$ $H31-N18-H32$ $115,7694$ $120,3119$	40.	A(12,10,13) A(12,16,17)	C12 - C10 - N13 C12 - C16 - O17	124 7427	113,2707
49. A(16,17,30) C16-O17-H30 106,4947 108,3431 50. A(13,18,31) C13-N18-H31 117,2468 122,0691 51. A(13,18,32) C13-N18-H32 110,4744 117,619 52. A(31,18,32) H31-N18-H32 115,7694 120,3119	47.	A(12,10,17) A(15,16,17)	N15 C16 O17	124,/42/	124,4720
50. A(13,18,31) C13-N18-H31 117,2468 122,0691 51. A(13,18,32) C13-N18-H32 110,4744 117,619 52. A(31,18,32) H31-N18-H32 115,7694 120,3119	48. 10	$\Delta(16, 17, 20)$	C16-017-H30	106/0/7	122,2407
50. A(13,16,51) C13-M6H31 117,2406 122,0091 51. A(13,18,32) C13-M18-H32 110,4744 117,619 52. A(31,18,32) H31-M18-H32 115,7694 120,3119	43. En	$\Delta(13, 18, 31)$	C13_N18_H31	117 2/68	100,5451
52. $A(31,18,32)$ H31-N18-H32 115,7694 120,3119	5U. E1	$\Delta(13, 10, 31)$	C13-N18-H32	110 /7//	117 610
	52.	A(31.18.32)	H31-N18-H32	115,7694	120.3119

Tablo 5.3: DFT/B3LYP ve HF metodları ile hesaplanan A molekülünün dihedral açıları (⁰) (Karabacak Atay ve diğ. 2018).

	DIHEDRAL AÇILAR	SEMBOLİK DİHEDRAL AÇI GÖSTERİMİ (⁰)	DFT/B3LYP/ 6-31G(D	HF/ 6-31G(D)		
1.	D(6.1.2.3)	C6-C1-C2-C3	0.8173	0.0028		
2.	D(6,1,2,19)	C6-C1-C2-H19	-179,0972	-179,998		
3.	D(7.1.2.3)	N7-C1-C2-C3	-178.8181 -179.9949			
4.	D(7,1,2,19)	N7-C1-C2-H19	1.2674	0.0043		
5.	D(2,1.6.5)	C2-C1-C6-C5	-0.8168	-0.003		
6.	D(2.1.6.22)	C2-C1-C6-H22	179.0653	179.997		
7.	D(7.1.6.5)	N7-C1-C6-C5	178.8178	179,9947		
8.	D(7.1.6.22)	N7-C1-C6-H22	-1.3002	-0.0052		
9.	D(2.1.7.9)	C2-C1-N7-C9	-8,9402	-0.055		
10.	D(2.1.7.10)	C2-C1-N7-C10	-171.8179	-179.959		
11.	D(6.1.7.9)	C6-C1-N7-C9	171.4398	179,9474		
12.	D(6.1.7.10)	C6-C1-N7-C10	8.5621	0.0433		
13.	D(1.2.3.4)	C1-C2-C3-C4	-0.3525	-0.0011		
14.	D(1,2,3,20)	C1-C2-C3-H20	179.9253	179,9994		
15.	D(19.2,3.4)	H19-C2-C3-C4	179,5634	179,9997		
16.	D(19,2,3,20)	H19-C2-C3-H20	-0.1588	0.0002		
17.	D(2,3,4,5)	C2-C3-C4-C5	-0.1358	-0.0005		
18.	D(2,3,4,8)	C2-C3-C4-N8	-179.808	-179,9997		
19	D(20345)	H20-C3-C4-C5	179 5912	179 999		
20	D(20,3,4,8)	H20-C3-C4-N8	-0.0811	-0.0003		
20.	D(3456)	C3-C4-C5C6	0.1318	0,0003		
22.	D(34521)	C3-C4-C5-H21	-179 4358	-179 9984		
23	D(8456)	N8-C4-C5-C6	179 8311	179 9996		
23.	D(8,4,5,21)	N8-C4-C5-H21	0.2635	0.0008		
25.	D(3,4,8,11)	C3-C4-N8-N11	0.6049	0.0013		
26	D(54811)	C5-C4-N8-N11	-179 0707	-179 9979		
20.	D(4561)	C4-C5-C6-C1	0 3602	0.0015		
27.	D(45622)	С4-С5-С6-Н22	-179 5239	-179 9985		
29	D(21561)	H21-C5-C6-C1	179 9217	-179 9997		
30.	D(21,5,6,22)	H21-C5-C6-H22	0.0376	0.0002		
31	D(17923)	C1-N7-C9-H23	179 0936	-179 9861		
32.	D(1,7,9,24)	C1-N7-C9-H24	-60.6372	-60.7529		
33.	D(1,7,9,25)	C1-N7-C9-H25	60.7004	60.7889		
34.	D(10.7.9.23)	C10-N7-C9-H23	-17.8783	-0.0818		
35.	D(10.7.9.24)	C10-N7-C9-H24	102.3908	119,1514		
36.	D(10.7.9.25)	C10-N7-C9-H25	-136.2716	-119.3068		
37.	D(1.7.10.26)	C1-N7-C10-H26	-179.0013	179,9985		
38.	D(1.7.10.27)	C1-N7-C10-H27	60.6919	60,7195		
39.	D(1.7.10.28)	C1-N7-C10-H28	-60,5666	-60.7322		
40.	D(9,7,10,26)	C9-N7-C10-H26	17,9338	0,094		
41.	D(9.7.10.27)	C9-N7-C10-H27	-102.373	-119.1849		
42.	D(9,7,10,28)	C9-N7-C10-H28	136,3685	119,3634		
43.	D(4,8,11,12)	C4-N8-N11-C12	-178,8366	-180,0009		
44.	D(8,11,12,13)	N8-N11-C12-C13	3,4769	-0,0004		
45.	D(8,11,12,16)	N8-N11-C12-C16	-179,9491	179,9974		
46.	D(11,12,13,14)	N11-C12-C13-N14	175,7288	179,9956		
47.	D(11,12,13,18)	N11-C12-C13-N18	-6,2168	-0,0076		
48.	D(16,12,13,14)	C16-C12-C13-N14	-1,4293	-0,0025		
49.	D(16,12,13,18)	C16-C12-C13-N18	176,625	179,9943		
50.	D(11,12,16,15)	N11-C12-C16-N15	-176,9633	-179,997		
51.	D(11,12,16,17)	N11-C12-C16-O17	2,5225	0,0019		
52.	D(13,12,16,15)	C13-C12-C16-N15	0,3481	0,0013		
53.	D(13,12,16,17)	C13-C12-C16-O17	179,8339	180,0002		
54.	D(12,13,14,15)	C12-C13-N14-N15	2,1092	0,0031		
55.	D(12,13,14,29)	C12-C13-N14-H29	168,8247	179,9884		

Tablo 5.3: (Devamı)

56.	D(18,13,14,15)	N18-C13-N14-N15	-176,0216	-179,9939
57.	D(18,13,14,29)	N18-C13-C14-H29	-9,3061	-0,0086
58.	D(12,13,18,31)	C12-C13-N18-H31	146,5201	179,9537
59.	D(12,13,18,32)	C12-C13-N18-H32	10,9377	0,0304
60.	D(14,13,18,31)	N14-C13-N18-H31	-35,7666	-0,0501
61.	D(14,13,18,32)	N14-C13-N18-H32	-171,3491	-179,9734
62.	D(13,14,15,16)	C13-N14-N15-C16	-1,8524	-0,0022
63.	D(29,14,15,16)	H29-N14-N15-C16	-169,9012	-179,9891
64.	D(14,15,16,12)	N14-N15-C16-C12	0,8437	0,0005
65.	D(14,15,16,17)	N14-N15-C16-O17	-178,6586	-179,9984
66.	D(12,16,17,30)	C12-C16-O17-H30	-179,3405	-179,9989
67.	D(15,16,17,30)	N15-C16-O17-H30	0,1035	-0,0002

Tablo 5.4: DFT/B3LYP ve HF metodları ile hesaplanan B molekülünün bağ uzunluğu (A^0) (Karabacak Atay ve diğ. 2018).

	BAĞ UZUNLUĞU(Å)	SEMBOLİK BAĞ UZUNLUĞU GÖSTERİMİ	DFT/ B3LYP/ 6-31G(D)	HF /6-31G(D)
1.	R(1,2)	C1-C2	1,4194	1,4059
2.	R(1,6)	C1-C6	1,4151	1,3992
3.	R(1,7)	C1-N7	1,3843	1,3873
4.	R(2,3)	C2-C3	1,3843	1,3767
5.	R(2,25)	C2-H25	1,0837	1,0713
6.	R(3,4)	C3-C4	1,4068	1,3912
7.	R(3,26)	C3-H26	1,0844	1,0727
8.	R(4,5)	C4-C5	1,4025	1,3838
9.	R(4,8)	C4-N8	1,4054	1,4141
10.	R(5,6)	C5-C6	1,3875	1,3822
11.	R(5,27)	C5-H27	1,0866	1,0752
12.	R(6,28)	C6-H28	1,0833	1,0711
13.	R(7,9)	N7-C9	1,4531	1,4474
14.	R(7,10)	N7-C10	1,4525	1,4466
15.	R(8,11)	N8-N11	1,2793	1,2284
16.	R(9,29)	C9-H29	1,0915	1,0804
17.	R(9,30)	C9-H30	1,1011	1,0895
18.	R(9,31)	C9-H31	1,0971	1,0830
19.	R(10,32)	С10-Н32	1,0915	1,0804
20.	R(10,33)	С10-Н33	1,0973	1,0831
21.	R(10,34)	С10-Н34	1,1013	1,0898
22.	R(11,12)	N11-C12	1,3664	1,3773
23.	R(12,13)	C12-C13	1,4064	1,3877
24.	R(12,16)	C12-C16	1,4289	1,419
25.	R(13,14)	C13-N14	1,3624	1,3375
26.	R(13,17)	C13-N17	1,3681	1,3598
27.	R(14,15)	N14-C15	1,4040	1,3825
28.	R(14,19)	N14-C19	1,4150	1,4151
29.	R(15,16)	N15-C16	1,3108	1,2843
30.	R(16,18)	C16-O18	1,3464	1,3296
31.	R(17,35)	N17-H35	1,0187	0,997
32.	R(17,36)	N17-H36	1,0131	0,9967
33.	R(18,37)	O18-H37	0,9746	0,9494
34.	R(19,20)	C19-C20	1,4022	1,3869
35.	R(19,24)	C19-C24	1,4015	1,3889
36.	R(20,21)	C20-C21	1,3957	1,387
37.	R(20,38)	C20-H38	1,0846	1,0738
38.	R(21,22)	C21-C22	1,3947	1,3832
39.	R(21,39)	C21-H39	1,0867	1,0752

Tablo 5.4: (Devamı)

40.	R(22,23)	C22-C23	1,3977	1,3877
41.	R(22,40)	C22-H40	1,0862	1,0750
42.	R(23,24)	C23-C24	1,3921	1,3822
43.	R(23,41)	C23-H41	1,0866	1,0751
44.	R(24,42)	C24-H42	1,0834	1,0725

Tablo 5.5: DFT/B3LYP ve HF metodları ile hesaplanan A molekülünün bağ açıları (0) (KarabacakAtay ve diğ. 2018).

	BAĞ AÇILARI (⁰)	SEMBOLIK BAĞ AÇISI GÖSTERIMI	DFT/ B3LYP/ 6-31G(D)	HF /6-31G(D)
1.	A(2,1,6)	C2-C1-C6	117,2585	117,0325
2.	A(2,1,7)	C2-C1-N7	121,2451	121,2893
3.	A(6,1,7)	C6-C1-N7	121,4956	121,6733
4.	A(1,2,3)	C1-C2-C3	121,3611	121,5127
5.	A(1,2,25)	C1-C2-H25	120,0904	120,4388
6.	A(3,2,25)	C3-C2-H25	118,5485	118,0484
7.	A(2,3,4)	C2-C3-C4	121,0418	120,9196
8.	A(2,3,26)	C2-C3-H26	120,0313	119,3533
9.	A(4,3,26)	C4-C3-H26	118,9265	119,727
10.	A(3,4,5)	C3-C4-C4-5	117,8699	118,0051
11.	A(3,4,8)	C3-C4-N8	125,4798	125,3395
12.	A(5,4,8)	C5-C4-N8	116,6496	116,6552
13.	A(4,5,6)	C4-C5-C6	121,6539	121,6312
14.	A(4,5,27)	C4-C5-H27	118,3614	118,8164
15.	A(6,5,27)	C6-C5-H27	119,9838	119,5509
16.	A(1,6,5)	CI-C6-C5	120,8088	120,8936
17.	A(1,6,28)	C1-C6-H28	120,4702	120,8252
18.	A(5,6,28)	C5-C6-H28	118,7209	118,2812
19.	A(1,7,9)	C1-N7-C9	119,8861	118,7739
20.	A(1,7,10)	C1-N7-C10	119,6807	118,631
21.	A(9,7,10)	C9-N7-C10	118,9000	116,8008
22.	A(4,8,11)	C4-N8-N11	115,6014	116,1798
23.	A(7,9,29)	N7-C9-H29	109,1075	109,0116
24.	A(7,9,30)	N7-C9-H30	112,6327	112,8700
25.	A(7,9,31)	N7-C9-H31	111,1797	110,9822
26.	A(29,9,30)	H29-C9-H30	108,1812	108,2600
27.	A(29,9,31)	H29-C9-H31	107,6005	107,1709
28.	A(30,9,31)	H30-C9-H31	107,9727	108,3539
29. 20	A(7,10,32)	N7-C10-H32	109,1600	109,0538
30. 21	A(7,10,33)	N7-C10-H33	111,1498	110,8501
31.	A(7,10,34)	N/-C10-H34	112,6127	112,9138
32. 22	A(32,10,33)	H32-C10-H33	107,624	107,209
33. 24	A(32,10,34) A(22,10,24)	H32-C10-H34	108,1889	108,2883
34. 25	A(33,10,34)	H35-C10-H54	107,9412	108,337
35. 26	A(8,11,12)	N8-N11-C12	115,9401	117,1055
30. 27	A(11,12,13) A(11,12,16)	N11-C12-C15	132,3480	132,0707
37.	A(11,12,10) A(12,12,16)	C12 C12 C16	125,2099	123,4309
3ð. 30	A(13,12,10) A(12,12,14)	C13-C12-C10 C12 C12 N14	104,0081	105,6496
39. 40	A(12,13,14) A(12,12,17)	C12-C13-N14	100,5591	100,4277
4U. 41	A(12,13,17) A(14,12,17)	U12-U13-N17 N14 C12 N17	120,9703	120,8494
41. 12	A(14,13,17) A(13,17,15)	1114-010-1117 C12 N14 N15	120,0000	124,/101
42. 12	A(13,14,13) A(13,14,10)	C13 - 1014 - 1013 C13 - 1014 - C10	12,2021	112,3094
43. 11	A(15,14,19) A(15,14,10)	N15 N14-C19	127,015	120,702
44. 15	$\Delta(13,14,17)$ $\Delta(14,15,16)$	N14-N15-C16	103 0018	104 3883
43.	$\pi(14,13,10)$	1114-1113-010	105,9010	104,0000

46.	A(12,16,15)	C12-C16-N15	113,4055	113,0077
47.	A(12,16,18)	C12-C16-O18	124,9244	125,4963
48.	A(15,16,18)	N15-C16-O18	121,6700	121,4958
49.	A(13,17,35)	C13-N17-H35	110,8471	113,3553
50.	A(13,17,36)	C13-N17-H36	117,2661	116,9405
51.	A(35,17,36)	H35-N17-H36	116,4624	115,4936
52.	A(16,18,37)	C16-O18-H37	105,7299	108,6824
53.	A(14,19,20)	N14-C19-C20	120,8751	120,6756
54.	A(14,19,24)	N14-C19-C24	119,0173	119,0574
55.	A(20,19,24)	C20-C19-C24	120,0993	120,2623
56.	A(19,20,21)	C19-C20-C21	119,5602	119,6453
57.	A(19,20,38)	C19-C20-H38	120,1917	120,0037
58.	A(21,20,38)	C21-C20-H38	120,2063	120,3406
59.	A(20,21,22)	C20-C21-C22	120,6022	120,3805
60.	A(20,21,39)	C20-C21-H39	119,2042	119,4041
61.	A(22,21,39)	C22-C21-H39	120,1834	120,206
62.	A(21,22,23)	C21-C22-C23	119,4344	119,5936
63.	A(21,22,40)	C21-C22-H40	120,2668	120,219
64.	A(23,22,40)	C23-C22-H40	120,2957	120,1852
65.	A(22,23,24)	C23-C22-C24	120,694	120,5304
66.	A(22,23,41)	C22-C23-H41	120,0521	120,0299
67.	A(24,23,41)	C24-C23-H41	119,2533	119,439
68.	A(19,24,23)	C19-C24-C23	119,5882	119,5701
69.	A(19,24,42)	C19-C24-H42	118,8574	119,2471
70.	A(23,24,42)	C23-C24-H42	121,5499	121,1763

Tablo 5.5: (Devamı)

Tablo 5.6: DFT/B3LYP ve HF metodları ile hesaplanan B molekülünün dihedral açıları(0)(Karabacak Atay ve diğ. 2018).

		SEMBOLİK		
	DIHEDRAL AÇILAR	DİHEDRAL AÇI GÖSTERİMİ (⁰)	DFT/ B3LYP/ 6-31G(D)	HF /6-31G(D)
1.	D(6,1,2,3)	C6-C1-C2-C3	-0,8346	-0,7801
2.	D(6,1,2,25)	C6-C2-C2-H25	179,1006	179,3585
3.	D(7,1,2,3)	N7-C1-C2-C3	178,8499	178,4304
4.	D(7,1,2,25)	N7-C1-C2-H25	-1,2148	-1,431
5.	D(2,1,6,5)	C2-C1-C6-C5	0,8336	0,8508
6.	D(2,1,6,28)	C2-C1-C6-H28	-179,0695	-179,1565
7.	D(7,1,6,5)	N7-C1-C6-C5	-178,8500	-178,3564
8.	D(7,1,6,28)	N7-C1-C6-H28	1,2468	1,6363
9.	D(2,1,7,9)	C2-C1-N7-C9	7,4565	15,409
10.	D(2,1,7,10)	C2-C1-N7-C10	173,1836	167,7673
11.	D(6,1,7,9)	6C-C1-N7-C9	-172,8724	-165,4173
12.	D(6,1,7,10)	C6-C1-N7-C10	-7,1453	-13,0591
13.	D(1,2,3,4)	C1-C2-C3-C4	0,3098	0,3137
14.	D(1,2,3,26)	1-C2-C3-H26	-179,9103	-179,8412
15.	D(25,2,3,4)	H25-C2-C3-C4	-179,6264	-179,8217
16.	D(25,2,3,26)	H25-C2-C3-H26	0,1535	0,0234
17.	D(2,3,4,5)	C2-C3-C4-C5	0,2369	0,1069
18.	D(2,3,4,8)	C2-C3-C4-N8	179,9389	179,9441
19.	D(26,3,4,5)	H26-C3-C4-C5	-179,5453	-179,7377
20.	D(26,3,4,8)	H26-C3-C4-N8	0,1567	0,0995
21.	D(3,4,5,6)	C3-C4-C5-C6	-0,2345	-0,0307
22.	D(3,4,5,27)	C3-C4-C5-H27	179,4356	179,5308
23.	D(8,4,5,6)	N8-C4-C5-C6	-179,963	-179,8821
24.	D(8,4,5,27)	N8-C4-C5-H27	-0,2929	-0,3206
25.	D(3,4,8,11)	C3-C4-N8-N11	-0,1173	-1,5531
26.	D(5,4,8,11)	C5-C4-N8-N11	179,588	178,2861
27.	D(4,5,6,1)	C4-C5-C6-C1	-0,3154	-0,4673

Tablo 5.6: (Devamı)

