T.C. PAMUKKALE ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ FİZİK ANABİLİM DALI

BAZI FLAVONOİD MOLEKÜLLERİNİN METAL İYONLARI İLE ETKİLEŞİMİNİN TEORİK OLARAK İNCELENMESİ

YÜKSEK LİSANS TEZİ

FATİH YALÇIN

DENİZLİ, AĞUSTOS - 2019

T.C. PAMUKKALE ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ FİZİK ANABİLİM DALI

BAZI FLAVONOİD MOLEKÜLLERİNİN METAL İYONLARI İLE ETKİLEŞİMİNİN TEORİK OLARAK İNCELENMESİ

YÜKSEK LİSANS TEZİ

FATİH YALÇIN

DENİZLİ, AĞUSTOS - 2019

KABUL VE ONAY SAYFASI

FATİH YALÇIN tarafından hazırlanan "**BAZI FLAVONOİD MOLEKÜLLERİNİN METAL İYONLARI İLE ETKİLEŞİMİNİN TEORİK OLARAK İNCELENMESİ**" adlı tez çalışmasının savunma sınavı 02.08.2019 tarihinde yapılmış olup aşağıda verilen jüri tarafından oy birliği / oy çokluğu ile Pamukkale Üniversitesi Fen Bilimleri Enstitüsü Fizik Anabilim DalıYüksek Lisans Tezi olarak kabul edilmiştir.

Jüri Üyeleri

İmza

Danışman Dr. Öğr. Ü. Aslı ÖZTÜRK KİRAZ

Üye Prof. Dr. İzzet KARA Pamukkale Üniversitesi

Üye Doç. Dr. Cemal PARLAK Ege Üniversitesi

Pamukkale Üniversitesi Fen Bilimleri Enstitüsü Yönetim Kurulu'nun **04/09/20/9** arih ve .35./.38... sayılı kararıyla onaylanmıştır.

Prof. Dr. Uğur YÜCEL

Fen Bilimleri Enstitüsü Müdürü

Bu tezin tasarımı, hazırlanması, yürütülmesi, araştırmalarının yapılması ve bulgularının analizlerinde bilimsel etiğe ve akademik kurallara özenle riayet edildiğini; bu çalışmanın doğrudan birincil ürünü olmayan bulguların, verilerin ve materyallerin bilimsel etiğe uygun olarak kaynak gösterildiğini ve alıntı yapılan çalışmalara atfedildiğine beyan ederim.

FATİH YALÇIN

P. John

ÖZET

BAZI FLAVONOİD MOLEKÜLLERİNİN METAL İYONLARI İLE ETKİLEŞİMİNİN TEORİK OLARAK İNCELENMESİ YÜKSEK LİSANS TEZİ FATİH YALÇIN PAMUKKALE ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ FİZİK ANABİLİM DALI

(TEZ DANIŞMANI:DR. ÖĞR. Ü. ASLI ÖZTÜRK KİRAZ)

DENİZLİ, AĞUSTOS - 2019

Bu tez çalışmasında bazı flavonoidlerin (Kuersetin, Luteolin, Mirisetin) metallerle (Fe⁺², Co⁺², Cu⁺²) oluşturduğu etkileşimleri teorik olarak incelendi. Flavonoidlerle ilgili literatürde birçok çalışma yapılmış ve metallerle etkileşimleri incelenmiştir. Bu çalışmada metal iyonları olarak Fe⁺², Co⁺², Cu⁺² seçilmesinin sebebi flavonoidlerin bu metal iyonları ile oluşturduğu bileşiklerin antioksidan özellik göstermesidir.

Hesaplamalarda modelleme programı olarak GaussView 6.0 programı ve Gaussian 16 paket programı kullanılmıştır. Moleküllerin yapısal değerleri yoğunluk fonksiyonel teorisi / Becke-3-Lee-Yang-Parr (DFT / B3LYP) kullanılarak 6-31++G(d,p) baz seti ile taban durumunda hesaplandı.

Moleküllerin geometrik parametreleri (bağ uzunlukları, bağ açıları), HOMO-LUMO (en yüksek dolu moleküler orbital-en düşük boş moleküler orbital) enerjileri, HOMO-LUMO enerji değerlerinden yola çıkarak elektronik yapı parametreleri (elektronegatiflik, iyonizasyon potansiyel, elektron ilgisi, kimyasal sertlik, kimyasal yumuşaklık), elektrostatik potansiyel yüzeyler (ESP) ve natural bağ orbital (NBO) analizleri hesaplanarak sonuçları değerlendirildi.

ANAHTAR KELİMELER: FLAVONOİD, DFT, NBO, ESP, KUERSETİN, LUTEOLIN, MİRİSETİN

ABSTRACT

A THEORETICAL INVESTIGATION OF THE INTERACTIONS BETWEEN SOME FLAVONOID MOLECULES AND METAL IONS MSC THESIS FATIH YALÇIN PAMUKKALE UNIVERSITY INSTITUTE OF SCIENCE PHYSICS

(SUPERVISOR:DR. ÖĞR. Ü. ASLI ÖZTÜRK KİRAZ)

DENİZLİ, AUGUST 2019

In this study, the interactions of some flavonoids (quercetin, luteolin, myricetin) with metal ions (Fe^{+2} , Co^{+2} , Cu^{+2}) were theoritically examined. Many studies have been performed by the flavonoids and their interactions with metal ions in the literature. In this search, Fe^{+2} , Co^{+2} and Cu^{+2} were chosen as the metal ions because of the antioxidant properties of the compounds formed by flavonoids with these metal ions.

Geometric and electronic properties were examined by using density functional theory (DFT) / Becke-3-Lee Yang-Parr (B3LYP) method with 6-31++G(d,p) basis set. Gaussian 16 package and GaussView 6.0 modelling programs were used in the calculations.

The geometric parameters (bond lengths, bond angles), highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energies, electronic parameters (electronegativity, iyonization potential, electron affinity, chemical hardness and chemical softness) based on HOMO-LUMO energies, electrostatic potential surfaces (ESP) and natural bond orbital (NBO) analysis were calculated and results were evaluated.

KEYWORDS: FLAVONOİD, DFT, NBO, ESP, QUERCETIN, LUTEOLIN, MYRICETIN,

İÇİNDEKİLER

ÖZETi	i
ABSTRACTii	ĺ
İCİNDEKİLERiii	í
şékil listesiiv	,
TABLO LİSTESİ v	,
KISALTMALAR ve SEMBOLLER LİSTESİvi	ĺ
ÖNSÖZviii	í
1. GİRİŞ1	
1.1 Kuersetin (Quercetin)	•
1.2 Luteolin	,
1.3 Mirisetin (Myricetin)	;)
2. GENEL BİLGİLER7	1
2.1 Kuantum Mekaniksel Hesaplama Yöntemleri7	1
2.1.1 Schrödinger Denklemi	1
2.1.2 Yoğunluk Fonksiyoneli Teorisi)
2.1.2.1 Kohn- Sham Denklemleri10)
2.1.2.2 Değiş Tokuş Korelasyon Fonksiyoneli12	
2.2 Gaussian 16 Paket Program1)
3. HESAPLAMA YÖNTEMLERİ15	j
3.1 Geometri Optimizasyonu15	Ì
3.2 Moleküler Orbitaller (MO) ve HOMO (En Yüksek Dolu Orbital(Highest	
Occupied Molecular Orbital)) – LUMO (En Düşük Boş Orbital (Lowest	
Unoccupied Molecular Orbital))16	,
3.3 Doğal Bağ Orbital Analizi (Natural Bond Orbital Analysis (NBO Analizi))	
19	
3.4 Elektrostatik Yüzey Potansiyeli (ESP)20)
4. BULGULAR	1
4.1 KUERSETİN22	,
4.1.1 Kuersetin Fe ⁺² Şelasyonu	/
4.1.2 Kuersetin Co^{+2} Şelasyonu	
4.1.3 Kuersetin Cu^{+2} Şelasyonu	•
4.2 LUTEOLİN	í
4.2.1 Luteolin Fe^{+2} Şelasyonu	,
4.2.2 Luteolin Co^{+2} Şelasyonu 106)
4.2.3 Luteolin Cu^{+2} Şelasyonu)
4.3 MIRİSETİN	•
4.3.1 Mirisetin Fe ⁺² Şelasyonu)
4.3.2 Mirisetin Co^{+2} Şelasyonu	1
4.3.3 Mirisetin Cu^{+2} Şelasyonu	'
5. SONUÇLAR VE ÖNERİLER192	i
6. KAYNAKLAR194	ŀ
7 07CFCMIS 108	1

ŞEKİL LİSTESİ

Şekil 1.1: Flavonoidlerin en genel yapısal görünümü	1
Şekil 1.2: Flavonoidler ile metal iyonlarının etkileşimi	2
Şekil 1.3: Farklı sınıftaki flavonoidlerin yapısal görünümleri	4
Şekil 1.4: Kuersetin moleküler yapısı	4
Şekil 1.5: Luteolin moleküler yapısı	6
Şekil 1.6: Mirisetin molekülünün kimyasal yapısı	6
Şekil 4.7: Kuersetin molekülünün geometrik yapısı	22
Şekil 4.8: Kuersetin molekülünün HOMO-LUMO gösterimi	26
Şekil 4.9: Kuersetin molekülünün ESP gösterimi	27
Şekil 4.10: Kuersetin Fe ⁺² molekülünün geometrik yapısı	37
Şekil 4.11: Kuersetin Fe ⁺² molekülünün HOMO-LUMO gösterimi	40
Şekil 4.12: Kuersetin Fe ⁺² molekülünün ESP gösterimi	41
Şekil 4.13: Kuersetin Co ⁺² molekülünün geometrik yapısı	51
Şekil 4.14: Kuersetin Co ⁺² molekülünün HOMO-LUMO gösterimi	54
Şekil 4.15: Kuersetin Co ⁺² molekülünün ESP gösterimi	55
Şekil 4.16: Kuersetin Cu ⁺² molekülünün geometrik yapısı	64
Şekil 4.17: Kuersetin Cu ⁺² molekülünün HOMO-LUMO gösterimi	67
Şekil 4.18: Kuersetin Cu ⁺² molekülünün ESP gösterimi	68
Şekil 4.19: Luteolin molekülünün geometrik yapısı	78
Şekil 4.20: Luteolin molekülünün HOMO-LUMO gösterimi	81
Şekil 4.21: Luteolin molekülünün ESP gösterimi	82
Şekil 4.22: Luteolin Fe ⁺² molekülünün geometrik yapısı	92
Şekil 4.23: Luteolin Fe ⁺² molekülünün HOMO-LUMO gösterimi	95
Şekil 4.24: Luteolin Fe ⁺² molekülünün ESP gösterimi	96
Şekil 4.25: Luteolin Co ⁺² molekülünün geometrik yapısı	106
Şekil 4.26: Luteolin Co ⁺² molekülünün HOMO-LUMO gösterimi	109
Şekil 4.27: Luteolin Co ⁺² molekülünün ESP gösterimi	110
Şekil 4.28: Luteolin Cu ⁺² molekülünün geometrik yapısı	120
Şekil 4.29: Luteolin Cu ⁺² molekülünün HOMO-LUMO gösterimi	123
Şekil 4.30: Luteolin Cu ⁺² molekülünün ESP gösterimi	124
Şekil 4.31: Mirisetin molekülünün geometrik yapısı	134
Şekil 4.32: Mirisetin molekülünün HOMO-LUMO gösterimi	137
Şekil 4.33: Mirisetin molekülünün ESP gösterimi	138
Şekil 4.34: Mirisetin Fe ⁺² molekülünün geometrik yapısı	148
Şekil 4.35: Mirisetin Fe ⁺² molekülünün HOMO-LUMO gösterimi	151
Şekil 4.36: Mirisetin Fe ⁺² molekülünün ESP gösterimi	152
Şekil 4.37: Mirisetin Co ⁺² molekülünün geometrik yapısı	163
Şekil 4.38: Mirisetin Co ⁺² molekülünün HOMO-LUMO gösterimi	166
Şekil 4.39: Mirisetin_Co ⁺² molekülünün ESP gösterimi	167
Şekil 4.40: Mirisetin Cu ⁺² molekülünün geometrik yapısı	177
Şekil 4.41: Mirisetin Cu ⁺² molekülünün HOMO-LÜMO gösterimi	180
Şekil 4.42: Mirisetin Cu ⁺² molekülünün ESP gösterimi	181

TABLO LÍSTESÍ

Tablo 1: Kuersetin Bağ Uzunlukları	23
Tablo 2: Kuersetin Bağ Açıları	23
Tablo 3: Kuersetin molekülü elektronik yapı parametreleri	25
Tablo 4: Kuersetin Molekülü NBO Analizleri	29
Tablo 5: Kuersetin Fe ⁺² Molekülü Bağ Uzunlukları	38
Tablo 6: Kuersetin Fe ⁺² Molekülü Bağ Açıları	38
Tablo 7: Kuersetin Fe ⁺² molekülü elektronik yapı parametreleri	39
Tablo 8: Kuersetin Fe ⁺² molekülü NBO Analizi	43
Tablo 9: Kuersetin Co ⁺² Molekülü Bağ Uzunlukları	52
Tablo 10: Kuersetin Co ⁺² Molekülü Bağ Açıları	52
Tablo 11: Kuersetin Co ⁺² molekülü elektronik yapı parametreleri	53
Tablo 12: Kuersetin Co ⁺² molekülü NBO Analizi	56
Tablo 13: Kuersetin Cu ⁺² Molekülü Bağ Uzunlukları	65
Tablo 14: Kuersetin Cu ⁺² Molekülü Bağ Açıları	65
Tablo 15: Kuersetin Cu ⁺² molekülü elektronik yapı parametreleri	66
Tablo 16: Kuersetin Cu ⁺² molekülü NBO Analizi	70
Tablo 17: Luteolin Bağ Uzunlukları	78
Tablo 18: Luteolin Bağ Açıları	79
Tablo 19: Luteolin molekülü elektronik yapı parametreleri	80
Tablo 20: Luteolin NBO Analizleri	84
Tablo 21: Luteolin Fe ⁺² Bağ Uzunlukları	93
Tablo 22: Luteolin Fe ⁺² Bağ Açıları	93
Tablo 23: Luteolin Fe ⁺² molekülü elektronik yapı parametreleri	94
Tablo 24: Luteolin Fe ⁺² NBO Analizleri	98
Tablo 25: Luteolin Co ⁺² Bağ Uzunlukları	. 107
Tablo 26: Luteolin Co ⁺² Bağ Açıları	. 107
Tablo 27: Luteolin Co^{+2} molekülü elektronik yapı parametreleri	108
Tablo 28: Luteolin Co ⁺² NBO Analizleri	112
Tablo 29: Luteolin Cu^{+2} Bağ Uzunlukları	121
Tablo 30: Luteolin Cu^{+2} Bağ Açıları	121
Tablo 31: Luteolin Cu^{+2} molekülü elektronik yapı parametreleri	122
Tablo 32: Luteolín Cu^{+2} NBO Analizleri	126
Tablo 33: Mirisetin Bağ Uzunlukları	135
Tablo 34: Mirisetin Bağ Açıları	135
Tablo 35: Mirisetin molekülü elektronik yapı parametreleri	. 136
Tablo 36: Mirisetin NBO Analizleri	. 140
Tablo 3/: Mirisetin Fe ⁺² Bag Uzunluklari	149
Tablo 38: Mirisetin Fe ⁺² Bag Açıları	149
Tablo 39: Mirisetin Fe ⁺² molekulu elektronik yapi parametreleri	150
Tablo 40: Mirisetin Fe ⁺² NBO Analizieri	154
Table 41: Mirisetin Co ⁺² Bag Uzunluklari	164
1 abio 42: Mirisetin Co ^{-2} Bag Açıları	. 164
1 abio 45: Mirisetin Co ⁺² molekulu elektronik yapi parametreleri	. 165
Table 45: Ministin Cu ⁺² Dex Umunhulut	.109
1 adio 45: Mirisetin Cu ²² Bag Uzunluklari	

Tablo 46: Mirisetin Cu ⁺² Bağ Açıları	178
Tablo 47: Mirisetin Cu ⁺² molekülü elektronik yapı parametreleri	
Tablo 48: Mirisetin Cu ⁺² NBO Analizi	

KISALTMALAR ve SEMBOLLER LİSTESİ

Ab Initio	: Temel ilkelere dayanan kuantum kimyasal hesaplamalar							
B3LYP	: Lee-Yang-Parr korelasyon enerjili 3 parametreli Becke karma							
	metodu							
BD	: İki merkez arasındaki bağ							
CR	: Çekirdeğin varlığı							
DFT	: Yoğunluk fonksiyonel teorisi (Density functional theory)							
ESP	: Elektrostatik Potansiyel							
GGA	: Generalized Gradient Approximation							
HOMO	: Highest occupied molecular orbitals							
LUMO	: Lowest unoccupied molecular orbitals							
LDA	: Local-density approximations							
LP	: Valens serbest elektron çifti							
NBO	: Doğal bağ orbitali							
RY	: Ekstra-valans Rydberg							
A	: Elektron İlgisi							
С	: Karbon atomu							
Со	: Kobalt							
Cu	: Bakır							
ΔE	: Molekülün iki enerji seviyesi arasındaki fark							
En	: Enerji özdeğerleri							
\mathbf{E}^2	: Kararlılık Enerjisi							
Fe	: Demir							
Η	: Hidrojen atomu							
H	: Hamiltonyen operatörü							
Ι	: İyonlaşma Potansiyeli							
μ	: Dipol moment							
$\mathbf{n}(\vec{r})$: Elekton yoğunluğu							
η	: Kimyasal Sertlik							
∇	: Nabla operatörü							
0	: Oksijen atomu							
ψ	: Dalga fonksiyonu							
ψ_e	: Elektronik dalga fonksiyonu							
S	: Kimyasal Yumuşaklık							
t	: Zaman							
Te	: Elektronların kinetik enerjisi							
Tn	: Çekirdeğin kinetik enerjisi							
Ve-e	: Elektronlar arası etkileşim potansiyeli							
Ve-n	: Elektron çekirdek arası etkileşim potansiyeli							
V_H	: Hartree potansiyeli							
Vn-n	: Çekirdekler arası etkileşim potansiyeli							
χ	: Elektronegatiflik							
χ _n	: Nükleer dalga fonksiyonu							

ÖNSÖZ

Bu tez çalışmam süresince bana danışmanlık eden, ilgi ve desteğini esirgemeyen ve tezin tamamlanması için beni teşvik eden değerli hocam Dr. Öğr. Ü. Aslı ÖZTÜRK KİRAZ'a sonsuz saygı ve teşekkürlerimi sunarım.

Tez dönemim süresince yorumlarından ve önerilerinden faydalandığım saygıdeğer hocam Sn. Prof. Dr. İzzet KARA'ya, Doç. Dr. Cemal PARLAK'a ve bu tez çalışması için bize ilham veren Prof. Dr. Ramazan MAMMADOV'a teşekkür ederim.

Her zaman yanımda olan, maddi ve manevi desteklerini benden hiç esirgemeyen babama, anneme ve çok değerli geniş aileme sonsuz teşekkür ederim.

Kendisini kardeşim gibi gördüğüm değerli arkadaşım Serkan KAYA'ya bana vermiş olduğu desteklerden dolayı sonsuz teşekkür ederim.

Bu süre zarfında hayatıma giren, beni hep destekleyen, motive eden ve sabır gösteren, sonunu evlilikle taçlandırdığımız canım eşim Fatma EKİN YALÇIN'a sonsuz teşekkür eder yazdığım bu tezi kendisine bir teşekkür vesilesi olarak ithaf ederim.

1. GİRİŞ

Flavonoidler çoğu bitkilerde bulunan düşük moleküler ağırlıklı polifenolik bileşiklerdir. Özellikle bitkilerdeki yeşil, turuncu, kırmızı pigmentlerden sorumlu yapılar olarak tanımlanırlar.

En belirgin özellikleri antioksidan ve iltihap karşıtı etkisi olan bu besin maddeleri ayrıca sebze ve meyvelere canlı renk vermesiyle bilinir. Yüksek antioksidan etkisi dolayısı ile kanser ve kalp hastalıklarına karşı yüksek etkili koruyucu olarak kabul edilirler. Sinir hücrelerini oksidasyondan ve serbest radikallerin zararlarından korudukları için vücudumuz açısından oldukça önemli bileşiklerdir.

Serbest radikaller, elektronlarından birini kaybetmiş ve bir oksijen atomu içeren moleküllerdir. Serbest radikaller, DNA'ya saldırarak, DNA'da fonksiyon bozukluklarına, kanserlere, atardamarların sertleşmesine, kalp krizine ve felçlere yol açabilirler.

Flavonoidler reaktif serbest radikalleri tutarak ve flavonoidlerin metallerle şelasyonu oksidatif hasarı önler (Dernek ve diğ., 2004).

Şekil 1.2: Flavonoidler ile metal iyonlarının etkileşimi.

Flavonoidler ve diğer bitki fenoliklerinin süperoksit, alkoksil, peroksil ve nitrik oksit gibi radikalleri temizleme, demir ve bakır şelasyonu, µ-tokoferol rejenerasyonu foksiyonlarına ek olarak; vazodilatatör, immünstimülan, antiallerjik, östrojenik, antiviral etkileri de söz konusudur.

Flavonoidler metalleri çeşitli oranlarda olmak üzere metal:flavonoid şeklinde bağlayabilirler. Bazı flavonoidlerin antioksidan özellikleri demir ve bakır gibi metallerin şelasyonu sayesinde ortaya çıkabilir. Metal iyonlarının hareketleri Fenton reaksiyonunda kritik kofaktörlerdir, böylece onların flavonoidlerle şelasyonu, bu tip reaksiyonlar için metalleri kullanılamaz yapar (Cheng ve Breen 2000).

Flavonoidlerin antioksidan ve metallerle redoks aktiviteye sahip olmaları flavonoidlerin insan sağlığı açısından önemli bir yere getirmektedir. Flavonoidler antioksidan özelliklerinin yanında prooksidan özelliklere de sahiptirler (Cao ve diğ. 1997). Flavonoidlerin prooksidan aktiviteleri molekül yapılarındaki hidroksil gruplarının sayısıyla orantılı oldukları düşünülmektedir. Hanasaki ve çalışma arkadaşları mono ve di-hidroksi flavonoidlerin belirlenebilir prooksidan aktivite göstermemelerine karşın özellikle B- halkasında bulunan pek çok sayıdaki hidroksil yapılarının fenton sistemi içinde hidroksil radikal oluşumunu artırmaktadır. Hidroksil (OH) gruplarının glikozitler ve metil moleküllerine dönüşmeleri, flavonoidlerin prooksidan davranışlarını azaltıcı etki gösterir (Hanasaki ve diğ. 1994). H₂O₂ ve Fe⁺² arasındaki reaksiyon sonucunda hidroksil radikalleri oluşur. Oluşan bu serbest radikaller ise çevrelerindeki biyomoleküllerin oksidasyonunu sağlar. Bu tip reaksiyonlara fenton reaksiyonları denir. Canlı metabolizmalarında yüksek reaktivitede hidroksil radikallerinin oluşması, fenton reaksiyonlarının önemli etkenlerindendir. Fenton reaksiyonlarında hidroksil radikal ürünleri, ortamdaki demir (II) ve bakır (II) iyonlarının konsantrasyonlarıyla doğrudan ilişkilidir (Heim ve diğ. 2002).

Bilindiği gibi reaktif oksijen türleri (ROS) singlet oksijen, süperoksit radikali, hidrojen peroksit, hidroksil radikali ve nitrik oksit stabil olmayan ve ekstrem bir şekilde reaktif olan bileşiklerdir. Oksidatif stresin sebep olduğu reaktif oksijen türleri de çeşitli kardiyovasküler hastalıkların gelişimi ve ilerlemesinde ortaya çıkan patolojik göstergeler olarak kabul edilmektedir. Flavonoidlerin biyoaktivitelerini ve araştırmalarla ortaya çıkan etki mekanizmalarını daha ayrıntılı bir şekilde ele alabiliriz:

1- Flavonoidler öncelikle ROS oluşumunu engelleyerek antioksidan etkilerini gösterebilirler,

2- ROS 'i direkt olarak uzaklaştırabilirler,

3- Dolaylı (Indirekt) olarak hücrelerin antioksidan enzimlerini arttırma ve lipofilik antioksidanları koruma yoluyla fonksiyon yaparlar.

ROS oluşumunun engellenmesi için başlıca 3 önemli fonksiyonları vardır:

1-Metal şelasyonu yaparak redoks reaksiyonlarının önlenmesi

2-Ksantin oksidaz enzim inhibisyonu

3-NADPH oksidaz enzim inhibisyonu

Çeşitli fizyopatolojik koşullardaki doku hasarında, enflamasyonda, koroner kalp hastalıklarında hatta antikanserojen aktiviteleri araştıran çeşitli çalışmalarla flavonoidlerin organizmadaki koruyucu rollerinin daha ayrıntılı bir şekilde ele alınması önemlidir (Birman 2012).

Flavonoidler, C (γ-pyranon) halkasındaki oksidasyon derecesine bağlı olarak flavon, flavonol, flavonon gibi çeşitli alt kategorilere ayrılırlar (Kasprzak ve diğ. 2015). Bu tez çalışmasında flavon grubundan olan luteolin, flavonol grubundan olan kuersetin (quercetin) ve mirisetin (myricetin) yapıları üzerinde durulacak ve bu yapıların metal iyonları (Fe⁺², Cu⁺² ve Co⁺²) ile olan etkileşimleri teorik olarak incelenecektir.

Şekil 1.3: Farklı sınıftaki flavonoidlerin yapısal görünümleri.

1.1 Kuersetin (Quercetin)

Kuersetin meyve ve sebzelerde bulunan hem mental hem fiziksel yönden performans artıran ve enfeksiyon riskini azaltan eşsiz biyolojik özelliklere sahip flavonol grubuna dahil bir flavonoidtir (Davis ve diğ. 2009).

Şekil 1.4: Kuersetin moleküler yapısı

Bu özellikler, anti-kanserojen, anti-enflamatuar, antiviral, antioksidan ve psikostimulan aktiviteleri, ayrıca lipit peroksidasyonunu, trombosit agregasyonunu ve kılcal geçirgenliği önleme kabiliyetini içeren genel sağlık ve hastalık direncine yönelik potansiyel faydaların temelini oluşturmaktadır (Aguirre ve diğ. 2011).

Kuersetin, deneysel çalışmalarda en aktif flavonoid olarak bulunmuştur. Tıbbi bitkiler aktivitelerinin büyük bir kısmını yüksek kuersetin içeriklerine borçludur.

Flavanoidlerin antioksidan etkileri kuersetinin antioksidan aktivitesinden kaynaklanmaktadır. Kuersetin serbest oksijen radikallerini temizler. Kuersetin, kimyasal yapı olarak rutin ve hesperidine benzeyen ve bitkilerde yaygın bulunan bir flavonoidtir. Özellikle kırmızı üzüm, soğan, elma, greyfurt, çay önemli kuersetin kaynaklarıdır.

1.2 Luteolin

Flavon grubuna ait olan luteolin X-ray yapısı yapılan çalışmalar sonucunda elde edilmiştir (Cox ve diğ., 2003). Genellikle kereviz, yeşilbiber gibi bitkilerde görülmektedir. Antioksidan özelliğinin yanı sıra pıhtılaşmayı önleyici, tümör oluşumunu engelleyen ve anti bakteriyel özelliklere de sahip olan bir flavonoidtir (Lv ve diğ., 2009). Luteolin tozu tümörlerde kan damarlarının büyümesini önleyerek kanserojen hücrelerdeki hücre döngülerini durdurur. Antioksidan özelliğe sahip olmasından dolayı reaktif oksijenin inhibitasyonunu sağlayarak proteinlerin ve DNA'ların zarar görmesini engeller. Hayvanlar üzerinde yapılan deneylerde de luteolinin bakterilerden dolayı oluşan iltihaplanmayı önlediği tespit edilmiştir. Luteolin, güneşten gelen zararlı ışınlara karşı da cildi koruyarak cilt yaşlanması ve kırışık oluşumu önlemesiyle de koruyucu bir etkiye sahip olduğu kanıtlanmıştır. Kalp hücrelerinin ölümünü engelleyici özellik göstermesinden dolayı da kalple ilgili hastalıkların tedavisinde kullanılabileceği öngörülmektedir. Luteolinin kainik asitin sebep olduğu beyin hasarını azalttığı ve beyni nörolojik bozukluklardan koruduğu tespit edilmiştir. Yine antioksidan özelliğinden dolayı oksidatif hasarı düşürerek selenitten meydana gelen katarakt oluşumu önleyen bir özelliğe sahip olduğu yapılan deneysel çalışmalarla kanıtlanmıştır (Xi'an Natural Field Bio-Technique 2017, Shaanxi NHK Technology 2016). Şekil 1.5'te luteolinin yapısı gösterilmektedir.