28. $\mathbf{p}(4, 5, 6, 28)$ $\mathbf{C4} \cdot \mathbf{C5} \cdot \mathbf{C6} \cdot \mathbf{C6} \cdot \mathbf{C1}$ $179, 8902$ $179, 9902$ 30. $\mathbf{D}(27, 5, 6, 28)$ $\mathbf{H27} \cdot \mathbf{C5} \cdot \mathbf{C6} \cdot \mathbf{C1}$ $-179, 9802$ $179, 755$ -0.0 31. $\mathbf{D}(1, 7, 9, 29)$ $\mathbf{C1} \cdot \mathbf{N7} \cdot \mathbf{C9} \cdot \mathbf{H29}$ $-178, 7225$ $179, 32, 20$ 33. $\mathbf{D}(1, 7, 9, 30)$ $\mathbf{C1} \cdot \mathbf{N7} \cdot \mathbf{C9} \cdot \mathbf{H29}$ $-153, 4395$ $26, 35, 5, 164, 33, 5, 5, 164, 37, 5, 170, 39, 30$ $\mathbf{C1} \cdot \mathbf{N7} \cdot \mathbf{C9} \cdot \mathbf{H30}$ $-104, 7064$ $-94, 36, 5, 170, 30, 30$ $\mathbf{C1} \cdot \mathbf{N7} \cdot \mathbf{C10} \cdot \mathbf{H33}$ $-104, 7064$ $-94, 36, 5, 322$ $-27, 71, 33, 30$ $\mathbf{C1} \cdot \mathbf{N7} \cdot \mathbf{C10} \cdot \mathbf{H33}$ $-103, 7064$ $-94, 30, 30, 30, 30, 10 \cdot \mathbf{N7} \cdot \mathbf{C10} \cdot \mathbf{H33}$ $-133, 8829$ $-145, 32, 22, 27, 71, 41, 5, 5, 12, 2, 27, 71, 41, 5, 5, 12, 2, 27, 71, 41, 5, 5, 22, 27, 71, 41, 5, 5, 12, 179, 1069$ $179, 110, 1$	5398
29. $D(27,5,6,1)$ $H27-C5-C6-C1$ $-179,9802$ $179,$ 30. $D(27,5,6,28)$ $H27-C5-C6-H28$ $-0,0755$ $-0,0755$ 31. $D(1,79,29)$ $Cl-N7-C9-H29$ $-178,7225$ $179,330$ 31. $D(1,79,30)$ $Cl-N7-C9-H30$ $61,1316$ $58,335$ 33. $D(10,79,30)$ $Cl-N7-C9-H30$ $-104,7064$ $-94,43955$ 35. $D(10,79,30)$ $Cl-N7-C9-H30$ $-104,7064$ $-94,43955$ 36. $D(10,79,31)$ $Cl-N7-C9-H30$ $-104,7064$ $-94,43955$ 37. $D(1,7,10,33)$ $Cl-N7-C10-H32$ $178,8103$ $179,38655$ 38. $D(1,7,10,33)$ $C9-N7-C10-H33$ $-61,0111$ $-60,0111$ 40. $D(9,7,10,32)$ $C9-N7-C10-H34$ $104,8565$ $92,32$ 41. $D(9,7,10,33)$ $C9-N7-C10-H34$ $104,8565$ $92,32$ 43. $D(4,8,11,12,10)$ $N8-N11-C12-C13$ $-2,3843$ $-1,17$ 44. $D(8,11,21,31)$ $N8-N11-C12-C16$ $-177,8591$	
30. D(27,5,6,28) H27-C5-C6-H28 -0.0755 -0.0 31. D(1,7,9,30) C1-N7-C9-H29 -178,7225 179, 32. D(1,7,9,30) C1-N7-C9-H30 61,1316 58; 33. D(1,7,9,30) C1-N7-C9-H31 -60,2054 -63, 34. D(10,7,9,30) C10-N7-C9-H30 -104,7064 -94, 36. D(10,7,9,30) C10-N7-C9-H30 104,7064 -94, 37. D(1,7,10,32) C1-N7-C10-H33 60,2495 61, 39. D(1,7,10,32) C9-N7-C10-H33 -133,8829 -145 42. D(9,7,10,33) C9-N7-C10-H33 -133,8829 -145 42. D(9,7,10,33) C9-N7-C10-H33 -133,8829 -145 43. D(4,8,11,12) C4-N8-N11-C12 179,1069 179, 44. D(8,11,12,16) N8-N11-C12-C13 -2,3843 -1,C 45. D(8,11,12,16) N8-N11-C12-C13 -2,3843 -1,C 45. D(8,11,12,16,18) N11-C12-C13-N14 -	9743
30. D(1,1,9,29) C1-N7-C9-H29 $17,8,722$ $17,8,722$ 32. D(1,7,9,30) C1-N7-C9-H30 61,1316 58. 33. D(1,7,9,30) C1-N7-C9-H31 $-60,2054$ $-63,34.$ 34. D(10,7,9,29) C10-N7-C9-H30 $-104,7064$ $-94,355.$ 35. D(10,7,9,30) C10-N7-C9-H30 $-104,7064$ $-94,395.$ 37. D(1,7,10,32) C1-N7-C10-H33 $-61,0111$ $-60,0249.$ $61,0111.$ 38. D(1,7,10,33) C9-N7-C10-H34 $-61,0111.$ $-60,0249.$ $61,0111.$ 40. D(9,7,10,33) C9-N7-C10-H33 $-133,8829.$ $-145.$ 41. D(9,7,10,34) C9-N7-C10-H34 $-104,8555.$ $92,43.$ 42. D(9,7,10,34) C9-N7-C10-H34 $-104,8555.$ $92,43.$ 43. D(4,8,11,12) C4-N8-N11-C12-C13 $-2,3843.$ $-1,6.659.$ $-17,8591.$ $-178.$ 44. D(8,11,12,13,17) N11-C12-C13-N14 $-0,9870.$ $-0,8.$ $-0,8.$ 45.	186
31. $D(1,7,2,9)$ $C1=N7-C9-R29$ $-176, 122$ $177, 176, 123$ 32. $D(1,7,9,30)$ $C1=N7-C9-R30$ $61,1316$ $58.$ 33. $D(10,7,9,20)$ $C10-N7-C9-H31$ $-60,2054$ $-63.$ 34. $D(10,7,9,30)$ $C10-N7-C9-H30$ $-104,7064$ $-94.$ 36. $D(1,7,10,32)$ $C1-N7-C9-H31$ $133,9565$ $144.$ 37. $D(1,7,10,32)$ $C1-N7-C10-H33$ $60,2495$ $61.$ 39. $D(1,7,10,33)$ $C1-N7-C10-H33$ $-61,0111$ $-60.$ 40. $D(9,7,10,33)$ $C9-N7-C10-H33$ $-13,3829$ $-145.$ 41. $D(9,7,10,33)$ $C9-N7-C10-H33$ $-104,8565.$ $92.3.$ 43. $D(48,11,12).$ $C4-N8-N11-C12.$ $179,1069.$ $179.$ 44. $D(8,11,12,16).$ $N8-N11-C12-C13.$ $-2,3843.$ $-1.66.$ 45. $D(8,11,12,16).$ $N11-C12-C13-N14.$ $-177,0876.$ $-178.$ 47. $D(11,12,13,14).$ $N11-C12-C16-C15.$ $176,6539.$	100
32. D(1,7),3,0) C1-N7-C9-H31 -60,2054 -63, 34. D(10,7,9,29) C10-N7-C9-H29 15,4395 26, 35. D(10,7,9,30) C10-N7-C9-H30 -104,7064 -94, 36. D(10,7,9,31) C10-N7-C9-H31 133,9565 144, 37. D(1,7,10,32) C1-N7-C10-H33 60,2495 61, 39. D(1,7,10,33) C1-N7-C10-H34 -61,0111 -60, 40. D(9,7,10,32) C9-N7-C10-H33 -133,8829 -143 41. D(9,7,10,33) C9-N7-C10-H34 104,8565 92,3 43. D(4,8,11,12) N8-N11-C12-C13 -2,3843 -1,0 44. D(8,11,2,13) N8-N11-C12-C13 -2,3843 -1,0 45. D(8,11,2,13,17) N11-C12-C13-N17 4,0382 -2,88 48. D(16,12,13,17) N11-C12-C13-N17 -0,9870 -0,8 49. D(16,12,13,17) N11-C12-C16-C15 17,66539 17,7 51. D(11,1,2,16,15) N11-C12-C16-C15	1070
33. $D(1,7,9,31)$ $C1-N7-C9-H31$ $-60,2054$ $-65,$ 34. $D(10,7,9,30)$ $C10-N7-C9-H29$ $15,4395$ $26,$ 35. $D(10,7,9,30)$ $C10-N7-C9-H30$ $-104,7064$ $-94,$ 36. $D(10,7,9,31)$ $C10-N7-C9-H30$ $133,9565$ $144,$ 37. $D(1,7,10,32)$ $C1-N7-C10-H33$ $60,2495$ $61,$ 38. $D(1,7,10,32)$ $C9-N7-C10-H33$ $-61,0111$ $-60,$ 40. $D(9,7,10,32)$ $C9-N7-C10-H33$ $-133,8829$ $-145,$ 41. $D(9,7,10,33)$ $C9-N7-C10-H33$ $-133,8829$ $-145,$ 42. $D(9,7,10,33)$ $C9-N7-C10-H33$ $-133,8829$ $-145,$ 43. $D(4,8,11,12)$ $C4-N8-N11-C12,$ $179,1069$ $179,$ 44. $D(8,11,12,13)$ $N8-N11-C12-C13,$ $-2,3843$ $-1,$ 45. $D(8,11,2,16)$ $N8-N11-C12-C16,$ $-177,8591$ $-178,$ 47. $D(11,12,13,17)$ $N11-C12-C13-N14$ $-0,9870$ $-0,$ 49. $D(16,12,13,17)$ $C16-C12-C13-N17$ $4,0382,$ $2,8,$ 48. $D(16,12,13,17)$ $C16-C12-C13-N17$ $-179,8612,$ $-179,$ 50. $D(1,1,12,16,18)$ $N11-C12-C16-C18,$ $-3,2168,$ $-1,8,$ 52. $D(13,12,16,15)$ $C13-C12-C16-N15,$ $0,0891,$ $0,0,$ 53. $D(12,13,14,15)$ $C12-C13-N14-C19,$ $-179,7815,$ $-179,$ 54. $D(12,13,17,35)$ $C12-C13-N14-C19,$ $-179,7815,$ $-179,7815,$ $-179,7815,$ 55. $D(17,1$	352
34. $D(10,7,9,29)$ $C10-N7-C9-H29$ $15,4395$ $26,$ 35. $D(10,7,9,30)$ $C10-N7-C9-H30$ $-104,7064$ $-94,$ 36. $D(10,7,9,31)$ $C10-N7-C9-H31$ $133,9565$ $144,$ 37. $D(1,7,10,32)$ $C1-N7-C10-H32$ $178,8103$ $179,$ 38. $D(1,7,10,33)$ $C1-N7-C10-H34$ $-61,0111$ $-60,$ 40. $D(9,7,10,32)$ $C9-N7-C10-H33$ $-133,8829$ -145 42. $D(9,7,10,34)$ $C9-N7-C10-H33$ $-133,8829$ -145 43. $D(4,8,11,12,13)$ $N8-N11-C12-C13$ $-2,3843$ $-1,0$ 44. $D(8,11,12,16)$ $N8-N11-C12-C16$ $-177,8591$ -178 46. $D(11,12,13,14)$ $N11-C12-C13-N14$ $-170,076$ -178 47. $D(11,12,13,14)$ $N11-C12-C13-N14$ $-0,9870-0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0$	206
35. $D(10,7,9,30)$ $C10-N7-C9-H30$ $-104,7064$ -94 ,36. $D(10,7,9,31)$ $C10-N7-C9-H31$ $133,9565$ 144 ,37. $D(1,7,10,32)$ $C1-N7-C10-H32$ $178,8103$ $179,$ 38. $D(1,7,10,33)$ $C1-N7-C10-H33$ $60,2495$ $61,0$ 39. $D(1,7,10,32)$ $C9-N7-C10-H33$ $-61,0111$ $-60,$ 40. $D(9,7,10,32)$ $C9-N7-C10-H33$ $-133,8829$ -145 42. $D(9,7,10,33)$ $C9-N7-C10-H33$ $-133,8829$ -145 43. $D(4,8,11,12)$ $C4-N8-N11-C12$ $179,1069$ $179,$ 44. $D(8,11,12,13)$ $N8-N11-C12-C13$ $-2,3843$ $-1,0,066$ 45. $D(8,11,12,16)$ $N8-N11-C12-C13$ $-2,3843$ $-1,0,0826$ 46. $D(11,12,13,14)$ $N11-C12-C13-N14$ $-177,8870$ $-0,88$ 47. $D(11,12,13,17)$ $N11-C12-C13-N14$ $-0,9870$ $-0,8$ 49. $D(16,12,13,17)$ $C16-C12-C13-N17$ $-19,8612$ $-179,$ 50. $D(11,12,16,15)$ $N11-C12-C16-O18$ $-3,2168$ $-1,8$ 51. $D(11,12,16,15)$ $N11-C12-C16-O18$ $-3,2168$ $-1,8$ 52. $D(13,12,16,15)$ $C13-C12-C16-O18$ $-3,2168$ $-1,8$ 53. $D(12,13,14,15)$ $N17-C13-N14-N15$ $-179,7815$ -179 54. $D(2,13,17,36)$ $C12-C13-N17-H35$ $-179,7815$ -179 55. $D(12,13,17,36)$ $C12-C13-N17-H35$ $-148,588$ $-53,558$ 60. $D(14,13,17,35)$ N	211
36. $D(10,7,9,31)$ $C10-N7-C9-H31$ $133,9565$ $144,$ 37. $D(1,7,10,32)$ $C1-N7-C10-H32$ $178,8103$ $179,$ 38. $D(1,7,10,33)$ $C1-N7-C10-H33$ $60,2495$ $61,C1$ 39. $D(1,7,10,34)$ $1-N7-C10-H33$ $-61,0111$ $-60,$ 40. $D(9,7,10,32)$ $C9-N7-C10-H33$ $-15,322$ $-27,$ 41. $D(9,7,10,33)$ $C9-N7-C10-H33$ $-133,8829$ -145 42. $D(9,7,10,34)$ $C9-N7-C10-H34$ $104,8565$ $92,3$ 43. $D(4,8,11,12,13)$ $N8-N11-C12-C13$ $-2,3843$ $-1,C1$ 45. $D(8,11,12,16)$ $N8-N11-C12-C16$ $-177,8591$ -178 46. $D(11,12,13,17)$ $N11-C12-C13-N17$ $4,0382$ $2,8$ 48. $D(16,12,13,17)$ $C16-C12-C13-N14$ $-0,9870$ $-0,8$ 49. $D(16,12,13,17)$ $C16-C12-C13-N17$ $-179,8612$ -179 50. $D(11,12,16,15)$ $N11-C12-C16-C15$ $176,6539$ $177,$ 51. $D(11,12,16,15)$ $C13-C12-C16-N15$ $0,0891$ $0,0$ 53. $D(13,12,16,18)$ $C13-C12-C16-N15$ $0,0891$ $0,0$ 54. $D(12,13,14,15)$ $C12-C13-N14-C19$ $177,0620$ $177,$ 56. $D(17,13,14,15)$ $N17-C13-N14-C19$ $170,0620$ $177,$ 57. $D(17,13,14,15)$ $N17-C13-N14-C19$ $-148,588$ $-151,$ 60. $D(14,13,17,35)$ $N14-C13-N17-H35$ $-114,8754$ $-13,$ 59. $D(12,13,17,35)$ $C12-C13-N17-H3$	213
37. $D(1,7,10,32)$ $C1-N7-C10-H32$ $178,8103$ $179,$ 38. $D(1,7,10,33)$ $C1-N7-C10-H33$ $60,2495$ $61,0$ 39. $D(1,7,10,34)$ $1-N7-C10-H32$ $-15,322$ $-27,$ 41. $D(9,7,10,32)$ $C9-N7-C10-H32$ $-15,322$ $-27,$ 41. $D(9,7,10,33)$ $C9-N7-C10-H33$ $-133,8829$ -145 42. $D(9,7,10,34)$ $C9-N7-C10-H34$ $104,8565$ $92,3$ 43. $D(4,8,11,12)$ $C4-N8-N11-C12$ $179,1069$ $179,$ 44. $D(8,11,12,13)$ $N8-N11-C12-C13$ $-2,3843$ $-1,0$ 45. $D(8,11,12,16)$ $N8-N11-C12-C13-N14$ $-107,8591$ -178 46. $D(11,12,13,17)$ $N11-C12-C13-N14$ $-0,9870$ $-0,8$ 47. $D(16,12,13,17)$ $C16-C12-C13-N17$ 4.09870 $-0,8$ 48. $D(16,12,13,17)$ $C16-C12-C13-N17$ $-179,8612$ -179 50. $D(11,12,16,18)$ $N11-C12-C16-C15$ $176,6539$ $177,$ 51. $D(11,12,16,18)$ $C13-C12-C16-O18$ $-3,2168$ $-1,79$ 53. $D(13,12,16,18)$ $C13-C12-C16-O18$ $-179,7815$ -179 54. $D(12,13,14,15)$ $C12-C13-N14-K15$ $-16,6539$ $177,$ 55. $D(12,13,14,15)$ $N17-C13-N14-K15$ $-179,7815$ -179 56. $D(17,13,14,19)$ $N17-C13-N14-K15$ $-179,7815$ -179 57. $D(17,13,14,19)$ $N17-C13-N14-K15$ $-148,588$ -151 60. $D(14,13,17,36)$ $C12-C1$	0228
38. $D(1,7,10,33)$ $C1-N7-C10-H33$ $60,2495$ $61,0$ 39. $D(1,7,10,34)$ $1-N7-C10-H34$ $-61,0111$ $-60,0114$ 40. $D(9,7,10,32)$ $C9-N7-C10-H32$ $-15,322$ $-27,011,014$ 41. $D(9,7,10,33)$ $C9-N7-C10-H33$ $-133,8829$ -145 42. $D(9,7,10,34)$ $C9-N7-C10-H34$ $104,8565$ $92,2,145$ 43. $D(4,8,11,12)$ $C4-N8-N11-C12$ $179,1069$ $179,144$ 44. $D(8,11,12,13)$ $N8-N11-C12-C13$ $-2,3843$ $-1,016,11,12,13,117$ 45. $D(8,11,12,16)$ $N8-N11-C12-C13-N14$ $-177,0876$ $-178,178,117,0876$ 47. $D(1,1,12,13,14)$ $N11-C12-C13-N14$ $-0,9870$ $-0,62,12,13,17$ 46. $D(1,1,2,16,15)$ $N11-C12-C16-N17$ $-179,8612$ $-179,179,179,18612$ 50. $D(1,1,2,16,18)$ $N11-C12-C16-C15$ $176,6539$ $177,151.$ 51. $D(1,1,2,16,18)$ $C13-C12-C16-O18$ $-3,2168$ $-1,85,12,12,12,13,11,15$ 52. $D(13,12,16,18)$ $C13-C12-C16-O18$ $-179,7815,179,179,155,179,19,12,179,155,179,120,177,156,12,13,14,15)$ $117,7,620,177,156,13,14,150,117,-C13-N14-N15,15,15762,13,35,19,12,13,14,150,117,-C13-N14-N15,15,179,154,33,17,350,114-C13-N17-H35,14,18,871,17,135,14,150,117,-C13-N14-N15,11,4754,1-13,359,112,13,17,360,112,-C13-N17-H35,114,754,1-13,359,112,13,17,360,112,-C13-N17-H35,114,754,1-13,359,112,13,17,360,112,-C13-N17-H35,114,754,1-13,359,112,14,151,00,113-N14-C13-C24,29,21,92,25,0,66,11,14,15,161,130,114,15,161,13,114,150,115-N14-C19-C24,19,20,23,10,14,15,161,137,114,150,115-N14-C19-C24,149,20,21,14,15,161,137,114,150,115-N14-C19-C24,149,20,21,14,14$	4962
39. $D(1,7,10,34)$ 1 -N7-C10-H34 $-61,0111$ $-60,011$ 40. $D(9,7,10,32)$ $C9$ -N7-C10-H32 $-15,322$ $-27,7$ 41. $D(9,7,10,33)$ $C9$ -N7-C10-H33 $-133,8829$ -145 42. $D(9,7,10,34)$ $C9$ -N7-C10-H34 $104,8565$ $92,34$ 43. $D(4,8,11,12)$ $C4$ -N8-N11-C12 $179,1069$ $179,969$ 44. $D(8,11,12,16)$ $N8-N11-C12-C13$ $-2,3843$ $-1,069$ 45. $D(8,11,12,16)$ $N8-N11-C12-C13$ $-2,3843$ $-1,07$ 46. $D(11,12,13,17)$ $N11-C12-C13-N14$ $-177,0876$ -178 47. $D(16,12,13,17)$ $C16-C12-C13-N14$ -0.9870 -0.82 49. $D(16,12,13,17)$ $C16-C12-C13-N17$ $-179,8612$ -179 50. $D(11,12,16,15)$ $N11-C12-C16-C15$ $176,6539$ 17.7 51. $D(11,12,16,15)$ $C13-C12-C16-N15$ $0,0891$ $0,00$ 53. $D(13,12,16,15)$ $C13-C12-C16-N15$ $0,0891$ $0,00$ 53. $D(12,13,14,15)$ $N17-C13-N14-C19$ $177,0620$ $177,0620$ 55. $D(12,13,14,15)$ $N17-C13-N14-N15$ $-179,5453$ -179 54. $D(12,13,17,36)$ $C12-C13-N17-H35$ $-148,588$ -151 60. $D(14,13,17,36)$ $N14-C13-N17-H35$ $169,8717$ $167,62$ 61. $D(14,13,17,36)$ $N14-C13-N17-H35$ $169,8717$ $167,63$ 62. $D(13,14,19,20)$ $C13-N14-N15-C16$ $-177,49984$ $467,799,791$ 64. $D($	900
37. $D(1,1)(0,3)$ $D(1,0)(1,0)(3)$ $D(1,0)(1,0)(3)$ $D(0,1)(1,0)(3)$ 40. $D(9,7,10,3)$ $C9$ -N7-C10-H33 $-133,8829$ -145 42. $D(9,7,10,34)$ $C9$ -N7-C10-H33 $-133,8829$ -145 43. $D(4,8,11,12)$ $C4$ -N8-N11-C12 $179,1069$ $179,$ 44. $D(8,11,12,13)$ N8-N11-C12-C13 $-2,3843$ $-1(0,11,12,13,14)$ 45. $D(8,11,12,16)$ N8-N11-C12-C16 $-177,8591$ -178 46. $D(11,12,13,17)$ N11-C12-C13-N17 $4,0382$ $2,88$ 47. $D(11,12,13,17)$ N11-C12-C13-N17 $4,0382$ $2,88$ 48. $D(16,12,13,17)$ C16-C12-C13-N17 $-179,8612$ -179 50. $D(11,12,16,15)$ N11-C12-C16-C15 $176,6539$ $177,$ 51. $D(11,12,16,15)$ N11-C12-C16-C18 $-3,2168$ $-1,52$ 52. $D(13,12,16,15)$ C13-C12-C16-O18 $-3,2168$ $-1,52$ 53. $D(12,13,14,15)$ C12-C13-N14-N15 $1.79,7815$ -179 54. $D(12,13,14,15)$ N17-C13-N14-N15 $-179,5433$ -179 55. $D(12,13,17,35)$ C12-C13-N14-N15 $-199,5433$ -179 57. $D(17,13,14,15)$ N17-C13-N14-N15 $-199,543$ -179 57. $D(17,13,14,15)$ N17-C13-N14-N15 $-199,8717$ $-16,13$ 60. $D(14,13,17,35)$ N14-C13-N17-H35 $-1148,588$ $-151,146,19,20$ 61. $D(14,13,17,36)$ N14-C13-N17-H36 $-148,588$ $-151,146,19,20$ 62. <td< th=""><th>)781</th></td<>)781
40. $D(y, 1, 10, 2)$ $CO+N7-C10-H32$ $-13, 322$ $-21, 13, 23$ $-11, 12, 12, 13, 13$ $-11, 12, 12, 13, 13$ $-11, 12, 12, 13, 13$ $-11, 12, 12, 13, 13$ $-11, 12, 12, 13, 14$ $-11, 12, 12, 13, 14$ $-11, 12, 12, 13, 14$ $-11, 12, 12, 13, 14$ $-11, 12, 12, 13, 14$ $-11, 12, 12, 13, 14$ $-11, 12, 12, 13, 14$ $-11, 12, 12, 13, 14$ $-11, 12, 12, 13, 14$ $-11, 12, 12, 13, 14, 15$ $-11, 12, 13, 14, 15$ $-11, 12, 13, 14, 15$ $-11, 12, 13, 14, 15$ $-11, 12, 13, 14, 15$ $-11, 12, 13, 14, 15$ $-11, 12, 13, 14, 15$ $-11, 12, 13, 14, 15$ $-11, 12, 13, 14, 15$ $-11, 12, 13, 14, 15$ $-11, 13, 14, 15$ $-11, 13, 14, 15$ $-11, 13, 14, 15$ $-11, 13, 14, 15$ $-11, 13, 14, 15$ $-11, 13, 14, 15$ $-11, 13, 14, 15$ $-11, 13, 14, 15$ $-11, 13, 14, 15$ $-11, 13, 14, 15$ $-11, 14, 15, 14$ $-13, 13, 15$ $-11, 14, 15, 14$ $-13, 11, 14, 15, 14$ $-13, 11, 14, 15, 14$ $-13, 11, 14, 15, 14, 15, 16$ $-11, 14, 14, 15, 14, 15, 16$ $-11, 14, 15, 14, 15, 16$ $-11, 14, 15, 14, 15, 16, 15$ $-11, 14, 15, 14, 15, 16, 15$ $-11, 14, 15, 1$	5071
41. $D(9,7,10,33)$ $C9-N7-C10-H33$ -1435 42. $D(9,7,10,34)$ $C9-N7-C10-H34$ $104,8565$ $92,3$ 43. $D(4,8,11,12)$ $C9-N7-C10-H34$ $104,8565$ $92,3$ 44. $D(8,11,12,13)$ $N8-N11-C12-C13$ $-2,3843$ $-1,17$ 45. $D(8,11,12,16)$ $N8-N11-C12-C16$ $-177,8591$ -178 46. $D(11,12,13,14)$ $N11-C12-C13-N14$ $-0,9870$ $-0,6$ 49. $D(16,12,13,14)$ $C16-C12-C13-N17$ $4,0382$ 2.88 48. $D(16,12,13,17)$ $C16-C12-C13-N17$ $4,0382$ 2.88 49. $D(16,12,13,17)$ $C16-C12-C13-N17$ $4,0382$ 2.88 49. $D(16,12,13,17)$ $C16-C12-C13-N17$ $4,0382$ 2.88 51. $D(11,12,16,15)$ $N11-C12-C16-C15$ $176,6539$ $177,$ 51. $D(11,12,16,18)$ $N11-C12-C16-O18$ $-3,2168$ $-1,85$ 52. $D(13,12,16,15)$ $C13-C12-C16-O18$ $-3,2168$ $-1,85$ 53. $D(12,13,14,15)$ $C13-C12-C16-O18$ $-179,7815$ -179 54. $D(12,13,14,15)$ $C13-C12-C16-O18$ $-179,70620$ $177,$ 55. $D(12,13,17,35)$ $C12-C13-N17+M15$ $-179,5453$ -179 57. $D(17,13,14,15)$ $N17-C13-N14-N15$ $-199,5453$ -179 57. $D(12,13,17,35)$ $C12-C13-N17+M35$ $-11,4754$ $-133,$ 59. $D(12,13,17,35)$ $N14-C13-N17+M35$ $169,8717$ $167,$ 61. $D(14,13,17,36)$ $N14-C13-N17+M$	1071 4124