Şekil 1.5: Luteolin moleküler yapısı

1.3 Mirisetin (Myricetin)

Bir diğer flavonol grubuna dahil olan mirisetin daha çok meyve, sebze ve çay gibi bitkilerde sıklıkla görülen bir flavonoiddir. Yapılan birçok araştırmada mirisetinin antiinflamatuar ve antikarsinojik etkileri, antioksidan potansiyeli, terapatik uygulamaları ve trombosit pıhtılaşmasını önlemedeki etkileri üzerinde çalışılmıştır. Tıp alanındaki uygulamaları ise mirisetinin antioksidan özelliğini ortaya koymaktadır (Ong ve Khoo 1997).

Şekil 1.6: Mirisetin molekülünün kimyasal yapısı.

2. GENEL BİLGİLER

2.1 Kuantum Mekaniksel Hesaplama Yöntemleri

Kuantum mekaniksel hesaplama yöntemleri son zamanlarda yaygın hale gelmesiyle birlikte birçok teorik çalışmalar yapılmaya başlanmıştır. Bu yöntemler deneysel çalışmaların güç olduğu durumlarda temel durumu belirlemede kolaylıklar sağlamakta ve deneysel çalışmalara öncülük etmektedir. Klasik mekanik kanunlarını kullanarak hesaplama yapan yöntemler bir sistemin elektronik özelliklerini hesaplamakta yetersiz kaldığı için kuantum mekaniksel yöntemlerin kullanılması kaçınılmaz hale gelmiştir. Kuantum mekaniğinde bir yapının davranışı belirlemek için bu sistemi temsil eden dalga fonksiyonu belirlemek ve bu dalga fonksiyonu için Schrödinger denkleminin çözülmesi gerekmektedir. Schrödinger denkleminin tam çözümü mümkün değildir bu yüzden denklemin çözülmesinde çeşitli sayısal hesaplama yöntemleri kullanılarak yaklaşık çözümler elde edilir. Elektronik yapı yöntemleri iki şekilde incelenebilir. Bunlar yarı deneysel yöntemler ve ab initio yöntemler olarak adlandırılır. Yarı deneysel yöntemler çok fazla deneysel veriye ihtiyaç duymaktadır. Bunun aksine ab initio yöntemlerde moleküler hesaplama için Planck sabiti, elektronun kütlesi ve ışık hızı gibi temel fiziksel büyüklüklerin kullanılması yeterli olmaktadır (Jensen 1999).

Ab initio metotları olan Hartree-Fock ve Yoğunluk Fonksiyonel Teorisi yöntemleri moleküllerin geometrik yapılarının tayin edilmesi, elektronik özelliklerinin hesaplanması için en uygun yöntemlerdir. Bu yöntemlerden Yoğunluk Fonksiyonel Teorisi ile ilgili bilgilere alt başlıklar halinde değinilecektir. Bununla birlikte bu tez çalışmasında kullanılan Gaussian 16 programı ile ilgili bilgilere de değinilecektir.

2.1.1 Schrödinger Denklemi

Kuantum mekaniğinde bir sistemin kararlı enerji durumlarının ve sistemi temsil eden dalga fonksiyonlarını belirleyebilmek için Schrödinger denkleminin çözülmesi gerekmektedir. Schrödinger denkleminin (zamandan bağımsız, rölativistik olmayan) en basit formu

$$H\psi = E\psi \tag{2.1}$$

şeklinde verilir. Aslında bu bir özdeğer denklemidir ve bu denklemde H hamiltonyen operatörü, ψ hamiltonyenin çözüm seti veya özdurumlarıdır. Bu çözümleri her biri, ψ_n , ilişkili bir özdeğere sahiptir (E_n), özdeğerler reel bir sayıdır ve bu özdeğer denklemini sağlar. Hamiltonyenin detaylı tanımı, Schrödinger denklemiyle tanımlanan fiziksel sisteme bağlıdır. Eğer atomlardan oluşan bir sistemde Schrödinger denklemini yazmak istiyorsak moleküler hamiltonyeni belirlememiz gerekir. Bu durumda moleküler hamiltonyen ifadesini, elektronların kinetik enerjisi, çekirdeğin kinetik enerjisi, elektron-elektron itme enerjisi, çekirdek-çekirdek çekim enerjisi ve elektronçekirdek çekim enerjisi ifadesi oluşturur ve aşağıda ki gibi formülize edilebilir.

$$H = T_e + T_n + V_{e-e} + V_{n-n} + V_{e-n}$$
(2.2)

Genel anlamda Schrödinger denkleminin çözümü için şu yaklaşımlar yapılır:

Rölativistik terimlerin ihmali: Çok büyük çekirdek yüküne sahip ağır atomlardaki elektronların hızı, ışık hızına yaklaşmadığı sürece, Schrödinger denkleminde de rölativistik etkiler ihmal edilir.

Orbital yaklaşım: Elektronlar uzayın belirli bölgelerinde sınırlandırılır.

Born Oppenheimere Yaklaşımı: Elektronların ve çekirdeğin hareketinin birbirinden ayrılması (Karayel, 2010).

Born- Oppenheimer yaklaşımında sistemin hareketi, elektronik ve nükleer hareket olmak üzere ikiye ayrılmıştır. Schrödinger denklemi çözülürken elektronların ve çekirdeğin hareketi ayrı ayrı değerlendirilir. Sistemi temsil eden toplam dalga fonksiyonu elektronik ve nükleer dalga fonksiyonlarının çarpımı şeklinde verilir.

$$\psi_{\rm T} = \chi_{\rm n} \psi_{\rm e} \tag{2.3}$$

Burada χ_n nükleer dalga fonksiyonu, ψ_e ise elektronik dalga fonksiyonudur ve elektronik Schrödinger denkleminin çözümünden elde edilir. Elektronun kütlesinin çekirdeğin kütlesinden çok daha küçük olmasından dolayı (bir elektron ve bir protonun kütlesi arasında yaklaşık 1836 kat kütle farkı vardır), çekirdeğin hareketi elektronların yanında ihmal edilebilir ve toplam dalga fonksiyonu yalnızca elektronik dalga fonksiyonuyla verilebilir. Burada, elektronların çekirdeği hareketsiz olarak gördüğü kabul edilir ve elektronik hareket sabit olduğu kabul edilen çekirdek alanına göre belirler. Bu durumda, elektronik Schrödinger denklemi ve elektronik Hamiltonyen;

$$H_{el}\psi_{el}(r,R) = E_{el}\psi_{el}(r,R)$$
(2.4)

$$H_{el} = T_e + V_{e-N} + V_{e-e}$$

$$(2.5)$$

$$H_{el} = -\frac{1}{2} \sum_{i=1}^{n} \nabla_i^2 \sum_{i=1}^{n} \sum_{j=1}^{N} \frac{z_j}{|R_j - r_i|} + \sum_i \sum_{k>i} \frac{1}{|r_k - r_i|}$$
(2.6)

ile verilir. Burada birinci terim elektronların kinetik enerjisini, iki terim çekirdek ile elektronlar arasındaki etkileşim potansiyel enerjisi, üçüncü terim ise elektronlar arasındaki etkileşim potansiyel enerjisini ifade eder. Sonuçta toplam enerji, elektronik enerjiye çekirdekler arasındaki etkileşim potansiyel enerjisi eklenerek;

$$\mathbf{E}_{\mathrm{T}} = \mathbf{E}_{\mathrm{el}} + \mathbf{E}_{\mathrm{n}} \tag{2.7}$$

$$E_n = \sum_{i < j}^{N} \frac{Z_i Z_j}{R_j - R_i}$$
(2.8)

bulunur.

2.1.2 Yoğunluk Fonksiyoneli Teorisi

Yoğunluk Fonksiyonel teorisi, Kohn ve Hohenberg tarafından ispatlanmış olan iki temel teorem ve 1960'ların ortalarında türettikleri bir dizi denklem üzerine inşa edilmiştir. Hohenberg ve Kohn tarafından ispatlanan ilk teorem şudur: Schrödinger denkleminde elde edilen taban-durum enerjisi elektron yoğunluğunun tek bir fonksiyonelidir.

Bu teoremi anlamak için öncelikle fonksiyonel kavramının ne anlama geldiği bilinmelidir. Fonksiyonel kavramı, fonksiyon kavramı ile çok yakından ilişkilidir. Örneğin; $f(x)=x^2+1$, tek değişkenli bir fonksiyondur. Fonksiyonel buna benzer, ancak o bir fonksiyonu alır ve fonksiyondan bir sayı tanımlar. Yani, fonksiyon bir sayıdan başka bir sayı üretirken, fonksiyon bir sayıdan başka bir sayı üretirken, fonksiyonel bir fonksiyondan başka bir sayı üretirken, fonksiyonel bir fonksiyondan başka bir sayı üretir. Örneğin;

$$F[f] = \int_{-1}^{1} f(x) dx$$
 (2.9)

(2.16) denkleminde F[f], f(x) fonksiyonunun bir fonksiyonelidir.

Şimdi Hohenberg ve Kohn'un sonucuna dönecek olursak, $n(\vec{r})$ elektron yoğunluğu olmak üzere, taban-durum enerjisi E, $E[n(\vec{r})]$ şeklinde yazılır ve bu ifadeden dolayı yoğunluk fonksiyonel teorisi olarak bilinir.

Birinci Hohenberg - Kohn teoremi, Schrödinger denklemini çözmek için kullanılabilecek bir elektron yoğunluğu fonksiyonelinin mevcut olduğunu söyler, ancak fonksiyonelin gerçekte ne olduğu hakkında bir şey söylemez.İkinci Hohenberg-Kohn teoremi bu fonksiyonelin önemli bir özelliğini tanımlar: Toplam fonksiyonelin enerjisini minimize eden elektron yoğunludur.

Hohenberg- Kohn teoremi ile tarif edilen fonksiyoneli yazmanın yararlı bir yolu, $\psi_i(\vec{r})$ tek-elektron dalga fonksiyonlarını kullanmaktadır. Bu fonksiyonlar n(\vec{r}) elektron yoğunluğunu toplu bir şekilde tanımlarlar. Bu halde, enerji fonksiyoneli;

$$E[(\psi_i)] = E_{\text{bilinen}}[(\psi_i)] + E_{\text{XC}}[(\psi_i)]$$
(2.10)

Burada;

$$E_{\text{bilinen}}[(\psi_i)] = -\frac{\hbar^2}{m} \sum_i \int \psi_i^* \nabla^2 \psi_i d^3 r + \int V(\vec{r}) n(\vec{r}) d^3 r$$

$$+\frac{e^2}{2}\iint \frac{n(\vec{r})n(\vec{r}')}{|\vec{r}-\vec{r}'|} d^3r d^3r' + E_{iyon} \qquad (2.11)$$

Eşitliğin sağ tarafında ki ifadeler sırasıyla, elektronların kinetik enerjileri, elektronlar ve çekirdekler arasında ki Couloub etkileşimleri, elektron çiftleri arasındaki Couloumb etkileşmeleri ve çekirdek çiftleri arasındaki Couloub etkileşmeleridir (Hohenberg ve Kohn, 1964).

2.1.2.1 Kohn- Sham Denklemleri

Kohn ve Sham doğru elektron yoğunluğunu bulma işinin, her biri sadece tek bir elektron içeren denklemlerin bir araya gelmesiyle oluşan denklem setinin çözümünü içerecek şekilde ifade edileceğini göstermişlerdir. Yani, elektron yoğunluğunun bulunması için tek elektron denklemleriyle oluşturulan denklem setinin çözülmesi gerekir.

Kohn-Sham denklemleri;

$$\left[-\frac{\hbar^2}{2m}\nabla^2 + V(\vec{r}) + V_H(\vec{r}) + V_{XC}(\vec{r})\right]\psi_i(\vec{r}) = \varepsilon_i\psi_i(\vec{r})$$
(2.12)

formuna sahiptir. Bu denklem yüzeysel olarak Schrödinger denklemine benzer. Tam Schrödinger denkleminde görülen toplamlar Kohn-Sham denkleminde yoktur. Bunun nedeni; Kohn-Sham denkleminin çözümlerinin, sadece üç uzaysal değişkene bağlı olan tek elektron dalga fonksiyonları, $\psi_i(\vec{r})$ olmasıdır. Kohn- Sham denkleminin sol tarafında V(\vec{r}), $V_H(\vec{r})$ ve $V_{XC}(\vec{r})$ olmak üzere üç tane potansiyel terimi vardır. V(\vec{r}) potansiyeli, elektron ve atomik çekirdekler topluluğu arasındaki etkileşmeyi tanımlar. İkinci potansiyel terimi $V_H(\vec{r})$ Hartree potansiyelidir. Bunu bölüm 2.1.2'deki (2.14) denkleminde yazmıştık. Bu potansiyel, Kohn- Sham denklemlerinden biriyle dikkate alınan elektron ve problemdeki bütün elektronlar tarafından tanımlanan toplam elektron yoğunluğu arasındaki Coulomb itmesini tanımlar. Hartree potansiyeli, toplam elektron yoğunluğunun bir parçası olduğundan, kendisiyle etkileşme hatası olarak adlandırılan bir etli içerir. Böylece V_H'nin bir kısmı, elektron ve kendisi arasında bir Coulomb etkileşimi barındırır. Bu kendisiyle etkileşme hatası fiziksel degildir ve düzeltmesi, Kohn-Sham denklemindeki en son potansiyel olan V_{XC} içerisinde yapılır. V_{XC}, tek elektron denklemlerine yapılan değiş-tokuş ve korelasyon katkılarını tanımlar. Biçimsel olarak değiş-tokuş korelasyon enerjisinin fonksiyonel türevi olarak tanımlanabilir.

$$V_{XC}(\vec{r}) = \frac{\delta E_{XC}(\vec{r})}{\delta n(\vec{r})}$$
(2.13)

Bir fonksiyonelin türevinin matematiksel tanımı, bir fonksiyonun türev tanımından çok daha zordur, ancak kavramsal olarak sıradan türevmiş gibi düşünülebilir.

Kohn-Sham denklemini çözmek için Hartree potansiyelini tanımlamamış ve Hartree potansiyelini tanımlamamız ve Hartree potansiyelini tanımlamak için de elektron yoğunluğunu bilmemiz gerekir Elektron yoğunluğunu bulabilmek için tek elektron dalga fonksiyonlarını bilmeliyiz ve onları bilmek bilmek içinde Kohn-Sham denklemlerini çözmeliyiz. Bu döngüyü kırmak için problem genelde aşağıdaki algoritmada özetlendiği gibi iteratif bir yolla ele alınır.

Bir başlangıç, deneme elektron yoğunluğu tanımlanır, $n(\vec{r})$.

Tek parçacık dalga fonksiyonlarını, $\psi_i(\vec{r})$ bulmak için bu deneme elektron yoğunluğu kullanılarak tanımlanan Kohn-Sham denklemi çözülür.

Adım 2'den elde edilen Kohn-Sham tek parçacık dalga fonksiyonları ile tanımlanan elektron yoğunluğu hesaplanır.

$$n_{KS}(\vec{r}) = 2\sum \psi_i^*(\vec{r})\psi_i(\vec{r})$$
(2.14)

Hesaplanan elektron yoğunluğu, $n_{KS}(\vec{r})$, Kohn-Sham denklemlerini çözmek için kullanılan elektron yoğunluğu $n(\vec{r})$, ile karşılaştırılır. Eğer her iki yoğunluk aynı ise, o zaman bu taban-durum elektron yoğunluğudur ve toplam enerjiyi hesaplamak için kullanılabilir.

Eğer iki yoğunluk birbirinden farklı ise, o zaman deneme elektron yoğunluğu bir şekilde güncellenmelidir. Bu işlem yapıldığında, süreç ikinci adımdan tekrar başlar ve her iki yoğunluk aynı alana kadar iteratif olarak devam eder (Kohn ve Sham, 1965).

2.1.2.2 Değiş Tokuş Korelasyon Fonksiyoneli

Gerçekte, Hohenberg-Kohn teoremiyle varlığı garanti edilen değiş-tokuş korelasyon fonksiyonunun doğru şekli bilinmiyor. Fakat bu fonksiyonelin tam olarak türetilebileceği bir durum vardır:düzgün elektron gazı. Bu durumda, elektron yoğunluğu uzaydaki bütün noktalarda sabittir. Kimyasal bağları tanımlayan ve genel olarak materyalleri ilginç yapan şey elektron yoğunluğundaki değişimler olduğundan, bu durum herhangi bir gerçek malzemesi, sınırlı değere sahip olacak şekilde ortaya çıkabilir.Yani, düzgün elektron gazı, Kohn-Sham denklemlerini aktif bir şekilde kullanabilmek için pratik bir yol sağlar. Bunu yapabilmek için her bir konumdaki değiş tokuş korelasyon potansiyelini, belirli bir konum için, o konumda gözlenen elektron yoğunluğuna sahip düzgün elektron gazının bilinen değiş tokuş korelasyon potansiyeli olarak ayarlarız:

$$V_{\rm XC}(\vec{r}) = V_{\rm XC}^{\rm elektron \, gaz1}[n(\vec{r})]$$
(2.15)

Bu yaklaşım, yaklaşık değiş tokuş korelasyon fonksiyonelini tanımlamak amacıyla, sadece yerel yoğunluğu kullanılır ve bu nedenle yerel yoğunluk yaklaşımı (local density opproximation) LDA olarak adlandırılır.

2.2 Gaussian 16 Paket Program

Gaussian 16, genel anlamda kuantum kimyasal hesaplama yöntemlerini kullanarak bir molekül veya kristalin elektronik, yapısal, manyetik v.b. fiziksel ve kimyasal özelliklerini belirlemekte yararlanılan bilgisayar programıdır. Program 1970'li yıllardan bu yana pek çok araştırmacı tarafından kullanılmaktadır (Frisch, M. J., 2016). Gaussian, çok çeşitli şartlar altında bulunan ve geniş bir yelpaze oluşturan moleküler sistemleri modellemek için tasarlanmıştır. Bu program yardımıyla hesaplanabilen nicelikleri şu şekilde sıralayabiliriz:

- Tek nokta enerjisi
- Moleküllerin optimum geometrik parametreleri(bağ uzunluğu, bağ açısı, dihedral açılar v.s.)
- Titreşim frekansları
- Anharmonik titreşim analizi
- Infrared ve raman spektrumları ve IR yoğunlukları
- Termokimyasal parametreleri
- İyonlaşma potansiyelleri ve elektron afiniteleri
- Atomik yük dağılımı ve dipol momentleri
- Moleküler orbitaller (HOMO, LUMO v.s.)
- NMR perdeleme ve manyetik duygunluk
- Kutuplanabilirlik (polarizability) ve aşırı kutuplanabilirlik (hyperpolarizability)
- Elektrostatik potansiyeller

- Spin-spin çiftlenim sabitleri
- Optik rotasyonlar
- Reaksiyon mekenizması
- g tensörü ve aşırı ince yapı spektrum tensörleri
- Titreşim-dönme çiftlenimi
- Bağ enerjileri ve reaksiyon enerjileri

Bu nicelikler taban durumu ve ya uyarılmış durumdaki sistemler için hesaplanabilir. Gaussian 16 programı yardımıyla bu özellikleri belirlenirken çeşitli hesaplama yöntemleri kullanır. Bu hesaplama yöntemlerinden başlıcaları şunlardır:

- Moleküler Mekanik (MM) yöntemler
- Yarı deneysel hesaplama yöntemleri
- Öz uyumlu alan metodu (Hartree-Fock, RHF, UHF, open-shell Hartree-Fock)
- Moller-Plesset pertürbasyon teorisi (MP2, MP4 gibi)
- Yoğunluk Fonksiyonel Teorisi (B3LYP hibrid fonksiyoneli, GGA, LDA gibi)

3. HESAPLAMA YÖNTEMLERİ

3.1 Geometri Optimizasyonu

Molekül enerjisinin ve diğer özelliklerinin teorik olarak hesaplanmasında, molekülün geometrisinin önemi büyüktür. Molekülün geometrisinin en iyi şekilde tasarlanması, geometrik parametrelerinin en doğru şekilde bulunması hesaplanacak diğer niceliklerin doğruluğunu etkiler. Molekül içindeki elektronların koordinatları, atomların dizilişlerine, atomların dizilişleri de molekül geometrisine bağlıdır. Molekülün geometrisindeki en ufak bir değişiklikler bile molekülün enerjisini ve buna bağlı olarak diğer fiziksel kimyasal özelliklerini değiştirir.

Matemetiksel olarak optimizasyon, bir gerçel fonksiyonu minimize ya da maksimize etmek amacı ile gerçek ya da tamsayı değerlerini tanımlı bir aralıkta seçip fonksiyona yerleştirerek sistematik olarak bir problemi incelemek ya da çözmek olarak tanımlanabilir.

Geometri optimizasyonunda amaç potansiyel enerji yüzeyindeki minimumları belirlemektir. Geometri optimizasyonu yapılırken ilk önce bir başlangıç geometrisi belirlenir. Daha sonra bu başlangıç geometrisine karşılık gelen enerji hesabı yapılır. Hesaplanan bu enerji potansiyel enerji yüzeyinde bir noktaya karşılık gelir. Sonra enerjinin artış hızının minimum olduğu yönde potansiyel enerji yüzeyinde gidilecek yönelimi belirlemek için enerji gradyenti hesabı yapılır. Hesaplanan enerji gradyentinin büyüklüğüne bağlı olarak geometri değiştirilir. Bu işleme

$$\frac{\partial \mathbf{E}}{\partial \mathbf{R}_{i}} = \mathbf{0} \qquad \mathbf{i} = \mathbf{1}, \mathbf{2}, \mathbf{3}, \dots, \mathbf{3N} - \mathbf{6}$$
(3.1)

enerji gradyentini sıfır buluncaya kadar devam edilir. Gradyentin sıfır olduğu nokta molekülün kararlı durumlarından birine karşılık gelir. Optimizasyon sonucunda geldiğimiz nokta moleküle ait kararlı durumu temsil eden minimumlar olabileceği gibi, ara ürünleri temsil eden semer noktalar da olabilir. Bu ikisini ayırt edebilmek için harmonik titreşim frekanslarının analizi yapılmalıdır. Molekülün kararlı durumlarında yani potansiyel enerji yüzeylerinin minimum noktalarına karşılık gelen durumlarda bütün frekanslar reel sayılar iken, semer noktalara karşılık gelen durumlarda bir tane imajiner frekans vardır (Ballantyne, 1991).

Ayrıca geometri optimizasyonunda en sık kullanılan üç yöntem:

- Basamaklı İniş (Steepest Descent)
- Eşlenik Gradyan (Conjugte Gradient)
- Newton-Raphson yöntemleridir.

Hesaplamaların büyük bir kısmının yapıldığı Gaussian 16 programında bu üç optimizasyon yöntemi de kullanılmaktadır.

3.2 Moleküler Orbitaller (MO) ve HOMO (En Yüksek Dolu Orbital(Highest Occupied Molecular Orbital)) – LUMO (En Düşük Boş Orbital (Lowest Unoccupied Molecular Orbital))

Elektronların atom çekirdeği etrafındaki yörüngelerde (belirli enerji seviyelerinde) bulunma olasılığının en fazla olduğu hacimsel bölgelere atomik orbitaller denir. Atomik orbitallerin karışması molekül orbital teorisinin temelini oluşturup bu ancak uygun enerji ve simetri koşulları altında gerçekleşir.

Moleküler orbital (MO) teorisi, fizik ve kimyada moleküler özellikleri açıklamak için kullanılan en yaygın yöntemlerden birisidir. Bu teoriye göre moleküler orbitallerin, atomik orbitallerin çizgisel bileşiminden meydana geldiği ve atomik orbitallerin özelliklerini yitirdikleri varsayılır. Moleküler orbitaller dalga fonksiyonlarıyla tanımlanır.

Moleküllerin kuantum mekaniksel hesaplamalarında moleküler orbitaller, atomik orbitallerin lineer birleşimlerinden oluşturulmaktadır. Bu yaklaşım LCAO (linear combination of atomic orbitals) yaklaşımı olarak bilinir.

$$\psi_{i} = \sum_{\mu=1}^{n} C_{\mu i} \varphi_{\mu}$$
(3.2)

Burada ψ_i , i. moleküler orbital ϕ_{μ} μ . atomik orbital, $C_{\mu i}$ ise lineer birleşim katsayılarıdır (Szabo ve Ostlund, 1996).

HOMO (highest occupied molecular orbitals) moleküler orbitallerin elektronlar tarafından doldurulan en üst seviyesidir.

LUMO (lowest unoccupied molecular orbitals) ise moleküler orbitallerin elektronlar tarafından doldurulmayan en alt seviyesidir.

Moleküler orbitaller bir moleküldeki elektronların bulunma olasılığının daha fazla olduğu bölgelerdir (Günay ve diğ, 2011).

Moleküllerin kimyasal kararlılığını hesaplamak adına HOMO ve LUMO enerji değerleri önemli bir yer teşkil etmektedir. HOMO-LUMO enerji farkının büyük olması o molekülün ne kadar kararlı bir yapıda olduğunun göstergesidir. HOMO-LUMO enerji farkı birbirine ne kadar yakınsa etkileşim fazla olacağından tepkime olması daha kolaydır ve bu da molekülün tam olarak kararlı olmadığını ve tepkimeye kolayca girebileceğini göstermektedir. HOMO-LUMO enerjileri bize molekül ile ilgili birçok elektronik özelliğin hesaplanması adına kolaylık sağlar. Bu değerlerden yola çıkarak; gaz fazında molekülden bir elektronu uzaklaştırmak için gerekli olan minimum enerji olan iyonlaşma potansiyelini (I= - E_{HOMO}), gaz fazındaki moleküle bir elektron eklendiği zaman yükselen enerji miktarı olarak tanımlanan elektron ilgisini (A= -E_{LUMO}), moleküldeki bir atomun elektronları çekme gücünü ifade eden elektronegatiflik değerini ($\chi = (I + A)/2$) ve molekül içerisindeki yük transferinin engellenmesinin bir ölçüsü olan kimyasal yumuşaklık ($\sigma=1/2\eta$) ile kimyasal sertlik $(\eta = (I-A)/2)$ kavramlarını hesaplayabiliriz (Pearson, 1989). Kimyasal sertlik değeri yüksek olan moleküllerin molekül içi yük transferi azdır ve hiç gerçekleşmemektedir (Pearson, 1986). İyonizasyon potansiyeli gaz fazında molekülden bir elektronu uzaklaştırmak için gerekli olan minimum enerjidir. Elektron ilgisi, gaz fazında moleküle bir elektron eklendiği zaman yükselen enerji miktarı olarak tanımlanır. Elektronegatiflik bir moleküldeki bir atomun elektronları çekme gücünü ifade etmektedir.

Sonuç olarak; yüksek enerjili bir HOMO'ya sahip bir bileşikle düşük enerjili bir LUMO'ya sahip diğer bir bileşik arasındaki etkileşim özellikle çok kolay gerçekleşecektir. Moleküller arasındaki kimyasal reaksiyonların açıklanmasında daha çok molekülün sınır orbitalleri kullanılır. Sınır orbitallerden kasıt; en yüksek enerjili dolu molekül orbitali (HOMO) ve en düşük enerjili boş molekül orbitali (LUMO)'dur. Kimyasal reaksiyonların çoğu elektron alınarak veya verilerek gerçekleştiğine göre, sınır orbitaller molekülün kimyasal davranışlarına doğrudan etki eder. Alınacak elektronun yerleşeceği yer olan en düşük enerjili boş molekül orbitali (LUMO)'nin enerjisi ne kadar düşükse elektronun alınması ve molekülün bünyesinde barındırılması o kadar kolaydır. Benze düşünce ile elektron verilirken en yüksek enerjili dolu molekül orbitalinden (HOMO) verileceğine göre, bu orbitalin enerjisi ne kadar yüksek ise elektron verme yatkınlığı da o kadar fazladır. Bir molekül başka bir molekülle reaksiyona girerse ya kendi HOMO'su ve diğer molekülün LUMO'su veya kendi LUMO'su ve diğer molekülün HOMO'su etkileşim gösterecektir. Kendi kendisi ile reaksiyona girerek dimerleşme ve polimerleşme yapacaksa kendi HOMO'su ve kendi LUMO'su etkileşecektir. HOMO-LUMO enerji farkı ne kadar küçükse reaksiyon o kadar kolay olacaktır. HOMO-LUMO enerjilerine bakarak moleküller aşağıdaki gibi gruplandırılabilir (Erdem, 2007).

- 1- Yüksek LUMO- Düşük HOMO;
 - a) Termodinamik açıdan kararlı ve dayanaklıdır.
 - b) Moleküller kendi kendileri ile reaksiyon vermezler, dimerleşme ve polimerleşme gerçekleşmez.
 - c) Doymuş hidrokarbonlar, florokarbonlar bu sınıfa gire.
- 2- Düşük LUMO Düşük HOMO;
 - a) Termodinamik açıdan kararlı ve dayanıklıdır.
 - b) Kimyasal olarak Lewis asidi gibi davranırlar (elektrofilik özellik taşırlar).
 - c) LUMO ne kadar düşükse reaktiflik o kadar artar. Boş moleküler orbitalin enerjisi düşük olduğu için elektron fazlalığı olan başka bir molekül HOMO elektronlarını bu LUMO'ya kolayca aktarabilir.
- 3- Yüksek LUMO Yüksek HOMO;
 - a) Termodinamik açıdan kararlı ve dayanıklıdırlar.
 - b) Kimyasal olarak Lewis bazı olarak davranırlar (nükleofilik özellik taşırlar).