42. $D(9, 7, 10, 34)$ $C9-N/-C10-H34$ $104, 8565$ $92, 3$ 43. $D(4, 8, 11, 12)$ $C4-N8-N11-C12$ $179, 1069$ $179, 1069$ 44. $D(8, 11, 12, 13)$ $N8-N11-C12-C13$ $-2, 3843$ $-1, 16$ 45. $D(8, 11, 12, 13)$ $N8-N11-C12-C13$ $-178, 8591$ -178 46. $D(11, 12, 13, 14)$ $N11-C12-C13-N14$ $-107, 0876$ -178 47. $D(11, 12, 13, 17)$ $N11-C12-C13-N14$ $-0, 9870$ $-0. 6$ 49. $D(16, 12, 13, 14)$ $C16-C12-C13-N14$ $-0, 9870$ $-0. 6$ 50. $D(11, 12, 16, 15)$ $N11-C12-C16-C15$ $176, 6539$ $177, 7$ 51. $D(11, 12, 16, 18)$ $N11-C12-C16-O18$ $-3, 2168$ $-1. 8$ 52. $D(13, 12, 16, 18)$ $C13-C12-C16-O18$ $-179, 7815$ -179 54. $D(12, 13, 14, 15)$ $C12-C13-N14-N15$ 0.0891 0.0 53. $D(12, 13, 14, 15)$ $C12-C13-N14-N15$ 0.0891 0.0 54. $D(12, 13, 14, 15)$ $C12-C13-N14-N15$ 1.79620 $177, 0620$ 55. $D(12, 13, 14, 15)$ $C12-C13-N14-N15$ 1.795453 -179 56. $D(17, 13, 14, 19)$ $N17-C13-N14-C19$ $-148, 588$ -151 59. $D(12, 13, 17, 36)$ $C12-C13-N17-H36$ $-148, 588$ -151 60. $D(14, 13, 17, 36)$ $N14-C13-N17-H36$ $32, 7591$ $29, 5$ 61. $D(13, 14, 15, 16)$ $C13-N14-C19-C20$ $-149, 7744$ -137 64. $D(13, 14, 19, 20)$ $C13-N14-C19-C$	4154
43. $D(4,8,11,12)$ $C4-N8-N11-C12$ $179,1069$ $179,$ 44. $D(8,11,12,13)$ $N8-N11-C12-C13$ $-2,3843$ $-1,0$ 45. $D(8,11,12,13,14)$ $N11-C12-C13-N14$ $-177,0876$ -178 46. $D(11,12,13,17)$ $N11-C12-C13-N14$ $-177,0876$ -178 47. $D(11,12,13,17)$ $N11-C12-C13-N17$ $4,0382$ $2,8$ 48. $D(16,12,13,14)$ $C16-C12-C13-N17$ $-4,0382$ $2,8$ 49. $D(16,12,13,17)$ $C16-C12-C13-N14$ $-0,9870$ $-0,8$ 50. $D(11,12,16,15)$ $N11-C12-C16-C15$ $176,6539$ $177,$ 51. $D(11,12,16,15)$ $C13-C12-C16-O18$ $-3,2168$ $-1,8$ 52. $D(13,12,16,15)$ $C13-C12-C16-O18$ $-3,2168$ $-1,8$ 53. $D(13,12,16,18)$ $C13-C12-C16-O18$ $-179,7815$ -179 54. $D(12,13,14,15)$ $C12-C13-N14-C19$ $177,0620$ $177,$ 56. $D(17,13,14,15)$ $N17-C13-N14-N15$ $-1179,5453$ -179 57. $D(17,13,14,19)$ $N17-C13-N14-N15$ $-114,4754$ $-13,$ 59. $D(12,13,17,35)$ $C12-C13-N17-H35$ $-114,4754$ $-13,$ 60. $D(14,13,17,35)$ $N14-C13-N17-H35$ $169,8717$ $167,$ 61. $D(14,13,17,35)$ $N14-C13-N17-H35$ $169,8717$ $167,$ 62. $D(13,14,15,16)$ $C13-N14-N15-C16$ $-148,588$ $-151,$ 64. $D(13,14,19,20)$ $C13-N14-C19-C20$ $34,9834$ $46,7,$ 65. $D(13,14$	185
44. D(8,11,12,13) N8-N11-C12-C13 -2,3843 -1,0 45. D(8,11,12,16) N8-N11-C12-C16 -177,8591 -178 46. D(11,12,13,14) N11-C12-C13-N14 -177,0876 -178 47. D(11,12,13,17) N11-C12-C13-N14 -177,0876 -178 48. D(16,12,13,17) N11-C12-C13-N17 4,0382 2,8 48. D(16,12,13,17) C16-C12-C13-N17 -0,9870 -0,8 50. D(11,12,16,15) N11-C12-C16-C15 176,6539 177, 51. D(11,12,16,18) N11-C12-C16-O18 -3,2168 -1,6 52. D(13,12,16,18) C13-C12-C16-N15 0,0891 0,0 53. D(12,13,14,15) C12-C13-N14-N15 1,77,0620 177, 54. D(12,13,14,15) C12-C13-N14-N15 1,79,7815 -179 55. D(12,13,14,15) N17-C13-N14-N15 -179,5453 -179 57. D(17,13,14,19) N17-C13-N14-N15 -179,5453 -179 58. D(12,13,17,36) C12-C13-N17-H35 14,754 -13, 59. D(5020
45. $D(8,11,12,16)$ $N8-N11-C12-C16$ $-177,8591$ -178 46. $D(11,12,13,14)$ $N11-C12-C13-N14$ $-177,0876$ -178 47. $D(11,12,13,17)$ $N11-C12-C13-N14$ $-0,9870$ -0.6 48. $D(16,12,13,17)$ $C16-C12-C13-N14$ $-0,9870$ -0.6 49. $D(16,12,13,17)$ $C16-C12-C13-N14$ $-0,9870$ -0.6 50. $D(11,12,16,15)$ $N11-C12-C16-C15$ $176,6539$ $177,$ 51. $D(11,12,16,18)$ $N11-C12-C16-C15$ $176,6539$ $177,$ 51. $D(11,12,16,18)$ $C13-C12-C16-N15$ $0,0891$ $0,0$ 53. $D(13,12,16,18)$ $C13-C12-C16-O18$ $-179,7815$ -179 54. $D(12,13,14,15)$ $C12-C13-N14-C19$ $177,0620$ $177,$ 56. $D(17,13,14,15)$ $N17-C13-N14-C19$ $-4,0595$ -3.5 58. $D(12,13,17,35)$ $C12-C13-N17-H35$ $-11,4754$ $-13;$ 59. $D(12,13,17,35)$ $C12-C13-N17-H36$ $-148,588$ -151 60. $D(14,13,17,35)$ $N14-C13-N17-H36$ $-148,588$ -151 61. $D(14,13,17,36)$ $N14-C13-N17-H36$ $-148,588$ -151 62. $D(13,14,15,16)$ $C13-N14-N15-C16$ $-1,79,9813$ -177 64. $D(13,14,19,20)$ $C13-N14-N15-C16$ $-177,4998$ -177 65. $D(14,15,16,12)$ $N14-N15-C16-C12$ $0,8125$ $0,66$ 69. $D(14,15,16,18)$ $N14-N15-C16-C12$ $-0,8125$ $0,65$ 69. $D(14,15,$	709
46. $D(11,12,13,14)$ N11-C12-C13-N14 $-177,0876$ -178 47. $D(11,12,13,17)$ N11-C12-C13-N17 $4,0382$ $2,8$ 48. $D(16,12,13,14)$ C16-C12-C13-N14 $-0,9870$ $-0,6$ 49. $D(16,12,13,17)$ C16-C12-C13-N17 $-179,8612$ -179 50. $D(11,12,16,15)$ N11-C12-C16-C15 $176,6539$ $177,$ 51. $D(11,12,16,18)$ N11-C12-C16-C15 $0,0891$ $0,0$ 53. $D(13,12,16,18)$ C13-C12-C16-N15 $0,0891$ $0,0$ 54. $D(12,13,14,15)$ C12-C13-N14-C19 $177,0620$ $177,$ 56. $D(17,13,14,19)$ C12-C13-N14-C19 $177,0620$ $177,$ 56. $D(17,13,14,19)$ N17-C13-N14-C19 $-4,0595$ $-3,5$ 58. $D(12,13,17,35)$ C12-C13-N17-H35 $-11,4754$ $-13,$ 59. $D(12,13,17,35)$ N14-C13-N17-H35 $169,8717$ $167,$ 61. $D(14,13,17,35)$ N14-C13-N17-H35 $169,8717$ $167,$ 61. $D(13,14,19,20)$ C13-N14-N15-C16 $-17,4998$ $-177,$ 64. $D(13,14,19,24)$ C13-N14-C19-C24 $-146,063$ $-134,$ 65. $D(13,14,19,24)$ C13-N14-C19-C24 $-146,063$ $-134,$ 66. $D(15,14,19,24)$ N15-N14-C19-C24 $-146,063$ $-134,$ 66. $D(14,15,16,12)$ N14-N15-C16-C12 $0,8125$ $0,6$ 69. $D(14,15,16,18)$ N14-N15-C16-C12 $0,8125$ $0,6$ 69. $D(14,15,16,18)$ N14-C19-C20-C21 -1	2915
47.D(11,12,13,17)N11-C12-C13-N174,03822,848.D(16,12,13,14)C16-C12-C13-N14-0.9870-0.849.D(16,12,13,17)C16-C12-C13-N17-179,8612-17950.D(11,12,16,15)N11-C12-C16-C15176,6539177,51.D(11,12,16,18)N11-C12-C16-O18-3,2168-1,852.D(13,12,16,15)C13-C12-C16-O18-179,7815-17954.D(12,13,14,15)C12-C13-N14-N151,57621,355.D(12,13,14,15)N17-C13-N14-N151770,620177,56.D(17,13,14,15)N17-C13-N14-C19-4,0595-3,557.D(17,13,14,15)N17-C13-N14-C19-4,0595-3,558.D(12,13,17,35)C12-C13-N17-H35-11,4754-13,59.D(12,13,17,36)N14-C13-N17-H36-148,588-15160.D(14,13,17,36)N14-C13-N17-H3632,759129,562.D(13,14,15,16)C13-N14-N15-C16-174,998-17764.D(13,14,19,20)C13-N14-C19-C20-149,983446,765.D(13,14,19,20)N15-N14-C19-C24-146,063-13466.D(15,14,19,20)N15-N14-C19-C24-29,179241,065.D(14,15,16,12)N14-N15-C16-O18-179,3875-17970.D(12,16,18,37)N15-C16-O18-H370,8200-0,171.D(15,16,18,37)N15-C16-O18-H37-179,0405-18072.D(14,19,20,38)N14-C19-C20-C21-179,3875	4621
48. $D(16,12,13,14)$ $C16-C12-C13-N14$ -0.9870 -0.6 49. $D(16,12,13,17)$ $C16-C12-C13-N17$ $-179,8612$ -179 50. $D(11,12,16,15)$ $N11-C12-C16-C15$ $176,6539$ $177,$ 51. $D(11,12,16,18)$ $N11-C12-C16-O18$ -3.2168 -1.6 52. $D(13,12,16,15)$ $C13-C12-C16-N15$ 0.0891 0.0 53. $D(13,12,16,18)$ $C13-C12-C16-O18$ $-179,7815$ -179 54. $D(12,13,14,15)$ $C12-C13-N14-N15$ 1.5762 1.3 55. $D(12,13,14,15)$ $N17-C13-N14-N15$ $1.79,5453$ -179 57. $D(17,13,14,19)$ $N17-C13-N14-C19$ -4.05955 -3.6 58. $D(12,13,17,35)$ $C12-C13-N17-H35$ -11.4754 -13 59. $D(12,13,17,36)$ $C12-C13-N17-H35$ $-169,8717$ $167,$ 61. $D(14,13,17,36)$ $N14-C13-N17-H35$ $169,8717$ $167,$ 61. $D(13,14,15,16)$ $C13-N14-N15-C16$ $-177,4998$ $-177,$ 64. $D(13,14,19,20)$ $C13-N14-C19-C20$ $34,9834$ $465,$ 65. $D(13,14,19,20)$ $N15-N14-C19-C20$ $-149,7744$ $-137,$ 66. $D(15,14,19,24)$ $N15-N14-C19-C20$ $-149,7744$ $-137,$ 67. $D(15,16,18)$ $N14-N15-C16-C12$ $0,8125$ $0,6$ 69. $D(14,15,16,12)$ $N14-N15-C16-C12$ $0,8125$ $0,6$ 69. $D(14,15,16,12)$ $N14-N15-C16-C12$ $0,8200$ $-0,179,3875$ $-179,$ 71.	194
40. D(16,12,13,17) C10-C12-C13-N17 -179,8612 -179 50. D(11,12,16,15) N11-C12-C16-C15 176,6539 177, 51. D(11,12,16,15) N11-C12-C16-C15 176,6539 177, 51. D(13,12,16,15) C13-C12-C16-O18 -3,2168 -1,8 52. D(13,12,16,18) C13-C12-C16-O18 -179,7815 -179 54. D(12,13,14,15) C12-C13-N14-N15 1,5762 1,3 55. D(12,13,14,19) C12-C13-N14-C19 177,0620 177, 56. D(17,13,14,19) N17-C13-N14-C19 -4,0595 -3,9 57. D(17,13,14,19) N17-C13-N14-N15 -179,5453 -179 57. D(17,13,14,19) N17-C13-N14-N15 -179,5453 -179 58. D(12,13,17,35) C12-C13-N17-H35 -11,4754 -13, 59. D(14,13,17,36) C12-C13-N17-H36 -148,588 -151 60. D(14,13,17,36) N14-C13-N17-H36 32,7591 29,5 62. D(13,14,19,20) C13-N14-N15-C16 -1,4929 -1,2 63. <	507
49. $D(16,12,13,17)$ $C16-C12-C13-V17$ $-179,8012$ -179 50. $D(11,12,16,15)$ $N11-C12-C16-C15$ $176,6539$ $177,$ 51. $D(11,12,16,18)$ $N11-C12-C16-O18$ $-3,2168$ $-1,8$ 52. $D(13,12,16,15)$ $C13-C12-C16-O18$ $-179,7815$ -179 54. $D(12,13,14,15)$ $C12-C13-N14-N15$ $1,5762$ $1,3$ 55. $D(12,13,14,15)$ $C12-C13-N14-C19$ $177,0620$ $177,$ 56. $D(17,13,14,15)$ $N17-C13-N14-C19$ $-4,0595$ $-3,5$ 58. $D(12,13,17,35)$ $C12-C13-N17-H35$ $-11,4754$ $-13,$ 59. $D(12,13,17,36)$ $C12-C13-N17-H36$ $-148,588$ -151 60. $D(14,13,17,35)$ $N14-C13-N17-H36$ $32,7591$ $29,5$ 62. $D(13,14,15,16)$ $C13-N14-N15-C16$ $-1,4929$ $-1,2$ 63. $D(19,14,15,16)$ $C13-N14-C19-C20$ $34,9834$ $46,7$ 64. $D(13,14,19,20)$ $C13-N14-C19-C24$ $-146,063$ -134 66. $D(15,14,19,24)$ $N15-N14-C19-C24$ $-146,063$ -134 67. $D(15,14,19,24)$ $N15-N14-C19-C24$ $29,1792$ $41,6$ 68. $D(14,15,16,13)$ $N14-N15-C16-C12$ $0,8125$ $0,6$ 69. $D(14,15,16,18,37)$ $N15-C16-O18-H37$ $-179,93875$ -179 70. $D(12,16,18,37)$ $N15-C16-O18-H37$ $-179,93875$ -179 73. $D(14,19,20,38)$ $N14-C19-C20-C21$ $-179,3875$ -179 75. $D(24$	507
50.D(11,12,16,15)N11-C12-C16-C15 $1/6,6539$ $1/7,7$ 51.D(11,12,16,18)N11-C12-C16-O18 $-3,2168$ $-1,8$ 52.D(13,12,16,18)C13-C12-C16-O18 $-179,7815$ -179 53.D(12,13,14,15)C12-C13-N14-N15 $1,5762$ $1,3$ 55.D(12,13,14,19)C12-C13-N14-C19 $177,0620$ $177,$ 56.D(17,13,14,19)N17-C13-N14-C19 $-4,0595$ $-3,5$ 58.D(12,13,17,35)C12-C13-N17-H35 $-11,4754$ $-13,$ 59.D(12,13,17,36)C12-C13-N17-H36 $-148,588$ -151 60.D(14,13,17,35)N14-C13-N17-H36 $32,7591$ $29,5$ 62.D(13,14,15,16)C13-N14-N15-C16 $-1,74998$ -177 64.D(13,14,19,20)C13-N14-C19-C20 $34,9834$ $46,5$ 65.D(13,14,19,20)N15-N14-C19-C20 $-149,7744$ -137 67.D(15,14,19,24)N15-N14-C19-C20 $-149,7744$ -137 67.D(15,14,19,24)N15-N14-C19-C20 $-149,7744$ -137 67.D(15,14,19,20)N15-N14-C19-C20 $-149,7744$ -137 67.D(14,15,16,18)N14-N15-C16-C12 $0,8125$ $0,6$ 69.D(14,15,16,18)N14-N15-C16-C12 $0,8125$ $0,6$ 69.D(14,15,16,18)N14-N15-C16-C18 $-179,3121$ -179 70.D(12,16,18,37)C12-C16-O18-H37 $-179,0405$ -180 72.D(14,19,20,38)N14-C19-C20-C21 $-179,3875$ -179 <	5/91
51. $D(11,12,16,18)$ $N11-C12-C16-O18$ $-3,2168$ -1.8 52. $D(13,12,16,15)$ $C13-C12-C16-O18$ $0,0891$ $0,0$ 53. $D(13,12,16,18)$ $C13-C12-C16-O18$ $-179,7815$ -179 54. $D(12,13,14,15)$ $C12-C13-N14-C19$ $177,0620$ 177 56. $D(17,13,14,15)$ $N17-C13-N14-C19$ $177,0620$ 177 56. $D(17,13,14,19)$ $N17-C13-N14-C19$ $-4,0595$ $-3,5$ 57. $D(17,13,14,19)$ $N17-C13-N14-C19$ $-4,0595$ $-3,5$ 58. $D(12,13,17,35)$ $C12-C13-N17-H35$ $-11,4754$ -13 59. $D(12,13,17,36)$ $C12-C13-N17-H36$ $-148,588$ -151 60. $D(14,13,17,36)$ $N14-C13-N17-H36$ $32,7591$ $29,5$ 62. $D(13,14,15,16)$ $C13-N14-N15-C16$ $-1,74998$ -177 64. $D(13,14,19,20)$ $C13-N14-C19-C20$ $34,9834$ $46,7$ 65. $D(13,14,19,20)$ $C13-N14-C19-C20$ $34,9834$ $46,7$ 65. $D(13,14,19,20)$ $N15-N14-C19-C20$ $-149,7744$ -137 67. $D(15,14,19,20)$ $N15-N14-C19-C20$ $-149,7744$ -137 67. $D(14,15,16,18)$ $N14-N15-C16-O18$ $-179,3121$ -179 70. $D(12,16,18,37)$ $N15-C16-O18+H37$ $0,8200$ $-0,1$ 71. $D(15,16,18,37)$ $N15-C16-O18+H37$ $0,79,0405$ -180 72. $D(14,19,20,21)$ $N14-C19-C20-C21$ $-179,3875$ -179 73. $D(14,19,20$	7799
52. $D(13,12,16,15)$ $C13-C12-C16-N15$ $0,0891$ $0,0$ 53. $D(13,12,16,18)$ $C13-C12-C16-O18$ $-179,7815$ -179 54. $D(12,13,14,15)$ $C12-C13-N14-O18$ $-179,7815$ $1,779$ 55. $D(12,13,14,15)$ $C12-C13-N14-C19$ $1,5762$ $1,33$ 55. $D(17,13,14,15)$ $N17-C13-N14-C19$ $177,0620$ $177,$ 56. $D(17,13,14,15)$ $N17-C13-N14-C19$ $-4,0595$ $-3,52$ 58. $D(12,13,17,35)$ $C12-C13-N17-H35$ $-11,4754$ $-13,$ 59. $D(12,13,17,36)$ $C12-C13-N17-H36$ $-148,588$ -151 60. $D(14,13,17,36)$ $N14-C13-N17-H36$ $32,7591$ $29,5$ 62. $D(13,14,15,16)$ $C13-N14-N15-C16$ $-1,4929$ $-1,2$ 63. $D(19,14,15,16)$ $C13-N14-C19-C20$ $34,9834$ $46,7$ 64. $D(13,14,19,20)$ $C13-N14-C19-C20$ $-149,7744$ -137 65. $D(13,14,19,20)$ $N15-N14-C19-C20$ $-149,7744$ -137 67. $D(15,14,19,20)$ $N15-N14-C19-C24$ $29,1792$ $41,6$ 68. $D(14,15,16,12)$ $N14-N15-C16-C12$ $0,8125$ $0,6$ 69. $D(14,15,16,18)$ $N14-N15-C16-C12$ $0,8200$ $-0,1$ 71. $D(15,16,18,37)$ $N15-C16-O18-H37$ $-179,3875$ -179 73. $D(14,19,20,21)$ $N14-C19-C20-C21$ $-179,3875$ -179 74. $D(24,19,20,21)$ $C24-C19-C20-C21$ $1,6702$ $14,6702$ 75. $D(24,19,$	498
53. $D(13,12,16,18)$ $C13-C12-C16-O18$ $-179,7815$ -179 54. $D(12,13,14,15)$ $C12-C13-N14-N15$ $1,5762$ $1,3$ 55. $D(12,13,14,19)$ $C12-C13-N14-C19$ $177,0620$ $177,$ 56. $D(17,13,14,15)$ $N17-C13-N14-N15$ $-179,5453$ -179 57. $D(17,13,14,19)$ $N17-C13-N14-C19$ $-4,0595$ $-3,5$ 58. $D(12,13,17,35)$ $C12-C13-N17-H35$ $-11,4754$ $-13,$ 59. $D(12,13,17,36)$ $C12-C13-N17-H36$ $-148,588$ -151 60. $D(14,13,17,35)$ $N14-C13-N17-H36$ $32,7591$ $29,5$ 62. $D(13,14,15,16)$ $C13-N14-N15-C16$ $-1,4929$ $-1,2$ 63. $D(19,14,15,16)$ $C19-N14-N15-C16$ $-177,4998$ -177 64. $D(13,14,19,20)$ $C13-N14-C19-C20$ $34,9834$ $46,5$ 65. $D(13,14,19,24)$ $C13-N14-C19-C24$ $-146,063$ -134 66. $D(15,14,19,20)$ $N15-N14-C19-C24$ $-149,7744$ -137 67. $D(15,14,19,24)$ $N15-N14-C19-C24$ $29,1792$ $41,6$ 68. $D(14,15,16,18)$ $N14-N15-C16-C12$ $0,8125$ $0,6$ 69. $D(14,15,16,18)$ $N14-N15-C16-C12$ $0,8200$ $-0,1$ 71. $D(12,16,18,37)$ $C12-C16-O18-H37$ $-179,0405$ -180 72. $D(14,19,20,21)$ $N14-C19-C20-C21$ $-179,3875$ -179 73. $D(14,19,20,38)$ $N14-C19-C20-H38$ $2,9611$ $1,8$ 74. $D(24,19,20,2$	343
54. $D(12,13,14,15)$ $C12-C13-N14-N15$ $1,5762$ $1,3$ 55. $D(12,13,14,19)$ $C12-C13-N14-C19$ $177,0620$ $177,$ 56. $D(17,13,14,15)$ $N17-C13-N14-N15$ $-179,5453$ -179 57. $D(17,13,14,19)$ $N17-C13-N14-C19$ $-4,0595$ $-3,5$ 58. $D(12,13,17,35)$ $C12-C13-N17-H35$ $-11,4754$ $-13,$ 59. $D(12,13,17,36)$ $C12-C13-N17-H36$ $-148,588$ -151 60. $D(14,13,17,36)$ $N14-C13-N17-H36$ $128,5751$ $29,5$ 62. $D(13,14,15,16)$ $C13-N14-N15-C16$ $-1,4929$ $-1,2$ 63. $D(19,14,15,16)$ $C13-N14-N15-C16$ $-177,4998$ -177 64. $D(13,14,19,20)$ $C13-N14-C19-C20$ $34,9834$ $46,5765$ 65. $D(15,14,19,20)$ $N15-N14-C19-C20$ $-149,7744$ -137 67. $D(15,14,19,24)$ $N15-N14-C19-C24$ $29,1792$ $41,6666$ 69. $D(14,15,16,18)$ $N14-N15-C16-C12$ $0,8125$ $0,66669$ 69. $D(14,15,16,18)$ $N14-N15-C16-C18$ $-179,3121$ -179 70. $D(12,16,18,37)$ $N15-C16-O18+H37$ $-179,93875$ -179 73. $D(14,19,20,38)$ $N14-C19-C20-C21$ $-179,3875$ -179 74. $D(24,19,20,21)$ $C24-C19-C20-C21$ $1,6702$ $1,4775$ 75. $D(24,19,20,38)$ $C24-C19-C20-H38$ $-175,9812$ $-1777777777777777777777777777777777777$	7454