- c) HOMO ne kadar yüksekse reaktiflik o kadar artar. HOMO'sundaki elektronları reaksiyona girdiği diğer molekülün LUMO'suna aktarır.
- 4- Düşük LUMO Yüksek HOMO;
 - a) Termodinamik açıdan kararlı olarak olabilirler.
 - b) Kimyasal olarak kendi kendilerine reaksiyona girerler, dimerleşme, polimerleşme yaparlar.

3.3 Doğal Bağ Orbital Analizi (Natural Bond Orbital Analysis (NBO Analizi))

Doğal bağ orbital (Natural Bond Orbital-NBO) analizi, bağlar arasında meydana gelen elektron transferlerinin gösterimi için kullanılır. Lewis yapısındaki yerleşik orbitaller kuvvetli etkileşebilirler. Bu analiz moleküler yapılardaki sistemlerde bağlanma, yük transferleri ve konjuge etkileşimlerin belirlenmesinde kullanılan bir metottur. NBO'lar çeşitli sınıflara ayrılmıştır ve bunlar CR (çekirdeğin varlığı), RY (ekstra-valans Rydberg), LP (serbest elektron çifti), BD (iki merkez arasndaki bağ) ve Lewis yapıda olmayan orbitallerin gösterimi de bu kısaltmaların yanına asteriks eklenmesiyle gösterilir. Böylece sınıf LP1, N2 nitrojen 2 (N2) bir serbest elektron çiftini tanımlar ve BD* (1) C1-H4, C1-H4 antibağ (σ^* C1-H4) bir valans elektron çiftini tanımlar. BD (1), BD (2) ve BD (3) gibi sınıf numaraları parantezde aynı atomlar arasındaki çoklu bağlar ayırt edilir ve benzer şekilde LP veya RY sınıfları çoklu elektron çiftleri veya Rydberg orbitallerin her biri ayırt edilir. Doğal hibrit orbitaller (NHO) bağ hibritleri arasındaki açısal sapmaları ve çekirdekler arası çizginin direkt olarak görülmesinde önemli bağ eğimlerin durumuna bakılır. Tüm mümkün alıcı çiftler için, verici-alıcı kararlılık enerji değerleri bu eşitlik numartör ve deraminatör de Fock matris elemanları dahil olur. Uygun etkileşimlerin molekül içi ve moleküller arası tipler için bitişik bağ atomik orbitaller ve delokalizasyon etkileri için araştırmalar NBO kullanılarak yapılır (Glendening ve diğ., 1980). NBO analizi moleküler sistemde molekül içi ve moleküller arası bağlanma ve yük transferi ya da konjuge etkileşimler çalışmak için etkili bir metottur (Snehalatha ve diğ., 2009). E2 değeri elektron alıcı ve elektron vericileri arasındaki etkileşimin daha şiddetli olduğunu gösterir. İşgal edilmiş Lewis-tipi NBO orbitalleri ve işgal edilmemiş Lewisolmayan orbitalleri arasındaki elektron yoğunluğunun delokalizasyonu, kararlı bir alıcı-verici etkileşimine karşılık gelir (Schwenke, 1985). Moleküler bir sistemde bağ orbitalleri veya ortaklaşmamış elektron çifti verici (donor) olarak davranırken boş veya dolu olan bağ orbitalleri, ortaklaşmamış elektron çiftleri ve anti-bağ orbitalleri ise alıcı (acceptor) olarak davranırlar. Böylece bağların kuvvetli veya zayıf hale gelmesi bu etkileşimlerin sonucunda meydana gelir (Reed, A.E. ve diğ., 1988).

3.4 Elektrostatik Yüzey Potansiyeli (ESP)

Elektrostatik potansiyel haritaları, elektrostatik potansiyel enerji haritaları ya da moleküler elektriksel potansiyel yüzeyler olarak da bilinir ve üç boyutlu moleküllerin yük dağılımı gösterir. Bu harita bize bir molekülün değişik yükteki bölgelerini görmemizi sağlar. Moleküldeki yük dağılımının bilinmesi, moleküllerin birbiri ile nasıl etkileşim gösterdiğini tanımlamada kullanılabilir.

Organik kimyada elektrostatik potansiyel haritaları, kompleks moleküllerin davranışlarını tahmin etmede çok önemlidir.

Elektrostatik potansiyel haritalarını oluşturmak için elde etmemiz gereken ilk veri elektrostatik potansiyel enerjidir. Gelişmiş bir bilgisayar programı, molekülün çekirdeğinden itibaren istenen bir mesafedeki elektrostatik potansiyel enerjiyi hesaplar. Elektrostatik potansiyel enerji esasen, çekirdeğin, elektronları ve yakın yüklerin belirli bir pozisyondaki kuvvetinin bir ölçüsüdür.

Bir molekülün yük dağılımını doğru bir şekilde analiz etmek için çok büyük miktarda ESP değeri hesaplanmalıdır. Bu verileri iletmenin en iyi yolu, elektrostatik potansiyel bir haritada olduğu gibi görsel olarak da göstermektir. Bir bilgisayar programı daha sonra hesaplanan verileri Schrödinger denkleminden türetilen molekülün elektron yoğunluk modeline uygular. Elektrostatik potansiyel enerji verilerinin yorumlanmasını kolaylaştırmak için, elektrostatik potansiyel enerji değerlerinin değişen yoğunluklarını göstermek için en düşük elektrostatik potansiyel enerji değeri olarak kırmızı ve en yüksek olarak mavi olan bir renk tayfı kullanılır. Moleküler elektrostatik potansiyel haritaları ayrıca bir molekülün yük dağılımı hakkında bilgi de gösterir. Elektrostatik potansiyel haritaları, çekirdeğin özellikleri ve elektrostatik potansiyel enerjinin doğası nedeniyle bir molekülün yük dağılımı hakkında bilgi iletir. Basit olması için, pozitif yüklü bir test şarjını, bir atomun küresel yüzeyinde hareket ettirmeyi düşünün. Pozitif yüklü çekirdek, radyal olarak sabit bir elektrik alanı yayar. Ortalama elektrostatik potansiyel enerjiden daha yüksek bir bölge, daha güçlü bir pozitif yük veya daha zayıf bir negatif şarj olduğunu gösterir. Çekirdeklerin pozitif yükünün tutarlılığı göz önüne alındığında, yüksek potansiyel enerji değeri, negatif yüklerin olmadığını gösterir; bu, bu bölgede daha az elektron olduğu anlamına gelir. Bu nedenle, yüksek bir elektrostatik potansiyel, elektronların nispi yokluğunu ve düşük bir elektrostatik potansiyel, bir elektron bolluğunu gösterir.

Elektrostatik potansiyel bir haritayı analiz ederken göz önünde bulundurulması gereken en önemli şey yük dağılımıdır. Elektronların nispi dağılımları, bu haritalardan bilmeniz gereken her şeyi çıkarmanıza izin verecektir. Kırmızı potansiyeli düşük olan alanlar, bol miktarda elektron ile karakterize edilir. Yüksek potansiyeli olan mavi alanlar elektronların nispi yokluğu ile karakterize edilir.

Elektrostatik potansiyel haritaları, moleküllerin kimyasal bağının yapısını belirlemek için de kullanılabilir. Kırmızı veya mavi olmayan bölgeler için birçok potansiyel enerji vardır. Bu, elektronegativite farkının çok büyük olmadığını gösterir. Elektronegatiflik farkı büyük olan bir molekülde, yük çok polarizedir ve molekülün farklı bölgelerinde elektron yoğunluğunda önemli farklılıklar vardır. Bu büyük elektronegatiflik farkı neredeyse tamamen kırmızı ve neredeyse tamamen mavi olan bölgelere yol açar. Ara potansiyelin daha büyük bölgeleri, sarı ve yeşil ve daha küçük veya hiç aşırı potansiyel bulunmayan bölgeler, kırmızı ve mavi, daha küçük bir elektronegativite farkının kilit göstergeleridir. Elektronegativite farkı kimyasal bir bağın yapısında önemli bir belirleyicidir (Libretexts, 2019).

4. BULGULAR

Bu tez çalışmasında bazı flavonoidlerin (Kuersetin, Luteolin, Mirisetin) metallerle (Fe⁺², Co⁺², Cu⁺²) oluşturduğu bileşikler teorik olarak incelendi. Hesaplamalarda modelleme programı olarak GausView 6.0 ve Gaussian 16 paket programları kullanılmıştır. Moleküllerin yapısal değerleri yoğunluk fonksiyonel teorisi / Becke-3-Lee-Yang-Parr (DFT / B3LYP) kullanılarak 6-31++G(d,p) baz seti ile taban durumunda hesaplandı. Moleküllerin geometrik parametreleri (bağ uzunlukları, bağ açıları), HOMO-LUMO (en yüksek dolu moleküler orbital-en düşük boş moleküler orbital) enerjileri, HOMO-LUMO enerji değerlerinden yola çıkarak elektronik yapı parametreleri (elektronegatiflik, iyonizasyon potansiyel, elektron ilgisi, kimyasal sertlik, kimyasal yumuşaklık), elektrostatik potansiyel yüzeyler (ESP) ve DFT/B3LYP/6-31G(d,p) baz seti kullanılarak natural bağ orbital (NBO) analizleri hesaplanarak sonuçlar ve değerlendirmeler alt başlıklar halinde bu bölümde verildi.

Şekil 4.7: Kuersetin molekülünün geometrik yapısı

Şekil 4.7'de kuersetin molekülünün atom numaraları belirlenmiş bir şekilde optimize edilmiş hali gösterilmiştir. Şekilden de görüleceği üzere kuersetin molekülü 32 atomdan oluşmaktadır.

Molekülün bağ uzunluğu ve bağ açıları gibi optimize edilmiş yapısal parametreleri sırasıyla Tablo 1 ve Tablo 2'de verilmiştir. Kuersetin molekülü 24 bağ uzunluğu ve 36 bağ açısı ile tanımlanmıştır. Bağ uzunlukları incelendiğinde elde edilen sonuçların deneysel verilerle uyumlu olduğu görülmektedir. C-O bağ uzunlukları incelendiğinde C1-O28=1,43Å, C15-O30=1,43Å, C8=O21=1,26Å bağlarının deneysel sonuçlarla (Huheey, 1958), (Darwent, 1970), (Benson, 1965) eşit veya yakın değerlerde olduğu görülmektedir. (Deneysel sonuçlar: C-O=1,43Å, C=O=1,20Å, C-C=1,54Å, C=C=1,34Å)

Tablo 1: Kuersetin Bağ Uzunlukları

C1-O28	1,430	C4-C8	1,440	C11-C12	1,464	C15-O30 1,430
C1-C2	1,395	C5-C6	1,394	C11-O20	1,371	C17-C19 1,406
C1-C6	1,400	C5-O22	1,345	C12-C13	1,410	C19-O24 1,359
C2-C3	1,395	C8-O21	1,263	C12-C14	1,413	
C3-O20	1,363	C8-C10	1,447	C13-C15	1,392	
C3-C4	1,407	C10-C11	1,374	C14-C17	1,386	
C4-C5	1,424	C10-O23	1,361	C15-C19	1,394	

Tablo 2: Kuersetin Bağ Açıları

C2-C1-C6	122,25	C6-C5-O22	120,06	C11-C12-C14	121,51
C2-C1-O28	118,89	C1-C6-C5	119,62	C13-C12-C14	118,37
C6-C1-O28	118,86	C4-C8-C10	117,05	C12-C13-C15	120,99
C1-C2-C3	117,84	C4-C8-O21	124,15	C12-C14-C17	120,17
C2-C3-C4	121,71	C10-C8-O21	118,80	C13-C15-C19	120,34
C2-C3-O20	117,67	C8-C10-C11	121,69	C13-C15-O30	120,97
C4-C3-O20	120,62	C8-C10-O23	114,85	C19-C15-O30	118,69
C3-C4-C5	119,15	C11-C10-O23	123,47	C14-C17-C19	121,07
C3-C4-C8	118,82	C10-C11-C12	128,61	C15-C19-C17	119,05
C5-C4-C8	122,03	C10-C11-O20	118,90	C15-C19-O24	120,07
C4-C5-C6	119,43	C12-C11-O20	112,50	C17-C19-O24	120,87
C4-C5-O22	120,51	C11-C12-C13	120,12	C3-O20-C11	122,92

Moleküler orbitaller (HOMO-LUMO) ve enerjileri, molekülü tanımak için oldukça yararlıdır. Ayrıca kuantum kimyası için çok önemli parametrelerdir (Fukui, 1982).

HOMO ve LUMO sırasıyla en yüksek dolu moleküler orbital ve en düşük boş moleküler orbitaldir. LUMO bir elektronu kabul etme yeteneğine karşılık gelirken, HOMO bir elektron elde etme yeteneğini temsil eder.

HOMO ve LUMO moleküler orbital arasındaki enerji farkı, bileşikler için stabilite koşulu için önemli bir değer olan HOMO-LUMO bant boşluğu olarak adlandırılır. HOMO ve LUMO kısaltmalar, sınır moleküler orbitaller (FMO) olarak bilinir ve ayrıca moleküllerin optik ve elektriksel özelliklerinin belirlenmesinde de önemli bir rol oynarlar.

Tablo 3 incelendiğinde kuersetin molekülü için hesaplanan HOMO ve LUMO değerleri sırasıyla E_{HOMO} =-5,90 eV, E_{LUMO} =-2,22 eV olarak elde edilmiştir. HOMO-LUMO enerji değerleri arasındaki fark ise ΔE =3,67 eV'tur. HOMO-LUMO enerji farkının yüksek çıkması molekülün kararlı bir yapıda olduğunu göstermektedir. HOMO-LUMO enerji değerlerinden yararlanarak elde edilen diğer elektriksel parametreler de Tablo 3'te yer almaktadır. Kimyasal sertlik ve kimyasal yumuşaklık değerleri karşılaştırıldığında, kimyasal sertlik değerinin yüksek çıkması moleküldeki yük transferinin zor olacağının bir kanıtı olup bu da molekülü daha kararlı kılmaktadır.

Moleküllerin reaktivitesi ile ilgili bilgi edinmek amacıyla Gaussian 16 programı ile hesaplanan kuersetin molekülüne ait HOMO-LUMO orbital analizi sonucu elde edilen orbital diyagramı Şekil 4.8'de verilmiştir. Şekilde de görüldüğü gibi HOMO-LUMO dağılımları simetrik haldedir.
Molekül	Kuersetin
Multiplicity	1
HOMO (eV)	-5,90
LUMO (eV)	-2,22
$\Delta E (eV)$	3,67
I (eV)	5,90
A (eV)	2,22
χ (eV)	4,06
η (eV)	1,84
σ(eV)	0,54
μ (eV)	-4,06
ω (eV)	4,49

Tablo 3: Kuersetin molekülü elektronik yapı parametreleri

Şekil 4.8: Kuersetin molekülünün HOMO-LUMO gösterimi

Şekil 4.9: Kuersetin molekülünün ESP gösterimi

Şekil 4.9'da ESP yüzeyleri incelendiğinde mavi olan bölgeler elektron yoğunluğunun az olduğu atom ya da atom gruplarını göstermektedir. Mavi bölgeler artı potansiyelde ve bu bölgeler eksi yapıyı veya iyonları çekecektir. Bu sebeple bu bölgelere elektrofilik bölgeler denir. Kırmızı olan bölgeler ise elektron yoğunluğunun zengin olduğu atom ya da atom gruplarını göstermektedir. Bu sebeple bu bölgelere nükleofilik bölgeler denir.

Kuersetin yapısında elektrofilik bölgeler olarak O24-H26, O28-H29, O30-H31 grupları görülmektedir. Nükleofilik bölgeler ise O22-H25 ve O21 bölgeleri öne çıkmaktadır.

27

Tablo 4'te NBO analizleri incelendiğinde en önemli etkileşimlerin $\pi^*(C8-O21)$ $\rightarrow \pi^*(C3-C4) = 214,33 \text{ kcal/mol}, \pi^*(C8-O21) \rightarrow \pi^*(C10-C11) = 107,82 \text{ kcal/mol},$ $\pi^{*}(C10-C11) \rightarrow \pi^{*}(C12-C14) = 201,67 \text{ kcal/mol}, \pi^{*}(C3-C4) \rightarrow \pi^{*}(C5-C6) = 313,25$ kcal/mol, $\pi^*(C17-C19) \rightarrow \pi^*(C12-C14) = 319,62$ kcal/mol, $\pi^*(C17-C19) \rightarrow \pi^*(C13-C19)$ C15) =298,96 kcal/mol, anti- $\pi \rightarrow$ anti π orbitallerinde olduğu görülmektedir. $\pi^* \rightarrow \pi^*$ anti etkileşimlerinin haricinde $\sigma \rightarrow \sigma^*$ etkileşimlerine bakıldığında genel olarak O-H ve C-O bağ orbitallerinde olduğu görülmektedir. $\sigma(O22-H25) \rightarrow \sigma^*(C5-C6) = 5,72$ kcal/mol, $\sigma(O23-H27) \rightarrow \sigma^*(C10-C11) = 6,47$ kcal/mol, $\sigma(O28-H29) \rightarrow \sigma^*(C1-C2)$ =4,64 kcal/mol, $\sigma(C1-C2) \rightarrow \sigma^*(C3-O20)$ =4,63 kcal/mol, $\sigma(C12-C13) \rightarrow \sigma^*(C15-O30)$ =3,95 kcal/mol etkileşimleri olarak öne çıkmaktadır. Molekül içi $\pi \rightarrow \pi^*$ etkileşimlerine bakıldığında en önemli etkileşimlerin π (C1-C2) $\rightarrow \pi^*$ (C3-C4) =29,14 kcal/mol, π (C3-C4) \rightarrow π *(C5-C6) =24,69 kcal/mol, π (C3-C4) \rightarrow π *(C8-O21) =34,97 kcal/mol, $\pi(C5-C6) \rightarrow \pi^*(C1-C2) = 27,93$ kcal/mol, $\pi(C10-C11) \rightarrow \pi^*(C8-O21) = 24,61$ kcal/mol, π (C12-C14) $\rightarrow \pi^*$ (C13-C15) =19,64 kcal/mol, π (C12-C14) $\rightarrow \pi^*$ (C17-C19) =19,56 kcal/mol, π (C13-C15) $\rightarrow \pi^*$ (C17-C19) =20,52 kcal/mol olduğu görülmektedir. Yapıdaki LP (lone pair) orbitallerindeki elektronların ise π^* orbitallerine doğru etkileşim gösterdiği bir diğer deyişle Oksijen atomlarındaki LP elektronlarının C-C bağlarındaki anti- π orbitallerine doğru etkileşim gösterdiği görülmektedir. Buradaki önemli etkileşimler ise LP (O20) $\rightarrow \pi^*(C3-C4) = 30,68$ kcal/mol, LP en $(O20) \rightarrow \pi^{*}(C10-C11) = 27,91 \text{ kcal/mol}, LP2 (O22) \rightarrow \pi^{*}(C5-C6) = 39,67 \text{ kcal/mol}, LP2$ $(O23) \rightarrow \pi^*(C10-C11) = 31,40 \text{ kcal/mol}, LP2 (O24) \rightarrow \pi^*(C17-C19) = 25,89 \text{ kcal/mol},$ LP2 (O28) $\rightarrow \pi^*$ (C1-C2) =30,75 kcal/mol, LP2 (O30) $\rightarrow \pi^*$ (C13-C15) =28,36 kcal/mol olarak öne çıkmaktadır. Kararlılık enerjisi (E²) değerinin büyük olması buradaki elektron yoğunluğunun fazla olduğunu göstermekte olup alıcı-verici (donor-acceptor) etkileşimlerinin daha fazla olmasının bir göstergesidir. Yapının kararlılığını da bu etkileşimler belirlemektedir.

Tablo 4: Kuersetin Molekülü NBO Analizleri

Verici	Type	ED/e	Alıcı	Type	ED/e	E ² (kcalmol ⁻¹)	E _j -E _i (a.u)	F _{ij} (a.u)
C1-C2	σ	1.97075	C1-C6	σ*	0.02365	3.13	1.26	0.056
			C2-C3	σ*	0.01780	2.25	1.28	0.048
			C2-H7	σ*	0.01082	1.48	1.19	0.038
			C3-O20	σ*	0.02788	4.63	1.07	0.063
			C6-H9	σ*	0.01172	1.99	1.17	0.043
			O28-H29	σ*	0.00769	2.03	1.14	0.043
	π	1.66161	C1-C2	π^*	0.40740	2.86	0.28	0.026
			C3-C4	π^*	0.49121	29.19	0.27	0.083
			C5-C6	π^*	0.36994	12.49	0.28	0.053
C1-C6	σ	1.97872	C1-C2	σ*	0.02180	3.49	1.27	0.059
			C2-H7	σ*	0.01082	1.99	1.19	0.044
			C5-C6	σ*	0.02244	2.45	1.28	0.050
			C5-O22	σ*	0.01771	3.79	1.10	0.058
			C6-H9	σ^*	0.01172	1.31	1.17	0.035
C1-O28	σ	1.99450	C1-C2	σ^*	0.02180	0.56	1.48	0.026
			C1-C6	σ^*	0.02365	0.66	1.47	0.028
			C2-C3	σ*	0.01780	1.49	1.49	0.042
			C5-C6	σ*	0.02244	1.26	1.49	0.039
C2-C3	σ	1.97241	C1-C2	σ*	0.01780	2.09	1.27	0.046
			C1-O28	σ*	0.02156	3.56	1.07	0.055
			C2-H7	σ*	0.01082	1.52	1.19	0.038
			C3-C4	σ*	0.03232	3.98	1.26	0.063
			C4-C8	σ*	0.04909	2.52	1.23	0.050
			C11-O20	σ*	0.02092	2.94	1.06	0.050

С2-Н7	σ	1.97556	C1-C2	σ*	0.01082	1.18	1.08	0.032
			C1-C6	σ*	0.02365	4.19	1.07	0.060
			C1-O28	σ*	0.02156	0.87	0.88	0.025
			C2-C3	σ^*	0.01780	1.18	1.09	0.032
			C3-C4	σ^*	0.03232	4.51	1.07	0.062
			C3-O20	σ^*	0.02788	0.87	0.88	0.025
C3-C4	σ	1.97132	C2-C3	σ^*	0.01780	3.77	1.28	0.062
			C2-H7	σ^*	0.01082	1.96	1.19	0.043
			C4-C5	σ^*	0.03504	3.19	1.24	0.056
			C4-C8	σ*	0.04909	2.86	1.23	0.053
			C5-O22	σ^*	0.01771	3.03	1.10	0.052
			C8-O21	σ^*	0.01122	3.14	1.23	0.056
	π	1.62687	C1-C2	π^*	0.40740	12.42	0.29	0.054
			C3-C4	π^*	0.49121	3.31	0.28	0.028
			C5-C6	π^*	0.36994	24.69	0.29	0.075
			C8-O21	π^*	0.41495	34.97	0.26	0.086
C3-O20	σ	1.99005	C1-C2	σ*	0.02180	1.22	1.50	0.038
			C2-C3	σ*	0.01780	0.59	1.51	0.027
			C3-C4	σ*	0.03232	0.66	1.48	0.028
			C4-C5	σ*	0.03504	1.56	1.46	0.043
			C11-C12	σ*	0.02884	1.58	1.42	0.042
C4-C5	σ	1.97144	C3-C4	σ*	0.03232	3.49	1.24	0.059
			C3-O20	σ*	0.02788	3.83	1.06	0.057
			C4-C8	σ^*	0.04909	3.08	1.21	0.055
			C5-C6	σ^*	0.02244	2.99	1.27	0.055
			C6-H9	σ*	0.01172	2.23	1.16	0.046
C4-C5	σ	1.97144	C8-C10	σ^*	0.06078	1.99	1.18	0.044
C4-C8	σ	1.97326	C2-C3	σ^*	0.01780	2.65	1.27	0.052
			C3-C4	σ*	0.03232	3.13	1.24	0.056

			C4-C5	σ*	0.03504	2.88	1.22	0.053
			C5-C6	σ*	0.02244	2.17	1.27	0.047
			C8-C10	σ*	0.06078	1.43	1.17	0.037
			C8-O21	σ*	0.01122	1.15	1.22	0.034
			C10-O23	σ^*	0.01643	2.42	1.06	0.045
C5-C6	σ	1.97495	C1-C6	σ^*	0.02365	2.43	1.26	0.049
			C1-O28	σ^*	0.02156	3.80	1.06	0.057
			C4-C5	σ*	0.03504	3.10	1.24	0.055
			C4-C8	σ*	0.04909	2.83	1.23	0.053
			C5-O22	σ^*	0.01771	0.53	1.10	0.022
			C6-H9	σ^*	0.01172	1.54	1.17	0.038
			O22-H25	σ*	0.05798	1.85	1.15	0.042
	π	1.69283	C1-C2	π^*	0.40740	27.93	0.28	0.081
			C3-C4	π^*	0.49121	12.20	0.27	0.054
			C5-C6	π^*	0.36994	2.48	0.28	0.024
C5-O22	σ	1.99419	C1-C6	σ*	0.02365	1.43	1.47	0.041
			C3-C4	σ*	0.03232	1.64	1.46	0.044
			C4-C5	σ*	0.03504	0.81	1.45	0.031
			C5-C6	σ*	0.02244	0.99	1.49	0.034
C6-H9	σ	1.97571	C1-C2	σ*	0.02180	4.09	1.09	0.060
			C1-C6	σ^*	0.02365	0.86	1.08	0.027
			C1-O28	σ^*	0.02156	0.70	0.88	0.022
			C4-C5	σ*	0.03504	4.41	1.06	0.061
C6-H9	σ	1.97571	C5-C6	σ*	0.02244	1.18	1.10	0.032
			C5-O22	σ*	0.01771	0.71	0.92	0.023
C8-C10	σ	1.97766	C4-C5	σ*	0.03504	3.15	1.22	0.055
			C4-C8	σ*	0.04909	1.61	1.20	0.040
			C8-O21	σ*	0.01122	0.61	1.21	0.024
			C10-C11	σ*	0.02868	3.22	1.28	0.057

			C11-C12	σ*	0.02884	3.90	1.17	0.060
C8-O21	σ	1.9933	C3-C4	σ^*	0.01122	1.39	1.56	0.042
			C4-C8	σ^*	0.04909	1.80	1.52	0.047
			C8-C10	σ^*	0.06078	1.19	1.49	0.038
			C10-C11	σ^*	0.02868	1.49	1.60	0.044
			O22-H25	σ^*	0.05798	0.53	1.45	0.025
	π	1.97497	C3-C4	π^*	0.41495	4.13	0.38	0.040
			C8-O21	π^*	0.41495	0.63	0.36	0.015
			C10-C11	π^*	0.31363	5.18	0.39	0.043
C10-C11	σ	1.97923	C8-C10	σ^*	0.06078	2.53	1.23	0.050
			C8-O21	σ^*	0.01122	1.83	1.28	0.043
			C10-O23	σ*	0.01643	0.94	1.12	0.029
			C11-C12	σ*	0.02884	3.83	1.24	0.062
			C12-C13	σ^*	0.01860	1.63	1.32	0.041
			O23-H27	σ^*	0.03239	1.57	1.19	0.039
	π	1.76811	C8-O21	π^*	0.31363	24.61	0.28	0.078
			C12-C14	π^*	0.40886	10.63	0.32	0.055
C10-O23	σ	1.99154	C4-C8	σ^*	0.04909	1.55	1.42	0.042
			C8-C10	σ^*	0.06078	0.55	1.38	0.025
			C10-C11	σ^*	0.02868	1.40	1.49	0.041
C10-O23	σ	1.99154	C11-O20	σ^*	0.02092	2.37	1.25	0.049
C11-C12	σ	1.97265	C3-O20	σ^*	0.02788	2.97	1.04	0.050
			C8-C10	σ^*	0.06078	2.41	1.15	0.047
			C10-C11	σ^*	0.02868	3.39	1.26	0.058
			C12-C13	σ^*	0.01860	2.23	1.24	0.047
			C12-C14	σ^*	0.02055	2.33	1.24	0.048
			C13-C15	σ*	0.02049	1.84	1.26	0.043
			C14-C17	σ*	0.01377	1.84	1.26	0.043
C11-O20	σ	1.98663	C2-C3	σ*	0.01780	2.06	1.48	0.049