55. D(12,13,14,19) C12-C13-N14-C19 177,0620 177, 56. D(17,13,14,15) N17-C13-N14-N15 -179,5453 -179 57. D(17,13,14,19) N17-C13-N14-C19 -4,0595 -3,5 58. D(12,13,17,35) C12-C13-N17-H35 -11,4754 -13, 59. D(12,13,17,36) C12-C13-N17-H36 -148,588 -151 60. D(14,13,17,35) N14-C13-N17-H36 -148,588 -151 61. D(14,13,17,36) N14-C13-N17-H36 32,7591 29,5 62. D(13,14,15,16) C13-N14-N15-C16 -1,4929 -1,2 63. D(19,14,15,16) C13-N14-N15-C16 -177,4998 -177 64. D(13,14,19,20) C13-N14-C19-C20 34,9834 46,7 65. D(13,14,19,24) C13-N14-C19-C24 -146,063 -134 66. D(15,14,19,20) N15-N14-C19-C24 29,1792 41,6 67. D(14,15,16,12) N14-N15-C16-C12 0,8125 0,6 69. D(14,15,16,18) N14-N15-C16-C12 0,8125 0,6 69. D(1	509
56. $D(12,13,14,15)$ $D(12,013,14,015)$ $D(12,013,14,015)$ $D(12,013,014,015)$ $D(12,013,014,015)$ $D(12,013,014,015)$ $D(12,013,014,015)$ $D(12,013,014,015)$ $D(12,013,014,015)$ $D(12,013,014,015)$ $D(12,013,014,015)$ $D(12,013,014,015)$ $D(12,013,014,015)$ $D(12,013,014,015)$ $D(12,013,014,015)$ $D(12,013,014,015)$ $D(12,013,014,015)$ $D(12,013,014,015)$ $D(12,013,014,015)$ $D(12,013,014,015,016)$ $D(12,013,015,016,018,016)$ $D(12,013,015,016,018,016)$ $D(12,013,015,016,018,016)$ $D(12,013,015,016,018,016)$ $D(12,013,015,016,018,016)$ $D(12,013,015,016,018,016)$ $D(12,013,015,016,018,016)$ $D(12,014,015,016,018,$	2751
30. $D(17,13,14,19)$ $N17-C13-N14-C19$ $-4,0595$ $-3,59$ 57. $D(17,13,14,19)$ $N17-C13-N14-C19$ $-4,0595$ $-3,59$ 58. $D(12,13,17,35)$ $C12-C13-N17-H35$ $-11,4754$ $-113,59$ 59. $D(12,13,17,36)$ $C12-C13-N17-H36$ $-148,588$ -151 60. $D(14,13,17,35)$ $N14-C13-N17-H36$ $169,8717$ $167,61,1929$ 61. $D(14,13,17,36)$ $N14-C13-N17-H36$ $32,7591$ $29,562,129,29,562,29,562,29,575,129,129,562,29,575,129,129,562,29,575,120,29,562,20,13,14,15,16,10,13,14,19,20,113-N14-C19-C20,20,34,983446,7,764,129,20,20,20,21,29,21,22,20,21,22,20,21,22,20,21,22,22,22,22,22,22,22,22,22,22,22,22,$	8538
57. $D(17,13,14,19)$ $N17-C13-N14-C19$ $-4,0393$ $-5,5$ 58. $D(12,13,17,35)$ $C12-C13-N17-H35$ $-11,4754$ $-13,$ 59. $D(12,13,17,36)$ $C12-C13-N17-H36$ $-148,588$ -151 60. $D(14,13,17,35)$ $N14-C13-N17-H35$ $169,8717$ $167,$ 61. $D(14,13,17,36)$ $N14-C13-N17-H36$ $32,7591$ $29,5$ 62. $D(13,14,15,16)$ $C13-N14-N15-C16$ $-1,4929$ $-1,2$ 63. $D(19,14,15,16)$ $C19-N14-N15-C16$ $-177,4998$ -177 64. $D(13,14,19,20)$ $C13-N14-C19-C20$ $34,9834$ $46,7$ 65. $D(13,14,19,20)$ $N15-N14-C19-C20$ $-149,7744$ -137 67. $D(15,14,19,20)$ $N15-N14-C19-C24$ $29,1792$ $41,6$ 68. $D(14,15,16,12)$ $N14-N15-C16-C12$ $0,8125$ $0,6$ 69. $D(14,15,16,18)$ $N14-N15-C16-O18$ $-179,3121$ -179 70. $D(12,16,18,37)$ $C12-C16-O18-H37$ $0,8200$ $-0,1$ 71. $D(15,16,18,37)$ $N15-C16-O18-H37$ $-179,0405$ -180 72. $D(14,19,20,21)$ $N14-C19-C20-C21$ $-179,3875$ -179 73. $D(14,19,20,38)$ $N14-C19-C20-C21$ $1,6702$ $1,4$ 74. $D(24,19,20,21)$ $C24-C19-C20-C21$ $1,6702$ $1,4$ 75. $D(24,19,20,38)$ $C24-C19-C20-H38$ $-175,9812$ -177	205
58. $D(12,13,17,35)$ $C12-C13-N17-H35$ $-11,4754$ $-13,$ 59. $D(12,13,17,36)$ $C12-C13-N17-H36$ $-148,588$ -151 60. $D(14,13,17,35)$ $N14-C13-N17-H35$ $169,8717$ $167,$ 61. $D(14,13,17,36)$ $N14-C13-N17-H36$ $32,7591$ $29,5$ 62. $D(13,14,15,16)$ $C13-N14-N15-C16$ $-1,4929$ $-1,2$ 63. $D(19,14,15,16)$ $C19-N14-N15-C16$ $-177,4998$ -177 64. $D(13,14,19,20)$ $C13-N14-C19-C20$ $34,9834$ $46,7$ 65. $D(13,14,19,24)$ $C13-N14-C19-C24$ $-146,063$ -134 66. $D(15,14,19,20)$ $N15-N14-C19-C20$ $-149,7744$ -137 67. $D(15,14,19,24)$ $N15-N14-C19-C24$ $29,1792$ $41,6$ 68. $D(14,15,16,12)$ $N14-N15-C16-C12$ $0,8125$ $0,6$ 69. $D(14,15,16,18)$ $N14-N15-C16-O18$ $-179,3121$ -179 70. $D(12,16,18,37)$ $C12-C16-O18-H37$ $0,8200$ $-0,1$ 71. $D(15,16,18,37)$ $N15-C16-O18-H37$ $-179,0405$ -180 72. $D(14,19,20,21)$ $N14-C19-C20-C21$ $-179,3875$ -179 73. $D(14,19,20,38)$ $N14-C19-C20-C21$ $1,6702$ $1,4$ 74. $D(24,19,20,21)$ $C24-C19-C20-C21$ $1,6702$ $1,4$ 75. $D(24,19,20,38)$ $C24-C19-C20-H38$ $-175,9812$ -1777	293
59. $D(12,13,17,36)$ $C12-C13-N17-H36$ $-148,588$ -151 60. $D(14,13,17,35)$ $N14-C13-N17-H35$ $169,8717$ $167,$ 61. $D(14,13,17,36)$ $N14-C13-N17-H36$ $32,7591$ $29,5$ 62. $D(13,14,15,16)$ $C13-N14-N15-C16$ $-1,4929$ $-1,2$ 63. $D(19,14,15,16)$ $C19-N14-N15-C16$ $-177,4998$ $-177,$ 64. $D(13,14,19,20)$ $C13-N14-C19-C20$ $34,9834$ $46,7$ 65. $D(13,14,19,24)$ $C13-N14-C19-C24$ $-146,063$ -134 66. $D(15,14,19,20)$ $N15-N14-C19-C20$ $-149,7744$ $-137,$ 67. $D(15,14,19,24)$ $N15-N14-C19-C24$ $29,1792$ $41,6$ 68. $D(14,15,16,12)$ $N14-N15-C16-C12$ $0,8125$ $0,6$ 69. $D(14,15,16,18)$ $N14-N15-C16-O18$ $-179,3121$ $-179,$ 70. $D(12,16,18,37)$ $C12-C16-O18-H37$ $0,8200$ $-0,1$ 71. $D(15,16,18,37)$ $N15-C16-O18-H37$ $-179,0405$ -180 72. $D(14,19,20,21)$ $N14-C19-C20-C21$ $-179,3875$ -179 73. $D(14,19,20,38)$ $N14-C19-C20-C21$ $1,6702$ $1,4$ 74. $D(24,19,20,21)$ $C24-C19-C20-H38$ $-175,9812$ $-177,777$	431
60. $D(14,13,17,35)$ $N14-C13-N17-H35$ $169,8717$ $167,$ 61. $D(14,13,17,36)$ $N14-C13-N17-H36$ $32,7591$ $29,5$ 62. $D(13,14,15,16)$ $C13-N14-N15-C16$ $-1,4929$ $-1,2$ 63. $D(19,14,15,16)$ $C19-N14-N15-C16$ $-177,4998$ $-177,$ 64. $D(13,14,19,20)$ $C13-N14-C19-C20$ $34,9834$ $46,7$ 65. $D(13,14,19,24)$ $C13-N14-C19-C24$ $-146,063$ -134 66. $D(15,14,19,20)$ $N15-N14-C19-C20$ $-149,7744$ -137 67. $D(15,14,19,24)$ $N15-N14-C19-C24$ $29,1792$ $41,6$ 68. $D(14,15,16,12)$ $N14-N15-C16-C12$ $0,8125$ $0,6$ 69. $D(14,15,16,18)$ $N14-N15-C16-O18$ $-179,3121$ -179 70. $D(12,16,18,37)$ $C12-C16-O18-H37$ $0,8200$ $-0,1$ 71. $D(15,16,18,37)$ $N15-C16-O18-H37$ $-179,0405$ -180 72. $D(14,19,20,21)$ $N14-C19-C20-C21$ $-179,3875$ -179 73. $D(14,19,20,38)$ $N14-C19-C20-C21$ $1,6702$ $1,4$ 74. $D(24,19,20,21)$ $C24-C19-C20-C21$ $1,6702$ $1,4$ 75. $D(24,19,20,38)$ $C24-C19-C20-H38$ $-175,9812$ -1777	9322
61. $D(14,13,17,36)$ $N14-C13-N17-H36$ $32,7591$ $29,5$ 62. $D(13,14,15,16)$ $C13-N14-N15-C16$ $-1,4929$ $-1,2$ 63. $D(19,14,15,16)$ $C19-N14-N15-C16$ $-177,4998$ -177 64. $D(13,14,19,20)$ $C13-N14-C19-C20$ $34,9834$ $46,7$ 65. $D(13,14,19,24)$ $C13-N14-C19-C24$ $-146,063$ -134 66. $D(15,14,19,20)$ $N15-N14-C19-C20$ $-149,7744$ -137 67. $D(15,14,19,24)$ $N15-N14-C19-C24$ $29,1792$ $41,6$ 68. $D(14,15,16,12)$ $N14-N15-C16-C12$ $0,8125$ $0,6$ 69. $D(14,15,16,18)$ $N14-N15-C16-O18$ $-179,3121$ -179 70. $D(12,16,18,37)$ $C12-C16-O18-H37$ $0,8200$ $-0,1$ 71. $D(15,16,18,37)$ $N15-C16-O18-H37$ $-179,0405$ -180 72. $D(14,19,20,21)$ $N14-C19-C20-C21$ $-179,3875$ -179 73. $D(14,19,20,38)$ $N14-C19-C20-C21$ $1,6702$ $1,4$ 74. $D(24,19,20,21)$ $C24-C19-C20-C21$ $1,6702$ $1,4$ 75. $D(24,19,20,38)$ $C24-C19-C20-H38$ $-175,9812$ -177	7406
62. D(13,14,15,16) C13-N14-N15-C16 -1,4929 -1,2 63. D(19,14,15,16) C19-N14-N15-C16 -177,4998 -177 64. D(13,14,19,20) C13-N14-C19-C20 34,9834 46,7 65. D(13,14,19,24) C13-N14-C19-C24 -146,063 -134 66. D(15,14,19,20) N15-N14-C19-C20 -149,7744 -137 67. D(15,14,19,24) N15-N14-C19-C24 29,1792 41,6 68. D(14,15,16,12) N14-N15-C16-C12 0,8125 0,6 69. D(14,15,16,18) N14-N15-C16-O18 -179,3121 -179 70. D(12,16,18,37) C12-C16-O18-H37 0,8200 -0,1 71. D(15,16,18,37) N15-C16-O18-H37 -179,0405 -180 72. D(14,19,20,21) N14-C19-C20-C21 -179,3875 -179 73. D(14,19,20,38) N14-C19-C20-H38 2,9611 1,8 74. D(24,19,20,21) C24-C19-C20-C21 1,6702 1,4 75. D(24,19,20,38) C24-C19-C20-H38 -175,9812 -177	515
63. D(19,14,15,16) C19-N14-N15-C16 -177,4998 -177 64. D(13,14,19,20) C13-N14-C19-C20 34,9834 46,7 65. D(13,14,19,24) C13-N14-C19-C24 -146,063 -134 66. D(15,14,19,20) N15-N14-C19-C20 -149,7744 -137 67. D(15,14,19,24) N15-N14-C19-C24 29,1792 41,6 68. D(14,15,16,12) N14-N15-C16-C12 0,8125 0,6 69. D(14,15,16,18) N14-N15-C16-C18 -179,3121 -179 70. D(12,16,18,37) C12-C16-O18-H37 0,8200 -0,1 71. D(15,16,18,37) N15-C16-O18-H37 -179,0405 -180 72. D(14,19,20,21) N14-C19-C20-C21 -179,3875 -179 73. D(14,19,20,38) N14-C19-C20-C21 -179,3875 -179 74. D(24,19,20,21) C24-C19-C20-C21 1,6702 1,4 75. D(24,19,20,38) C24-C19-C20-H38 -175,9812 -177	803
64. D(13,14,19,20) C13-N14-C19-C20 34,9834 46,7 65. D(13,14,19,24) C13-N14-C19-C24 -146,063 -134 66. D(15,14,19,20) N15-N14-C19-C20 -149,7744 -137 67. D(15,14,19,24) N15-N14-C19-C24 29,1792 41,6 68. D(14,15,16,12) N14-N15-C16-C12 0,8125 0,6 69. D(14,15,16,18) N14-N15-C16-O18 -179,3121 -179 70. D(12,16,18,37) C12-C16-O18-H37 0,8200 -0,1 71. D(15,16,18,37) N15-C16-O18-H37 -179,0405 -180 72. D(14,19,20,21) N14-C19-C20-C21 -179,3875 -179 73. D(14,19,20,38) N14-C19-C20-C21 -179,3875 -179 73. D(14,19,20,38) N14-C19-C20-C21 -1,6702 1,4 74. D(24,19,20,21) C24-C19-C20-C21 1,6702 1,4 75. D(24,19,20,38) C24-C19-C20-H38 -175,9812 -177 <th>6488</th>	6488
61. D(13,14,19,24) C13-N14-C19-C24 -146,063 -134 66. D(15,14,19,20) N15-N14-C19-C20 -149,7744 -137 67. D(15,14,19,24) N15-N14-C19-C24 29,1792 41,6 68. D(14,15,16,12) N14-N15-C16-C12 0,8125 0,6 69. D(14,15,16,18) N14-N15-C16-O18 -179,3121 -179 70. D(12,16,18,37) C12-C16-O18-H37 0,8200 -0,1 71. D(15,16,18,37) N15-C16-O18-H37 -179,0405 -180 72. D(14,19,20,21) N14-C19-C20-C21 -179,3875 -179 73. D(14,19,20,38) N14-C19-C20-C21 -16702 1,4 74. D(24,19,20,21) C24-C19-C20-C21 1,6702 1,4 75. D(24,19,20,38) C24-C19-C20-H38 -175,9812 -177	729
66. D(15,14,19,20) N15-N14-C19-C20 -149,7744 -137 66. D(15,14,19,20) N15-N14-C19-C20 -149,7744 -137 67. D(15,14,19,24) N15-N14-C19-C24 29,1792 41,6 68. D(14,15,16,12) N14-N15-C16-C12 0,8125 0,6 69. D(14,15,16,18) N14-N15-C16-O18 -179,3121 -179 70. D(12,16,18,37) C12-C16-O18-H37 0,8200 -0,1 71. D(15,16,18,37) N15-C16-O18-H37 -179,0405 -180 72. D(14,19,20,21) N14-C19-C20-C21 -179,3875 -179 73. D(14,19,20,38) N14-C19-C20-H38 2,9611 1,8 74. D(24,19,20,21) C24-C19-C20-C21 1,6702 1,4 75. D(24,19,20,38) C24-C19-C20-H38 -175,9812 -177	0071
00. D(13,14,19,20) N13-N14-C19-C20 -149,7744 -137 67. D(15,14,19,24) N15-N14-C19-C24 29,1792 41,6 68. D(14,15,16,12) N14-N15-C16-C12 0,8125 0,6 69. D(14,15,16,18) N14-N15-C16-O18 -179,3121 -179 70. D(12,16,18,37) C12-C16-O18-H37 0,8200 -0,1 71. D(15,16,18,37) N15-C16-O18-H37 -179,0405 -180 72. D(14,19,20,21) N14-C19-C20-C21 -179,3875 -179 73. D(14,19,20,38) N14-C19-C20-H38 2,9611 1,8 74. D(24,19,20,21) C24-C19-C20-C21 1,6702 1,4 75. D(24,19,20,38) C24-C19-C20-H38 -175,9812 -177	5222
67. D(15,14,19,24) N15-N14-C19-C24 29,1792 41,0 68. D(14,15,16,12) N14-N15-C16-C12 0,8125 0,6 69. D(14,15,16,18) N14-N15-C16-O18 -179,3121 -179 70. D(12,16,18,37) C12-C16-O18-H37 0,8200 -0,1 71. D(15,16,18,37) N15-C16-O18-H37 -179,0405 -180 72. D(14,19,20,21) N14-C19-C20-C21 -179,3875 -179 73. D(14,19,20,38) N14-C19-C20-H38 2,9611 1,8 74. D(24,19,20,21) C24-C19-C20-C21 1,6702 1,4 75. D(24,19,20,38) C24-C19-C20-H38 -175,9812 -177	2222
68. D(14,15,16,12) N14-N15-C16-C12 0,8125 0,6 69. D(14,15,16,18) N14-N15-C16-O18 -179,3121 -179 70. D(12,16,18,37) C12-C16-O18-H37 0,8200 -0,1 71. D(15,16,18,37) N15-C16-O18-H37 -179,0405 -180 72. D(14,19,20,21) N14-C19-C20-C21 -179,3875 -179 73. D(14,19,20,38) N14-C19-C20-H38 2,9611 1,8 74. D(24,19,20,21) C24-C19-C20-C21 1,6702 1,4 75. D(24,19,20,38) C24-C19-C20-H38 -175,9812 -177	00/
69. D(14,15,16,18) N14-N15-C16-O18 -179,3121 -179 70. D(12,16,18,37) C12-C16-O18-H37 0,8200 -0,1 71. D(15,16,18,37) N15-C16-O18-H37 -179,0405 -180 72. D(14,19,20,21) N14-C19-C20-C21 -179,3875 -179 73. D(14,19,20,38) N14-C19-C20-H38 2,9611 1,8 74. D(24,19,20,21) C24-C19-C20-C21 1,6702 1,4 75. D(24,19,20,38) C24-C19-C20-H38 -175,9812 -177	\$76
70. D(12,16,18,37) C12-C16-O18-H37 0,8200 -0,1 71. D(15,16,18,37) N15-C16-O18-H37 -179,0405 -180 72. D(14,19,20,21) N14-C19-C20-C21 -179,3875 -179 73. D(14,19,20,38) N14-C19-C20-H38 2,9611 1,8 74. D(24,19,20,21) C24-C19-C20-C21 1,6702 1,4 75. D(24,19,20,38) C24-C19-C20-H38 -175,9812 -177	4749
71. D(15,16,18,37) N15-C16-O18-H37 -179,0405 -180 72. D(14,19,20,21) N14-C19-C20-C21 -179,3875 -179 73. D(14,19,20,38) N14-C19-C20-H38 2,9611 1,8 74. D(24,19,20,21) C24-C19-C20-C21 1,6702 1,7 75. D(24,19,20,38) C24-C19-C20-H38 -175,9812 -177	926
72. D(14,19,20,21) N14-C19-C20-C21 -179,3875 -179 73. D(14,19,20,38) N14-C19-C20-H38 2,9611 1,8 74. D(24,19,20,21) C24-C19-C20-C21 1,6702 1,2 75. D(24,19,20,38) C24-C19-C20-H38 -175,9812 -177	0088
73. D(14,19,20,38)N14-C19-C20-H382,96111,8 74. D(24,19,20,21)C24-C19-C20-C211,67021,4 75. D(24,19,20,38)C24-C19-C20-H38-175,9812-177	3285
74. D(24,19,20,21) C24-C19-C20-C21 1,6702 1,4 75. D(24,19,20,38) C24-C19-C20-H38 -175,9812 -177	434
75. D(24,19,20,38) C24-C19-C20-H38 -175,9812 -177	61
(1,1,2,0,0) $(24-C1)-C20-1100$ $(1,1,0,0)$	3671
76 $D(14 10 24 23)$ $N14 C10 C24 C23 170 0780 170$	8336
77 $D(14, 19, 24, 25)$ $N14 - (19 - (24, 142))$ 0.7412 0.7	447
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	102
78. $D(20,19,24,23)$ $C20-C19-C24-C23$ -1,0169 -0,6	103
79. D(20,19,24,42) C20-C19-C24-H42 178,2206 178,	1785
80. D(19,20,21,22) C19-C20-C21-C22 -1,0007 -1,1	577
81. D(19,20,21,39) 19C-C20-C21-H39 -179,8373 179,	9575
82. D(38,20,21,22) H38-C20-C21-C22 176,6504 177,	5664
83. D(38,20,21,39) H38-C20-C21-H39 -2.1862 -1.2	184
84. D(20,21,22,23) C20-C21-C22-C23 -0.3190 0.0)63
85 D(20,21,22,40) C20-C21-C22-H40 -170-6700 170	4572
6. $D(20,21,22,75)$ C2 $C^{21}C^{21}C^{21}C^{21}$ C2 $C^{21}C^{21}C^{22}$ C2 $C^{21}C^{22}$ C2 $C^{21}C^{22}$ C2 $C^{21}C^{22}$ C2 C^{22} C2 C^{22} C2 C^{22} C2 C^{22} C2 C^{22} C2 C^{22} C2 C^{22} C2 C^{22} C2 C^{22} C2 C^{22} C2 C^{22} C2 C^{22} C2 C^{22} C2 C^{22} C2 C^{22} C2 C^{22} C2 C^{22} C2 C^{22} C2 C^{22} C2 C^{22} C2 C^{22} C2 C^{22} C2 C^{22} C2 C^{22} C2 C^{22} C2 C^{22} C2 C^{22} C2 C^{22} C2 C^{22} C2 C^{22} C2 C^{22} C2 C^{22} C2 C^{22} C2 C^{22} C2 C^{22} C2 C^{22} C2 C^{22} C2 C^{22} C2 C^{22} C2 C^{22} C2 C^{22} C2 C^{22} C2 C^{22} C2 C^{22} C2 C^{22} C2 C^{22} C2 C^{22} C2 C^{22} C2 C^{22} C2 C^{22} C2 C^{22} C2 C^{22} C2 C^{22} C2 C^{22} C2 C^{22} C2 C^{22} C2 C^{22} C2 C^{22} C2 C^{22} C2 C^{22} C2 C^{22} C2 C^{22} C2 C^{22} C2 C^{22} C2 C^{22} C2 C^{22} C2 C^{22} C2 C^{22} C2 C^{22} C2 C^{22} C2 C^{22} C2 C^{22} C2 C^{22} C2 C^{22} C2 C^{22} C2 C^{22} C2 C^{22} C2 C^{22} C2 C^{22} C2 C^{22} C2 C^{22} C2 C^{22} C2 C^{22} C2 C^{22} C2 C^{22} C2 C^{22} C2 C^{22} C2 C^{22} C2 C^{22} C2 C^{22} C2 C^{22} C2 C^{22} C2 C^{22} C2 C^{22} C2 C^{22} C2 C^{22} C2 C^{22} C2 C^{22} C2 C^{22} C2 C^{22} C2 C^{22} C2 C^{22} C2 C^{22} C2 C^{22} C2 C^{22} C2 C^{22} C2 C^{22} C2 C^{22} C2 C^{22} C2 C^{22} C2 C^{22} C2 C^{22} C2 C^{22} C2 C^{22} C2 C^{22} C2 C^{22} C2 C^{22} C2 C^{22} C2 C^{22} C2 C^{22} C2 C^{22} C2 C^{22} C2 C^{22} C2 C^{22} C2 C^{22} C2 C^{22} C2 C^{22} C2 C^{22} C2 C^{22} C2 C^{22} C2 C^{22} C2 C^{22} C2 C^{22} C2 C^{22} C2 C^{22} C2 C^{22} C2 C^{22} C2 C^{22} C2 C^{22} C2 C^{22} C2 C^{22} C2 C^{22} C2 C^{22} C2 C^{22} C2 C^{22} C2 C^{22} C2 C^{22}	-1012 2001
60. $D(37,21,22,23)$ $D(37-21-22-223)$ $1/0,0002$ $1/0,$	014 014
6 7. D(39,21,22,40) H39-C21-C22-H40 -0,854/ -0,5	ð14
88. D(21,22,23,24) C21-C22-C23-C24 0,9852 0,8	59
89. D(21,22,23,41) C21-C22-C23-H41 -179,3077 -179	4625
90. D(40,22,23,24) H40-C22-C23-C24 -179,654 -179	6804
91. D(40,22,23,41) H40-C22-C23-H41 0.0531 0.0)11