			C10-C11	σ*	0.02868	0.75	1.50	0.030
			C10-O23	σ*	0.01643	2.85	1.28	0.054
			C12-C14	σ*	0.02055	1.72	1.48	0.045
C12-C13	σ	1.97100	C10-C11	σ^*	0.02868	2.58	1.27	0.051
			C11-C12	σ^*	0.02884	2.08	1.16	0.044
			C12-C14	σ^*	0.02055	3.63	1.25	0.060
			C13-C15	σ^*	0.02049	2.34	1.27	0.049
			C13-H16	σ^*	0.01276	1.39	1.17	0.036
			C14-H18	σ^*	0.01591	2.12	1.19	0.045
			C15-O30	σ*	0.01929	3.95	1.04	0.057
C12-C14	σ	1.97237	C11-C12	σ^*	0.02884	2.54	1.16	0.049
			C11-O20	σ^*	0.02092	2.43	1.02	0.045
			C12-C13	σ*	0.01860	3.67	1.25	0.060
			C13-H16	σ^*	0.01276	2.15	1.17	0.045
			C14-C17	σ*	0.01377	2.35	1.27	0.049
			C14-H18	σ*	0.01591	1.34	1.19	0.036
			C17-H32	σ*	0.01232	2.32	1.14	0.046
	π	1.64600	C10-C11	π^*	0.31363	17.65	0.27	0.062
			C13-C15	π^*	0.35887	19.64	0.28	0.066
			C17-C19	π^*	0.02505	19.56	0.27	0.065
C13-C15	σ	1.97349	C11-C12	σ*	0.02884	3.16	1.19	0.055
			C12-C13	σ^*	0.01860	2.84	1.27	0.054
			C13-H16	σ^*	0.01276	1.29	1.20	0.035
			C15-C19	σ^*	0.03950	3.31	1.24	0.057
			C15-O30	σ^*	0.01929	0.52	1.07	0.021
			C19-O24	σ^*	0.02275	3.09	1.04	0.051
			O30-H31	σ^*	0.01249	1.81	1.16	0.041
	π	1.67621	C12-C14	π^*	0.40886	18.30	0.29	0.066
			C17-C19	π*	0.40455	20.52	0.28	0.069

C13-H16	σ	1.97663	C12-C13	σ*	0.01860	1.10	1.08	0.031
			C12-C14	σ^*	0.02055	3.89	1.08	0.058
			C13-C15	σ^*	0.02049	1.02	1.10	0.030
			C15-C19	σ^*	0.03950	4.60	1.05	0.062
			C15-O30	σ^*	0.01929	0.86	0.88	0.025
C14-C17	σ	1.97426	C11-C12	σ^*	0.02884	3.44	1.17	0.057
			C12-C14	σ^*	0.02055	2.75	1.26	0.053
			C14-H18	σ^*	0.01591	1.28	1.20	0.035
			C17-C19	σ^*	0.02505	2.87	1.26	0.054
			C17-H32	σ^*	0.01232	1.38	1.15	0.036
			C19-O24	σ^*	0.02275	4.92	1.03	0.063
C14-H18	σ	1.97875	C12-C13	σ^*	0.01860	4.02	1.08	0.059
			C12-C14	σ^*	0.02055	1.16	1.08	0.032
			C14-C17	σ^*	0.01377	1.09	1.10	0.031
			C17-C19	σ^*	0.02505	3.98	1.08	0.059
C15-C19	σ	1.97440	C13-C15	σ^*	0.02049	3.30	1.30	0.059
			C13-H16	σ^*	0.01276	1.94	1.20	0.043
			C17-C19	σ^*	0.02505	3.32	1.28	0.058
			C17-H32	σ^*	0.01232	2.15	1.17	0.045
			O24-H26	σ^*	0.00785	2.02	1.14	0.043
C15-O30	σ	1.99372	C12-C13	σ^*	0.01860	1.53	1.46	0.042
			C13-C15	σ^*	0.02049	0.94	1.48	0.033
			C15-C19	σ^*	0.03950	0.63	1.44	0.027
			C17-C19	σ^*	0.02505	1.56	1.47	0.043
C17-C19	σ	1.9758	C14-C17	σ^*	0.01377	2.71	1.30	0.053
			C14-H18	σ^*	0.01591	1.88	1.23	0.043
			C15-C19	σ^*	0.03950	3.78	1.26	0.062
			C15-O30	σ^*	0.01929	3.20	1.08	0.053
			C17-H32	σ*	0.01232	1.11	1.18	0.032

		1 (0520	010 014	*	0.40007	10.45	0.20	0.070
	π	1.68530	C12-C14	π^*	0.40886	19.45	0.30	0.070
			C13-C15	π^*	0.35887	18.05	0.30	0.066
C17-H32	σ	1.97815	C12-C14	σ*	0.02055	3.71	1.10	0.057
			C14-C17	σ^*	0.01377	1.10	1.12	0.031
			C15-C19	σ*	0.03950	4.33	1.07	0.061
			C17-C19	σ*	0.02505	0.70	1.10	0.025
			C19-O24	σ^*	0.02275	0.58	0.86	0.020
C19-O24	σ	1.99451	C13-C15	σ^*	0.02049	1.71	1.50	0.045
			C14-C17	σ*	0.01377	1.14	1.50	0.037
			C17-C19	σ*	0.02505	0.91	1.48	0.033
O22-H25	σ	1.98693	C5-C6	σ*	0.02244	5.72	1.30	0.077
O23-H27	σ	1.98533	C8-C10	σ*	0.06078	0.59	1.20	0.024
			C10-C11	σ*	0.02868	6.47	1.31	0.083
O24-H26	σ	1.98943	C15-C19	σ*	0.03950	4.19	1.29	0.066
O28-H29	σ	1.98912	C1-C2	σ*	0.02180	4.64	1.30	0.070
O30-H31	σ	1.98850	C1-C2	σ*	0.02180	5.23	1.32	0.074
O20	LP1	1.95824	C2-C3	σ*	0.01780	0.85	1.11	0.028
			C3-C4	σ*	0.03232	6.84	1.09	0.077
			C10-C11	σ*	0.02868	5.73	1.13	0.072
			C10-O23	σ*	0.01643	0.58	0.91	0.021
			C11-C12	σ*	0.02884	1.09	1.03	0.030
			C13-H16	σ*	0.01276	0.57	1.03	0.022
	LP2	1.75006	C3-C4	π^*	0.49121	30.68	0.36	0.099
			C10-C11	π^*	0.31363	27.91	0.37	0.092
O21	LP1	1.96419	C4-C8	σ*	0.04909	3.72	1.21	0.060
			C8-C10	σ*	0.06078	0.74	1.17	0.026
			O22-H25	σ*	0.05798	5.39	1.14	0.070
			O23-H27	σ*	0.03239	1.98	1.13	0.042
	LP2	1.85643	C4-C8	σ*	0.04909	12.13	0.79	0.090

			C8-C10	σ*	0.06078	15.98	0.75	0.100
			C10-C11	σ^*	0.02868	0.50	0.86	0.019
			O22-H25	σ^*	0.05798	17.20	0.72	0.102
			O23-H27	σ^*	0.03239	4.22	0.71	0.050
O22	LP1	1.97383	C4-C5	σ^*	0.03504	7.56	1.09	0.081
	LP2	1.81463	C5-C6	π^*	0.36994	39.67	0.33	0.107
O23	LP1	1.97286	C8-C10	σ*	0.06078	5.31	1.07	0.068
			C14-H18	σ^*	0.01591	2.91	1.10	0.051
	LP2	1.86352	C10-C11	π^*	0.31363	31.40	0.34	0.096
O24	LP1	1.97352	C15-C19	σ^*	0.03950	0.54	1.15	0.022
			C17-C19	σ^*	0.02505	6.34	1.18	0.077
			O30-H31	σ^*	0.01249	2.15	1.06	0.043
	LP2	1.88412	C17-C19	π^*	0.40455	25.89	0.36	0.093
O28	LP1	1.97941	C1-C6	σ^*	0.02365	6.18	1.14	0.075
	LP2	1.85642	C1-C2	π^*	0.40740	30.75	0.35	0.099
O30	LP1	1.97688	C15-C19	σ^*	0.03950	6.63	1.12	0.077
	LP2	1.87150	C13-C15	π^*	0.35887	28.36	0.34	0.094
C3-C4	π*		C5-C6	π^*	0.36994	313.25	0.01	0.080
			C10-C11	π^*	0.31363	5.77	0.01	0.011
C8-O21	π*		C3-C4	π^*	0.49121	214.33	0.02	0.081
			C5-C6	π^*	0.36994	0.65	0.03	0.006
			C10-C11	π^*	0.31363	107.82	0.03	0.081
C10-C11	π*		C12-C14	π^*	0.40886	201.67	0.01	0.071
C17-C19	π^*		C12-C14	π^*	0.40886	319.62	0.01	0.082
			C13-C15	π^*	0.35887	298.96	0.01	0.083

4.1.1 Kuersetin Fe⁺² Şelasyonu

Şekil 4.10: Kuersetin_Fe⁺² molekülünün geometrik yapısı

Şekil 4.10 kuersetin molekülünün demir (Fe⁺²) ile oluşturduğu yapı görülmektedir. Kuersetin Fe⁺² molekülü 33 atomdan oluşmaktadır. Kuersetinin demir ile oluşturduğu yapıyla ilgili bağ uzunlukları ve bağ açıları sırasıyla Tablo 5 ve Tablo 6'da verilmiştir. Molekül 26 bağ uzunluğu ve 39 bağ açısı ile tanımlanmıştır. C-O, C=C, C-C bağları incelendiğinde deneysel sonuçlarla uyum içinde olduğu görülmektedir. Burada, C1-O27=1,43Å, C15-O29=1,58Å, C8=O21=1,26Å bağlarının deneysel sonuçlarla (Huheey, 1958), (Darwent, 1970), (Benson, 1965) eşit veya yakın değerlerde olduğu görülmektedir. (Deneysel sonuçlar: C-O=1,43Å, C=O=1,20Å C-C=1,54Å, C=C=1,34Å). Kuersetin yapısı ile karşılaştırıldığında C15-O29 ve C19-O24 bağ uzunluklarının daha fazla çıkması Fe⁺² iyonunun oksijen atomları ile etkileşiminden kaynaklanmaktadır. Oksijen ve demir atomları arasındaki bağ uzunluklarının ise birbirine eşit (O-Fe=2,57Å) çıktığı görülmektedir.

Tablo 5: Kuersetin Fe⁺² Molekülü Bağ Uzunlukları

C1-O27	1,430	C4-C5	1,401	C8-C10	1,526	C12-C13	1,398	C15-O29	1,579
C1-C2	1,402	C4-C8	1,390	C10-C11	1,353	C12-C14	1,394	C17-C19	1,405
C1-C6	1,401	C5-C6	1,400	C10-O23	1,430	C13-C15	1,405	C19-O24	1,579
C2-C3	1,403	C5-O22	1,301	C11-C12	1,540	C14-C17	1,398	O24-Fe31	2,570
C3-O20	1,444	C8-O21	1,258	C11-O20	1,441	C15-C19	1,625	O29-Fe31	2,570
C3-C4	1,405								

Tablo 6: Kuersetin Fe⁺² Molekülü Bağ Açıları

C2-C1-C6	120,06	C1-C6-C5	119,91	C12-C13-C15	122,49
C2-C1-O27	119,97	C4-C8-C10	118,09	C12-C14-C17	121,53
C6-C1-027	119,97	C4-C8-O21	120,95	C13-C15-C19	115,99
C1-C2-C3	120,26	C10-C8-O21	120,95	C13-C15-O29	110,72
C2-C3-C4	119,31	C8-C10-C11	119,26	C19-C15-O29	133,29
C2-C3-O20	118,70	C8-C10-O23	120,36	C14-C17-C19	122,49
C4-C3-O20	121,98	C11-C10-O23	120,37	C15-C19-C17	115,99
C3-C4-C5	120,31	C10-C11-C12	119,28	C15-C19-O24	133,29
C3-C4-C8	119,75	C10-C11-O20	121,46	C17-C19-O24	110,72
C5-C4-C8	119,94	C12-C11-O20	119,26	C3-O20-C11	115,40
C4-C5-C6	119,96	C11-C12-C13	119,24	C19-O24-Fe31	89,20
C4-C5-O22	120,02	C11-C12-C14	119,24	C15-O29-Fe31	89,20
C6-C5-O22	120,02	C13-C12-C14	121,53	O24-Fe31-O29	95,02

Tablo 7 incelendiğinde kuersetin Fe⁺² molekülü için hesaplanan HOMO ve LUMO değerleri sırasıyla E_{HOMO} =-3,35 eV, E_{LUMO} =-2,64 eV olarak elde edilmiştir. HOMO-LUMO enerji değerleri arasındaki fark ise ΔE =0,70 eV'tur. HOMO-LUMO enerji farkının birbirine yakın çıkması molekülün kararlı bir yapıda olmadığını göstermektedir. HOMO-LUMO enerji değerlerinden yararlanarak elde edilen diğer elektriksel parametreler de Tablo 7'de yer almaktadır. Molekülün kimyasal sertlik ve kimyasal yumuşaklık değerleri incelendiğinde kimyasal sertlik değerinin daha düşük olması molekülün reaktivitesinin yüksek olduğunun bir kanıtıdır.

Şekil 4.11'de kuersetin Fe⁺² molekülünün HOMO-LUMO enerji diyagramı gösterilmiştir. LUMO orbitalinin C, B, A halkaları üzerinde ve simetrik bir yapıda olduğu görülürken, HOMO orbitalinin demir atomu üzerinde yoğunlaştığı ve olası bir elektron transferinin demir atomundan C, B, A halkalarına doğru olacağı görülmektedir.

Molekül	Kuersetin Fe ⁺²
Multiplicity	1
HOMO (eV)	-3,35
LUMO (eV)	-2,64
$\Delta E (eV)$	0,70
I (eV)	3,35
A (eV)	2,64
χ (eV)	2,99
η (eV)	0,35
σ (1/eV)	2,85
μ (eV)	-2,99
ω (eV)	12,80

Tablo 7: Kuersetin Fe⁺² molekülü elektronik yapı parametreleri

Şekil 4.11: Kuersetin_Fe⁺² molekülünün HOMO-LUMO gösterimi

Şekil 4.12'de Kuersetin_Fe⁺² yapısında ESP haritası incelendiğinde nükleofilik bölgelerin demir atomu etrafında olduğu görülürken, elektrofilik bölgeler olarak ise O-H (O27-H28, O24-H32, O29-H33) grupları öne çıkmaktadır.

Tablo 8'de NBO analizleri incelendiğinde en önemli etkileşimlerin $\pi^*(C8-$ O21) $\rightarrow \pi^{*}(C3-C4)=215,94$ kcal/mol, $\pi^{*}(C8-O21)\rightarrow \pi^{*}(C10-C11)=106,54$ kcal/mol, $\pi^*(C10-C11) \rightarrow \pi^*(C12-C14) = 152,85$ kcal/mol anti- $\pi \rightarrow$ anti π orbitallerinde olduğu görülmektedir. $\pi^* \rightarrow \pi^*$ anti etkileşimlerinin haricinde $\sigma \rightarrow \sigma^*$ etkileşimlerine bakıldığında genel olarak O-H ve C-O bağ orbitallerinde olduğu görülmektedir. $\sigma(O22-H25) \rightarrow \sigma^*(C5-C6)=5,73$ kcal/mol, $\sigma(O23-H26) \rightarrow \sigma^*(C10-C11)=6,52$ kcal/mol, $\sigma(O27-H28) \rightarrow \sigma^*(C1-C2)=4,63$ kcal/mol, $\sigma(C1-C2) \rightarrow \sigma^*(C3-O20)=4,60$ kcal/mol, $\sigma(C12-C13) \rightarrow \sigma^*(C15-O29) = 4,71$ kcal/mol etkileşimleri olarak öne çıkmaktadır. Molekül içi $\pi \rightarrow \pi^*$ etkileşimlerine bakıldığında en önemli etkileşimlerin $\pi(C3-C4) \rightarrow \pi^*(C8-O21) = 34,93 \text{ kcal/mol}, \pi(C1-C2) \rightarrow \pi^*(C3-C4) = 28,92 \text{ kcal/mol},$ $\pi(C5-C6) \rightarrow \pi^*(C1-C2) = 27,90 \text{ kcal/mol}, \pi(C10-C11) \rightarrow \pi^*(C8-O21) = 24,98 \text{ kcal/mol},$ π (C3-C4) $\rightarrow \pi^*$ (C5-C6)=24,83 kcal/mol olduğu görülmektedir. Yapıdaki LP (lone pair) orbitallerindeki elektronların ise π^* orbitallerine doğru etkileşim gösterdiği bir diğer

deyişle Oksijen atomlarındaki LP elektronlarının C-C bağlarındaki anti- π orbitallerine doğru etkileşim gösterdiği görülmektedir. Buradaki en önemli etkileşimler ise LP $(O20) \rightarrow \pi^*(C3-C4)=31,07$ kcal/mol, LP $(O20) \rightarrow \pi^*(C10-C11)=27,72$ kcal/mol, LP2 $(O22) \rightarrow \pi^*(C5-C6)=39,67$ kcal/mol, LP2 $(O23) \rightarrow \pi^*(C10-C11)=31,60$ kcal/mol, LP3 $(O24) \rightarrow \pi^*(C17-C19)=30,82$ kcal/mol, LP2 $(O27) \rightarrow \pi^*(C1-C2)=30,56$ kcal/mol, LP2 $(O29) \rightarrow \pi^*(C13-C15)=36,43$ kcal/mol olarak öne çıkmaktadır. Kararlılık enerjisi (E²) değerinin büyük olması buradaki elektron yoğunluğunun fazla olduğunu göstermekte ve alıcı-verici (donor-acceptor) etkileşimlerinin daha fazla olmasının bir göstergesidir. Yapının kararlılığını da bu etkileşimler belirlemektedir.

Verici	Туре	ED/e	Alıcı	Туре	ED/e	E ² (kcalmol ⁻¹)	E _j -E _i (a.u)	F _{ij} (a.u)
C1-C2	σ	1,97081	C1-C6	σ^*	0,02364	3,15	1,26	0,056
			C2-C3	σ^*	0,01789	2,25	1,28	0,048
			C2-H7	σ^*	0,01086	1,48	1,19	0,038
			C3-O20	σ^*	0,02776	4,60	1,07	0,063
			C6-H9	σ^*	0,01176	1,99	1,17	0,043
			O27-H28	σ^*	0,00772	2,02	1,14	0,043
	π	1,66500	C1-C2	π^*	0,40719	2,86	0,28	0,026
			C3-C4	π^*	0,48963	28,92	0,27	0,082
			C5-C6	π^*	0,37104	12,44	0,28	0,053
C1-C6	σ	1,97868	C1-C2	σ^*	0,02177	3,51	1,27	0,060
			C2-H7	σ^*	0,01789	2,02	1,19	0,044
			C5-C6	σ^*	0,02246	2,46	1,28	0,050
			C5-O22	σ^*	0,01774	3,80	1,10	0,058
			C6-H9	σ^*	0,01176	1,31	1,17	0,035
C1-O27	σ	1,99450	C1-C2	σ^*	0,02177	0,56	1,48	0,026
			C1-C6	σ^*	0,02364	0,65	1,47	0,028
			C2-C3	σ^*	0,01789	1,49	1,49	0,042
			C5-C6	σ^*	0,02246	1,26	1,49	0,039
C2-C3	σ	1,97235	C1-C2	σ^*	0,02177	2,10	1,27	0,046
			C1-O27	σ^*	0,02164	3,58	1,06	0,055
			C2-H7	σ^*	0,01789	1,52	1,19	0,038
			C3-C4	σ^*	0,03242	3,96	1,26	0,063
			C4-C8	σ^*	0,04895	2,51	1,23	0,050
			C11-O20	σ^*	0,02127	2,96	1,06	0,050
C2-H7	σ	1,97565	C1-C2	σ^*	0,02177	1,18	1,08	0,032
			C1-C6	σ^*	0,02364	4,20	1,07	0,060
			C1-O27	σ*	0,02164	0,87	0,87	0,025

Tablo 8: Kuersetin Fe⁺² molekülü NBO Analizi

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$									
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				C2-C3	σ*	0,01789	1,17	1,09	0,032
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				C3-C4	σ*	0,03242	4,48	1,07	0,062
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				C3-O20	σ*	0,02776	0,86	0,89	0,025
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C3-C4	σ	1,97127	C2-C3	σ*	0,01789	3,75	1,28	0,062
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				C2-H7	σ*	0,01789	1,97	1,19	0,043
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				C4-C5	σ*	0,03505	3,19	1,24	0,056
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				C4-C8	σ*	0,04895	2,87	1,23	0,053
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				C5-O22	σ*	0,01774	3,03	1,10	0,052
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				C8-O21	σ*	0,01126	3,15	1,23	0,056
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		π	1,62670	C1-C2	π^*	0,40719	12,45	0,28	0,054
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				C3-C4	π^*	0,48963	3,32	0,28	0,028
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				C5-C6	π^*	0,37104	24,83	0,29	0,075
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				C8-O21	π^*	0,41909	34,93	0,26	0,086
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C3-O20	σ	1,99010	C1-C2	σ*	0,02177	1,22	1,50	0,038
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				C2-C3	σ*	0,01789	0,60	1,51	0,027
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				C3-C4	σ*	0,03242	0,68	1,48	0,029
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				C4-C5	σ*	0,03505	1,57	1,46	0,043
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				C11-C12	σ*	0,02835	1,54	1,42	0,042
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C4-C5	σ	1,97148	C3-C4	σ*	0,03242	3,48	1,24	0,059
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				C3-O20	σ*	0,02776	3,81	1,06	0,057
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				C4-C8	σ*	0,04895	3,09	1,21	0,055
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				C5-C6	σ*	0,02246	2,99	1,27	0,055
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				C6-H9	σ*	0,01176	2,24	1,16	0,046
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				C8-C10	σ*	0,06068	1,99	1,18	0,044
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C4-C8	σ	1,97327	C2-C3	σ*	0,04895	2,66	1,27	0,052
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				C3-C4	σ*	0,03242	3,15	1,24	0,056
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				C4-C5	σ*	0,03505	2,89	1,22	0,053
<u>C8-C10</u> σ* 0,06068 1,43 1,17 0,037				C5-C6	σ*	0,02246	2,17	1,27	0,047
				C8-C10	σ*	0,06068	1,43	1,17	0,037

$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				C8-O21	σ*	0,01126	1,15	1,22	0,034
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				C10-O23	σ^*	0,01636	2,37	1,07	0,045
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C5-C6	σ	1,97495	C1-C6	σ^*	0,02364	2,43	1,26	0,049
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				C1-O27	σ^*	0,02164	3,80	1,06	0,057
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				C4-C5	σ^*	0,03505	3,10	1,24	0,056
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				C4-C8	σ^*	0,04895	2,83	1,23	0,053
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				C5-O22	σ^*	0,01774	0,53	1,10	0,022
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				C6-H9	σ^*	0,01176	1,54	1,17	0,038
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				O22-H25	σ^*	0,05860	1,85	1,15	0,042
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		π	1,69403	C1-C2	π^*	0,40719	27,90	0,28	0,081
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				C3-C4	π^*	0,48963	12,13	0,27	0,054
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				C5-C6	π^*	0,37104	2,47	0,28	0,024
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C5-O22	σ	1,99420	C1-C6	σ^*	0,02364	1,43	1,47	0,041
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				C3-C4	σ^*	0,03242	1,64	1,46	0,044
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				C4-C5	σ^*	0,03505	0,81	1,45	0,031
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				C5-C6	σ^*	0,02246	0,99	1,49	0,034
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C6-H9	σ	1,97576	C1-C2	σ^*	0,02177	4,08	1,09	0,060
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				C1-C6	σ^*	0,02364	0,86	1,08	0,027
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				C1-O27	σ^*	0,02164	0,70	0,88	0,022
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				C4-C5	σ^*	0,03505	4,40	1,06	0,061
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				C5-C6	σ^*	0,02246	1,18	1,10	0,032
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				C5-O22	σ^*	0,01774	0,71	0,92	0,023
C4-C8 σ^* 0,048951,621,200,040C8-O21 σ^* 0,011260,611,210,024C10-C11 σ^* 0,028883,171,280,057	C8-C10	σ	1,97775	C4-C5	σ^*	0,03505	3,16	1,22	0,056
C8-O21 σ^* 0,011260,611,210,024C10-C11 σ^* 0,028883,171,280,057				C4-C8	σ^*	0,04895	1,62	1,20	0,040
C10-C11 σ^* 0,02888 3,17 1,28 0,057				C8-O21	σ^*	0,01126	0,61	1,21	0,024
				C10-C11	σ^*	0,02888	3,17	1,28	0,057
C11-C12 σ^* 0,02835 3,84 1,18 0,060				C11-C12	σ^*	0,02835	3,84	1,18	0,060
C8-O21 σ 1,99394 C3-C4 σ* 0,03242 1,39 1,55 0,042	C8-O21	σ	1,99394	C3-C4	σ^*	0,03242	1,39	1,55	0,042
<u>C4-C8</u> σ* 0,04895 1,79 1,52 0,047				C4-C8	σ*	0,04895	1,79	1,52	0,047

			C8-C10	σ*	0,06068	1,20	1,49	0,038
			C10-C11	σ*	0,02888	1,49	1,59	0,044
			O22-H25	σ*	0,05860	0,55	1,45	0,025
	π	1,97506	C3-C4	π^*	0,48963	4,13	0,38	0,040
			C8-O21	π^*	0,41909	0,65	0,36	0,015
			C10-C11	π^*	0,31747	5,13	0,39	0,043
C10-C11	σ	1,97927	C8-C10	σ*	0,06068	2,51	1,23	0,050
			C8-O21	σ*	0,01126	1,83	1,27	0,043
			C10-O23	σ*	0,01636	0,95	1,12	0,029
			C11-C12	σ*	0,02835	3,83	1,24	0,062
			C12-C13	σ*	0,01895	1,57	1,32	0,041
			O23-H26	σ*	0,03283	1,58	1,19	0,039
	π	1,76004	C8-O21	π^*	0,41909	24,98	0,28	0,078
			C12-C14	π^*	0,42141	10,64	0,32	0,055
C10-O23	σ	1,99160	C4-C8	σ*	0,04895	1,56	1,42	0,042
			C8-C10	σ*	0,06068	0,55	1,38	0,025
			C10-C11	σ*	0,02888	1,41	1,49	0,041
			C11-O20	σ*	0,02127	2,31	1,25	0,048
C11-C12	σ	1,97290	C3-O20	σ*	0,02776	2,99	1,03	0,050
			C8-C10	σ*	0,06068	2,38	1,15	0,047
			C10-C11	σ*	0,02888	3,41	1,26	0,058
			C12-C13	σ*	0,01895	2,10	1,24	0,046
			C12-C14	σ*	0,02056	2,21	1,24	0,047
			C13-C15	σ*	0,02849	1,78	1,27	0,043
			C14-C17	σ*	0,01251	1,81	1,27	0,043
C11-O20	σ	1,98662	C2-C3	σ*	0,01789	2,08	1,48	0,050
			C10-C11	σ*	0,02888	0,71	1,49	0,029
			C10-O23	σ*	0,01636	2,86	1,28	0,054
			C12-C14	σ*	0,02056	1,70	1,48	0,045

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$									
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C12-C13	σ	1,97040	C10-C11	σ*	0,02888	2,71	1,26	0,052
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				C11-C12	σ*	0,02835	1,98	1,16	0,043
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				C12-C14	σ*	0,02056	3,55	1,24	0,059
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				C13-C15	σ*	0,02849	2,40	1,27	0,049
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				C13-H16	σ*	0,01384	1,30	1,17	0,035
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				C14-H18	σ*	0,01602	1,98	1,19	0,043
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				C15-O29	σ*	0,02328	4,71	1,07	0,064
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C12-C14	σ	1,97262	C11-C12	σ*	0,02835	2,45	1,16	0,048
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				C11-O20	σ*	0,02127	2,53	1,01	0,045
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				C12-C13	σ^*	0,01895	3,62	1,24	0,060
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				C13-H16	σ^*	0,01384	2,11	1,17	0,044
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				C14-C17	σ^*	0,01251	2,29	1,27	0,048
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				C14-H18	σ^*	0,01602	1,29	1,19	0,035
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				C17-H30	σ*	0,01265	2,25	1,16	0,046
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		π	1,64090	C10-C11	π*	0,31747	18,01	0,26	0,062
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				C13-C15	π^*	0,35861	17,49	0,28	0,062
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				C17-C19	π*	0,39345	20,02	0,27	0,067
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C13-C15	σ	1,97503	C11-C12	σ*	0,02835	3,11	1,18	0,054
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				C12-C13	σ^*	0,01895	2,76	1,26	0,053
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				C13-H16	σ^*	0,01384	1,39	1,19	0,036
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				C15-C19	σ*	0,04493	3,17	1,24	0,056
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				C15-O29	σ*	0,02328	0,87	1,10	0,028
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				C19-O24	σ*	0,02762	2,60	1,06	0,047
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		π	1,66514	C12-C14	π^*	0,42141	19,79	0,28	0,068
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				C17-C19	π^*	0,39345	18,69	0,28	0,066
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C13-H16	σ	1,97832	C12-C13	σ*	0,01895	1,02	1,07	0,030
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				C12-C14	σ^*	0,02056	3,87	1,07	0,058
C15-C19 σ^* 0,04493 4,31 1,05 0,060				C13-C15	σ^*	0,02849	1,04	1,11	0,030
				C15-C19	σ*	0,04493	4,31	1,05	0,060

			C15-O29	σ*	0,02328	0,51	0,91	0,019
C14-C17	σ	1,97397	C11-C12	σ*	0,02835	3,30	1,17	0,055
			C12-C14	σ*	0,02056	2,72	1,25	0,052
			C14-H18	σ*	0,01602	1,29	1,20	0,035
			C17-C19	σ*	0,02917	2,61	1,27	0,051
			C17-H30	σ*	0,01265	1,28	1,16	0,035
			C19-O24	σ*	0,02762	5,12	1,04	0,065
C14-H18	σ	1,97879	C12-C13	σ*	0,01895	4,12	1,07	0,059
			C12-C14	σ*	0,02056	1,11	1,07	0,031
			C14-C17	σ^*	0,01251	1,08	1,10	0,031
			C17-C19	σ^*	0,02917	3,72	1,09	0,057
C15-C19	σ	1,97962	C13-C15	σ^*	0,02849	3,37	1,29	0,059
			C13-H16	σ^*	0,01384	2,24	1,19	0,046
			C17-C19	σ^*	0,02917	3,56	1,28	0,060
			C17-H30	σ^*	0,01265	2,17	1,18	0,045
C15-O29	σ	1,98996	C12-C13	σ^*	0,01895	1,30	1,45	0,039
			C13-C15	σ^*	0,02849	1,34	1,49	0,040
			C15-C19	σ^*	0,04493	0,60	1,43	0,026
			C17-C19	σ*	0,02917	1,95	1,48	0,048
C17-C19	σ	1,97766	C14-C17	σ*	0,01251	2,39	1,30	0,050
			C14-H18	σ*	0,01602	2,05	1,22	0,045
			C15-C19	σ^*	0,04493	3,18	1,24	0,056
			C15-O29	σ^*	0,02328	2,38	1,10	0,046
			C17-H30	σ*	0,01265	1,21	1,18	0,034
			C19-O24	σ*	0,02762	0,66	1,06	0,024
	π	1,65646	C12-C14	π^*	0,42141	19,47	0,29	0,068
			C13-C15	π^*	0,35861	19,18	0,29	0,067
C17-H30	σ	1,97938	C12-C14	σ*	0,01265	3,81	1,08	0,057
			C14-C17	σ*	0,01251	1,05	1,11	0,031

			C15-C19	σ*	0,04493	4,32	1,05	0,061
			C17-C19	σ*	0,02917	0,81	1,10	0,027
			C19-O24	σ^*	0,02762	0,54	0,88	0,020
C19-O24	σ	1,99110	C13-C15	σ*	0,02849	1,91	1,50	0,048
			C14-C17	σ*	0,01251	1,10	1,49	0,036
			C17-C19	σ*	0,02917	0,95	1,49	0,034
O22-H25	σ	1,98692	C5-C6	σ^*	0,02246	5,73	1,30	0,077
O23-H26	σ	1,98519	C8-C10	σ*	0,06068	0,60	1,20	0,024
			C10-C11	σ*	0,02888	6,52	1,31	0,083
O27-H28	σ	1,98915	C1-C2	σ*	0,02177	4,63	1,31	0,070
O20	LP1	1,95817	C2-C3	σ*	0,01789	0,87	1,11	0,028
			C3-C4	σ*	0,03242	6,92	1,09	0,078
			C10-C11	σ^*	0,02888	5,67	1,13	0,072
			C10-O23	σ^*	0,01636	0,58	0,91	0,021
			C11-C12	σ^*	0,02835	1,07	1,03	0,030
			C13-H16	σ*	0,01384	0,58	1,04	0,022
	LP2	1,74902	C3-C4	π^*	0,48963	31,07	0,35	0,100
			C10-C11	π^*	0,31747	27,72	0,37	0,091
O21	LP1	1,96399	C4-C8	σ^*	0,04895	3,72	1,21	0,060
			C8-C10	σ^*	0,06068	0,73	1,17	0,026
			O22-H25	σ^*	0,05860	5,44	1,14	0,071
			O23-H26	σ^*	0,03283	2,05	1,13	0,043
	LP2	1,85606	C4-C8	σ^*	0,04895	12,07	0,79	0,089
			C8-C10	σ^*	0,06068	15,92	0,75	0,100
			O22-H25	σ^*	0,05860	17,40	0,72	0,102
			O23-H26	σ^*	0,03283	4,29	0,71	0,051
O22	LP1	1,97387	C4-C5	σ^*	0,03505	7,55	1,09	0,081
	LP2	1,81498	C5-C6	π^*	0,37104	39,67	0,33	0,107
O23	LP1	1,97276	C8-C10	σ*	0,06068	5,30	1,07	0,068

			C14-H18	σ*	0,01602	2,99	1,11	0,052
	LP2	1,86126	C10-C11	π^*	0,31747	31,60	0,34	0,096
O24	LP1	1,9618	C15-C19	σ*	0,04493	4,06	1,20	0,062
	LP2	1,70465	C15-C19	σ*	0,04493	2,81	1,01	0,051
			C17-C19	σ*	0,02917	8,15	1,06	0,089
	LP3	1,68646	C17-C19	π^*	0,39345	30,82	0,34	0,094
O27	LP1	1,97950	C1-C6	σ*	0,02364	6,15	1,14	0,075
	LP2	1,85781	C1-C2	π^*	0,40719	30,56	0,35	0,099
O29	LP1	1,94935	C15-C19	σ*	0,04493	3,83	1,20	0,061
	LP2	1,80591	C13-C15	π^*	0,35861	36,43	0,32	0,101
	LP3	1,66461	C13-C15	σ*	0,02849	9,25	0,99	0,093
			C15-C19	σ*	0,04493	4,11	0,93	0,060
C3-C4	π^*		C10-C11	π^*	0,31747	5,48	0,01	0,011
C8-O21	π^*		C3-C4	π^*	0,48963	215,94	0,02	0,081
			C5-C6	π^*	0,37104	0,69	0,03	0,006
			C10-C11	π^*	0,31747	106,54	0,03	0,081
C10-C11	π^*		C12-C14	π^*	0,42141	152,85	0,02	0,071
Fe31	LP1	1,99715	C13-C15	σ*	0,02849	0,12	0,85	0,009
			C17-C19	σ^*	0,02917	0,12	0,84	0,009
			C19-O24	σ^*	0,02762	0,08	0,62	0,006
	LP2	1,99352	C17-C19	π^*	0,39345	0,11	0,28	0,006
	LP3	1,99025	C13-C15	σ^*	0,02849	0,29	0,87	0,014
			C15-O29	σ^*	0,02328	0,59	0,67	0,018
			C17-C19	σ^*	0,02917	0,31	0,85	0,015
			C19-O24	σ*	0,02762	1,04	0,63	0,023
			C15-O29	σ^*	0,02328	0,63	0,38	0,039
			C17-C19	σ*	0,02917	0,08	0,56	0,016
			C19-O24	σ*	0,02762	0,67	0,34	0,038

4.1.2 Kuersetin Co⁺² Şelasyonu

Şekil 4.13: Kuersetin_Co⁺² molekülünün geometrik yapısı

Şekil 4.13 kuersetin molekülünün kobalt (Co⁺²) ile oluşturduğu yapı görülmektedir. Kuersetin Co⁺² molekülü 33 atomdan oluşmaktadır. Kuersetinin kobalt ile oluşturduğu yapıyla ilgili bağ uzunlukları ve bağ açıları sırasıyla Tablo 9 ve Tablo 10'da verilmiştir. Molekül 26 bağ uzunluğu ve 39 bağ açısı ile tanımlanmıştır. C-O, C=C, C-C bağları incelendiğinde deneysel sonuçlarla uyum içinde olduğu görülmektedir. Burada, C1-O27=1,36Å, C15-O29=1,35Å, C8=O21=1,26Å bağlarının deneysel sonuçlarla (Huheey, 1958), (Darwent, 1970), (Benson, 1965) eşit veya yakın değerlerde olduğu görülmektedir. (Deneysel sonuçlar: C-O=1,43Å, C=O=1,20Å C-C=1,54Å, C=C=1,34Å). Kuersetin Fe⁺² yapısı ile karşılaştırıldığında C15-O29 ve C19-O24 bağ uzunluklarının daha kısa çıkması, oksijen atomlarının kobalt iyonu ile daha sıkı bir etkileşimde olması sonucunda C-O bağlarının da daha kuvvetli olmasının sonucudur. Oksijen ve kobalt atomları arasındaki bağ uzunluklarının ise sırayla O24-Co31=1,75Å ve O29-Co31=1,83Å olduğu görülmektedir.

C1-O27	1,363	C5-C6	1,391	C11-O20	1,376	C17-C19	1,391
C1-C2	1,397	C5-O22	1,343	C12-C13	1,417	C19-O24	1,370
C1-C6	1,406	C8-O21	1,264	C12-C14	1,415	O24-Co31	1,753
C2-C3	1,392	C8-C10	1,451	C13-C15	1,389	O29-Co31	1,831
C3-C4	1,408	C10-C11	1,374	C14-C17	1,395	C3-O20	1,359
C4-C5	1,424	C10-O23	1,357	C15-C19	1,415		
C4-C8	1,433	C11-C12	1,465	C15-O29	1,353		

Tablo 9: Kuersetin Co⁺² Molekülü Bağ Uzunlukları

Tablo 10: Kuersetin Co⁺² Molekülü Bağ Açıları

C2-C1-C6	122,24	C1-C6-C5	119,43	C12-C13-C15	119,68
C2-C1-O27	116,49	C4-C8-C10	117,07	C12-C14-C17	120,48
C6-C1-027	121,26	C4-C8-O21	124,15	C13-C15-C19	119,69
C1-C2-C3	117,60	C10-C8-O21	118,78	C13-C15-O29	124,39
C2-C3-C4	122,20	C8-C10-C11	121,54	C19-C15-O29	115,92
C2-C3-O20	117,45	C8-C10-O23	114,72	C14-C17-C19	119,16
C4-C3-O20	120,35	C11-C10-O23	123,75	C15-C19-C17	121,27
C3-C4-C5	118,71	C10-C11-C12	128,91	C15-C19-O24	114,99
C3-C4-C8	119,17	C10-C11-O20	118,72	C17-C19-O24	123,74
C5-C4-C8	122,12	C12-C11-O20	112,36	C3-O20-C11	123,15
C4-C5-C6	119,82	C11-C12-C13	118,98	C19-O24-Co31	109,50
C4-C5-O22	120,27	C11-C12-C14	121,30	C15-O29-Co31	107,29
C6-C5-O22	119,91	C13-C12-C14	119,72	O24-Co31-O29	92,30

Tablo 11 incelendiğinde kuersetin Co^{+2} molekülü için hesaplanan HOMO ve LUMO değerleri sırasıyla E_{HOMO}=-5,29 eV, E_{LUMO}=-2,55 eV olarak elde edilmiştir. HOMO-LUMO enerji değerleri arasındaki fark ise ΔE =2,74 eV'tur. HOMO-LUMO enerji farkı kuersetin Fe⁺² yapısı ile karşılaştırıldığında daha büyük çıktığı görülmektedir. Bu da kuersetin Co⁺² yapısının kuersetin Fe⁺² yapısına oranla daha kararlı olduğunu göstermektedir. HOMO-LUMO enerji değerlerinden yararlanarak elde edilen diğer elektriksel parametreler de Tablo 11'de yer almaktadır. Molekülün kimyasal sertlik ve kimyasal yumuşaklık değerleri incelendiğinde kimyasal sertlik değerinin daha yüksek olması molekülün reaktivitesinin düşük olduğunun bir kanıtıdır.

Şekil 4.14'te kuersetin Co⁺² molekülünün HOMO-LUMO enerji diyagramı gösterilmiştir. LUMO orbitalinin C, B, A halkaları üzerinde ve simetrik bir yapıda olduğu görülürken, HOMO orbitalinin kobalt atomu üzerinde yoğunlaştığı ve olası bir elektron transferinin kobalt atomundan C, B, A halkalarına doğru olacağı görülmektedir. HOMO-LUMO enerji diyagramı kuersetin Fe⁺² ile karşılaştırıldığında benzer bir görünüm elde edilmektedir.

Molekül	Kuersetin Co ⁺²	
Multiplicity	1	
HOMO (eV)	-5,29	
LUMO (eV)	-2,55	
$\Delta E (eV)$	2,74	
I (eV)	5,29	
A (eV)	2,55	
χ (eV)	3,92	
η (eV)	1,37	
σ (1/eV)	0,73	
μ (eV)	-3,92	
ω (eV)	5,60	

Tablo 11: Kuersetin Co⁺² molekülü elektronik yapı parametreleri

Şekil 4.14: Kuersetin_Co⁺² molekülünün HOMO-LUMO gösterimi

Şekil 4.15: Kuersetin_Co⁺² molekülünün ESP gösterimi

Şekil 4.15'te Kuersetin_Co⁺² ESP haritası incelendiğinde Kuersetin_Fe⁺² yapısında olduğu gibi benzer bir özellik göstermektedir. Nükleofilik bölgeler kobalt atomu etrafında görülürken, elektrofilik bölgeler olarak ise O-H (O27-H28, O24-H32, O29-H33) grupları öne çıkmaktadır.

Tablo 12'de NBO analizleri incelendiğinde en önemli etkileşimin LP1(C19) $\rightarrow \sigma^*(C14-C17) = 31,33$ kcal/mol ile karbon atomu orbitalindeki yalnız elektronun, C14-C17 bağ orbitalindeki anti- σ orbitaline doğru olduğu görülmektedir. Bunun dışında Oksijen atomlarındaki yalnız elektronların genel olarak C-C bağlarındaki orbitallerle π^* etkileşimleri yaptığı görülmektedir. Burada, LP2 (20) $\rightarrow \pi^*(C3-C4) = 15,48$ kcal/mol, LP2 (O22) $\rightarrow \pi^*(C5-C6) = 19,85$ kcal/mol, LP (O23) $\rightarrow \pi^*(C10-C11) = 15,67$ kcal/mol olduğu görülmektedir. Molekül içi $\pi \rightarrow \pi^*$ etkileşimlerine bakıldığında en önemli etkileşimlerin $\pi(C3-C4) \rightarrow \pi^*(C8-O21) = 17,29$ kcal/mol, $\pi(C1-C2) \rightarrow \pi^*(C3-C4) = 14,39$ kcal/mol, $\pi(C5-C6) \rightarrow \pi^*(C5-C6) = 12,45$ kcal/mol olduğu görülmektedir. Kararlılık enerjileri (E²) kuersetin Fe⁺² yapısı ile karşılaştırıldığında aynı bağlardaki etkileşimlerin hemen hemen yarısına eşit olduğu görülmektedir. Bu da kuersetin Co⁺² molekülünün kuersetin Fe⁺² molekülüne göre daha kararlı bir yapıda olduğunu göstermektedir.

Verici	Туре	ED/e	Alıcı	Туре	ED/e	E ² (kcalmol ⁻¹)	E _j -E _i (a,u)	F _{ij} (a,u)
C1-C2	σ	0,98541	C1-C6	σ*	0,01181	1,58	1,26	0,056
			C2-C3	σ^*	0,00896	1,13	1,28	0,048
			C2-H7	σ^*	0,00544	0,74	1,18	0,038
			C3-O20	σ^*	0,01390	2,30	1,07	0,063
			C6-H9	σ^*	0,00589	1,00	1,17	0,043
			O27-H28	σ^*	0,00386	1,01	1,14	0,043
	π	0,83323	C1-C2	π^*	0,20380	1,41	0,28	0,026
			C3-C4	π^*	0,24413	14,39	0,27	0,082
			C5-C6	π^*	0,18601	6,21	0,28	0,053
C1-C6	σ	0,98934	C1-C2	σ^*	0,01088	1,76	1,27	0,060
			C2-H7	σ*	0,00544	1,00	1,19	0,044
			C5-C6	σ*	0,01125	1,23	1,28	0,050
			C5-O22	σ*	0,00887	1,90	1,10	0,058
			C6-H9	σ*	0,00589	0,66	1,17	0,035
C1-O27	σ	0,99725	C1-C2	σ^*	0,01088	0,28	1,48	0,026
			C1-C6	σ^*	0,01181	0,32	1,47	0,028
			C2-C3	σ^*	0,00896	0,74	1,49	0,042
			C5-C6	σ*	0,01125	0,63	1,49	0,039
C2-C3	σ	0,98617	C1-C2	σ*	0,01088	1,05	1,27	0,046
			C1-O27	σ*	0,01085	1,79	1,06	0,055
			C2-H7	σ^*	0,00544	0,76	1,19	0,038
			C3-C4	σ*	0,01618	1,98	1,26	0,063
			C4-C8	σ*	0,02455	1,26	1,23	0,050
			C11-O20	σ*	0,01059	1,47	1,06	0,050
C2-H7	σ	0,98785	C1-C2	σ*	0,01088	0,59	1,08	0,032
			C1-C6	σ^*	0,01181	2,10	1,07	0,060
			C1-O27	σ*	0,01085	0,43	0,87	0,025

Tablo 12: Kuersetin Co⁺² molekülü NBO Analizi

			C2-C3	σ*	0,00896	0,58	1,09	0,032
			C3-C4	σ*	0,01618	2,24	1,07	0,062
			C3-O20	σ*	0,01390	0,43	0,89	0,025
C3-C4	σ	0,98564	C2-C3	σ*	0,00896	1,88	1,28	0,062
			C2-H7	σ*	0,00544	0,99	1,19	0,043
			C4-C5	σ*	0,01749	1,60	1,24	0,056
			C4-C8	σ*	0,02455	1,43	1,23	0,053
			C5-O22	σ*	0,00887	1,52	1,10	0,052
			C8-O21	σ*	0,00563	1,56	1,23	0,056
	π	0,81404	C1-C2	π^*	0,20380	6,23	0,28	0,054
			C3-C4	π^*	0,24413	1,66	0,28	0,028
			C5-C6	π^*	0,18601	12,45	0,29	0,076
			C8-O21	π^*	0,20990	17,29	0,26	0,086
C3-O20	σ	0,99505	C1-C2	σ*	0,01088	0,61	1,50	0,038
			C2-C3	σ*	0,00896	0,30	1,51	0,027
			C3-C4	σ*	0,01618	0,34	1,48	0,029
			C4-C5	σ*	0,01749	0,78	1,46	0,043
			C11-C12	σ*	0,01420	0,77	1,43	0,042
C4-C5	σ	0,98574	C3-C4	σ^*	0,01618	1,75	1,24	0,059
			C3-O20	σ^*	0,01390	1,91	1,06	0,057
			C4-C8	σ^*	0,02455	1,54	1,21	0,055
			C5-C6	σ^*	0,01125	1,50	1,27	0,055
			C6-H9	σ^*	0,00589	1,12	1,16	0,046
			C8-C10	σ*	0,03006	0,98	1,18	0,043
C4-C8	σ	0,98657	C2-C3	σ*	0,00896	1,34	1,27	0,052
			C3-C4	σ*	0,01618	1,57	1,24	0,056
			C4-C5	σ^*	0,01749	1,44	1,22	0,053
			C5-C6	σ^*	0,01125	1,09	1,27	0,047
			C8-C10	σ*	0,03006	0,72	1,18	0,037

			C8-O21	σ*	0,00563	0,56	1,22	0,033
			C10-O23	σ*	0,00822	1,21	1,06	0,045
C5-C6	σ	0,98747	C1-C6	σ*	0,01181	1,22	1,26	0,050
			C1-O27	σ*	0,01085	1,90	1,06	0,057
			C4-C5	σ*	0,01749	1,55	1,24	0,056
			C4-C8	σ^*	0,02455	1,42	1,23	0,053
			C5-O22	σ^*	0,00887	0,26	1,10	0,021
			C6-H9	σ^*	0,00589	0,77	1,17	0,038
			O22-H25	σ^*	0,02971	0,92	1,15	0,042
	π	0,84687	C1-C2	π^*	0,20380	13,98	0,28	0,081
			C3-C4	π^*	0,24413	6,07	0,27	0,054
			C5-C6	π^*	0,18601	1,23	0,28	0,024
C5-O22	σ	0,99710	C1-C6	σ*	0,01181	0,72	1,47	0,041
			C3-C4	σ*	0,01618	0,82	1,46	0,044
			C4-C5	σ*	0,01749	0,41	1,45	0,031
			C5-C6	σ*	0,01125	0,49	1,49	0,034
C6-H9	σ	0,98789	C1-C2	σ*	0,01088	2,04	1,09	0,060
			C1-C6	σ*	0,01181	0,43	1,08	0,027
			C1-O27	σ*	0,01085	0,35	0,88	0,022
			C4-C5	σ*	0,01749	2,19	1,06	0,061
			C5-C6	σ*	0,01125	0,59	1,10	0,032
			C5-O22	σ*	0,00887	0,35	0,92	0,023
C8-C10	σ	0,98889	C4-C5	σ*	0,03006	1,57	1,22	0,055
			C4-C8	σ*	0,02455	0,82	1,20	0,040
			C8-O21	σ*	0,00563	0,31	1,21	0,025
			C10-C11	σ*	0,01442	1,61	1,28	0,057
			C11-C12	σ*	0,01420	1,91	1,18	0,060
C8-O21	σ	0,99696	C3-C4	σ*	0,01618	0,70	1,55	0,042
			C4-C8	σ*	0,02455	0,89	1,52	0,047

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$									
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				C8-C10	σ*	0,03006	0,61	1,49	0,039
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				C10-C11	σ*	0,01442	0,75	1,59	0,044
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				O22-H25	σ^*	0,02971	0,28	1,45	0,026
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		π	0,98751	C3-C4	π^*	0,24413	2,07	0,37	0,040
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				C8-O21	π^*	0,20990	0,32	0,36	0,015
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				C10-C11	π^*	0,15911	2,58	0,39	0,043
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C10-C11	σ	0,98959	C8-C10	σ^*	0,03006	1,28	1,23	0,051
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				C8-O21	σ^*	0,00563	0,93	1,27	0,044
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				C10-O23	σ^*	0,00822	0,47	1,12	0,029
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				C11-C12	σ^*	0,01420	1,92	1,24	0,062
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				C12-C13	σ*	0,00964	0,80	1,31	0,041
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				O23-H26	σ^*	0,01617	0,79	1,19	0,039
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		π	0,88069	C8-O21	π^*	0,20990	12,59	0,28	0,079
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				C12-C13	π^*	0,22916	5,86	0,32	0,058
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C10-O23	σ	0,99576	C4-C8	σ*	0,02455	0,79	1,42	0,043
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				C8-C10	σ^*	0,03006	0,28	1,38	0,025
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				C10-C11	σ^*	0,01442	0,70	1,49	0,041
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				C11-O20	σ^*	0,01059	1,17	1,24	0,048
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C11-C12	σ	0,98640	C3-O20	σ^*	0,01420	1,49	1,03	0,050
C10-C11 σ^* 0,01442 1,71 1,26 0,02				C8-C10	σ^*	0,03006	1,20	1,15	0,047
				C10-C11	σ^*	0,01442	1,71	1,26	0,059
C12-C13 σ^* 0,00964 1,06 1,23 0,04				C12-C13	σ^*	0,00964	1,06	1,23	0,046
C12-C14 σ^* 0,01024 1,16 1,24 0,04				C12-C14	σ^*	0,01024	1,16	1,24	0,048
C13-C15 σ^* 0,01370 0,87 1,27 0,04				C13-C15	σ*	0,01370	0,87	1,27	0,042
C14-C17 σ^* 0,00631 0,92 1,27 0,04				C14-C17	σ*	0,00631	0,92	1,27	0,043
C11-O20 σ 0,99331 C2-C3 σ^* 0,00896 1,04 1,48 0,02	C11-O20	σ	0,99331	C2-C3	σ*	0,00896	1,04	1,48	0,050
C10-C11 σ^* 0,01442 0,35 1,50 0,07				C10-C11	σ*	0,01442	0,35	1,50	0,029
C10-O23 σ^* 0,00822 1,43 1,28 0,02				C10-O23	σ*	0,00822	1,43	1,28	0,054
<u>C12-C14</u> σ* 0,01024 0,86 1,48 0,04				C12-C14	σ*	0,01024	0,86	1,48	0,045

C12-C13	σ	0,98490	C10-C11	σ*	0,01442	1,34	1,26	0.052
		,	C11-C12	σ*	0,01420	1,00	1,16	0,043
			C12-C14	σ*	0,01024	1,78	1,24	0,060
			C13-C15	σ*	0,01370	1,23	1,27	0,050
			C13-H16	σ*	0,00681	0,65	1,16	0,035
			C14-H18	σ*	0,00799	1,01	1,19	0,044
			C15-O29	σ*	0,01164	2,41	1,04	0,063
	π	0,81768	C10-C11	π^*	0,15911	9,76	0,26	0,064
			C14-C17	π^*	0,17686	9,60	0,28	0,065
C12-C14	σ	0,98632	C11-C12	σ*	0,01420	1,28	1,16	0,049
			C11-O20	σ^*	0,01059	1,24	1,02	0,045
			C12-C13	σ*	0,00964	1,82	1,24	0,060
			C13-H16	σ^*	0,00681	1,06	1,17	0,045
			C14-C17	σ*	0,00631	1,15	1,27	0,048
			C14-H18	σ^*	0,00799	0,66	1,19	0,035
			C17-H30	σ*	0,00622	1,09	1,16	0,045
C13-C15	σ	0,98747	C11-C12	σ^*	0,01420	1,56	1,19	0,054
			C12-C13	σ*	0,00964	1,41	1,26	0,053
			C13-H16	σ^*	0,00681	0,70	1,19	0,037
			C15-C19	σ^*	0,02277	1,78	1,24	0,060
			C15-O29	σ^*	0,01164	0,35	1,07	0,024
			C19-O24	σ^*	0,01315	1,33	1,06	0,047
C13-H16	σ	0,98905	C12-C13	σ^*	0,00964	0,50	1,07	0,029
			C12-C14	σ^*	0,01024	1,89	1,08	0,057
			C13-C15	σ^*	0,01370	0,54	1,11	0,031
			C15-C19	σ^*	0,02277	2,22	1,05	0,061
			C15-O29	σ^*	0,01164	0,31	0,88	0,021
C14-C17	σ	0,98678	C11-C12	σ^*	0,01420	1,69	1,17	0,056
			C12-C14	σ*	0,01024	1,38	1,25	0,052
			C14 1110	_*	0.00700	0.62	1.20	0.025
---------	---	----------	----------	------------	---------	------	------	-------
			C14-H18	σ* -*	0,00/99	0,63	1,20	0,035
			C17-C19	Q.,	0,01456	1,51	1,27	0,051
			C1/-H30	σ*	0,00622	0,64	1,16	0,035
		0.000.01	C19-O24	σ*	0,01315	2,59	1,03	0,065
	π	0,83861	C12-C13	π^*	0,22916	9,43	0,27	0,066
C14-H18	σ	0,98936	C12-C13	σ*	0,00964	2,08	1,07	0,059
			C12-C14	σ*	0,01024	0,56	1,08	0,031
			C14-C17	σ^*	0,00631	0,51	1,10	0,030
			C17-C19	σ*	0,01456	1,88	1,09	0,057
C15-C19	σ	0,98960	C13-C15	σ*	0,01370	1,83	1,30	0,062
			C13-H16	σ*	0,00681	1,08	1,19	0,045
			C17-C19	σ*	0,01456	1,80	1,29	0,061
			C17-H30	σ*	0,00622	1,09	1,18	0,046
C15-O29	σ	0,99496	C12-C13	σ^*	0,00964	0,69	1,44	0,040
			C13-C15	σ*	0,01370	0,61	1,49	0,038
			C17-C19	σ*	0,01456	0,96	1,47	0,048
C17-C19	σ	0,98855	C14-C17	σ*	0,00631	1,21	1,29	0,050
			C14-H18	σ*	0,00799	0,99	1,22	0,044
			C15-C19	σ*	0,02277	1,70	1,24	0,058
			C15-O29	σ*	0,01164	1,33	1,07	0,048
			C17-H30	σ*	0,00622	0,62	1,19	0,034
			C19-O24	σ*	0,01315	0,34	1,06	0,024
C17-H30	σ	0,98957	C12-C14	σ*	0,01024	1,89	1,08	0,057
			C14-C17	σ*	0,00631	0,52	1,11	0,030
			C15-C19	σ*	0,02277	2,17	1,05	0,061
			C17-C19	σ*	0,01456	0,42	1.10	0.027
			C19-O24	σ*	0,01315	0,27	0,87	0,019
C19-O24	σ	0,99489	C13-C15	σ*	0,01370	0.97	1,49	0,048
		- ,	C14-C17	σ*	0.00631	0.56	1.48	0.037
				-	-,	- ,	-,	-,