Tablo 5.6: (Devamı)

92.	D(22,23,24,19)	C22-C23-C24-C19	-0,3175	-0,5541
93.	D(22,23,24,42)	C22-C23-C14-H42	-179,5339	-179,6249
94.	D(41,23,24,19)	H41-C23-C24-C19	179,9731	179,7624
95.	D(41,23,24,42)	H41-C23-C24-H42	0,7567	0,6917

5.2 Titreşim Spektroskopi Analizi

Literatürde, hem deneysel hem de kuantum kimyası hesaplamaları ile kimyasal bileşiklerini karakterize edebilmek için titreşim spektroskopi analizi sıkça kullanılır. Bu çalışmada, molekülün spektroskopik özelliklerinin belirlenmesi için frekans hesaplama analizi yapıldı. A ve B moleküllerinin 6-31G(d) temel seti kullanılarak DFT/B3LYP ve HF bazlı ab-*initio* simülasyon yöntemleri ile hesaplanan FT-IR spektrumları Şekil 5.3 ve Şekil 5.4'de gösterildi. Her iki molekül için de DFT ve HF yöntemleriyle hesaplanan teorik verileri ve önemli titreşim modları, temel titreşim modlarının işaretlemeleri ile birlikte Tablo 5.7 ve Tablo 5.8'de listelendi. Ayrıca, bazı belirli deneysel sonuçlar da aynı tabloda verilmiş olup, teorik sonuçları ile karşılaştırıldı. A molekülünün, 90 titreşim modundan, 31 modu gerilme titreşimi, diğer 30 tanesi açı bükülme titreşimi ve kalan 29 mod da burulma titreşimi biçimindedir. Bu molekül 30 tane C-H titreşim moduna sahiptir. B molekülü, 41 mod gerilme titreşimi, 40 mod açı bükülme titreşimi ve 39 mod burulma titreşimi olmak üzere 120 titreşim moduna sahiptir. B molekülü ise 45 tane C-H titreşim modunda davranmaktadır.

Hesaplanan frekanslar, hem elektron korelasyon etkileri ve hem de temel set eksikliklerinden dolayı deneysel verilerden yüksek elde edilmiştir. Ab-*initio* metodları ile elde edilen harmonik frekanslar, deneysel frekanslar ile karşılaştırılabilmesi için de uygun düzeltme faktörü ile çarpıldı. Molekülün titreşim spektrumunu anlamlı bir şekilde belirlemek için DFT/B3LYP metodu için 0,9614 ve HF metodu için 0,8953 düzeltme faktörleri kullanıldı (Scott ve Radon 1996). Çok atomlu moleküler yapılarda, titreşim bantlarının karmaşık olası nedeniyle moleküle ait tüm bantların işaretlenmesi çok zordur. Bu nedenle, bu çalışmada sadece karakteristik gerilme titreşim bantları tanımlandı.

Şekil 5.3: A molekülü a) DFT/B3LYP/6-31G(d) ve b) HF/6-31G(d) teorik FT-IR spektrumları.

Şekil 5.4: B molekülü a) DFT/B3LYP/6-31G(d) ve b) HF/6-31G(d) teorik FT-IR spektrumları.

				F	$T-IR (cm^{-1})$			
	DFT B3L	LYP/6-31G(0	d)		HF		Deney	Mod Türleri
Mod	Ölçeksiz	Ölçekli	\mathbf{I}^{IR}	Ölçeksiz	Ölçekli	\mathbf{I}^{IR}		İşaretleme [PED]>10%
1	3715,42	3572,00	82,87	4079,05	3651,97	146.39	3360	vOH(100)
2	3666,82	3525,28	99,26	3979,17	3562,55	107.70		vNH(100)
3	3618,42	3478,75	39,87	3935,60	3523,54	136.95		vNH(83)+vNH(17)
4	3462,02	3328,39	51,14	3842,44	3440,14	54.19	3150	vNH(17)+vNH(82)
5	3233,29	3108,49	13,96	3417,41	3059,61	12,90	2880	vCH(40)+vCH(53)
6	3230,94	3106,23	22,08	3411,24	3054,08	24.71		vCH(88)
7	3218,85	3094,60	8,63	3400,17	3044,17	8,66		vCH(56)+vCH(43)
8	3192,60	3069,37	11,29	3368,66	3015,96	17.46		vCH(95)
9	3153,00	3031,29	53,00	3322,89	2974,98	85.43	2790	vCH(46)+vCH(46)
10	3140,49	3019,27	2,30	3302,17	2956,43	2,68		vCH(45)+vCH(45)
11	3070,23	2951,72	52,87	3232,94	2894,45	94.69		vCH(12)+vCH(79)
12	3067,22	2948,83	30,00	3228,76	2890,71	23.85	2360	vCH(12)+vCH(79)
13	3006,53	2890,48	133,58	3191,34	2857,21	48.56		vCH(54)+vCH(33)
14	2998,42	2882,68	79,18	3182,22	2849,04	103.78		vCH(31)+vCH(53)
15	1675,14	1610,48	166,00	1843,76	1650,72	103.34		vNC(21)+δHNH(38)
16	1668,57	1604,16	364,34	1832,25	1640,41	240.31		vCC(27)+vCC(12)+δCCC(10)
17	1634,31	1571,23	295,42	1810,39	1620,84	369.01		vNC(40)+δNCC(11)
18	1611,84	1549,62	89,73	1788,32	1601,08	402.09		vCC(25)+vCC(21)
19	1597,64	1535,97	92,16	1762,98	1578,40	34.15		vNC(10)+vCC(10)+δHNN(12)+δHNH(31
20	1576,82	1515,95	108,94	1736,65	1554,82	69.28		vOC(22)+δCNN(17)

Tablo 5.7: A molekülüne ait deneysel ve, DFT/B3LYP ve HF metoduyla hesaplanmış teorik FT-IR, I^{IR} IR şiddetleri (km/mol) ve DFT/B3LYP ile elde edilen titreşim dalga sayılarının (cm⁻¹) PED ile işaretlemeleri. Parantez içindeki PED % 10'un üzerindeki değerleri kapsamaktadır. Ölçekleme faktörleri DFT/B3LYP ve HF için sırasıyla 0,9614 ve 0,8953 olarak alındı (Karabacak Atay ve diğ. 2018).