		C17-C19	σ*	0,01456	0,48	1,48	0,034
σ	0,99345	C5-C6	σ*	0,01125	2,87	1,30	0,077
σ	0,99265	C8-C10	σ*	0,03006	0,29	1,20	0,024
		C10-C11	σ*	0,01442	3,24	1,31	0,083
σ	0,99459	C1-C2	σ^*	0,00386	2,32	1,31	0,070
LP1	0,50954	C12-C13	σ^*	0,00964	0,26	0,15	0,009
		C14-C17	σ*	0,00631	31,33	0,16	0,107
LP1	0,97916	C2-C3	σ*	0,00896	0,43	1,11	0,028
		C3-C4	σ^*	0,01618	3,45	1,09	0,077
		C10-C11	σ^*	0,01442	2,83	1,13	0,072
		C10-O23	σ*	0,00822	0,29	0,91	0,021
		C11-C12	σ*	0,01420	0,53	1,03	0,030
		C13-H16	σ*	0,00681	0,29	1,03	0,022
LP2	0,87479	C3-C4	π^*	0,24413	15,48	0,35	0,100
		C10-C11	π^*	0,15911	13,80	0,37	0,091
LP1	0,98198	C4-C8	σ*	0,02455	1,88	1,21	0,060
		C8-C10	σ*	0,03006	0,36	1,17	0,026
		O22-H25	σ*	0,02971	2,74	1,13	0,071
		O23-H26	σ*	0,01617	1,01	1,13	0,043
LP2	0,92799	C4-C8	σ*	0,02455	6,00	0,79	0,089
		C8-C10	σ*	0,03006	7,92	0,76	0,100
		O22-H25	σ*	0,02971	8,89	0,72	0,103
		O23-H26	σ*	0,01617	2,09	0,72	0,050
LP1	0,98693	C4-C5	σ*	0,01749	3,77	1,09	0,081
	0,90750	C5-C6	π^*	0,18601	19,85	0,33	0,107
LP1	0,98644	C8-C10	σ*	0,03006	2,64	1,07	0,068
		C14-H18	σ*	0,00799	1,48	1,11	0,051
LP2	0,93154	C10-C11	π^*	0,15911	15,67	0,34	0,096
LP1	0,98123	C15-C19	σ*	0,02277	2,47	1,17	0,068
	σ σ LP1 LP1 LP2 LP1 LP2 LP1 LP1 LP1 LP1 LP2 LP1	σ0,99345σ0,99265σ0,994590,50954LP10,97916LP20,87479LP10,98198LP20,92799LP10,986930,907500,90750LP10,98644LP20,93154LP10,98123	$ \begin{array}{ccccc} & C17-C19 \\ \sigma & 0,99345 & C5-C6 \\ \sigma & 0,99265 & C8-C10 \\ & C10-C11 \\ \sigma & 0,99459 & C1-C2 \\ LP1 & 0,50954 & C12-C13 \\ & C14-C17 \\ LP1 & 0,97916 & C2-C3 \\ & C3-C4 \\ & C10-C11 \\ C10-O23 \\ & C11-C12 \\ & C13-H16 \\ LP2 & 0,87479 & C3-C4 \\ & C10-C11 \\ LP1 & 0,98198 & C4-C8 \\ & C8-C10 \\ & O22-H25 \\ & O23-H26 \\ LP2 & 0,92799 & C4-C8 \\ & C8-C10 \\ & O22-H25 \\ & O23-H26 \\ LP1 & 0,98693 & C4-C5 \\ & 0,90750 & C5-C6 \\ LP1 & 0,98693 & C4-C5 \\ & 0,90750 & C5-C6 \\ LP1 & 0,98644 & C8-C10 \\ & C14-H18 \\ LP2 & 0,93154 & C10-C11 \\ LP1 & 0,98123 & C15-C19 \\ \end{array} $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

	LP2	0,88153	C15-C19	σ*	0,02277	1,07	1,05	0,044
			C17-C19	σ*	0,01456	3,86	1,09	0,087
O27	LP1	0,98978	C1-C6	σ*	0,01181	3,07	1,14	0,075
	LP2	0,92933	C1-C2	π^*	0,20380	15,23	0,35	0,098
O29	LP1	0,97092	C15-C19	σ*	0,02277	1,60	1,24	0,056
	LP3	0,83672	C13-C15	σ*	0,01370	4,15	1,00	0,088
			C15-C19	σ*	0,02277	2,06	0,94	0,060
Co31	LP1	0,99873	C13-C15	σ*	0,01370	0,03	0,91	0,006
			C17-C19	σ*	0,01456	0,03	0,89	0,006
			C19-O24	σ*	0,01315	0,11	0,66	0,011
	LP3	0,99508	C13-C15	σ*	0,01370	0,15	0,90	0,015
			C15-O29	σ*	0,01164	0,14	0,67	0,012
			C17-C19	σ*	0,01456	0,15	0,89	0,015
			C19-O24	σ*	0,01315	0,40	0,66	0,021

4.1.3 Kuersetin Cu⁺² Şelasyonu

Şekil 4.16: Kuersetin Cu⁺² molekülünün geometrik yapısı

Şekil 4.16 kuersetin molekülünün bakır (Cu⁺²) ile oluşturduğu yapı görülmektedir. Kuersetin Cu⁺² molekülü 33 atomdan oluşmaktadır. Kuersetinin bakır ile oluşturduğu yapıyla ilgili bağ uzunlukları ve bağ açıları sırasıyla Tablo 13 ve Tablo 14'te verilmiştir. Molekül 26 bağ uzunluğu ve 39 bağ açısı ile tanımlanmıştır. C-O, C=C, C-C bağları incelendiğinde deneysel sonuçlarla uyum içinde olduğu görülmektedir. Burada, C1-O27=1,36Å, C15-O29=1,35Å, C8=O21=1,26Å bağlarının deneysel sonuçlarla (Huheey, 1958), (Darwent, 1970), (Benson, 1965) eşit veya yakın değerlerde olduğu görülmektedir. (Deneysel sonuçlar: C-O=1,43Å, C=O=1,20Å C-C=1,54Å, C=C=1,34Å). Kuersetin Fe⁺² yapısı ile karşılaştırıldığında C15-O29 ve C19-O24 bağ uzunluklarının daha kısa çıkması, oksijen atomlarının bakır iyonu ile daha sıkı bir etkileşimde olması sonucunda C-O bağlarının da daha kuvvetli olmasının sonucudur. Oksijen ve bakır atomları arasındaki bağ uzunluklarının ise sırayla O24-Cu31=1,75Å ve O29-Cu31=1,83Å olduğu görülmektedir. Kuersetin Co⁺² yapısı ile karşılaştırıldığında bu yapının benzer özellikler gösterdiği görülmektedir.

C1-O27	1,363	C4-C8	1,433	C11-C12	1,465	C15-O29	1,353
C1-C2	1,397	C5-C6	1,391	C11-O20	1,376	C17-C19	1,391
C1-C6	1,406	C5-O22	1,343	C12-C13	1,417	C19-O24	1,370
C2-C3	1,392	C8-O21	1,264	C12-C14	1,415	O24-Cu31	1,753
C3-O20	1,359	C8-C10	1,451	C13-C15	1,389	O29-Cu31	1,831
C3-C4	1,408	C10-C11	1,374	C14-C17	1,395		
C4-C5	1,424	C10-O23	1,357	C15-C19	1,415		

Tablo 13: Kuersetin Cu⁺² Molekülü Bağ Uzunlukları

Tablo 14: Kuersetin Cu⁺² Molekülü Bağ Açıları

C2-C1-C6122,24C1-C6-C5119,43C12-C13-C15119,68C2-C1-O27116,49C4-C8-C10117,07C12-C14-C17120,48C6-C1-027121,26C4-C8-O21124,15C13-C15-C19119,69	
C2-C1-O27116,49C4-C8-C10117,07C12-C14-C17120,48C6-C1-027121,26C4-C8-O21124,15C13-C15-C19119,69	
C6-C1-027 121,26 C4-C8-O21 124,15 C13-C15-C19 119,69	
C1-C2-C3 117,60 C10-C8-O21 118,78 C13-C15-O29 124,39	
C2-C3-C4 122,20 C8-C10-C11 121,54 C19-C15-O29 115,92	
C2-C3-O20 117,45 C8-C10-O23 114,72 C14-C17-C19 119,16	
C4-C3-O20 120,35 C11-C10-O23 123,75 C15-C19-C17 121,27	
C3-C4-C5 118,71 C10-C11-C12 128,91 C15-C19-O24 114,99	
C3-C4-C8 119,17 C10-C11-O20 118,72 C17-C19-O24 123,74	
C5-C4-C8 122,12 C12-C11-O20 112,36 C3-O20-C11 123,15	
C4-C5-C6 119,82 C11-C12-C13 118,98 C19-O24-Cu31 109,50	
C4-C5-O22 120,27 C11-C12-C14 121,30 C15-O29-Cu31 107,29	
C6-C5-O22 119,91 C13-C12-C14 119,72 O24-Cu31-O29 92,30	

Tablo 15 incelendiğinde kuersetin Cu⁺² molekülü için hesaplanan HOMO ve LUMO değerleri sırasıyla E_{HOMO}=-4,21 eV, E_{LUMO}=-2,43 eV olarak elde edilmiştir. HOMO-LUMO enerji değerleri arasındaki fark ise Δ E=1,78 eV'tur. HOMO-LUMO enerji farkı kuersetin Fe⁺² yapısı ile karşılaştırıldığında daha büyük çıktığı görülmektedir. Bu da kuersetin Cu⁺² yapısının kuersetin Fe⁺² yapısına oranla daha kararlı olduğunu göstermektedir. HOMO-LUMO enerji değerlerinden yararlanarak elde edilen diğer elektriksel parametreler de Tablo 15'te yer almaktadır. Molekülün kimyasal sertlik ve kimyasal yumuşaklık değerleri incelendiğinde kimyasal sertlik değerinin daha yüksek olması molekülün reaktivitesinin düşük olduğunun bir kanıtıdır.

Şekil 4.17'de kuersetin Cu⁺² molekülünün HOMO-LUMO enerji diyagramı gösterilmiştir. LUMO orbitalinin C, B, A halkaları üzerinde ve simetrik bir yapıda olduğu görülürken, HOMO orbitalinin bakır atomu üzerinde yoğunlaştığı ve olası bir elektron transferinin bakır atomundan C, B, A halkalarına doğru olacağı görülmektedir. HOMO-LUMO enerji diyagramı kuersetin Fe⁺² ve kuersetin Cu⁺² ile karşılaştırıldığında benzer bir görünüm elde edilmektedir.

Molekül	Kuersetin Cu ⁺²
Multiplicity	1
HOMO (eV)	-4,21
LUMO (eV)	-2,43
$\Delta E (eV)$	1,78
I (eV)	4.21
A (eV)	2.43
χ (eV)	3.32
η (eV)	0.89
σ (1/eV)	1.13
μ (eV)	-3.32
ω (eV)	6.21

Tablo 15: Kuersetin Cu⁺² molekülü elektronik yapı parametreleri

Şekil 4.17: Kuersetin Cu^{+2} molekülünün HOMO-LUMO gösterimi

Şekil 4.18'de Kuersetin_Cu⁺² ESP haritası incelendiğinde elektrofilik bölgelerin Cu-O (Cu31-O29 ve Cu31-O24) bağlarının bulunduğu tarafta olduğu görülmektedir. Cu-O tarafındaki elektrofilik özellik değerleri Fe-O ve Co-O gruplarına oranla daha fazla olduğu gözlenmiştir.

Tablo 16'da NBO analizleri incelendiğinde en önemli etkileşimin LP1(C15) $\rightarrow \sigma^*(C12\text{-}C13) = 45,93$ kcal/mol ile karbon atomu orbitalindeki yalnız elektronun, C12-C13 bağ orbitalindeki anti- σ orbitaline doğru olduğu görülmektedir. Bunun dışında Oksijen atomlarındaki yalnız elektronların genel olarak C-C bağlarındaki orbitallerle π^* etkileşimleri yaptığı görülmektedir. Burada, LP2 (O20) $\rightarrow \pi^*(C3\text{-}C4) = 14,57$ kcal/mol, LP2 (O22) $\rightarrow \pi^*(C5\text{-}C6) = 19,86$ kcal/mol, LP(O23) $\rightarrow \pi^*(C10\text{-}C11) = 14,93$ kcal/mol olduğu görülmektedir. Molekül içi $\pi \rightarrow \pi^*$ etkileşimlerine bakıldığında en önemli etkileşimlerin $\pi(C3\text{-}C4) \rightarrow \pi^*(C8\text{-}O21) = 16,28$ kcal/mol, $\pi(C1\text{-}C2) \rightarrow \pi^*(C3\text{-}C4) = 14,35$ kcal/mol, $\pi(C5\text{-}C6) \rightarrow \pi^*(C1\text{-}C2) = 14,946$ kcal/mol, $\pi(C10\text{-}C11) \rightarrow \pi^*(C8\text{-}O21) = 15,55$ kcal/mol, $\pi(C3\text{-}C4) \rightarrow \pi^*(C5\text{-}C6) = 12,59$ kcal/mol olduğu görülmektedir. Kararlılık enerjileri (E²) kuersetin Fe⁺² yapısı ile karşılaştırıldığında aynı bağlardaki etkileşimlerin hemen hemen yarısına eşit olduğu görülmektedir. Bu da kuersetin Cu⁺² molekülünün kuersetin Fe⁺² molekülüne göre daha kararlı bir yapıda olduğunu göstermektedir. Kuersetin Co⁺² molekülü ile karşılaştırıldığında kararlılık enerjilerinin hemen hemen eşit çıktığı ve bu iki yapının birbirine benzer özellik gösterdiği görülmektedir.

Verici	Туре	ED/e	Alıcı	Туре	ED/e	E ² (kcalmol ⁻¹)	E _j -E _i (a.u)	F _{ij} (a.u)
C1-C2	σ	0,98534	C1-C6	σ*	0,01156	1,61	1,26	0,057
			C2-C3	σ^*	0,00882	1,13	1,28	0,048
			C2-H7	σ^*	0,00543	0,74	1,18	0,037
			C3-O20	σ^*	0,01392	2,32	1,05	0,062
			C6-H9	σ^*	0,00588	1,05	1,17	0,044
			O27-H28	σ^*	0,00367	0,94	1,14	0,042
	π	0,83081	C1-C2	π^*	0,20778	1,34	0,28	0,025
			C3-C4	π^*	0,24376	14,35	0,27	0,082
			C5-C6	π^*	0,19069	6,41	0,28	0,054
C1-C6	σ	0,98950	C1-C2	σ^*	0,01090	1,78	1,27	0,060
			C2-H7	σ^*	0,00543	0,99	1,19	0,044
			C5-C6	σ^*	0,01149	1,21	1,28	0,050
			C5-O22	σ^*	0,00881	1,83	1,10	0,057
			C6-H9	σ^*	0,00588	0,69	1,18	0,036
C1-O27	σ	0,99716	C1-C2	σ^*	0,01090	0,26	1,47	0,025
			C1-C6	σ^*	0,01156	0,32	1,47	0,028
			C2-C3	σ^*	0,00882	0,75	1,48	0,042
			C5-C6	σ^*	0,01149	0,66	1,47	0,039
C2-C3	σ	0,98616	C1-C2	σ*	0,01090	1,05	1,27	0,046
			C1-O27	σ*	0,01114	1,77	1,06	0,055
			C2-H7	σ^*	0,00543	0,76	1,19	0,038
			C3-C4	σ*	0,01598	2,02	1,26	0,064
			C4-C8	σ*	0,02445	1,30	1,21	0,050
			C11-O20	σ*	0,01130	1,40	1,04	0,048
C2-H7	σ	0,98783	C1-C2	σ*	0,01090	0,57	1,08	0,031
			C1-C6	σ^*	0,01156	2,05	1,08	0,059
			C1-O27	σ*	0,01114	0,43	0,86	0,024

Tablo 16: Kuersetin Cu⁺² molekülü NBO Analizi

			C2-C3	σ^*	0,00882	0,58	1,09	0,032
			C3-C4	σ^*	0,01598	2,25	1,07	0,062
			C3-O20	σ^*	0,01392	0,43	0,87	0,025
C3-C4	σ	0,98567	C2-C3	σ^*	0,00882	1,91	1,29	0,063
			C2-H7	σ^*	0,00543	0,98	1,19	0,043
			C4-C5	σ^*	0,01698	1,66	1,25	0,058
			C4-C8	σ^*	0,02445	1,39	1,21	0,052
			C5-O22	σ^*	0,00881	1,54	1,10	0,052
			C8-O21	σ^*	0,00607	1,47	1,20	0,053
	π	0,81425	C1-C2	π^*	0,20778	6,37	0,29	0,054
			C3-C4	π^*	0,24376	1,53	0,28	0,027
			C5-C6	π^*	0,19069	12,59	0,29	0,076
			C8-O21	π^*	0,22854	16,38	0,25	0,083
C3-O20	σ	0,99513	C1-C2	σ^*	0,01090	0,62	1,48	0,039
			C2-C3	σ^*	0,00882	0,27	1,50	0,025
			C3-C4	σ^*	0,01598	0,31	1,47	0,027
			C4-C5	σ^*	0,01698	0,78	1,46	0,043
			C11-C12	σ^*	0,01200	0,81	1,47	0,044
C4-C5	σ	0,98584	C3-C4	σ^*	0,01598	1,81	1,25	0,060
			C3-O20	σ^*	0,01392	1,97	1,05	0,057
			C4-C8	σ^*	0,02445	1,49	1,20	0,054
			C5-C6	σ^*	0,01149	1,48	1,27	0,055
			C6-H9	σ^*	0,00588	1,06	1,16	0,044
			C8-C10	σ*	0,02559	0,88	1,23	0,042
C4-C8	σ	0,98589	C2-C3	σ*	0,00882	1,32	1,26	0,052
			C3-C4	σ^*	0,01598	1,49	1,23	0,054
			C4-C5	σ^*	0,01698	1,43	1,22	0,053
			C5-C6	σ*	0,01149	1,16	1,25	0,048
			C8-C10	σ*	0,02559	0,89	1,22	0,042

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				C8-O21	σ*	0,00607	0,38	1,17	0,027
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				C10-O23	σ^*	0,00865	1,53	1,04	0,051
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	C5-C6	σ	0,98733	C1-C6	σ^*	0,01156	1,23	1,26	0,050
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				C1-O27	σ^*	0,01114	2,01	1,05	0,058
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				C4-C5	σ^*	0,01698	1,55	1,24	0,056
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				C4-C8	σ^*	0,02445	1,45	1,21	0,053
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				C5-O22	σ^*	0,00881	0,74	1,17	0,037
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				O22-H25	σ^*	0,03383	0,88	1,14	0,041
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		π	0,84088	C1-C2	π^*	0,20778	14,46	0,28	0,082
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				C3-C4	π^*	0,24376	6,38	0,27	0,055
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				C5-C6	π^*	0,19069	1,19	0,28	0,023
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C5-O22	σ	0,99702	C1-C6	σ^*	0,01156	0,70	1,47	0,041
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				C3-C4	σ^*	0,01598	0,86	1,46	0,045
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				C4-C5	σ^*	0,01698	0,41	1,45	0,031
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				C5-C6	σ^*	0,01149	0,46	1,47	0,033
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	C6-H9	σ	0,98790	C1-C2	σ^*	0,01090	2,07	1,09	0,060
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				C1-C6	σ^*	0,01156	0,46	1,09	0,028
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				C1-O27	σ^*	0,01114	0,35	0,87	0,022
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				C4-C5	σ^*	0,01698	2,15	1,07	0,061
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				C5-C6	σ^*	0,01149	0,55	1,09	0,031
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				C5-O22	σ^*	0,00881	0,34	0,92	0,022
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	C8-C10	σ	0,98989	C4-C5	σ^*	0,01698	1,43	1,26	0,054
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				C4-C8	σ^*	0,02445	1,00	1,22	0,044
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				C8-O21	σ^*	0,00607	0,36	1,20	0,026
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				C10-C11	σ^*	0,01577	1,69	1,27	0,059
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				C11-C12	σ^*	0,01200	1,52	1,26	0,055
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C8-O21	σ	0,99658	C3-C4	σ^*	0,01598	0,70	1,51	0,041
<u>C8-C10</u> σ* 0,02559 0,72 1,49 0,042				C4-C8	σ^*	0,02445	0,73	1,46	0,042
				C8-C10	σ*	0,02559	0,72	1,49	0,042

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				C10-C11	σ*	0,01577	0,97	1,51	0,049
$ \pi 0.98621 C3-C4 \qquad \pi^* 0.24376 \qquad 2.02 \qquad 0.37 \qquad 0.039 \\ C8-O21 \qquad \pi^* 0.00607 \qquad 0.38 \qquad 0.34 \qquad 0.016 \\ C10-C11 \qquad \pi^* 0.17586 \qquad 2.93 \qquad 0.37 \qquad 0.045 \\ C10-C11 \qquad \pi^* 0.02559 \qquad 1.46 \qquad 1.26 \qquad 0.055 \\ C8-O21 \qquad \sigma^* 0.0265 \qquad 0.31 \qquad 1.09 \qquad 0.023 \\ C10-O23 \qquad \sigma^* 0.00665 \qquad 0.31 \qquad 1.09 \qquad 0.023 \\ C11-C12 \qquad \sigma^* 0.01005 \qquad 1.09 \qquad 1.23 \qquad 0.046 \\ C12-C13 \qquad \sigma^* 0.01005 \qquad 1.09 \qquad 1.23 \qquad 0.046 \\ C23-H26 \qquad \sigma^* 0.01690 \qquad 0.76 \qquad 1.16 \qquad 0.038 \\ \pi 0.86178 \qquad C8-O21 \qquad \pi^* 0.22854 \qquad 15,55 \qquad 0.27 \qquad 0.085 \\ C12-C13 \qquad \pi^* 0.22854 \qquad 15,55 \qquad 0.27 \qquad 0.085 \\ C12-C13 \qquad \pi^* 0.02559 \qquad 0.36 \qquad 1.42 \qquad 0.026 \\ C10-O23 \qquad \sigma 0.99556 \qquad C4-C8 \qquad \sigma^* 0.02445 \qquad 0.95 \qquad 1.39 \qquad 0.046 \\ C8-C10 \qquad \sigma^* 0.02559 \qquad 0.36 \qquad 1.42 \qquad 0.029 \\ C10-C11 \qquad \sigma^* 0.01577 \qquad 0.54 \qquad 1.44 \qquad 0.035 \\ C10-C11 \qquad \sigma^* 0.01577 \qquad 1.3 \qquad 1.24 \qquad 0.047 \\ C11-C12 \qquad \sigma 0.98749 \qquad C3-O20 \qquad \sigma^* 0.01392 \qquad 1.27 \qquad 1.06 \qquad 0.046 \\ C8-C10 \qquad \sigma^* 0.01577 \qquad 1.8 \qquad 1.26 \qquad 0.047 \\ C12-C13 \qquad \sigma^* 0.01577 \qquad 1.8 \qquad 1.26 \qquad 0.047 \\ C12-C14 \qquad \sigma^* 0.01577 \qquad 1.8 \qquad 1.26 \qquad 0.047 \\ C11-C12 \qquad \sigma 0.98749 \qquad C3-O20 \qquad \sigma^* 0.01392 \qquad 1.27 \qquad 1.06 \qquad 0.046 \\ C8-C10 \qquad \sigma^* 0.01577 \qquad 1.80 \qquad 1.26 \qquad 0.060 \\ C12-C13 \qquad \sigma^* 0.01577 \qquad 1.80 \qquad 1.26 \qquad 0.060 \\ C12-C13 \qquad \sigma^* 0.01057 \qquad 1.06 \qquad 1.21 \qquad 0.045 \\ C12-C14 \qquad \sigma^* 0.01057 \qquad 1.06 \qquad 1.21 \qquad 0.045 \\ C12-C14 \qquad \sigma^* 0.0105 \qquad 1.06 \qquad 1.21 \qquad 0.045 \\ C12-C14 \qquad \sigma^* 0.0105 \qquad 1.06 \qquad 1.21 \qquad 0.045 \\ C12-C14 \qquad \sigma^* 0.0105 \qquad 1.06 \qquad 1.21 \qquad 0.045 \\ C12-C14 \qquad \sigma^* 0.0105 \qquad 1.06 \qquad 1.21 \qquad 0.045 \\ C12-C14 \qquad \sigma^* 0.0105 \qquad 1.06 \qquad 1.21 \qquad 0.045 \\ C12-C14 \qquad \sigma^* 0.0105 \qquad 1.06 \qquad 1.21 \qquad 0.045 \\ C12-C14 \qquad \sigma^* 0.0105 \qquad 1.06 \qquad 1.21 \qquad 0.045 \\ C12-C14 \qquad \sigma^* 0.00886 \qquad 0.89 \qquad 1.31 \qquad 0.043 \\ C11-O20 \qquad \sigma 0.99330 \qquad C2-C3 \qquad \sigma^* 0.00865 \qquad 1.28 \qquad 1.26 \qquad 0.051 \\ C12-C14 \qquad \sigma^* 0.00865 \qquad 1.28 \qquad 1.26 \qquad 0.051 \\ C12-C14 \qquad \sigma^* 0.00865 \qquad 1.28 \qquad 1.26 \qquad 0.051 \\ C12-C14 \qquad \sigma^* 0.00865 \qquad 1.28 \qquad 1.26 \qquad 0.051 \\ C12-C14 \qquad \sigma^* 0.00865 \qquad 1.28 \qquad 1.26 \qquad 0.051 \\ C12-C14 \qquad \sigma^* 0.00865 \qquad 1.28 \qquad 1.26 \qquad 0.051 \\ C12-C14 \qquad \sigma^* 0.00865 \qquad 1.28 \qquad 1.26 \qquad 0.051 \\ C12-C14 \qquad \sigma^* 0.00865$				O22-H25	σ^*	0,03383	0,39	1,40	0,030
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		π	0,98621	C3-C4	π^*	0,24376	2,02	0,37	0,039
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				C8-O21	π^*	0,00607	0,38	0,34	0,016
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				C10-C11	π^*	0,17586	2,93	0,37	0,045
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C10-C11	σ	0,98875	C8-C10	σ^*	0,02559	1,46	1,26	0,055
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				C8-O21	σ^*	0,00607	1,17	1,22	0,048
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				C10-O23	σ^*	0,00865	0,31	1,09	0,023
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				C11-C12	σ^*	0,01200	2,08	1,28	0,065
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				C12-C13	σ^*	0,01005	1,09	1,23	0,046
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				O23-H26	σ^*	0,01690	0,76	1,16	0,038
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		π	0,86178	C8-O21	π^*	0,22854	15,55	0,27	0,085
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				C12-C13	π^*	0,23959	7,18	0,30	0,062
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C10-O23	σ	0,99556	C4-C8	σ^*	0,02445	0,95	1,39	0,046
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				C8-C10	σ^*	0,02559	0,36	1,42	0,029
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				C10-C11	σ^*	0,01577	0,54	1,44	0,035
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				C11-O20	σ^*	0,01130	1,13	1,21	0,047
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C11-C12	σ	0,98749	C3-O20	σ^*	0,01392	1,27	1,06	0,046
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				C8-C10	σ^*	0,02559	1,03	1,24	0,045
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				C10-C11	σ^*	0,01577	1,80	1,26	0,060
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				C12-C13	σ^*	0,01005	1,06	1,21	0,045
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				C12-C14	σ^*	0,01019	1,61	1,27	0,057
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				C13-C15	σ^*	0,01207	0,51	1,33	0,033
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				C14-C17	σ*	0,00586	0,89	1,31	0,043
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C11-O20	σ	0,99330	C2-C3	σ^*	0,00882	1,03	1,47	0,049
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				C10-O23	σ^*	0,00865	1,28	1,26	0,051
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				C12-C14	σ^*	0,01019	1,07	1,45	0,050
C11-C12 σ^* 0,01200 0,96 1,18 0,043	C12-C13	σ	0,98259	C10-C11	σ^*	0,01577	1,73	1,18	0,057
				C11-C12	σ*	0,01200	0,96	1,18	0,043