Tabl	o 5.7: (Deva	mı)						
21	1564,96	1504,55	411,95	1710,64	1531,54	105.52		
22	1557,34	1497,23	21,48	1691,55	1514,44	584.33		δHCH(21)+δHCH((27)
23	1544,57	1484,95	5,23	1684,73	1508,34	21.96		vCH(56)+vCH(43)
24	1517,37	1458,80	10,73	1670,76	1495,83	2,87		δHCH(21)+δHCH(19)+δHCH(20)+δHCH(16)
25	1512,49	1454,11	40,26	1643,32	1471,26	6,22		δHCH(17)+δHCH(17)+δHCH(24)+δHCH(11)
26	1509,64	1451,37	2,49	1641,93	1470,02	72.29		δHCH(12)+δHCH(25)+δHCH(26)+δHCH(13)
27	1498,39	1440,55	23,96	1636,76	1465,39	0.01	1520	vNN(20)+vCC(13)+vCC(10)
28	1481,62	1424,43	134,81	1608,89	1440,44	8,98		vNC(15)+vNC(10)+vCC(22)+δHNC(15)
29	1473,61	1416,73	42,73	1590,01	1423,54	13.70		$vNN(29)+\delta HCH(13)+\delta HCH(11)+\delta HCH(10)$
30	1461,70	1405,28	11,09	1581,88	1416,26	127.75		vNN(30)+vCC(11)
31	1395,23	1341,37	336,01	1501,30	1344,11	379.69		vNC(31)
32	1385,89	1332,39	29,50	1490,68	1334,61	109,86		$vNC(16)+\delta HNN(15)$
33	1375,14	1322,06	56,48	1481,64	1326,51	47,32		$vCC(11)+\delta HNN(11)$
34	1363,10	1310,48	61,40	1460,48	1307,57	9,14		$vNC(10)+\delta HNN(28)+\delta HCC(10)$
35	1342,21	1290,40	3,02	1430,85	1281,04	21,20		δHCC(15)
36	1284,08	1234,51	35,03	1374,30	1230,41	15,95		vCC(18)+vNC(19)+vNC(18)
37	1273,62	1224,46	2,23	1351,26	1209,78	241,54		$vNC(27)+\delta HCC(11)+\delta HCC(12)$
38	1243,07	1195,09	250,92	1304,54	1167,95	10,11		$vNC(13)+vNN(10)+\delta HOC(47)$
39	1209,08	1162,41	42,79	1301,65	1165,37	94,69		τHCNC (11)+τHCNC (11)
40	1202,05	1155,65	11,11	1288,30	1153,41	25,67		δHCC(12)+δHCC(21)
41	1163,05	1118,16	94,87	1258,41	1126,65	0,00		$vNC(11)+vCC(13)+v0C(10)+\delta HNC(14)$
42	1155,85	1111,23	3,34	1243,96	1113,72	77,48		$vCC(10)+\delta HCC(11)+\delta HCC(23)+\delta HCC(17)+\delta HCC(12)$
43	1154,46	1109,90	14,80	1243,59	1113,39	2,59		δHCH(12)+ τHCNC(10)+ τHCNC(31)+ τHCNC(16)
44	1150,78	1106,36	83,56	1228,55	1099,92	27,65		δ HCH(10)+ τ HCNC(47)+ τ HCNC(15)
45	1109,54	1066,71	3,19	1179,23	1055,76	20,57		δHNC(31)+δNNC(23)
46	1090,73	1048,63	27,55	1175,03	1052,00	77,46		vNC(14)+vNC(14)+ τHCNC(15)+ τHCNC(12)+ τHCNC(14)+ τHCNC(11)

Tabl	o 5.7: (Deva	mı)					
47	1073,15	1031,73	98,00	1134,06	1015,32	36,36	vNN(53)
48	1021,23	981,81	0,79	1108,59	992,52	0,54	$vCC(37)+\delta CCC(24)+\delta CCC(15)$
49	982,26	944,34	1,26	1100,98	985,71	2,14	τ HCCC(15)+ τ HCCC(65)
50	970,84	933,37	38,60	1076,43	963,73	0,49	vNC(25)+vNC(25)
51	948,65	912,03	0,50	1044,83	935,44	35,62	$\tau HCCC(64) + \tau HCCC(17)$
52	934,28	898,22	6,70	1002,81	897,82	11,39	$vCC(19)+vCC(14)+\delta NNC(19)+\delta CNN(15)$
53	839,49	807,09	47,40	936,17	838,15	75,55	τ HCCC(43)+ τ HCCC(16)+ γ NCCC(17)
54	829,99	797,95	7,14	913,30	817,68	3,53	vCC(14)+vCC(12)+vNC(11)
55	813,65	782,24	3,30	885,13	792,46	2,55	τ HCCC(23)+ τ HCCC(16)+ τ HCCC(49)
56	800,77	769,86	11,68	869,10	778,11	24,27	$vNC(13)+vNC(10)+\delta CNN(16)+\delta NCC(10)+\delta NNC(23)$
57	749,34	720,42	65,20	836,82	749,20	42,01	$\tau NNCC(13) + \gamma HCNC(19)$
58	737,95	709,47	24,35	804,94	720,66	0,04	$\tau CCCC(11) + \tau CCCC(13) + \tau CCCC(15) + \gamma NCCC(10)$
59	732,86	704,57	10,92	780,39	698,68	5,28	$vNC(10)+\delta CCC(18)$
60	706,00	678,75	82,21	753,43	674,55	6,66	τ HNC(34)+ τ CNNC(13)+ τ CCCC(15)
61	655,10	629,81	3,16	704,38	630,63	4,84	$vCC(10)+\delta CCC(11)+\delta CCC(27)+\delta NCC(12)$
62	645,87	620,94	51,60	684,19	612,56	12,83	τ HNCN(18)+ τ CNNC(12)+ γ OCNC(12)+ γ NNCC(14)
63	629,95	605,63	41,10	639,48	572,53	25,51	vOC(11)
64	592,55	569,68	26,87	605,42	542,03	4,30	$\delta NNC(11) + \delta NCC(10) + \delta CCN(16) + \delta NCN(12) + \delta OCN(16)$
65	553,86	532,48	26,36	588,68	527,05	35,19	$\delta CNC(19) + \gamma NCCC(11)$
66	545,68	524,62	11,00	550,05	492,46	11,12	$\delta CNC(11) + \gamma NCCC(17) + \gamma NCCC(12)$
67	497,57	478,36	1,78	533,07	477,26	4,02	$\delta NCC(19) + \delta NCC(11) + \delta CNC(24)$
68	469,37	451,25	35.95	502,08	449,51	10,02	$\tau HOCC(40) + \gamma OCNC(14)$
69	445,67	428,47	12,08	481,38	430,98	2,59	$\delta CNC(11) + \delta CNC(26)$
70	440,36	423,36	8,70	471,57	422,20	24,89	τCCCC(33)
71	423,38	407,04	59,64	466,18	417,37	18,01	τ HNNC(18)+ γ NNCC(22)

Tablo	ablo 5.7: (Devamı)												
72	417,31	401,20	62,89	443,86	397,39	186,93	τ HOCC(30)+ τ CCCC(26)						
73	411,79	395,89	14,09	437,20	391,43	0,61	$\delta \text{CNN}(10) + \delta \text{CNC}(13) + \tau \text{HNCN}(10)$						
74	398,06	382,69	134,44	366,31	327,96	0,25	τ HNCN(38)+ τ CCNN(16)						
75	335,04	322,11	21,21	357,23	319,83	6,37	$\delta NCN(23) + \tau NCCN(10)$						
76	313,04	300,96	36,33	290,08	259,71	2,19	$\delta NCN(23) + \tau NCCN(11)$						
77	280,94	270,10	4,45	281,43	251,96	11,23	$\delta NCC(23) + \delta CNC(22)$						
78	263,43	253,26	74,93	263,25	235,69	48,25	τHNNC(39)+ τCNNC(26)+ τNNCC(17)						
79	260,86	250,79	22,72	234,41	209,87	0,36	$\tau NNCC(16) + \tau CCNN(21) + \gamma CCCN(14)$						
80	212,01	203,83	0,51	216,81	194,11	0,36	δOCN(11)						
81	202,92	195,09	19,05	209,19	187,29	50,75	$\tau CNNC(14) + \tau NNCC(27)$						
82	194,79	187,27	1,50	178,16	159,51	38,07	$\tau CNNC(11) + \tau NNCC(24)$						
83	165,87	159,47	4,94	174,50	156,23	0,71	$\delta CCN(12) + \tau NNCC(15)$						
84	162,01	155,76	1,47	123,27	110,36	0,59	$\delta CCN(15) + \delta NCC(10) + \tau NNCC(11)$						
85	114,39	109,97	2,79	63,89	57,20	4,07	$\tau CCCC(15) + \tau NCCN(26)$						
86	79,86	76,78	5,70	50,96	45,62	0,00	$\tau CNCC(13) + \gamma CCCN(28)$						
87	66,89	64,31	1,37	46,93	42,02	1,75	$\tau CNCC(59) + \gamma CCCN(13)$						
88	61,45	59,08	3,83	23,74	21,25	1,14	$\delta NNC(31) + \delta CCN(12) + \delta CNN(24) + \delta NCC(21)$						
89	38,78	37,28	3,43	105,67	94,61	5,75	$\tau CCCC(17) + \tau CNNC(17) + \gamma CCCN(12) + \gamma NCCC(17)$						
90	24,52	23,57	2,48	382,67	342,60	229,39	$\tau NNCC(51) + \tau CCNN(19) + \tau CNCC(10)$						

PED: Potansiyel Enerji Dağılımı, v; gerilme, δ ; düzlem içi bükülme, γ ; düzlem dışı bükülme, τ ; burulma.

)		F	$T-IR (cm^{-1})$			
		DFT B3L	YP/6-31G(d) H	IF	Deney		Mod Türleri
Mod	Ölçeksiz	Ölçekli	\mathbf{I}^{IR}	Ölçeksiz	Ölçekli	\mathbf{I}^{IR}		İşaretleme [PED]>10%
1	3685,50	3543,24	61,41	4084,59	3656,933	120,35	3440	vOH (100)
2	3621,14	3481,36	73,31	3913,82	3504,043	90,38	3300	vNH (21)+vNH (79)
3	3476,07	3341,89	27,07	3797,07	3399,517	32,18		vNH (79)+vNH (21)
4	3244,55	3119,31	0,34	3421,32	3063,108	18,69		vCH (97)
5	3233,13	3108,33	18,71	3418,87	3060,914	23,25		vCH (42)+vCH (48)
6	3231,15	3106,43	22,43	3416,45	3058,748	1,52	3200	τHCC(85)
7	3223,20	3098,78	3,40	3401,99	3045,802	6,51	3120	vCH(87)+vCH(10)
8	3218,05	3093,83	8,55	3399,31	3043,402	5,72		vCH(52)+vCH(47)
9	3210,44	3086,52	40,16	3387,43	3032,766	44,47		vCH(10)+vCH(60)+vCH(21)
10	3196,26	3072,88	18,27	3374,79	3021,449	13,38		vCH(41)+vCH(53)
11	3195,63	3072,28	9,02	3373,63	3020,411	18,90		vCH(94)
12	3187,02	3064,00	1,97	3361,72	3009,748	0,49		vCH(38)+vCH(36)+vCH(23)
13	3156,15	3034,32	54,05	3320,09	2972,477	86,25	3000	vCH(52)+vCH(41)
14	3143,79	3022,44	2,23	3302,63	2956,845	5,13		vCH(40)+vCH(52)
15	3069,06	2950,59	58,16	3263,67	2921,964	72,83	2740	vCH(14)+vCH(75)
16	3066,67	2948,30	24,88	3260,12	2918,785	19,47		vCH(74)+vCH(14)
17	3010,59	2894,38	151,46	3179,21	2846,347	96,43		vCH(52)+vCH(32)
18	3002,68	2886,78	79,05	3170,82	2838,835	64,84		vCH(30)+vCH(51)
19	1676,31	1611,60	179,88	1858,92	1664,291	220,91		vNC(27)+vCC(14)+δHNH(10)
20	1668,35	1603,95	494,92	1828,66	1637,199	406,35		vCC(24)+vCC(11)
21	1663,23	1599,03	58,42	1818,15	1627,79	377,00		vNC(15)+vNC(13)+δHNH(22)

Tablo 5.8: B molekülüne ait deneysel, ve DFT/B3LYP ve HF metoduyla hesaplanmış teorik FT-IR, I^{IR} IR şiddetleri (km/mol) ve DFT/B3LYP ile elde edilen titreşim dalga sayılarının (cm⁻¹) PED ile işaretlemeleri. Parantez içindeki PED % 10'un üzerindeki değerleri kapsamaktadır. Ölçekleme faktörleri DFT/B3LYP ve HF için sırasıyla 0,9614 ve 0,8953 olarak alındı (Karabacak Atay ve diğ. 2018).

Tablo 5.8: (Devamı)

22	1659,04	1595,00	484,50	1808,67	1619,302	237,46		vNC(14)+vCC(19)
23	1643,84	1580,39	20,74	1802,35	1613,644	26,06		$vCC(24)+vCC(20)+\delta CCC(11)$
24	1610,20	1548,05	42,92	1790,00	1602,587	4,45		vCC(27)+vCC(21)
25	1575,19	1514,39	71,84	1763,42	1578,79	23,00		NCC(10)+δHNH(15)
26	1570,31	1509,70	63,39	1703,78	1525,394	95,49		δHNH(12)
27	1558,28	1498,13	36,37	1700,70	1522,637	71,46		δHCH(23)+δHCH(23)
28	1548,73	1488,95	196,85	1682,52	1506,36	10,35		δ HCC(12)+ δ HCC(12)+ δ HCC(15)+ δ HCC(12)
29	1545,33	1485,68	13,09	1678,53	1502,788	330,28		δHCH(28)+δHCH(29)
30	1539,48	1480,06	710,33	1667,74	1493,128	715,84		$vOC(19)+\delta CNN(13)$
31	1518,35	1459,74	13,81	1664,46	1490,191	2,24		δHCH(23)+δHCH(20)+δHCH(17)+δHCH(19)
32	1513,39	1454,97	86,94	1647,73	1475,213	8,64		δHCH(15)+δHCH(17)+δHCH(13)+δHCH(12)
33	1510,28	1451,98	5,39	1640,51	1468,749	2,79		δHCH(20)+δHCH(15)+δHCH(25)+δHCH(17)
34	1507,27	1449,09	172,49	1638,27	1466,743	113,67		$\delta HCC(11) + \delta HCC(15)$
35	1497,15	1439,36	237,28	1620,84	1451,138	148,01	1500	vCC(13)+vNN(16)+vCC(10)
36	1490,14	1432,62	180,34	1607,28	1438,998	10,67		vNC(14)
37	1474,47	1417,56	18,01	1602,02	1434,289	244,00		$vNN(27)+\delta HCH(10)+\delta HCH(11)+\delta HCH(11)+\delta HCH(10)$
38	1464,14	1407,62	7,51	1586,55	1420,438	3,59		vNN(27)+vCC(10)
39	1411,10	1356,63	18,96	1515,48	1356,809	27,15		vNC(16)+vNC(11)
40	1394,79	1340,95	551,47	1491,83	1335,635	400,15		vNC(34)
41	1378,24	1325,04	22,83	1475,00	1320,568	3,16		vCC(11)+vCC(11)+vCC(15)
42	1368,44	1315,62	0,33	1472,75	1318,553	19,54		$vCC(12)+vCC(15)+\delta HCC(21)+\delta HCC(12)+\delta HCC(19)$
43	1352,46	1300,26	22,63	1418,60	1270,073	8,83		δ HCC(17)+ δ HCC(14)+ δ HCC(16)+ δ HCC(13)
44	1349,39	1297,30	5,84	1408,16	1260,726	8,46		$vCC(13)+vCC(25)+\delta HCC(11)$
45	1310,05	1259,48	40,45	1380,78	1236,212	93,66		$vNC(20)+\delta HNC(17)$
46	1287,02	1237,34	146,78	1358,11	1215,916	112,86		δHOC(23)

Tabla	5 8.	(Dovomi)
1 abio	5.0:	(Devami)

47	1282,59	1233,08	5,11	1339,56	1199,308	18,85	vCC(10)+δHOC(20)
48	1267,27	1218,35	75,13	1302,88	1166,468	1,52	$vNC(20)+\delta HOC(13)+\delta HCC(11)+\delta HCC(11)$
49	1211,43	1164,67	7,84	1300,97	1164,758	30,96	δ HCC(13)+ δ HCC(16)+ δ HCC(10)+ δ HCC(12)
50	1209,68	1162,99	29,43	1297,60	1161,741	6,60	τ HCNC(10)
51	1201,88	1155,49	3,19	1286,47	1151,777	30,20	δHCC(14)+δHCC(21)
52	1193,17	1147,11	0,20	1272,05	1138,866	106,63	$\delta HCC(15) + \delta HCC(37) + \delta HCC(23)$
53	1167,14	1122,09	266,06	1254,11	1122,805	126,02	$vCC(11)+vNC(15)+\delta HNC(19)$
54	1156,90	1112,24	3,45	1242,46	1112,374	2,73	δ HCC(10)+ δ HCC(18)+ δ HCC(16)+ δ HCC(11)
55	1155,54	1110,94	2,64	1233,34	1104,209	52,01	τHCNC (21)+τHCNC(13)+τHCNC(12)+τHCNC(11)
56	1150,94	1106,51	86,67	1225,17	1096,895	106,25	τHCNC (29)+τHCNC(35)
57	1133,75	1089,99	51,00	1205,30	1079,105	30,10	vNC(12)+vNN(10)
58	1109,40	1066,58	1,28	1185,33	1061,226	3,75	vCC(16)+δCH(12)
59	1092,28	1050,12	27,49	1175,62	1052,533	25,99	vNC(14)+vNC(14)+tHCNC (15)+tHCNC(12)+tHCNC(12)+tHCNC(15)
60	1074,60	1033,12	1,34	1165,94	1043,866	9,25	$vNN(31)+\delta HCC(11)+\delta CCC(12)$
61	1051,60	1011,01	6,27	1126,02	1008,126	1,07	vCC(23)+vCC(22)
62	1020,81	981,41	1,00	1124,59	1006,845	2,37	$\delta CCC(36) + \delta HCC(10) + \delta CCC(24) + \delta CCC(14)$
63	1017,65	978,37	0,16	1106,01	990,2108	0,20	$\delta CCC(34) + \delta CCC(19) + \delta CCC(17)$
64	995,97	957,53	0,71	1101,75	986,3968	1,27	τHCCC (12)+τHCCC(20)+τHCCC(34)+τHCCC(13)
65	974,54	936,92	4,14	1099,03	983,9616	0,16	τHCCC (15)+τHCCC(55)
66	974,50	936,88	0,21	1091,05	976,8171	0,33	τHCCC (22)+τHCCC(32)+τHCCC(13)+τHCCC(16)
67	970,78	933,31	41,04	1081,49	968,258	0,38	vNC(22)+vNC(23)
68	951,69	914,95	3,75	1046,20	936,6629	7,54	$vCC(12)+vCC(12)+\delta NNC(12)+\delta CNN(15)$
69	951,07	914,36	0,44	1040,20	931,2911	44,80	τHCCC (63)+τHCCC(16)
70	929,94	894,04	4,50	1021,22	914,2983	2,28	τHCCC (29)+τHCCC(33)+τHCCC(24)
71	864,56	831,19	7,18	957,38	857,1423	0,71	vCC(16)+vNC(10)

Tablo 5.8: (Devamı)

72	859,11	825,95	0,55	937,55	839,3885	76,25	τHCCC (24)+τHCCC(21)+τHCCC(21)+τHCCC(25)
73	838,48	806,11	49,73	925,02	828,1704	13,78	τ HCCC(40)+ τ HCCC(18)+ γ NCCC (18)
74	812,74	781,37	2,30	914,46	818,716	0,28	τ HCCC(25)+ τ HCCC(10)+ τ HCCC(15)+ τ HCCC(46)
75	809,45	778,21	23,27	874,65	783,0741	33,42	vNC(16)
76	776,39	746,42	42,52	860,22	770,155	56,83	τHCCC(19)+τHCCC(26)+τHCCC(20)+γNCCC (18)
77	743,83	715,12	31,28	836,14	748,5961	49,45	δCCC(19)
78	741,66	713,03	11,57	804,79	720,5285	2,50	$\tau CCCC(14) + \tau CCCC(16) + \tau CCCC(18) + \gamma NCCC (13)$
79	727,79	699,70	40,20	791,61	708,7284	13,43	γOCNC (10)+γNNCC (20)
80	715,18	687,57	21,48	778,58	697,0627	21,28	τHCCC (11)+τHCCC(10)+τCCCC(17)+τCCCC(15)+τCCCC(22)
81	694,36	667,56	71,44	758,22	678,8344	11,86	τ HNCN(22)+ γ OCNC (11)
82	687,60	661,06	16,57	740,92	663,3457	37,99	
83	682,18	655,85	22,99	730,17	653,7212	6,36	δCCC(21)
84	652,31	627,13	1,71	702,54	628,9841	4,04	$vCC(11)+\delta CCC(10)+\delta CCC(24)$
85	636,56	611,99	15,75	682,84	611,3467	14,35	$\delta CCC(10) + \delta CCC(14)$
86	631,64	607,26	5,25	676,20	605,4019	1,91	vNN(11)
87	622,50	598,47	37,63	636,86	570,1808	155,30	τ HNCN(26)+ τ CNNC(15)+ γ NNCC (11)
88	555,21	533,78	39,51	607,49	543,8858	29,52	δCNC(26)
89	545,29	524,24	9,61	588,58	526,9557	28,55	γNCCC (24)+γCCNC (18)
90	526,72	506,39	10,16	571,69	511,8341	13,72	$\tau CCCC(15) + \gamma NCCC (34)$
91	505,41	485,90	13,22	537,37	481,1074	13,61	$\delta CCN(12) + \delta NCC(17) + \delta CNC(18)$
92	489,76	470,86	99,03	499,65	447,3366	6,60	τHOCC(91)
93	456,70	439,07	56,44	486,82	435,8499	6,91	$\delta CNC(14) + \tau HNCN(22)$
94	451,62	434,19	51,37	479,64	429,4217	36,13	τHNCN(22)
95	449,50	432,15	39,09	467,60	418,6423	13,69	$\delta CNC(13) + \delta CNC(13)$
96	442,58	425,50	2,65	463,19	414,694	7,29	τCCCC(25)

Tablo	5.8:	(Devamı)
		(

97	426,92	410,44	1,84	458,26	410,2802	4,61	$\tau CCCC(14) + \tau CCCC(22)$
98	415,66	399,62	35,12	443,74	397,2804	109,39	$\tau CCCC(21) + \tau CCCC(13)$
99	412,45	396,53	5,64	431,61	386,4204	93,54	$\tau \text{CNNC}(11)$
100	368,94	354,70	2,24	402,50	360,3583	1,71	$\delta CNC(12)$
101	351,28	337,72	15,92	371,55	332,6487	19,45	τNNCC(20)+τNCCN(13)+γNNCC (16)+γCCNC (14)
102	338,33	325,27	2,53	363,92	325,8176	2,32	$\delta CCC(16) + \delta NCC(20) + \tau CNNC(11)$
103	289,16	278,00	3,47	315,30	282,2881	3,21	δNCC(38)
104	274,74	264,14	7,11	302,55	270,873	7,33	$\delta CNC(10) + \tau NNCC(14)$
105	273,09	262,55	13,17	295,47	264,5343	15,87	$\delta NCC(16) + \gamma CCCN(10)$
106	257,19	247,26	1,01	286,09	256,1364	7,29	$\delta CNC(12) + \tau CCCC(15) + \tau CCCC(21) + \tau CCCC(12)$
107	213,05	204,83	1,55	233,74	209,2674	0,31	$\tau CCNC(22) + \gamma OCNC (14) + \gamma CCCN (12)$
108	207,83	199,81	2,73	229,83	205,7668	3,21	δOCN(10)
109	188,54	181,26	0,34	199,87	178,9436	0,64	
110	171,94	165,30	1,20	187,64	167,9941	2,47	$\tau CCNC(10) + \tau NCCN(12) + \gamma NCCN (18)$
111	156,51	150,47	2,34	162,70	145,6653	2,43	δNCC(18)
112	120,55	115,90	2,66	147,41	131,9762	14,65	$\tau CCCC(12) + \tau NCCN(17)$
113	106,95	102,82	2,19	115,73	103,6131	8,11	$\delta CCN(12) + \delta CNC(21)$
114	77,07	74,10	6,25	106,74	95,56432	1,58	γCCCN (16)
115	71,78	69,01	0,54	63,86	57,17386	0,45	$\tau CNCC(57) + \gamma CCCN(10)$
116	65,27	62,75	1,46	51,74	46,32282	1,80	$\tau CNCC(37) + \tau CNCC(14) + \gamma NCCN (20)$
117	49,79	47,87	5,75	51,38	46,00051	1,90	$\tau CNCC(23) + \gamma CCCN (15)$
118	40,04	38,49	0,37	40,40	36,17012	0,38	$\delta NNC(24) + \delta NCC(21) + \delta CNN(20)$
119	28,09	27,01	0,19	26,51	23,7344	0,18	$\tau CCNN(39) + \tau NCCN(10)$
120	21,77	20,93	0,51	16,53	14,79931	0,62	τNNCC (10)+τCCNN(25)+τCCNC(12)+τNCCN(10)+τCNNC(27)

PED: Potansiyel Enerji Dağılımı, v; gerilme, δ ; düzlem içi bükülme, γ ; düzlem dışı bükülme, τ ; burulma.

Tablo 5.8 ve Tablo 5.9 incelendiğinde, bazı önemli O-H, N-H, C-H ve N=N titreşimlerin FT-IR teorik sonuçları ile deneysel değerleri karşılaştırıldı.

5.2.1 O-H Titreşimleri

Moleküler yapıdaki hidroksil grupları, gerilme titreşim hareketi sergilerler. Serbest hidroksil grubu bulunan ya da hidrojen bağı içermeyen moleküller 3550 -3700 cm⁻¹ bandında güçlü gerilme titreşim hareketi yaparlar (Teimouri ve diğ. 2009). Eğer molekül fenol grupları ve hidrojen bağı içeriyorsa O-H gerilme titreşim bandı 3200-3550 cm⁻¹ bölgesine doğru azalır (Dabbagh ve diğ. 2008; Mahadevan ve diğ. 2012).

A molekülünün O-H gerilme titreşimlerinin dalga sayısı DFT/B3LYP/6-31G(d) metoduyla 3572 cm⁻¹, HF metoduyla 3652 cm⁻¹ olarak hesaplandı. Deneysel O-H gerilme titreşiminin değeri ise 3360 cm⁻¹ olarak ölçüldü. B molekülünün O-H titreşimlerine bakıldığında, DFT/B3LYP/6-31G(d) ve HF metodları ile sırasıyla 3543 cm⁻¹ ve 3656 cm⁻¹ olarak bulunurken, 3440 cm⁻¹ olarak da ölçüldü. B molekülünün O-H titreşimleri dalga sayısı A molekülüne göre karşılaştırıldığında, hesaplamalarda fazla değişim göstermezken, ölçümde daha fazla çıkmıştır (Tablo 5.9).

5.2.2 N-H Titreşimleri

N-H (Amin grubu) titreşimleri literatürde 3380-3500 cm⁻¹ aralığındadır (Rao 1963). A molekülünün N-H gerilme titreşimleri gerçekleştirilen simülasyonlarda DFT/B3LYP (HF) metodlarıyla 3328 cm⁻¹ (3440 cm⁻¹) olarak hesaplandı ve deneysel N-H dalga sayısı ise 3150 cm⁻¹ değerinde gözlemlendi. B molekülünün N-H bağları gerçekleştirilen simülasyon ve ölçümlere göre sırasıyla 3481 cm⁻¹ (DFT/B3LYP), 3504 cm⁻¹ (HF) ve 3300 cm⁻¹'de titreşim göstermektedir. A molekülüne 29H atomu yerine benzen halkası eklendiğinde, N-H titreşim frekansı artmaktadır (Tablo 5.9).

Tablo 5.9: DFT/B3LYP ve HF yöntemlerinden elde edilenlerle FT-IR deneysel değerlerin karşılaştırılması.

	FT-IR DALGA SAYISI (cm ⁻¹)												
MOLEKÜL		DEN	NEY		TI	EORİK	(DFT)	TI	TEORİK (HF)				
	Х-Н	Ar-H	Alifatik-H	N=N	Х-Н	Ar-H	Alifatik-H	N=N	X-H	Ar-H	Alifatik-H	N=N	
Δ	3360 (OH)	2880	2360	1520	3572 (OH)	3108	3031	1441	3652 (OH)	3060	2975	1465	
А	3150 (NH)	2790			3328 (NH)		2949		3440 (NH)		2891		
D	3440 (OH)	3200	3000	1500	3543 (OH)	3106	3034	1439	3657 (OH)	3059	2972	1451	
D	3300 (NH)	3120	2740		3481 (NH)	3099	2951		3504 (NH)	3046	2922		
5.2.3 C-H Titreşimleri

FT-IR spektroskopi ölçümlerine göre, C-H titreşimleri genelde 3000 - 3100 cm⁻¹aralığında bulunur (Krishnakumar ve Xavier 2003). Tablo 5.9'da verildiği üzere, A molekülü önemli üç farklı dalga boyunda C-H titreşimleri göstermektedir. DFT hesaplamalarına göre sırasıyla 3108 cm⁻¹, 3031 cm⁻¹ ve 2948 cm⁻¹, HF hesaplamalarına göre de 3059 cm⁻¹, 2974 cm⁻¹ ve 2980 cm⁻¹ bulundu. Bunlara karşılık gelen ölçümler ise sırasıyla 2880 cm⁻¹ ve 2790 cm⁻¹ ve 2360 cm⁻¹'dır. A molekülüne 29H atomu yerine benzen halkası eklendiğinde, ekstra bir tane daha önemli titreşim dalga sayısı ortaya çıkmakta ve bu dalga sayısı diğerlerinin arasında bir değerdir: DFT; 3106 cm⁻¹, 3098 cm⁻¹, 3034 cm⁻¹ ve 2950 cm⁻¹, HF: 3058 cm⁻¹, 2972 cm⁻¹ ve 2921 cm⁻¹, 3034 cm⁻¹'dır. Öte yandan ölçümler incelendiğinde, dalga sayılarının değerleri artma göstermektedir: 3200 cm⁻¹, 3120 cm⁻¹, 3000 cm⁻¹ ve 2740 cm⁻¹.

5.2.4 N=N Titreşimleri

Moleküldeki -N=N- karakteristik bağlanma yapısı, işaretleme tablolarında görüleceği üzere, A molekülü için 27. titreşim modunda (Tablo 5.7), B molekülü için 35. tireşim modunda (Tablo 5.8) yer almaktadır. Burada A molekülünün DFT/B3LYP metodu ile hesaplanan titreşim değerleri 1440,55 cm⁻¹, HF metoduyla 1465,39 cm⁻¹ ve deneysel 1520 cm⁻¹ olarak elde edildi. Bu değerlere karşılık B molekülünde ise 1439,36 cm⁻¹, 1451,14 cm⁻¹ ve 1500 cm⁻¹ dir. Benzen halkasının eklenmesi, bu karaktesistik bağın titreşimini değiştirmemiştir. Bu modlarda C-C titreşimlerinden katkı gelse de değerler -N=N- bağı için fonksiyonel grup tablosu değerleri ile uyumludur.

A ve B moleküllerinin her iki simülasyon metodu ile hesaplanmış dalga sayıları deneysel değerleri ile karşılaştırıldı. Korelasyonları y = a + bx lineer denklemi altında oluşturuldu. Burada a ve b fit sabitleridir. A ve B molekülleri için korelasyon ilişkileri sırasıyla Şekil 5.5 ve Şekil 5.6'de sunuldu. Şekillerde görüldüğü üzere hesaplanan dalga sayısı ile deneysel dalga sayısı doğrusal korelasyon içerisindedir.

A molekülü için FT-IR korelasyon eşitlikleri DFT/B3LYP ve HF yöntemleri için sırasıyla y = 0.8460x + 219,0989 ($R^2 = 0.9081$), y = 0.8394x + 230,9081 ($R^2 = 0.9384$) olarak bulundu.

B molekülü için de bu işlemler tekrar edildi ve y = 0,9216x + 182,4846($R^2 = 0,9694$) (DFT) ve y = 0,8981x + 255,6069 ($R^2 = 0,9514$) (HF) eşitlikleri elde edildi. Bu eşitlikler ve grafikler incelendiğinde, her iki yöntemle elde edilen frekans değerleri deneysel verilerle uyumlu olduğu sonucuna ulaşabiliriz.

5.3 NMR Spektrum Analizi

Bu tez çalışmasında, A ve B moleküllerinin ¹H ve ¹³C –NMR spektrumları, Gaussian 09 paket programında düzenlenen GIAO (Gauge-Including Atomic Orbital) yöntemi ile elde edildi. Deneysel NMR çalışmasında çözücü olarak DMSO kullanıldığı için, ab-*initio* simülasyon hesaplamalarında çözücü etkisi DMSO olarak dahil edildi.

A ve B moleküllerinin deneysel ¹H-NMR spektrumları, Şekil 5-7'de gösterilmekte olup, teorik hesaplamaları ve deneysel verileri ile karşılaştırılması Tablo 5.10'da verildi. A molekülü, pirozol için 10,31 ppm (NH₂) ve 12,86 ppm (OH)'de geniş pikler göstermektedir. Diğer kimyasal kayma değerleri, aromatik H için 5,69-7,37 ppm ve alifatik H için de 2,90 ppm değerlerinde ölçüldü. B molekülü, pirazolün 13,18 ppm (NH₂)'de geniş pik sergilediği gözlemlendi. Diğer kimyasal kayma değerleri 6,23-7,94 ppm (aromatik H) ve 2,93 ppm (alifatik H) olarak kaydedildi.

Hesaplanan ¹H ve ¹³C kimyasal kayma değerleri her iki metot ile A molekül için Tablo 5.11 ve B molekül için Tablo 5.12'de listelendi. Bu tablolarda ¹H-NMR deneysel verileri mevcut olmakla birlikte ¹³C-NMR ölçümleri bulunmamaktadır.

b)

Şekil 5.5: A molekülü için teorik a) DFT/B3LYP ve b) HF metodları ile hesaplanmış dalga sayılarının deneysel değerleri ile korelasyon ilişkisi.

Şekil 5.6: B molekülü için teorik a) DFT/B3LYP ve b) HF metodları ile hesaplanmış dalga sayılarının deneysel değerleri ile korelasyon ilişkisi.

a)

Şekil 5.7: Deneysel ¹H-NMR spektrumları a) A molekülü ve b) B molekülü.

Tablo 5.10: A ve B moleküllerinin DMSO çözücüsü ortamında ölçülmüş, DFT ve HF metodları ile hesaplanmış ¹H-NMR kimyasal kayma değerleri, d (ppm).

	¹ H-NMR (d, ppm, DMSO-d ₆)								
		DENEY		DFT/B3LYP (TEORiK)			HF (TEORiK)		
	Alifatik-H	Aro-H	Х-Н	Alifatik-H	Aro-H	Х-Н	Alifatik-H	Aro-H	Х-Н
А	2.90 (d. 6H CH ₃)	5.69-7.37 (m. 4H)	10.31 (NH ₂) 12.86 (OH)	2.46-2.96(d. 6H CH ₃)	6.23-7.29 (m. 4H)	3.05-6.43(NH ₂) 4.43(OH)	2,17-2,55 (d. 6H CH ₃)	6,19-7,75 (m. 4H)	3,08-6,16 (NH ₂) 4,82 (OH)
В	2.93 (d. 6HCH ₃)	6.23-7.94 (m. 9H)	13.18 (NH ₂)	2.50-2.96 (d. 6H CH ₃)	6.23-7.33 (m. 9H)	3.43-6.39 (NH ₂) 5.62 (OH)	2,19-2,55 (d. 6H CH ₃)	6,22-7,41 (m. 9H)	3,48-6,21 (NH ₂) 5,81 (OH)

Tablo 5.11:	: A molekülü için	DMSO çözüci	ü ortamında	deneysel,	DFT/B3LYP	ve HF metodlarıyla
hesaplanan	¹ H ve ¹³ C NMR '	ın TMS 'ye gö	re kimyasal	kayma de	eğerleri d (ppm).

		NMR (ppm)	
ATOM	DENEYSEL	DFT/B3LYP	HF
H20 ¬		7.2999	7.7515
H21		6,9900	7.4586
H19	5,69-7,37	6,2397	6,1945
H22		6,2510	6,2312
H29		6,4704	6,6116
H30	12,86	4,4327	4,8247
Н31 🗋		3,0535	3,0869
H32 5	10,31	6,4397	6,1661
H25		2,9681	2,5588
H28		2,9660	2,5574
H27		2,7436	2,2078
H24	2,90	2,7171	2,1971
H26		2,4772	2,1792
H23		2,4659	2,1711
C16		142,6777	144,1225
C1		133,6366	134,4224
C4		128,8832	120,3668
C13		125,5178	131,2606
C5		117,0041	115,4314
C3		101,3629	101,1836
C12		100,2305	85,6644
C2		98,9807	90,9468
C6		97,9195	90,2066
C10		32,5351	20,3909
С9		32,4392	20,3516

Tablo 5.12: B molekülü için DMSO çözücü ortamında deneysel, DFT/B3LYP ve HF metodlarıyl	а
hesaplanan ¹ H ve ¹³ C NMR '1n TMS 'ye göre kimyasal kayma değerleri d (ppm).	

АТОМ	DENEYSEL	DFT/B3LYP	HF
H42		7,3368	7,4116
H26		7,2891	7,7331
H25		6,2498	6,1892
H27		7,0186	7,5007
H28	6,23-7,94	6,2394	6,2201
H41		7,2073	7,2362
H38		7,1537	7,2408
H39		7,1538	7,2153
H40		6,9400	6,9352
H35		6,3920	6,2067
H36	13,18	3,4340	3,4828
H37		5,6222	5,8149
H31		2.9623	2,5510
H33		2,9399	2,5468
H30		2,7743	2,2461
H34	2,93	2,7559	2,2567
H32		2,5111	2,2020
H29		2,5013	2,1942
C16		144,2465	144,6164
C1		133,775	134,8806
C4		128,3394	119,5860
C19		125,145	121,2571
C13		123,06	129,0962
C5		117,6821	116,3273
C23		116,2756	112,6186
C21		115,3596	111,7165
C22		111,671	106,9412
C24		108,6458	103,7657
C20		104,4775	100,4093
C12		101,904	86,7842
C3		101,0471	101,1896
C2		99,0252	90,5650
C6		97,8248	89,8647
С9		32,5492	20,3737
C10		32,4305	20,4076

5.4 Morötesi ve Görünür (UV-Vis) Bölge Spektroskopi Analizi

A ve B bileşiklerinin soğurma spektrumları deneysel ve teorik olarak incelendi. UV-vis spektrum analizi için farklı polaritelere sahip beş farklı çözücü (metanol, asetik asit, dimetilsülfoksit, kloroform ve dimetilformamit) seçildi. A ve B moleküllerinin UV-vis soğurma spektrumlarının deneysel ve teorik DFT/B3LYP ve HF metodlarıyla hesaplanmış değerleri, sırasıyla Şekil 5.8 ve Şekil 5.9'de sergilendi. Soğurmaların maksimum olduğu dalga boyları $\lambda_{max}(nm)$ için TD-DFT hesaplama sonuçları her iki molekül için Tablo 5.13'de listelendi ve deneysel değerleri ile karşılaştırıldı.

A molekülünün UV-spektrumu incelendiğinde, metanol hariç tüm çözücülerde 2 tane maksimum absorpsiyon bantı gözlenmektedir. Birinci maksimumlar incelendiğinde, DMSO ve asetik asitin λ_{mak} değerlerinin kloroforma göre daha batokromik kayma, DMF nin λ_{mak} değerinin ise daha hipsokromik kayma gösterdiği tespit edilmiştir. İkinci λ_{mak} değerleri incelendiğinde ise asetik asitin λ_{mak} değerinin kloroforma göre daha batokromik kayma, DMSO, DMF ve metanolun λ_{mak} değerlerinin ise daha hipsokromik kayma gösterdiği görülmüştür.

B molekülünün UV-spektrumu incelendiğinde, metanol, DMSO ve DMF çözücülerinde tek maksimum gözlenirken, asetik asit ve kloroformda 2 tane maksimum absorpsiyon bantı gözlenmektedir. Grafik ve tablodan da görüldüğü gibi, tüm çözücülerin λ_{mak} değerlerinin kloroformun λ_{mak} değerine göre daha hipsokromik kayma gösterdiği tespit edilmiştir. Asetik asit ve kloroformun birinci maksimumları incelendiğinde ise asetik asitin λ_{mak} değerinin kloroformun λ_{mak} değerine göre daha batokromik kayma gösterdiği görülmüştür.

TD-DFT yönteminden elde edilen A ve B molekülleri için λ_{max} değerleri, Şekil 5.8 b-c ve Şekil 5.9 b-c'da gösterildiği gibi, tüm çözücüler için kayda değer bir değişim göstermezken, ölçümlerde mono azo boyar maddeler herbir çözücü için farklı dalga boylarında UV-vis dalgalarını soğurmaktadır. Tablo 5.13'de listelendiği üzere, farklı deneysel ve teorik λ_{max} (nm) değerleri birbiriyle uyumlu olup, teorik sonuçlar en fazla A molekülü için %17, B molekülü için %11 civarı hata ile deneysel değerlerinden uzaktadır. A molekülü 410 nm civarı, B molekülü ise 430 nm civarı dalga boylarında ışığı soğurduğu DFT hesaplamalarından anlaşılmaktadır.

a)

b)

Şekil 5.8: A molekülü için farklı çözücülerde UV-Vis Spektrumu: a) Deneysel b) DFT/B3LYP ve c) HF

b)

Şekil 5.9: B molekülü için farklı çözücülerde UV-Vis Spektrumu: a) Deneysel b) DFT/B3LYP ve c) HF

 $\textbf{Tablo 5.13:} A ve B moleküllerinin UV-vis dalgalarını maksimum soğurduğu dalga boylarının \ \lambda_{max} (nm), deneysel ve DFT/B3LYP metodu ile hesaplanan değerleri.$

					$\lambda_{max} (nm)$					
MOLEKÜL			DENEYSE	L				DFT /B3LYP	•	
	DMSO	DMF	Metanol	Asetik Asit	Kloroform	DMSO	DMF	Metanol	Asetik Asid	Kloroform
А	472-356	448-336	470	492-386	476-338	413	413	410	409	409
В	466	460	472	470-392	482-320	432	434	429	428	430

5.5 HOMO-LUMO Moleküler Orbital Analiz

Bu tez çalışmasında, A ve B moleküllerinin kararlı olduğu orbital enerji düzeylerini araştırmak için elektronik hesaplamalar her iki yöntem kullanılarak gerçekleştirildi. Moleküllerin reaktivitesi hakkında bilgi edinebilmek amacıyla A ve B moleküllerine ait HOMO-LUMO orbital analizi sonucu ile elde edilen orbital diyagramları sırasıyla Şekil 5.10 ve Şekil 5.11'de segilendi. Ayrıca her iki molekül için hesaplanan toplam enerjiler, HOMO ve LUMO enerjileri, HOMO-LUMO band aralığı (ΔE) ve dipol momentleri (μ), Tablo 5.14'de verildi. A ve B molekülleri için DFT metodu ile hesaplanan en düşük boş moleküler orbital (LUMO) enerjileri, sırasıyla gaz fazlarında -0,0471 ve -0,0583 a.u olarak tahmin edilirken bunlara karşılık gelen en yüksek dolu moleküler orbital (HOMO) enerjileri sırasıyla -0,1725 ve -0,1778 a.u olarak bulundu. Bu sonuçlara göre, HF yöntemi kullanılarak hesaplanan enerji değerleri DFT yöntemininkine göre daha yüksek çıkmıştır. Bu yüzden HF metodu ile hesaplanan mutlak HOMO-LUMO enerji band aralığı DFT metodu ile bulunan değerine göre daha büyük çıkması beklenendir. Bu mutlak ΔE değerleri, A molekülü için 0,1255 a.u (DFT) ve 0,1436 a.u (HF), ve B molekülü için 0,1195 (DFT) ve 0,3476 (HF) olarak hesaplanıldı. Ayrıca B molekülünün dipol momenti A molekülden daha büyük olduğu bu tabloda sunulmuştur.

	A	Molekülü	B Molekülü		
	DFT	HF	DFT	HF	
E _{toplam} (a.u)	-831,2589	-826,1631	-1062,3164	-1055,7114	
E _{HOMO} (a.u)	-0,1725	-0,2491	-0,1778	-0,2609	
E _{LUMO} (a.u)	-0,0471	-0,1056	-0,0583	0,0867	
$\Delta \boldsymbol{E}$ (a.u)	-0,1255	-0,1436	-0,1195	-0,3476	
μ (D)	3,2828	3,6215	5,8686	5,4351	

Tablo 5.14: Gaz fazında belirlenen DFT ve HF yöntemleri ile A ve B moleküllerinin hesaplanmış toplam (E_{toplam}), HOMO (E_{HOMO}) ve LUMO (E_{LUMO}) enerji düzeyleri, enerj band aralığı (ΔE) ve dipol momoenleri (μ).

Şekil 5.10: A molekülünün a) DFT/B3LYP ve b) HF seviyeleri ile hesaplanmış HOMO-LUMO orbitalleri.

Şekil 5.11: B molekülünün a) DFT/B3LYP ve b) HF seviyeleri ile hesaplanmış HOMO-LUMO orbitalleri.