			C12-C14	σ^*	0,01019	1,24	1,19	0,049
			C13-C15	σ^*	0,01207	0,98	1,26	0,045
			C13-H16	σ^*	0,00624	0,41	1,12	0,027
			C14-H18	σ^*	0,00943	1,01	1,13	0,043
			C15-O29	σ^*	0,01549	3,14	0,96	0,069
	π	0,80510	C10-C11	π^*	0,17586	13,14	0,25	0,072
			C14-C17	π^*	0,16163	10,61	0,27	0,069
C12-C14	σ	0,98623	C11-C12	σ^*	0,01200	1,74	1,22	0,058
			C11-O20	σ^*	0,01130	1,52	1,00	0,049
			C12-C13	σ^*	0,01005	1,33	1,17	0,050
			C13-H16	σ^*	0,00624	0,88	1,16	0,040
			C14-C17	σ^*	0,00586	1,29	1,28	0,051
			C14-H18	σ^*	0,00943	0,57	1,17	0,033
			C17-H30	σ^*	0,00599	1,01	1,16	0,043
C13-C15	σ	0,98850	C11-C12	σ^*	0,01200	1,31	1,27	0,052
			C12-C13	σ^*	0,01005	1,02	1,22	0,045
			C13-H16	σ^*	0,00624	0,85	1,21	0,041
			C15-C19	σ^*	0,01649	2,37	1,31	0,070
			C15-O29	σ^*	0,01549	0,31	1,04	0,023
			C19-O24	σ^*	0,01385	0,96	1,05	0,040
			O29-Cu31	σ^*	0,04402	0,95	0,69	0,033
C13-H16	σ	0,98997	C12-C13	σ^*	0,01005	0,27	1,02	0,021
			C12-C14	σ^*	0,01019	1,46	1,08	0,050
			C13-C15	σ^*	0,01207	0,83	1,14	0,039
			C15-C19	σ^*	0,01649	2,29	1,11	0,064
			C15-O29	σ^*	0,01549	0,31	0,84	0,021
C14-C17	σ	0,98677	C11-C12	σ^*	0,01200	1,41	1,24	0,053
			C12-C14	σ*	0,01019	1,53	1,25	0,055
			C14-H18	σ*	0,00943	0,63	1,19	0,035

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				C17-C19	σ^*	0,01468	1,14	1,24	0,048
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				C17-H30	σ^*	0,00599	0,70	1,18	0,036
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				C19-O24	σ^*	0,01385	3,03	1,02	0,070
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		π	0,85071	C12-C13	π^*	0,23959	8,16	0,26	0,062
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C14-H18	σ	0,98810	C12-C13	σ^*	0,01005	2,25	0,99	0,060
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				C12-C14	σ^*	0,01019	0,42	1,05	0,027
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				C14-C17	σ^*	0,00586	0,46	1,10	0,029
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				C17-C19	σ^*	0,01468	2,03	1,05	0,058
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C15-C19	σ	0,98999	C13-C15	σ^*	0,01207	2,56	1,35	0,074
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				C13-H16	σ^*	0,00624	1,11	1,21	0,046
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				C17-C19	σ^*	0,01468	1,80	1,28	0,061
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				C17-H30	σ^*	0,00599	1,07	1,21	0,046
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	C15-O29	σ	0,99268	C12-C13	σ^*	0,01005	0,78	1,33	0,041
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				C13-C15	σ^*	0,01207	0,37	1,46	0,029
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				C17-C19	σ^*	0,01468	1,41	1,38	0,056
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				C19-O24	σ^*	0,01385	0,34	1,16	0,025
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	C17-C19	σ	0,98842	C14-C17	σ^*	0,00586	0,97	1,29	0,045
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				C14-H18	σ^*	0,00943	1,16	1,18	0,047
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				C15-C19	σ^*	0,01649	1,70	1,27	0,059
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				C15-O29	σ^*	0,01549	1,25	1,01	0,045
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				C17-H30	σ^*	0,00599	0,58	1,17	0,033
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				C19-O24	σ^*	0,01385	0,29	1,02	0,022
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				O24-Cu31	σ^*	0,04762	1,06	0,66	0,034
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				O29-Cu31	σ^*	0,04402	0,27	0,66	0,017
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C17-H30	σ	0,99037	C12-C14	σ^*	0,01019	2,18	1,08	0,061
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				C14-C17	σ^*	0,00586	0,75	1,13	0,037
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				C15-C19	σ^*	0,01649	1,69	1,11	0,055
<u>C19-O24</u> σ 0,99397 C13-C15 σ* 0,01207 1,45 1,48 0,059				C17-C19	σ^*	0,01468	0,38	1,07	0,026
	C19-O24	σ	0,99397	C13-C15	σ*	0,01207	1,45	1,48	0,059

$\begin{array}{cccccccccccccccccccccccccccccccccccc$				C14-C17	σ*	0,00586	0,40	1,46	0,031
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				C15-C19	σ^*	0,01649	0,28	1,45	0,026
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				C15-O29	σ^*	0,01549	0,32	1,18	0,025
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				C17-C19	σ^*	0,01468	0,27	1,41	0,025
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	O22-H25	σ	0,99324	C5-C6	σ^*	0,01149	2,92	1,29	0,078
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O23-H26	σ	0,99265	C8-C10	σ^*	0,02559	0,25	1,25	0,023
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				C10-C11	σ^*	0,01577	3,22	1,27	0,081
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	O24-Cu31	σ	0,96180	C13-C15	σ^*	0,01207	0,28	1,04	0,022
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				C15-C19	σ^*	0,01649	1,46	1,01	0,049
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				C15-O29	σ^*	0,01549	0,37	0,74	0,021
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				C17-C19	σ^*	0,01468	3,25	0,97	0,072
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				O24-Cu31	σ^*	0,04762	0,61	0,39	0,020
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				O29-Cu31	σ^*	0,04402	5,24	0,39	0,057
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	O27-H28	σ	0,99464	C1-C2	σ^*	0,01090	2,30	1,30	0,069
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O29-Cu31	σ	0,96013	C13-C15	σ^*	0,01207	2,69	1,03	0,067
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				C15-C19	σ^*	0,01649	1,32	0,99	0,046
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				C17-C19	σ^*	0,01468	0,33	0,96	0,023
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				C19-O24	σ^*	0,01385	0,43	0,74	0,023
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				O24-Cu31	σ^*	0,04762	5,86	0,38	0,060
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				O29-Cu31	σ^*	0,04402	0,71	0,38	0,021
O20LP10,98006C14-C17 σ^* 0,005860,330,150,011O20LP10,98006C2-C3 σ^* 0,008820,371,120,026C3-C4 σ^* 0,015983,261,100,076	C15	LP1	0,51578	C12-C13	σ^*	0,01005	45,93	0,13	0,112
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				C14-C17	σ^*	0,00586	0,33	0,15	0,011
C3-C4 σ^* 0,01598 3,26 1,10 0,076	O20	LP1	0,98006	C2-C3	σ^*	0,00882	0,37	1,12	0,026
				C3-C4	σ^*	0,01598	3,26	1,10	0,076
C10-C11 σ^* 0,01577 2,77 1,10 0,070				C10-C11	σ^*	0,01577	2,77	1,10	0,070
C10-O23 σ^* 0,00865 0,28 0,91 0,020				C10-O23	σ^*	0,00865	0,28	0,91	0,020
C11-C12 σ^* 0,01200 0,38 1,09 0,026				C11-C12	σ^*	0,01200	0,38	1,09	0,026
C13-H16 σ^* 0,00624 0,32 1,03 0,023				C13-H16	σ^*	0,00624	0,32	1,03	0,023
LP2 0,87677 C3-C4 π* 0,24376 14,57 0,36 0,097		LP2	0,87677	C3-C4	π^*	0,24376	14,57	0,36	0,097

			C10-C11	π^*	0,17586	13,39	0,36	0,090
O21	LP1	0,98178	C4-C8	σ^*	0,02445	1,99	1,20	0,062
			C8-C10	σ^*	0,02559	0,33	1,23	0,025
			O22-H25	σ^*	0,03383	3,09	1,13	0,075
			O23-H26	σ^*	0,01690	1,13	1,13	0,045
	LP2	0,92795	C4-C8	σ^*	0,02445	5,22	0,78	0,082
			C8-C10	σ^*	0,02559	6,75	0,81	0,095
			C10-C11	σ^*	0,01577	0,26	0,82	0,019
			O22-H25	σ^*	0,03383	10,97	0,71	0,114
			O23-H26	σ^*	0,01690	2,12	0,71	0,050
O22	LP1	0,98698	C4-C5	σ^*	0,01698	3,66	1,10	0,080
	LP2	0,90619	C5-C6	π^*	0,19069	19,86	0,32	0,106
O23	LP1	0,98589	C8-C10	σ*	0,02559	2,48	1,13	0,067
			C14-H18	σ*	0,00943	2,05	1,09	0,060
	LP2	0,93296	C10-C11	π^*	0,17586	14,93	0,33	0,093
O24	LP1	0,96879	C15-C19	σ*	0,01649	1,19	1,32	0,050
			O24-Cu31	σ*	0,04762	0,43	0,70	0,022
			O29-Cu31	σ*	0,04402	1,71	0,70	0,044
O27	LP1	0,99002	C1-C6	σ*	0,01156	2,99	1,16	0,074
	LP2	0,93134	C1-C2	π^*	0,20778	14,69	0,34	0,097
O29	LP1	0,96795	C15-C19	σ*	0,01649	1,08	1,32	0,048
			O24-Cu31	σ*	0,04762	1,70	0,71	0,044
			O29-Cu31	σ*	0,04402	0,45	0,71	0,023
Cu31	LP4	0,99469	C15-O29	σ*	0,01549	0,34	0,69	0,019
			C19-O24	σ*	0,01385	0,34	0,70	0,020

4.2 LUTEOLİN

Şekil 4.19: Luteolin molekülünün geometrik yapısı

Şekil 4.19'da luteolin molekülünün atom numaraları belirlenmiş bir şekilde optimize edilmiş hali gösterilmiştir. Luteolin molekülü 31 atomdan oluşmaktadır. Molekülün bağ uzunluğu ve bağ açıları gibi optimize edilmiş yapısal parametreleri sırasıyla Tablo 17 ve Tablo 18'de verilmiştir. Luteolin molekülü 23 bağ uzunluğu ve 34 bağ açısı ile tanımlanmıştır. Bağ uzunlukları incelendiğinde elde edilen sonuçların deneysel verilerle uyumlu olduğu görülmektedir. C-O bağ uzunlukları incelendiğinde C1-O26=1,43Å, C15-O28=1,43Å, C8=O21=1,26Å bağlarının deneysel sonuçlarla (Huheey, 1958), (Darwent, 1970), (Benson, 1965) eşit veya yakın değerlerde olduğu görülmektedir. C-O=1,43Å, C=O=1,20Å, C-C=1,54Å, C=C=1,34Å)

Tablo 17: Luteolin Bağ Uzunluk	arı
--------------------------------	-----

C1-O26	1,430	C5-C6	1,394	C12-C14	1,413
C1-C2	1,395	C5-O22	1,345	C13-C15	1,392
C1-C6	1,400	C8-O21	1,263	C14-C17	1,386
C2-C3	1,395	C8-C10	1,447	C15-O28	1,430
C3-O20	1,363	C10-C11	1,374	C15-C19	1,394
C3-C4	1,407	C11-O20	1,371	C17-C19	1,406
C4-C5	1,424	C11-C12	1,464	C19-O23	1,359
C4-C8	1,440	C12-C13	1,410		

Tablo 18: Luteolin Bağ Açıları

C2-C1-C6122,25C6-C5-O22120,06C12-C13-C15120,99C2-C1-O26118,89C1-C6-C5119,62C12-C14-C17120,17C6-C1-026118,86C4-C8-C10117,05C13-C15-C19120,34C1-C2-C3117,84C4-C8-O21124,15C13-C15-O28120,97C2-C3-C4121,71C10-C8-O21118,80C19-C15-O28118,69C2-C3-O20117,67C8-C10-C11121,67C14-C17-C19121,07C4-C3-O20120,62C10-C11-C12128,61C15-C19-C17119,05C3-C4-C5119,15C10-C11-O20118,90C15-C19-O23120,07C3-C4-C8118,82C12-C11-O20112,50C17-C19-O23120,87C5-C4-C8122,03C11-C12-C13120,12C3-O20-C11122,92C4-C5-O22120,51C13-C12-C14118,37							
C2-C1-O26118,89C1-C6-C5119,62C12-C14-C17120,17C6-C1-026118,86C4-C8-C10117,05C13-C15-C19120,34C1-C2-C3117,84C4-C8-O21124,15C13-C15-O28120,97C2-C3-C4121,71C10-C8-O21118,80C19-C15-O28118,69C2-C3-O20117,67C8-C10-C11121,67C14-C17-C19121,07C4-C3-O20120,62C10-C11-C12128,61C15-C19-C17119,05C3-C4-C5119,15C10-C11-O20118,90C15-C19-O23120,07C3-C4-C8118,82C12-C11-O20112,50C17-C19-O23120,87C5-C4-C8122,03C11-C12-C13120,12C3-O20-C11122,92C4-C5-C6119,43C11-C12-C14121,51C3-O20-C11122,92C4-C5-O22120,51C13-C12-C14118,37C11-C12-C14C3-O20-C11	C2-C1-C6	122,25	C6-C5-O22	120,06	C12-C13-C15	120,99	
C6-C1-026118,86C4-C8-C10117,05C13-C15-C19120,34C1-C2-C3117,84C4-C8-O21124,15C13-C15-O28120,97C2-C3-C4121,71C10-C8-O21118,80C19-C15-O28118,69C2-C3-O20117,67C8-C10-C11121,67C14-C17-C19121,07C4-C3-O20120,62C10-C11-C12128,61C15-C19-C17119,05C3-C4-C5119,15C10-C11-O20118,90C15-C19-O23120,07C3-C4-C8118,82C12-C11-O20112,50C17-C19-O23120,87C5-C4-C8122,03C11-C12-C13120,12C3-O20-C11122,92C4-C5-O22120,51C13-C12-C14118,37	C2-C1-O26	118,89	C1-C6-C5	119,62	C12-C14-C17	120,17	
C1-C2-C3117,84C4-C8-O21124,15C13-C15-O28120,97C2-C3-C4121,71C10-C8-O21118,80C19-C15-O28118,69C2-C3-O20117,67C8-C10-C11121,67C14-C17-C19121,07C4-C3-O20120,62C10-C11-C12128,61C15-C19-C17119,05C3-C4-C5119,15C10-C11-O20118,90C15-C19-O23120,07C3-C4-C8118,82C12-C11-O20112,50C17-C19-O23120,87C5-C4-C8122,03C11-C12-C13120,12C3-O20-C11122,92C4-C5-C6119,43C11-C12-C14121,51C3-O20-C11122,92C4-C5-O22120,51C13-C12-C14118,37C11-C12-C14C3-O20-C11	C6-C1-026	118,86	C4-C8-C10	117,05	C13-C15-C19	120,34	
C2-C3-C4121,71C10-C8-O21118,80C19-C15-O28118,69C2-C3-O20117,67C8-C10-C11121,67C14-C17-C19121,07C4-C3-O20120,62C10-C11-C12128,61C15-C19-C17119,05C3-C4-C5119,15C10-C11-O20118,90C15-C19-O23120,07C3-C4-C8118,82C12-C11-O20112,50C17-C19-O23120,87C5-C4-C8122,03C11-C12-C13120,12C3-O20-C11122,92C4-C5-C6119,43C11-C12-C14121,51C1-C12-C14118,37	C1-C2-C3	117,84	C4-C8-O21	124,15	C13-C15-O28	120,97	
C2-C3-O20117,67C8-C10-C11121,67C14-C17-C19121,07C4-C3-O20120,62C10-C11-C12128,61C15-C19-C17119,05C3-C4-C5119,15C10-C11-O20118,90C15-C19-O23120,07C3-C4-C8118,82C12-C11-O20112,50C17-C19-O23120,87C5-C4-C8122,03C11-C12-C13120,12C3-O20-C11122,92C4-C5-C6119,43C11-C12-C14121,51C3-O20-C11122,92C4-C5-O22120,51C13-C12-C14118,37C11-C12-C14C3-O20-C11	C2-C3-C4	121,71	C10-C8-O21	118,80	C19-C15-O28	118,69	
C4-C3-O20120,62C10-C11-C12128,61C15-C19-C17119,05C3-C4-C5119,15C10-C11-O20118,90C15-C19-O23120,07C3-C4-C8118,82C12-C11-O20112,50C17-C19-O23120,87C5-C4-C8122,03C11-C12-C13120,12C3-O20-C11122,92C4-C5-C6119,43C11-C12-C14121,51C3-O20-C11122,92C4-C5-O22120,51C13-C12-C14118,37C11-C12-C14C3-O20-C11	C2-C3-O20	117,67	C8-C10-C11	121,67	C14-C17-C19	121,07	
C3-C4-C5119,15C10-C11-O20118,90C15-C19-O23120,07C3-C4-C8118,82C12-C11-O20112,50C17-C19-O23120,87C5-C4-C8122,03C11-C12-C13120,12C3-O20-C11122,92C4-C5-C6119,43C11-C12-C14121,51C13-C12-C14118,37	C4-C3-O20	120,62	C10-C11-C12	128,61	C15-C19-C17	119,05	
C3-C4-C8118,82C12-C11-O20112,50C17-C19-O23120,87C5-C4-C8122,03C11-C12-C13120,12C3-O20-C11122,92C4-C5-C6119,43C11-C12-C14121,51C13-C12-C14118,37	C3-C4-C5	119,15	C10-C11-O20	118,90	C15-C19-O23	120,07	
C5-C4-C8122,03C11-C12-C13120,12C3-O20-C11122,92C4-C5-C6119,43C11-C12-C14121,51C4-C5-O22120,51C13-C12-C14118,37	C3-C4-C8	118,82	C12-C11-O20	112,50	C17-C19-O23	120,87	
C4-C5-C6 119,43 C11-C12-C14 121,51 C4-C5-O22 120,51 C13-C12-C14 118,37	C5-C4-C8	122,03	C11-C12-C13	120,12	C3-O20-C11	122,92	
C4-C5-O22 120,51 C13-C12-C14 118,37	C4-C5-C6	119,43	C11-C12-C14	121,51			
	C4-C5-O22	120,51	C13-C12-C14	118,37			

Tablo 19 incelendiğinde luteolin molekülü için hesaplanan HOMO ve LUMO değerleri sırasıyla E_{HOMO} =-6,23 eV, E_{LUMO} =-2,13 eV olarak elde edilmiştir. HOMO-LUMO enerji değerleri arasındaki fark ise ΔE =4,10 eV'tur. HOMO-LUMO enerji farkının yüksek çıkması molekülün kararlı bir yapıda olduğunu göstermektedir. HOMO-LUMO enerji değerlerinden yararlanarak elde edilen diğer elektriksel parametreler de Tablo 19'de yer almaktadır. Burada kimyasal sertlik ve kimyasal yumuşaklık değerleri incelendiğinde kimyasal sertlik değerinin kimyasal yumuşaklık değerine göre daha büyük olması, yapıdaki elektron transferinin zor olacağını ve daha kararlı bir yapı olduğunu göstermektedir. Şekil 4.20'de luteolin için oluşturulan HOMO-LUMO diyagramı görülmektedir. Diyagram incelendiğinde HOMO ve LUMO'nun kendi içinde simetrik olarak dağılmakla beraber, HOMO elektronlarının halka üzerinde (C, B, A), LUMO elektronlarının ise daha çok C-O bağları üzerinde yoğunlaştığı görülmektedir.

Molekül	Luteolin
Multiplicity	1
HOMO (eV)	-6,23
LUMO (eV)	-2,13
$\Delta E (eV)$	4,10
I (eV)	6,23
A (eV)	2,13
χ (eV)	4,18
η (eV)	2,05
σ (eV)	0,49
μ (eV)	-4,18
ω (eV)	4,26

Tablo 19: Luteolin molekülü elektronik yapı parametreleri

Şekil 4.20: Luteolin molekülünün HOMO-LUMO gösterimi

Şekil 4.21'de Luteolin ESP haritası incelendiğinde elektrofilik bölgelerin O23-H25, O28-H29, O25-H27 gruplarında olduğu, nükleofilik bölgelerin ise O22-H24 grubu ve O21 atomu etrafında olduğu görülmektedir.

Tablo 20'de NBO analizleri incelendiğinde en önemli etkileşimlerin $\pi^*(C8-O21) \rightarrow \pi^*(C10-C11) = 139,04$ kcal/mol, $\pi^*(C17-C19) \rightarrow \pi^*(C12-C14) = 320,50$ kcal/mol, $\pi^*(C17-C19) \rightarrow \pi^*(C13-C15) = 275,48$ kcal/mol, anti- $\pi \rightarrow$ anti π orbitallerinde olduğu görülmektedir. $\pi^* \rightarrow \pi^*$ anti etkileşimlerinin haricinde $\sigma \rightarrow \sigma^*$ etkileşimlerine bakıldığında genel olarak O-H ve C-O bağ orbitallerinde olduğu görülmektedir. $\sigma(O22-H24) \rightarrow \sigma^*(C5-C6) = 5,96$ kcal/mol, $\sigma(O23-H25) \rightarrow \sigma^*(C15-C19) = 4,17$ kcal/mol, $\sigma(O26-H27) \rightarrow \sigma^*(C1-C2) = 4,65$ kcal/mol, $\sigma(O28-H29) \rightarrow \sigma^*(C13-C15) = 5,25$ kcal/mol $\sigma(C1-C2) \rightarrow \sigma^*(C3-O20) = 4,67$ kcal/mol, $\sigma(C14-C17) \rightarrow \sigma^*(C19-O23) = 4,83$ kcal/mol etkileşimleri olarak öne çıkmaktadır. Molekül içi $\pi \rightarrow \pi^*$ etkileşimlerine bakıldığında en önemli etkileşimlerin $\pi(C1-C2) \rightarrow \pi^*(C3-C4) = 29,58$ kcal/mol, $\pi(C3-C4) \rightarrow \pi^*(C5-C6) = 24,46$ kcal/mol, $\sigma(C3-C4) \rightarrow \pi^*(C8-O21) = 30,69$ kcal/mol, $\pi(C10-C11) \rightarrow \pi^*(C8-O21) = 25,04$ kcal/mol, olduğu görülmektedir. Yapıdaki LP (lone pair) orbitallerindeki elektronların ise π^* orbitallerine doğru

-8.483e-2

etkileşim gösterdiği bir diğer deyişle Oksijen atomlarındaki LP elektronlarının C-C bağlarındaki anti- π orbitallerine doğru etkileşim gösterdiği görülmektedir. Buradaki en önemli etkileşimler ise LP2 (O20) $\rightarrow \pi^*(C3-C4) = 28,10$ kcal/mol, LP2 (O20) $\rightarrow \pi^*(C10-C11) = 32,70$ kcal/mol, LP2 (O22) $\rightarrow \pi^*(C5-C6) = 41,17$ kcal/mol, LP2(O23) $\rightarrow \pi^*(C17-C19) = 26,15$ kcal/mol, LP2 (O26) $\rightarrow \pi^*(C1-C2) = 30,38$ kcal/mol, LP2 (O28) $\rightarrow \pi^*(C13-C15) = 28,68$ kcal/mol olarak öne çıkmaktadır.

Verici	Туре	ED/e	Alıcı	Туре	ED/e	E ² (kcalmol ⁻¹)	E _j -E _i (a.u)	F _{ij} (a.u)
C1-C2	σ	1,97029	C1-C6	σ*	0,02347	3,17	1,26	0,057
			C2-C3	σ^*	0,01769	2,30	1,28	0,049
			C2-H7	σ^*	0,01092	1,46	1,18	0,037
			C3-O20	σ^*	0,03003	4,67	1,05	0,062
			C6-H9	σ^*	0,01183	2,04	1,17	0,044
			O26-H27	σ^*	0,00773	2,02	1,14	0,043
	π	1,65276	C1-C2	π^*	0,41855	2,74	0,28	0,025
			C3-C4	π^*	0,47755	29,58	0,27	0,083
			C5-C6	π^*	0,38179	12,63	0,28	0,054
C1-C6	σ	1,97903	C1-C2	σ^*	0,02207	3,54	1,27	0,060
			C2-H7	σ^*	0,01092	1,99	1,19	0,044
			C5-C6	σ^*	0,02314	2,44	1,28	0,050
			C5-O22	σ^*	0,01742	3,63	1,11	0,057
			C6-H9	σ^*	0,01183	1,34	1,18	0,036
C1-O26	σ	1,99451	C1-C2	σ^*	0,02207	0,54	1,48	0,025
			C1-C6	σ^*	0,02347	0,68	1,48	0,029
			C2-C3	σ^*	0,01769	1,47	1,49	0,042
			C5-C6	σ^*	0,02314	1,28	1,49	0,039
C2-C3	σ	1,97281	C1-C2	σ*	0,02207	2,11	1,27	0,046
			C1-O26	σ*	0,02182	3,55	1,07	0,055
			C2-H7	σ^*	0,01092	1,56	1,19	0,039
			C3-C4	σ^*	0,03195	4,21	1,27	0,065
			C4-C8	σ*	0,05476	2,53	1,21	0,050
			C11-O20	σ*	0,02988	2,73	1,06	0,048
C2-H7	σ	1,97572	C1-C2	σ*	0,02207	1,14	1,08	0,031
			C1-C6	σ^*	0,02347	4,09	1,08	0,059
			C1-O26	σ*	0,02182	0,85	0,88	0,024

Tablo 20: Luteolin NBO Analizleri

$\begin{array}{cccccccccccccccccccccccccccccccccccc$				C2-C3	σ*	0,01769	1,21	1,10	0,033
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				C3-C4	σ^*	0,03195	4,57	1,07	0,063
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				C3-O20	σ^*	0,03003	0,92	0,86	0,025
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	C3-C4	σ	1,97251	C2-C3	σ^*	0,01769	4,01	1,29	0,064
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				C2-H7	σ*	0,01092	1,96	1,19	0,043
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				C4-C5	σ*	0,03438	3,13	1,25	0,056
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				C4-C8	σ*	0,05476	2,59	1,21	0,050
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				C5-O22	σ^*	0,01742	3,05	1,11	0,052
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				C8-O21	σ^*	0,01102	2,40	1,26	0,049
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		π	1,64301	C1-C2	π^*	0,41855	12,68	0,28	0,054
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				C3-C4	π^*	0,47755	3,26	0,28	0,028
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				C5-C6	π^*	0,38179	24,46	0,29	0,075
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				C8-O21	π^*	0,35227	30,69	0,27	0,081
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C3-O20	σ	1,98932	C1-C2	σ^*	0,02207	1,30	1,48	0,039
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				C3-C4	σ^*	0,03195	0,60	1,47	0,027
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				C4-C5	σ^*	0,03438	1,51	1,46	0,042
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				C11-C12	σ^*	0,03089	1,89	1,39	0,046
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	C4-C5	σ	1,97143	C3-C4	σ^*	0,03195	3,51	1,25	0,059
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				C3-O20	σ*	0,03003	4,11	1,04	0,058
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				C4-C8	σ*	0,05476	2,72	1,19	0,051
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				C5-C6	σ*	0,02314	2,96	1,26	0,055
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				C6-H9	σ*	0,01183	2,17	1,16	0,045
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				C8-C10	σ*	0,04540	1,72	1,19	0,041
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C4-C8	σ	1,97474	C2-C3	σ^*	0,01769	2,72	1,25	0,052
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				C3-C4	σ^*	0,03195	2,90	1,23	0,053
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				C4-C5	σ*	0,03438	2,71	1,21	0,051
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				C5-C6	σ^*	0,02314	2,31	1,24	0,048
<u>C8-O21</u> σ* 0,01102 0,69 1,22 0,026				C8-C10	σ^*	0,04540	1,12	1,17	0,033
				C8-O21	σ*	0,01102	0,69	1,22	0,026

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0,050 0,058 0,055 0,052 0,021 0,038
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0,058 0,055 0,052 0,021 0,038
C4-C5 σ^* 0,03438 3,06 1,24	0,055 0,052 0,021 0,038
	0,052 0,021 0,038
$C4-C8$ σ^{*} $0,054/6$ $2,/4$ $1,20$	0,021 0,038
C5-O22 σ* 0,01742 0,51 1,11	0.038
C6-H9 σ* 0,01183 1,50 1,17	,
O22-H24 σ* 0,07431 1,83 1,15	0,041
π 1,67486 C1-C2 π^* 0,41855 29,18 0,28	0,082
C3-C4 π^* 0,47755 12,60 0,27	0,054
C5-C6 π^* 0,38179 2,46 0,28	0,024
C5-O22 σ 1,99413 C1-C6 σ* 0,02347 1,43 1,47	0,041
C3-C4 σ* 0,03195 1,63 1,46	0,044
C4-C5 σ^* 0,03438 0,85 1,45	0,032
C5-C6 σ^* 0,02314 0,99 1,48	0,034
C6-H9 σ 1,97582 C1-C2 σ* 0,02207 4,16 1,08	0,060
C1-C6 σ^* 0,02347 0,89 1,08	0,028
C1-O26 σ^* 0,02182 0,70 0,88	0,022
C4-C5 σ^* 0,03438 4,35 1,06	0,061
C5-C6 σ^* 0,02314 1,13 1,10	0,031
C5-O22 σ^* 0,01742 0,71 0,93	0,023
C8-10 σ 1,97858 C4-C5 σ* 0,03438 2,95 1,21	0,054
C4-C8 σ^* 0,05476 1,28 1,17	0,035
C8-O21 σ^* 0,01102 0,87 1,22	0,029
C10-C11 σ^* 0,02165 2,57 1,28	0,051
C10-H31 σ* 0,01239 0,98 1,15	0,030
C11-C12 σ^* 0,03089 4,16 1,14	0,062
C8-O21 σ 1,99500 C3-C4 σ* 0,03195 1,41 1,56	0,042
<u>C4-C8</u> σ* 0,05476 1,32 1,50	0,040