5.6 Moleküler Elektrostatik Potansiyel Yüzey Analizi

Moleküler etkileşmeleri anlayabilmek için, yük dağılımının bilinmesi gerekir. MEPs olarak da bilinen, moleküler elektrostatik potansiyel haritaları, molekülün yük dağılımını üç boyutlu olarak görmemizi sağlar. A ve B moleküllerinin, yük dağılımını anlayabilmek amacıyla B3LYP/6-31G(d) seviyesiyle yapılan hesaplama sonuçları, GaussView moleküler görselleştirme programı kullanılarak üç boyutlu olarak görsel hale getiridi. A ve B molekülleri için elde edilen bu moleküler elektrostatik potansiyel yüzey haritaları Şekil 5.12'de gösterildi.

MEPs haritalarında kırmızı renkli bölgeler elektron yoğunluğunun zengin olduğu atom veya atom grupları bölgelerini (nükleofilik bölgeleri) gösterirken, mavi olan bölgeler elektron yoğunluğu fakir olan atom veya atom grupları bölgelerini (elektrofilik bölgeleri) göstermektedir.

MEPs haritaları, elektrofilik saldırı için en uygun atomik bölgenin A molekülünde 17O atomu ve çevresi olduğunu, diğer taraftan nükleofilik süreç için en uygun bölgenin 29H ve 31H atomlarının olduğunu bölgeyi işaret etmektedir (Şekil 5.12 a).

B molekülünde ise elektrofilik saldırı için en uygun atomik bölgenin,180 ve 15N atomları ve çevresi olduğunu, nükleofilik süreç için ise en uygun bölgenin 35H ve 36H atomlarının olduğu Şekil 5.12 b'de görülmektedir.

Şekil 5.12: a) A Molekülüne, b) B Molekülüne ait DFT/ B3LYP seviyesi ile hesaplanmış MEPs haritası.

6. SONUÇ VE ÖNERİLER

Bu çalışmada, iki yeni mono azo boyar maddeler; (**A Molekülü:** 5-amino-4-[4-(dimetilamino)fenil]diazenil]pirazol-3-ol ve **B Molekülü:** 5-amino-4-[4-(dimetilamino)fenil]diazenil]-2-fenil-pirazol-3-on) sentezlendi ve yapıları ve FT-IR, ¹H-NMR, ¹³C-NMR ve UV-vis gibi spektroskopik yöntemlerle karakterize edildi. İki mono azo boyasının solvatokromik özellikleri, kloroform, asetik asit, metanol, DMF ve DMSO çözücülerindeki görünür soğurma özelliklerine göre değerlendirildi.

Sentezlenen moleküllerin karakterizasyonları için deneysel değerlerin yanı sıra hem DFT hem de HF teorik ab-initio hesaplamalar sonuçları bu tez çalışmasında sergilendi. Moleküllerin geometrileri, 6-31G(d) temel seti dahil olmak üzere hem DFT hem de HF yöntemleri ile optimize edildi. Bağ uzunlukları, bağ açıları ve dihedral açıları gibi yapısal parametreler ve temel titreşim modları belirlen. Tahmin edilen titreşimsel sonuçlar, mevcut deneysel veriler ile karşılaştırıldı. DFT ve HF yöntemlerinden hesaplanan frekansları, deneysel gözlemlerle titreșim karşılaştırıldığında benzer davranışları göstermektedir. Hesaplanan harmonik frekansların değerleri bu ölçülen değerlerinden biraz olsun sapmıştır. Sonuçlar arasındaki farklılığın bu nedeni, harmonik etkilerin ihmali ve kuantum kimyasal yöntemlerin denge anında atomların birbirine uyguladığı kuvvet değerlerini daha büyük çıkarmasına yönelik genel eğilimi olabileceğine bağlanmaktadır. Korelasyon grafiklerinden görüldüğü üzere, DFT ve HF yöntemlerinden hesaplanan teorik frekansların gözlenen verilerle uygun olduğu korelasyon katsayılarının değerinin bire yaklaşmasından anlaşılmaktadır.

Bu çalışmada, sentezlenen mono azo boyaların hidrojen ve karbon atomlarının pozisyonları, deneysel ölçümlerin yanı sıra DFT ve HF yöntemlerine göre hesaplanmış ¹H ve ¹³C NMR kimyasal kaymaları ile belirlendi. Mono azo boyaların UV-Vis dalgalarının soğrulma analizleri farklı çözeltilerde gerçekleştirildi ve çözelti etkisi tartışıldı. Orbital enerjileri, HOMO-LUMO enerji band aralığı, dipol mometleri ve elektrostatik yük dağılımları gibi elektronik özellikler öncü moleküler orbital analizi ile hesaplandı.

Yeni sentezlenen A ve B mono azo boyar molekülleri için gerçekleştirilen hem deneysel hem de teorik araştırma sonuçları, literatürde ilk kez bu çalışmada sunuldu. Teorik ve deneysel veriler birbiriyle karşılaştırılmıştır. Teorik ve deneysel verilerin birbirleriyle iyi bir uyum içinde olduğu görülmektedir.

Bu çalışma; DFT ve HF yöntemlerine dayalı ab-*initio* hesaplamalarının, mono azo boyaların kimyasal maddelerinin yapısal, titreşim ve elektronik özelliklerini incelemek için güçlü araçlar olduğunu göstermektedir.

7. KAYNAKLAR

AL-Adilee, K. J., Abass, A. K., Taher, A. M., "Synthesis of some transition metal complexes with new heterocyclic thiazolyl azo dye and their uses as sensitizers in photo reactions", *Journal of Molecular Structure*, 1108, 378-397, (2016).

Alonso, M. and Finn, E.J., University Physics, Quantum and Statistical Physics, Massachusetts: Addison Wesley, 3-4, (1975).

Alpert, N. L., Keiser, W. E., Szymanski, H. A., IR Theory and Practice of Infrared Spectroscop, New York: Plenum Press, 370, (1964).

Apaydın, F., Magnetik Rezonans, Ankara: Hacettepe Üniversitesi Ders Kitapları, (1991).

Atkins, P. W., Quanta Oxford University Oxford: Clarenden press., 19-35, (1985).

Bahat, M., "Kinazolin Molekülünün Kuvvet Alanının DFT B3LYP/6-31G* Tabanlı SQM Metodu ile Hesabı ve Bazı Hofmann-Tipi Komplekslerin Titreşimsel Spektroskopi ile İncelenmesi", Doktora Tezi, Gazi Üniversitesi Fen Bilimleri Enstitüsü, Ankara, (2000).

Banwell, C. N., Fundamentals of Mol. Spect., 3.ed., London: Mc.Graw Hill, (1983).

Başer, İ. ve İnanıcı, Y., Boyarmadde Kimyası, İstanbul: Marmara Üniversitesi Yayınları, 49-67, (1990).

Becke, A. D., "Density Functional Thermochemistry III. The Role of Exact Exchange", J. Chem. Phys, 98 (7), 5648-5652, (1993).

Beşergil, B., "Enstrümantal Analiz [online]", (15Nisan). http://www.bayar.edu.tr/besergil/

Beşergil, B., "Ultraviyole Ve Görünür (Vısıble) Spektrofotometre [online]", (31.05.18) http://www.bayar.edu.tr/besergil/7_BOLUM_4.pdf

Bishop, D. M., Group Theory and Chemistry, Oxford: Claredon Press., 294p, (1973).

Borbone, F., Carella, A., Ricciotti, L., Tuzi, A., Roviello, A., Barsella, A., "High nonlinear optical response in 4-chlorothiazole-based azo dyes", *Dyes and Pigments*, 88,(3), 290-295, (2011).

Bransden, B. H. and Joachim, C.J., Physics of Atom and Molecules, London: Longman, (1983).

Brasden, B. H., Joachain, C. J., Çeviri: Köksal, F., Gümüş, H., Atom ve Molekül Fiziği, Samsun: Ondokuz Mayıs Üniversitesi, 687, (1999).

Chang, R., Basic Principles of Spectroscopy, New York: Mc Graw-Hill, (1971).

Chen, X., Deng, Q., Lin, S., Du, C., Zhao, S., Hu, Y., Yang, Z., Lyu, Y., Han, J., "A new approach for risk assessment of aggregate dermal exposure to banned azo dyes in textiles", *Regulatory Toxicology and Pharmacology*, 91, 173-178, (2017).

Coelho, F. L., De Ávila Braga, C., Zanotto , G. M., Gil, E. S., Campo, L. F., Gonçalves, P. F. B., Rodembusch, F. S., Santos, F. S. , "Low pH optical sensor based on benzothiazole azo dyes", *Sensors and Actuators B: Chemical*, 259, 514-525, (2018).

Cramer, C. J.; Essentials of Computational Chemistry: Theories and Models, New Jersey: John Wiley & Sons Ltd., (2004).

Dabbagh, H. A., Teimouri, A., Chermahini, A. N., Shahraki, M., "DFT and ab initio study of structure of dyes derived from 2-hydroxy and 2, 4- dihydroxy benzoic acids", *Spectrochim. Acta A: Molecular and Biomolecular Spectroscopy*, 69(2), 449-459, (2008).

Dorsett, H., White, A., Overview of Molecular Modelling and Ab initio Molecular Orbital Methods Suitable for Use with Energetic Materials, Australia: Defence Science and Technology Organisation, 36, (2000). Ebenso, E. E., Alemu, H., Umoren, S.A. and Obot, I.B., "Inhibition of mild steel corrosion in Sulphuric Acid using Alizarin yellow G.G. Dye and Synergistic Iodide Additive", *Int. J. Electrochem. Sci.* 3.1325-1339, (2008).

El-Sonbati, A. Z., Diab, M. A., El-Bindary, A. A., Shoair, A. F., Hussein, M. A., El-Boz, R. A., "Spectroscopic, thermal, catalytic and biological studies of Cu(II) azo dye complexes", *Journal of Molecular Structure*, 1141, 186-203, (2017).

Ersöz, A., Aletli Analiz, Eskişehir: Anadolu Üniversitesi Yayınları, (2010).

Ertuğrul, R., ab-*İnitio* ve DFT Metodlarını Kullanarak Tıpta Önemli Bazı Moleküllerin Yapı ve Titreşimlerinin İncelenmesi,Yüksek Lisans Tezi, Gazi Üniversitesi, Fen Bilimleri Enstitüsü,166, Ankara, (2011).

Foresman, J. B., Frisch, A. E., Exploring Chemistry with Electronic Structure Methods, Pittsburgh: Gaussian Inc, PA, 2757-2762, (1996).

Frisch, M. J. et al., Gaussian 09, Revision A.1, Wallingford CT: Gaussian, Inc., 270-271, (2009).

Frisch, M., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., ... & Cross, J. B., "Gaussian 09, revision A. 02" *Gaussian Inc.*, Wallingford: Gaussian Inc., 270, 271, (2009).

Fukui, K., Science 218, 747-754, (1982).

Gilani, A. G., Taghvaei V., Rufchahi E.M., Mirzaei M., "Photo-physical and structural studies of some synthesized arylazoquinoline dyes", *Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy*, 185, 111-124, (2017).

Gouda, M. A., Fakhr, H., Margret, E., Girges, M., Berghot, M. A., "Synthesis and antitumor evaluation of thiophene based azo dyes incorporating pyrazolone moiety", *Journal of Saudi Chemical Society*, 20(2), 151-157, (2016).

Gregory, P. D., Waring, R. and Hallas, G., The Chemistry and Application of Dyes, London: Plenum Press, 18 -20, (1990). Gümrükçüoğlu, İ. E., ve Kocaokutgen, H., Bazı Azo Boyar Maddelerinin Sentezi, Samsun : OMÜ yayınları, 1-3, (1990).

Gündüz, T., Instrümental Analiz, Ankara: Gazi Kitapevi Tic. Ltd., 1357, (2002).

Hohenberg, P., Kohn, W., "Inhomogeneous electron gas", *Physical Review*, 136(3B), B864, (1964).

Huang, D. D., Pozhidaev, E. P., Chigrinov, V. G., Cheung, H. L., Ho, Y. L., Kwok,
H. S., "Photo-aligned ferroelectric liquid crystal displays based on azo-dye layers", *Displays*, 25(1), 21-29, (2004).

Jamroz, M. H., Vibrational Energy Distribution Analysis: VEDA 4 Program, Warsaw: Spectroscopy and Moleculer Modeling Group, (2004).

Jensen, F., Introduction to Computational Chemistry, 2. Edition, England: John Wiley & Sons Ltd., (2007).

Karabacak Atay, Ç., Kara, Y., Gökalp, M., Kara, İ., Tilki, T., Karcı, F., "Disazo dyes containing pyrazole and indole moieties: Synthesis, characterization, absorption characteristics, theoretical calculations, structural and electronic properties", *J. Mol. Liq.* 215, 647–655, (2016).

Karabacak Atay, Ç., Gökalp, M., Özdemir Kart, S., Tilki, T., "Mono azo dyes derived from 5-nitroanthranilic acid: Synthesis, absorption properties and DFT calculations", *J. Mol. Stuct.*, 1141, 237-244, (2017).

Karabacak Atay, Ç., Ozdemir Kart,S., Gökalp, M.,Tuğrul, Ö., Tilki, T., "Characterization, Absorption Properties Of Newly Synthesized Mono Azo Dyes: Experimental And Theoretical Approach", *Submitted to SCI Journal*, (2018)

Karabacak, Ç., Dilek, O., "Synthesis, solvatochromic properties and theoretical calculation of some novel disazo indole dyes", *J. Mol. Liq.*, 199, 227-236, (2014).

Karaoğlu, B., Kuantum Mekaniğine Giriş, Ankara: Seçkin Yayınevi, 237- 255, (2008).

Khanmohammadi, H., Arab, V., Rezaeian, K., Talei, G.R., Pass, M., Shabani, N., "Diaminomaleonitrile-based azo receptors: Synthesis, DFT studies and their antibacterial activities", *Journal of Molecular Structure*, 1129, 169-178, (2017).

Kiani, S., Zakerhamidi, M. S., Tajalli, H., "Hydrogen bonding intermolecular effect on electro-optical response of doped 6PCH nematic liquid crystal with some azo dyes", *Optical Materials*, 55, 121-129, (2016).

Kirkan, B. and Gup, R. Synthesis of New Azo Dyes and Copper (II) Complexes Derived from Barbituric Acid and 4-Aminobenzoylhydrazone", *Turk. J. Chem.*, 32, 9-17, (2008).

Krishnakumar, V., Xavier, R. J., "Normal coordinate analysis of 2-mercapto and 4, 6-dihydroxy-2-mercapto pyrimidines", *Indian Journal of Pure and Applied Physics*, 41(8), 597-601, (2003).

Lee, C., Yang, W., Parr, R. G., "Development of the Colle-Salvetti correlationenergy formula into a functional of the electron density", *Physical review B*, 37(2), 785, (1988).

Lewars, E. G., Computational Chemistry: Introduction to the Theory and Applications of Molecular and Quantum Mechanics, 3. Edition, Netherlands: Springer, (2016).

Lveine I. N., Quantum Chemistry, Boston : Alloy and Bacon Inc., (1983).

Mahadevan, D., Periandy, S., Karabacak, M., Ramalingam, S., Puviarasan, N., "Spectroscopic (FT-IR, FT-raman and UV–vis) investigation and frontier molecular orbitals analysis on 3-metil-2-nitrophenol using hybrid computational calculations", *Spectrochimica Acta A: Molecular and Biomolecular Spectroscopy*, 86, 139-151, (2012).

Mahmoodi, N. O., Rahimi, S., Nadamani, M. P., "Microwave-assisted synthesis and photochromic properties of new azo-imidazoles", *Dyes and Pigments*, 143, 387-392, (2017).

Mohammadi, A., Khalili, B., Tahavor, M., "Novel push–pull heterocyclic azo disperse dyes containing piperazine moiety: Synthesis, spectral properties, antioxidant activity and dyeing performance on polyester fibers", *Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy*, 150, 799-805, (2015).

Namlı,H.,"NMRspektometresi[online]",(31.05.18)http://w3.balikesir.edu.tr/~hnamli/oya/nmr/hnmr.php

Öztürk, N., "Zeolitler Üzerine Adsorbe Edilen Bazı Polimerlerin ve Fitalizon Metal Bileşiklerinin Kırmızıaltı ve Mikro-Raman Spektroskopileri İle İncelenmesi." Doktora Tezi, Süleyman Demirel Üniversitesi, Fen Bilimleri Enstitüsü, 158, Isparta, (2011).

Pavia, D. L., Lampman, G. M., Introduction to Spectroscopy, USA: Brooks/Cole, 656, (2009).

Perdew, J. P., Burke, K. and Ernzerhof, M., "Generalized Gradient Approximation Made Simple." *Physical Review Letters*, 77-18, 3865-3868, (1996).

Prajongtat, P., Suramitr, S., Nokbin, S., Nakajima, K., Mitsuke, K., Hannongbua, S., "Density functional theory study of adsorption geometries and electronic structures of azo-dye-based molecules on anatase TiO₂ surface for dye-sensitized solar cell applications", *Journal of Molecular Graphics and Modelling*, 76, 551-561, (2017).

Pulay P., "Ab initio calculation of force constants and equilibrium geometries in polyatomic molecules-i. Theory", *Molecular Physics*, 197, 17, (1969).

Pulay, P., Analytical Dervative Methods in Quantum Chemistry, Ab Initio Methods in Quantum Chemistry, edited by K. P. Lawley 11nd ed., New Jersey: John Wiley & Sons Ltd, 118-14, (1987).

Q-Chem Chemical Company Ltd. "Time-Dependent Density Functional Theory (TDDFT) [online]", (31.05.18) <u>https://www.q-chem.com/qchem-website/manual/qchem43_manual/sect-tddft.html</u>

Ramachandran, K. I., Deepa, G., Namboori, K., Computational Chemistry and Molecular Modelling, Principles and Applications, Berlin: Heidelberg Springer-Verlag, 134-142, (2008).

Rao, C., Chemical Application of Infrared Spectroscopy, NewYork: Academic Press mc., (1963).

Robert, T. M., Robert, N. B. and Bhattacharjee, S.K., Organic Chemistry, 6th edition, New Delhi: Pearson Prentice Hall, 1096 -1097, (2011).

Samieh, F., Ahmad, M. T., Hooshang, H. and Hojatollah, K., "A synthesis of some new 4-arylidene-5(4H)-oxoazoloneazo dyes and an evaluation of their solvatochromicbehaviour." *Arkivoc*, 14, 115-123, (2008).

Scott, A. P., Radon, L. "Harmonic Vibrational Frequencies: An Evaluation of Hartree–Fock, Møller–Plesset, Quadratic Configuration Interaction, Density Functional Theory, and Semiempirical Scale Factors", *J. Phys. Chem.*, 100, 41, 16502-16513, (1996).

Seferoglu, Z. A., "Study on tautomericequilibria of new hetarylazo-6-aminouracils", *Arkivoc*, 8, 42-57, (2009).

Sholl, D. S. and Steckel, J.A."Density Functional Theory, A Practical Introduction", New Jersey: John Wiley & Sons, Inc. Hoboken, 15- 217, (2009).

Stuart, B. H., Infrared Spectroscopy: Fundamentals and Applications University of Technology, England : John Wiley & Sons, 223-224, (2004).

Şener, N., Bayrakdar, A., Kart, H. H., Şener, I., "A combined experimental and DFT investigation of disazo dye having pyrazole skeleton", *J. Mol. Struc.*, 1129, 222-230, (2017).

Teimouri, A., Emami, M., Chermahini, A. N., & Dabbagh, H. A., "Spectroscopic, quantum chemical DFT/HF study and synthesis of [2.2. 1] hept-2'-en-2'-amino-N-azatricyclo [3.2. 1.0 2, 4] octane", *Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy*, 71(5), 1749-1755, (2009).

Whiffen , D. H., Spectroscopy , Second Edition, London: Longman, 36-155, (1971).

Woodward, C., Freiser, H., "Sulphonated azo-dyes as extractive metallochromic reagents", *Talanta*, 20(4), 417-420, (1973).

Woodward, L. A., Introduction to the Theory and Molecular Vibration Spectrocopy, Oxford: 252-270, (1972).

Yıldırım, F., Demirçalı, A., Karcı, F., Bayrakdar, A., Tunay Taşlı, P., Kart, H. H., "New coumarin-based disperse disazo dyes: Synthesis, spectroscopic properties and theoretical calculations", *J. Mol. Liq.*, 223, 557–565, (2016).

Young, D. C., Computational Chemistry A Practical Guide for Applying Techniques to Real-World Problems (Electronics), New York: John Wiley and Sons, 381, (2001).

Yurdakul, Ş., Spektroskopi ve Grup Teorisinin Temelleri, Ankara: Gazi Kitabevi, 53-75, (2010).

Zollinger, H., Color Chemistry. Syntheses, Properties: Application of Organic Dyes and Pigments, Third revised edition, Zurich: Wiley-VCH, (2003).

8. ÖZGEÇMİŞ

Adı Soyadı	:	Özlem TUĞRUL
Doğum Yeri ve Tarihi	:	DENİZLİ,1976
Lisans Üniversite	:	Dokuz Eylül Üniversitesi
Elektronik posta	:	o.tugrul@hotmail.com
İletişim Adresi	:	Bağbaşı Mah. Yunus Emre Cad. Bizim Evler
Sitesi NO:18/B DENİZLİ		

Konferans listesi :

Karabacak Atay, Ç., Ozdemir Kart,S., Gökalp, M.,Tuğrul, Ö.,Tilki, T., "Characterization, Absorption Properties Of Newly Synthesized Mono Azo Dyes: Experimental And Theoretical Approach", *Submitted to SCI Journal*, (2018).