			C8-C10	σ^*	0,04540	1,46	1,50	0,042
			C10-C11	σ*	0,02165	0,99	1,61	0,036
			O22-H24	σ*	0,07431	0,79	1,45	0,031
	π	1,97193	C3-C4	π^*	0,47755	4,46	0,37	0,041
			C10-C11	π^*	0,22973	5,13	0,38	0,041
C10-C11	σ	1,98169	C8-C10	σ*	0,04540	1,91	1,25	0,044
			C8-O21	σ*	0,01102	2,62	1,30	0,052
			C10-H31	σ*	0,01239	1,60	1,23	0,040
			C11-C12	σ*	0,03089	3,63	1,22	0,060
			C12-C13	σ*	0,01915	1,64	1,31	0,041
	π	1,80676	C8-O21	π^*	0,35227	25,04	0,20	0,080
			C10-C11	π^*	0,22973	2,09	0,31	0,023
			C12-C14	π^*	0,40841	8,84	0,31	0,049
C10-H31	σ	1,97137	C4-C8	σ*	0,05476	3,29	1,02	0,052
			C8-C10	σ*	0,04540	0,55	1,02	0,021
			C10-C11	σ*	0,02165	1,89	1,13	0,041
			C11-O20	σ^*	0,02988	7,62	0,87	0,073
C11-C12	σ	1,97203	C3-O20	σ*	0,03003	3,06	1,02	0,050
			C8-C10	σ*	0,04540	2,26	1,18	0,046
			C10-C11	σ^*	0,02165	3,32	1,29	0,058
			C12-C13	σ^*	0,01915	2,33	1,24	0,048
			C12-C14	σ^*	0,02097	2,24	1,24	0,047
			C13-C15	σ^*	0,02055	1,87	1,25	0,043
			C14-C17	σ*	0,01320	1,90	1,25	0,044
C11-O20	σ	1,98911	C2-C3	σ*	0,01769	1,94	1,51	0,048
			C10-C11	σ*	0,02165	0,91	1,54	0,033
			C10-H31	σ*	0,01239	1,37	1,41	0,039
			C12-C14	σ^*	0,02097	1,55	1,49	0,043
C12-C13	σ	1,97026	C10-C11	σ*	0,02165	2,10	1,30	0,047

			C11-C12	σ^*	0,03089	2,08	1,16	0,044
			C12-C14	σ^*	0,02097	3,80	1,25	0,062
			C13-C15	σ^*	0,02055	2,31	1,27	0,048
			C13-H16	σ^*	0,01231	1,39	1,18	0,036
			C14-H18	σ^*	0,01216	2,22	1,17	0,046
			C15-O28	σ^*	0,01903	3,93	1,05	0,057
C12-C14	σ	1,97231	C11-C12	σ^*	0,03089	2,46	1,16	0,048
			C11-O20	σ^*	0,02988	2,18	1,05	0,043
			C12-C13	σ^*	0,01915	3,77	1,26	0,062
			C13-H16	σ^*	0,01231	2,12	1,18	0,045
			C14-C17	σ^*	0,01320	2,52	1,27	0,051
			C14-H18	σ^*	0,01216	1,24	1,17	0,034
			C17-H30	σ^*	0,01211	2,33	1,15	0,046
	π	1,65904	C10-C11	π^*	0,22973	14,51	0,28	0,059
			C11-O20	σ^*	0,02988	0,69	0,60	0,020
			C13-C15	π^*	0,36021	19,24	0,28	0,066
			C17-C19	π^*	0,40396	19,45	0,27	0,066
C13-C15	σ	1,97361	C11-C12	σ^*	0,03089	3,27	1,18	0,056
			C12-C13	σ*	0,01915	2,83	1,27	0,054
			C13-H16	σ*	0,01231	1,26	1,20	0,035
			C15-C19	σ^*	0,03941	3,22	1,24	0,057
			C15-O28	σ*	0,01903	0,52	1,07	0,021
			C19-O23	σ*	0,02228	3,06	1,04	0,050
			O28-H29	σ^*	0,01252	1,84	1,16	0,041
	π	1,66263	C12-C14	π^*	0,40841	19,34	0,29	0,068
			C17-C19	π^*	0,40396	21,01	0,28	0,069
C13-H16	σ	1,97677	C12-C13	σ^*	0,01915	1,15	1,08	0,032
			C12-C14	σ^*	0,02097	4,08	1,08	0,059
			C13-C15	σ*	0,02055	1,00	1,10	0,030

			C15-C19	σ^*	0,03941	4,51	1,05	0,062
			C15-O28	σ^*	0,01903	0,84	0,88	0,024
C14-C17	σ	1,97454	C11-C12	σ^*	0,03089	3,33	1,17	0,056
			C12-C14	σ^*	0,02097	2,93	1,26	0,054
			C14-H18	σ^*	0,01216	1,24	1,18	0,034
			C17-C19	σ^*	0,02481	2,79	1,26	0,053
			C17-H30	σ^*	0,01211	1,41	1,15	0,036
			C19-O23	σ^*	0,02228	4,83	1,03	0,063
C14-H18	σ	1,98021	C12-C13	σ^*	0,01915	4,00	1,09	0,059
			C12-C14	σ^*	0,02097	1,05	1,09	0,030
			C14-C17	σ^*	0,01320	0,92	1,10	0,029
			C17-C19	σ^*	0,02481	3,80	1,09	0,057
C15-C19	σ	1,97462	C13-C15	σ^*	0,02055	3,24	1,30	0,058
			C13-H16	σ^*	0,01231	1,94	1,20	0,043
			C17-C19	σ^*	0,02481	3,27	1,28	0,058
			C17-H30	σ^*	0,01211	2,12	1,17	0,045
			O23-H25	σ^*	0,00775	2,03	1,15	0,043
C15-O28	σ	1,99375	C12-C13	σ^*	0,01915	1,49	1,47	0,042
			C13-C15	σ^*	0,02055	0,92	1,48	0,033
			C15-C19	σ^*	0,03941	0,65	1,44	0,027
			C17-C19	σ^*	0,02481	1,57	1,47	0,043
C17-C19	σ	1,97933	C14-C17	σ^*	0,01320	2,75	1,30	0,054
			C14-H18	σ^*	0,01216	2,06	1,20	0,044
			C15-C19	σ^*	0,03941	3,73	1,26	0,061
			C15-O28	σ^*	0,01903	3,15	1,08	0,052
			C17-H30	σ^*	0,01211	1,11	1,18	0,032
	π	1,68122	C12-C14	π^*	0,40841	19,44	0,30	0,070
			C13-C15	π^*	0,36021	18,03	0,30	0,066
C17-H30	σ	1,97830	C12-C14	σ*	0,02097	3,63	1,10	0,056

			C14-C17	σ^*	0,01320	1,08	1,11	0,031
			C15-C19	σ*	0,03941	4,30	1,07	0,061
			C17-C19	σ^*	0,02481	0,72	1,10	0,025
			C19-O23	σ*	0,02228	0,58	0,87	0,020
C19-O23	σ	1,99445	C13-C15	σ*	0,02055	1,73	1,49	0,046
			C14-C17	σ*	0,01320	1,14	1,49	0,037
			C17-C19	σ*	0,02481	0,91	1,48	0,033
O22-H24	σ	1,98645	C5-C6	σ*	0,02314	5,96	1,29	0,078
O23-H25	σ	1,98939	C15-C19	σ^*	0,03941	4,17	1,29	0,066
O26-H27	σ	1,98913	C1-C2	σ*	0,02207	4,65	1,30	0,070
O28-H29	σ	1,98838	C13-C15	σ*	0,02055	5,25	1,31	0,074
O20	LP1	1,96084	C2-C3	σ*	0,01769	0,74	1,13	0,026
			C3-C4	σ*	0,03195	6,37	1,10	0,075
			C10-C11	σ*	0,02165	5,98	1,16	0,075
			C11-C12	σ*	0,03089	1,08	1,02	0,030
	LP2	1,74604	C3-C4	π^*	0,47755	28,10	0,36	0,096
			C10-C11	π^*	0,22973	32,70	0,37	0,099
O21	LP1	1,96801	C4-C8	σ*	0,05476	5,70	1,14	0,072
			O22-H24	σ*	0,07431	4,84	1,08	0,065
	LP2	1,85950	C4-C8	σ*	0,05476	10,94	0,79	0,085
			C8-C10	σ*	0,04540	17,07	0,79	0,106
			O22-H24	σ*	0,07431	26,31	0,73	0,126
O22	LP1	1,97308	C4-C5	σ*	0,03438	7,58	1,09	0,081
	LP2	1,80650	C5-C6	π^*	0,38179	41,17	0,32	0,108
O23	LP1	1,97326	C15-C19	σ^*	0,03941	0,55	1,14	0,023
			C17-C19	σ^*	0,02481	6,40	1,17	0,077
			O28-H29	σ^*	0,01252	2,14	1,06	0,043
	LP2	1,88010	C17-C19	π^*	0,40396	26,15	0,36	0,093
O26	LP1	1,97953	C1-C6	σ*	0,02347	6,17	1,15	0,075

	LP2	1,85898	C1-C2	π^*	0,41855	30,38	0,34	0,098
O28	LP1	1,97660	C15-C19	σ*	0,03941	6,73	1,12	0,078
	LP2	1,86806	C13-C15	π^*	0,36021	28,68	0,34	0,094
C8-O21	π^*		C5-C6	π^*	0,38179	0,95	0,02	0,006
			C10-C11	π^*	0,22973	139,04	0,02	0,078
C17-C19	π^*		C12-C14	π^*	0,40841	320,50	0,01	0,082
			C13-C15	π^*	0,36021	275,48	0,01	0,083

4.2.1 Luteolin Fe⁺² Şelasyonu

Şekil 4.22: Luteolin Fe⁺² molekülünün geometrik yapısı

Şekil 4.22'de luteolin Fe^{+2} molekülünün atom numaraları belirlenmiş bir şekilde optimize edilmiş hali gösterilmiştir. Luteolin Fe^{+2} molekülü 32 atomdan oluşmaktadır.

Molekülün bağ uzunluğu ve bağ açıları gibi optimize edilmiş yapısal parametreleri sırasıyla Tablo 21 ve Tablo 22'de verilmiştir. Luteolin Fe⁺² molekülü 25 bağ uzunluğu ve 37 bağ açısı ile tanımlanmıştır. Bağ uzunlukları incelendiğinde elde edilen sonuçların deneysel verilerle uyumlu olduğu görülmektedir. C-O bağ uzunlukları incelendiğinde C1-O25=1,43Å, C8=O21=1,26Å bağlarının deneysel sonuçlarla (Huheey, 1958), (Darwent, 1970), (Benson, 1965) eşit veya yakın değerlerde olduğu görülmektedir. (Deneysel sonuçlar: C-O=1,43Å, C=O=1,20Å, C-C=1,54Å, C=C=1,34Å). C15-O27=1,58Å, C19-O23=1,58Å bağ uzunluklarının ise Fe⁺² iyonunun etkisiyle daha uzun olduğu görülmektedir. Demir iyonunun oksijen atomları ile oluşturduğu bağ uzunluğu ise birbirine eşit ve 2,57Å olarak hesaplanmıştır.

C1-O25	1,430	C5-O22	1,301	C14-C17	1,398	
C1-C2	1,402	C8-O21	1,258	C15-O27	1,579	
C1-C6	1,402	C8-C10	1,393	C15-C19	1,625	
C2-C3	1,402	C10-C11	1,363	C17-C19	1,405	
C3-O20	1,439	C11-O20	1,446	C19-O23	1,579	
C3-C4	1,394	C11-C12	1,540	O23-Fe30	2,570	
C4-C5	1,400	C12-C13	1,398	O27-Fe30	2,570	
C4-C8	1,523	C12-C14	1,394			
C5-C6	1,401	C13-C15	1,405			

Tablo 21: Luteolin Fe⁺² Bağ Uzunlukları

Tablo 22: Luteolin Fe⁺² Bağ Açıları

C2-C1-C6	120,02	C1-C6-C5	119,86	C13-C15-C19	115,99
C2-C1-O25	119,99	C4-C8-C10	118,04	C13-C15-O27	110,72
C6-C1-O25	119,99	C4-C8-O21	120,98	C19-C15-O27	133,29
C1-C2-C3	120,02	C10-C8-O21	120,98	C14-C17-C19	122,40
C2-C3-C4	119,59	C8-C10-C11	120,55	C15-C19-C17	115,99
C2-C3-O20	119,62	C10-C11-C12	118,63	C15-C19-O23	133,29
C4-C3-O20	120,79	C10-C11-O20	122,75	C17-C19-O23	110,72
C3-C4-C5	120,61	C12-C11-O20	118,61	C3-O20-C11	115,34
C3-C4-C8	118,50	C11-C12-C13	119,23	C19-C23-Fe30	89,20
C5-C4-C8	120,88	C11-C12-C14	119,23	C15-C27-Fe30	89,20
C4-C5-C6	119,71	C13-C12-C14	121,53	O23-Fe30-O27	95,02
C4-C5-O22	120,14	C12-C13-C15	122,49		
C6-C5-O22	120,14	C12-C14-C17	121,53		

Tablo 23 incelendiğinde $E_{HOMO} = -3,81$ eV ve $E_{LUMO} = -2,67$ eV ve $\Delta E = 1,14$ eV olduğu görülmektedir. Luteolin Fe⁺², HOMO-LUMO şekilleri (Şekil 4.23) incelendiğinde HOMO yerleşiminin demir atomu üzerinde ve LUMO yerleşiminin C, B, A halkaları üzerinde yoğunlaştığı görülmektedir. Dolayısıyla olası bir elektron transferinin demir atomundan C, B, A halkalarına doğru olacağı görülmektedir. Molekülün kimyasal sertlik ve kimyasal yumuşaklık değerleri incelendiğinde, kimyasal sertlik değerinin kimyasal yumuşaklık değerinden küçük olması molekülün kararlılığının daha az olduğu ve yük transferlerinin daha kolay olabileceğini göstermektedir.

Molekül	Luteolin Fe ⁺²
Multiplicity	1
HOMO (eV)	-3,81
LUMO (eV)	-2,67
$\Delta E (eV)$	1,14
I (eV)	3,81
A (eV)	2,67
χ (eV)	3,24
η (eV)	0,57
σ (1/eV)	1,76
μ (eV)	-3,24
ω (eV)	2,98

Tablo 23: Luteolin Fe⁺² molekülü elektronik yapı parametreleri

Şekil 4.23: Luteolin Fe⁺² molekülünün HOMO-LUMO gösterimi

Şekil 4.24 incelendiğinde O25-H26 bağı tarafında artı potansiyelde bulunan bölgeler olduğu görülmektedir. Bu bölgelerde elektrofilik özellik görülürken, O22-H24 ve O21 atom grup ve gruplarında nükleofilik özellik görülmektedir.

Tablo 24'te NBO analizleri incelendiğinde en önemli etkileşimlerin $\pi^*(C8-O21) \rightarrow \pi^*(C10-C11) = 139,04$ kcal/mol, anti- $\pi \rightarrow$ anti π orbitallerinde olduğu görülmektedir. $\pi^* \rightarrow \pi^*$ anti etkileşimlerinin haricinde $\sigma \rightarrow \sigma^*$ etkileşimlerine bakıldığında genel olarak O-H ve C-O bağ orbitallerinde olduğu görülmektedir. $\sigma(O22-H24) \rightarrow \sigma^*(C5-C6) = 6,00$ kcal/mol, $\sigma(O25-H26) \rightarrow \sigma^*(C1-C2) = 6,00$ kcal/mol, $\sigma(C10-H29) \rightarrow \sigma^*(C11-O20) = 7,52$ kcal/mol, $\sigma(C12-C13) \rightarrow \sigma^*(C15-O27) = 5,06$ kcal/mol etkileşimleri olarak öne çıkmaktadır. Molekül içi $\pi \rightarrow \pi^*$ etkileşimlerine bakıldığında en önemli etkileşimlerin $\pi(C1-C2) \rightarrow \pi^*(C3-C4) = 29,20$ kcal/mol, $\pi(C3-C4) \rightarrow \pi^*(C5-C6) = 24,63$ kcal/mol, $\pi(C3-C4) \rightarrow \pi^*(C8-O21) = 30,39$ kcal/mol, $\pi(C10-C11) \rightarrow \pi^*(C8-O21) = 26,07$ kcal/mol, $\pi(C5-C6) \rightarrow \pi^*(C1-C2) = 29,30$ kcal/mol olduğu görülmektedir. Yapıdaki LP (lone pair) orbitallerindeki elektronların ise π^* orbitallerine doğru etkileşim gösterdiği bir diğer deyişle Oksijen atomlarındaki LP elektronlarının C-C bağlarındaki anti- π orbitallerine doğru etkileşim gösterdiği
görülmektedir. Buradaki en önemli etkileşimler ise LP2 (O20) $\rightarrow \pi^*(C3-C4) = 28,34$ kcal/mol, LP2 (O20) $\rightarrow \pi^*(C10-C11) = 32,74$ kcal/mol, LP2 (O22) $\rightarrow \pi^*(C5-C6) = 41,23$ kcal/mol, LP2 (O23) $\rightarrow \pi^*(C17-C19) = 39,27$ kcal/mol, LP2 (O25) $\rightarrow \pi^*(C1-C2) = 30,06$ kcal/mol, LP2 (O27) $\rightarrow \pi^*(C13-C15) = 29,62$ kcal/mol olarak öne çıkmaktadır.

Verici	Туре	ED/e	Alıcı	Туре	ED/e	E ² (kcalmol ⁻¹)	E_j - E_i (a.u)	F _{ij} (a.u)
C1-C2	σ	1,97035	C1-C6	σ^*	0,02341	3,21	1,26	0,057
			C2-C3	σ^*	0,01782	2,31	1,28	0,049
			C2-H7	σ^*	0,01101	1,47	1,18	0,037
			C3-O20	σ^*	0,02979	4,64	1,05	0,062
			C6-H9	σ^*	0,01189	2,05	1,17	0,044
			O25-H26	σ^*	0,00775	2,02	1,14	0,043
	π	1,65772	C1-C2	π^*	0,41962	2,72	0,28	0,025
			C3-C4	π^*	0,47373	29,20	0,27	0,083
			C5-C6	π^*	0,38475	12,53	0,28	0,054
C1-C6	σ	1,97899	C1-C2	σ^*	0,02204	3,57	1,27	0,060
			C2-H7	σ^*	0,01101	2,01	1,19	0,044
			C5-C6	σ^*	0,02325	2,45	1,28	0,050
			C5-O22	σ^*	0,01743	3,63	1,11	0,057
			C6-H9	σ^*	0,01189	1,34	1,17	0,036
C1-O25	σ	1,9951	C1-C2	σ^*	0,02204	0,53	1,48	0,025
			C1-C6	σ^*	0,02341	0,68	1,48	0,028
			C2-C3	σ^*	0,01782	1,47	1,49	0,042
			C5-C6	σ^*	0,02325	1,28	1,49	0,039
C2-C3	σ	1,97273	C1-C2	σ^*	0,02204	2,12	1,27	0,046
			C1-O25	σ^*	0,02196	3,57	1,06	0,055
			C2-H7	σ^*	0,01101	1,56	1,19	0,039
			C3-C4	σ^*	0,03196	4,20	1,27	0,065
			C4-C8	σ^*	0,05482	2,52	1,21	0,050
			C11-O20	σ^*	0,02951	2,74	1,06	0,048
C2-H7	σ	1,97590	C1-C2	σ^*	0,02204	1,14	1,08	0,031
			C1-C6	σ*	0,02341	4,09	1,08	0,059
			C1-O25	σ*	0,02196	0,85	0,87	0,024

 Tablo 24: Luteolin Fe⁺² NBO Analizleri

			C2-C3	σ*	0,01782	1,20	1,10	0,032
			C3-C4	σ*	0,03196	4,53	1,08	0,062
			C3-O20	σ*	0,02979	0,91	0,87	0,025
C3-C4	σ	1,97244	C2-C3	σ*	0,01782	4,01	1,29	0,064
			C2-H7	σ*	0,01101	1,97	1,19	0,043
			C4-C5	σ*	0,03431	3,15	1,25	0,056
			C4-C8	σ*	0,05482	2,59	1,21	0,050
			C5-O22	σ*	0,01743	3,05	1,11	0,052
			C8-O21	σ*	0,01110	2,37	1,26	0,049
	π	1,64499	C1-C2	π^*	0,41962	12,71	0,28	0,054
			C3-C4	π^*	0,47373	3,29	0,28	0,028
			C5-C6	π^*	0,38475	24,63	0,29	0,076
			C8-O21	π^*	0,35967	30,39	0,27	0,081
C3-O20	σ	1,98946	C1-C2	σ*	0,02204	1,30	1,48	0,039
			C3-C4	σ*	0,03196	0,63	1,47	0,027
			C4-C5	σ*	0,03431	1,52	1,46	0,042
			C11-C12	σ*	0,03029	1,83	1,40	0,045
C4-C5	σ	1,97148	C3-C4	σ*	0,03196	3,53	1,25	0,059
			C3-O20	σ*	0,02979	4,11	1,04	0,058
			C4-C8	σ*	0,05482	2,71	1,19	0,051
			C5-C6	σ*	0,02325	2,97	1,26	0,055
			C6-H9	σ*	0,01189	2,18	1,16	0,045
			C8-C10	σ*	0,04457	1,69	1,20	0,040
C4-C8	σ	1,97453	C2-C3	σ*	0,01782	2,75	1,25	0,052
			C3-C4	σ*	0,03196	2,91	1,23	0,053
			C4-C5	σ*	0,03431	2,71	1,21	0,051
			C5-C6	σ*	0,02325	2,33	1,24	0,048
			C8-C10	σ*	0,04457	1,15	1,18	0,033
			C8-O21	σ*	0,0111 <u></u> 0	0,66	1,22	0,025

			C10-H29	σ*	0,01262	1,99	1,15	0,043	
C5-C6	σ	1,97506	C1-C6	σ*	0,02341	2,47	1,26	0,050	
			C1-O25	σ^*	0,02196	3,96	1,06	0,058	
			C4-C5	σ*	0,03431	3,06	1,24	0,055	
			C4-C8	σ*	0,05482	2,74	1,20	0,052	
			C5-O22	σ*	0,01743	0,50	1,11	0,021	
			C6-H9	σ*	0,01189	1,50	1,17	0,038	
			O22-H24	σ^*	0,07645	1,83	1,14	0,041	
	π	1,67523	C1-C2	π^*	0,41962	29,30	0,28	0,082	
			C3-C4	π^*	0,47373	12,55	0,27	0,054	
			C5-C6	π^*	0,38475	2,44	0,28	0,024	
C5-O22	σ	1,99413	C1-C6	σ*	0,02341	1,42	1,47	0,041	
			C3-C4	σ*	0,03196	1,63	1,47	0,044	
			C4-C5	σ*	0,03431	0,86	1,45	0,032	
			C5-C6	σ*	0,02325	0,99	1,48	0,034	
C6-H9	σ	1,97590	C1-C2	σ*	0,02204	4,15	1,08	0,060	
			C1-C6	σ*	0,02341	0,89	1,08	0,028	
			C1-O25	σ*	0,02196	0,70	0,88	0,022	
			C4-C5	σ*	0,03431	4,32	1,06	0,061	
			C5-C6	σ*	0,02325	1,12	1,10	0,031	
			C5-O22	σ*	0,01743	0,70	0,93	0,023	
C8-10	σ	1,97866	C4-C5	σ*	0,03431	2,95	1,21	0,054	
			C4-C8	σ*	0,05482	1,32	1,17	0,035	
			C8-O21	σ*	0,01110	0,90	1,22	0,030	
			C10-C11	σ*	0,02168	2,60	1,28	0,052	
			C10-H29	σ*	0,01262	1,02	1,16	0,031	
			C11-C12	σ*	0,03029	4,11	1,15	0,062	
C8-O21	σ	1,99497	C3-C4	σ*	0,03196	1,42	1,56	0,042	
			C4-C8	σ*	0,05482	1,28	1,50	0,040	

			C8-C10	σ*	0,04457	1,50	1,51	0,043
			C10-C11	σ*	0,02168	1,01	1,61	0,036
			O22-H24	σ^*	0,07645	0,84	1,44	0,032
	π	1,97237	C3-C4	π^*	0,47373	4,44	0,37	0,041
			C8-O21	π^*	0,35967	0,51	0,36	0,013
			C10-C11	π^*	0,24539	5,04	0,38	0,041
C10-C11	σ	1,98150	C8-C10	σ^*	0,04457	1,96	1,25	0,044
			C8-O21	σ*	0,01110	2,66	1,29	0,052
			C10-H29	σ^*	0,01262	1,60	1,23	0,040
			C11-C12	σ^*	0,03029	3,72	1,22	0,060
			C12-C13	σ^*	0,01939	1,69	1,30	0,042
	π	1,79964	C8-O21	π^*	0,35967	26,07	0,29	0,081
			C10-C11	π^*	0,24539	2,34	0,31	0,024
			C12-C14	π^*	0,42623	8,69	0,30	0,049
C10-H29	σ	1,97111	C4-C8	σ*	0,05482	3,37	1,02	0,053
			C8-C10	σ^*	0,04457	0,57	1,03	0,022
			C10-C11	σ^*	0,02168	1,88	1,13	0,041
			C11-O20	σ^*	0,02951	7,52	0,87	0,072
C11-C12	σ	1,97230	C3-O20	σ*	0,02979	3,05	1,02	0,050
			C8-C10	σ*	0,04457	2,21	1,18	0,046
			C10-C11	σ*	0,02168	3,41	1,28	0,059
			C12-C13	σ^*	0,01939	2,34	1,24	0,048
			C12-C14	σ^*	0,02101	2,27	1,23	0,047
			C13-C15	σ^*	0,02692	1,71	1,26	0,042
			C14-C17	σ^*	0,01174	1,85	1,26	0,043
C11-O20	σ	1,98911	C2-C3	σ*	0,01782	1,96	1,50	0,048
			C10-C11	σ*	0,02168	0,85	1,53	0,032
			C10-H29	σ*	0,01262	1,37	1,41	0,039
			C12-C14	σ*	0,02101	1,67	1,48	0,044

C12-C13	σ	1,96853	C10-C11	σ*	0,02168	2,23	1,29	0,048
			C11-C12	σ^*	0,03029	2,09	1,16	0,044
			C12-C14	σ^*	0,02101	3,60	1,24	0,060
			C13-C15	σ*	0,02692	2,48	1,27	0,050
			C13-H16	σ*	0,01351	1,31	1,17	0,035
			C14-H18	σ*	0,01229	2,05	1,16	0,044
			C15-O27	σ*	0,02763	5,06	1,03	0,065
C12-C14	σ	1,97273	C11-C12	σ*	0,03029	2,52	1,17	0,048
			C11-O20	σ*	0,02951	2,26	1,04	0,043
			C12-C13	σ*	0,01939	3,66	1,25	0,060
			C13-H16	σ*	0,01351	2,22	1,17	0,046
			C14-C17	σ*	0,01174	2,47	1,27	0,050
			C14-H18	σ*	0,01229	1,13	1,17	0,032
			C17-H28	σ*	0,01253	2,14	1,16	0,045
	π	1,64586	C10-C11	π^*	0,24539	16,81	0,28	0,063
			C12-C14	π^*	0,42623	0,55	0,27	0,011
			C13-C15	π^*	0,36034	21,02	0,28	0,068
			C17-C19	π^*	0,39259	16,72	0,28	0,061
C13-C15	σ	1,97650	C11-C12	σ*	0,03029	3,38	1,19	0,057
			C12-C13	σ*	0,01939	2,81	1,27	0,053
			C13-H16	σ*	0,01351	1,39	1,19	0,036
			C15-C19	σ*	0,04512	3,35	1,24	0,058
			C15-O27	σ*	0,02763	0,62	1,06	0,023
			C19-O23	σ*	0,02272	2,23	1,11	0,045
	π	1,68464	C12-C14	π^*	0,42623	16,47	0,29	0,063
			C17-C19	π^*	0,39259	20,11	0,29	0,069
C13-H16	σ	1,97781	C12-C13	σ*	0,01939	1,07	1,08	0,030
			C12-C14	σ*	0,02101	3,88	1,08	0,058
			C13-C15	σ*	0,02692	1,06	1,11	0,031

			C15-C19	σ*	0,04512	4,53	1,05	0,062
			C15-O27	σ*	0,02763	0,62	0,87	0,021
C14-C17	σ	1,97578	C11-C12	σ*	0,03029	3,14	1,17	0,054
			C12-C14	σ*	0,02101	2,94	1,25	0,054
			C14-H18	σ*	0,01229	1,21	1,17	0,034
			C17-C19	σ*	0,03103	2,39	1,26	0,049
			C17-H28	σ*	0,01253	1,34	1,17	0,035
			C19-O23	σ*	0,02272	4,74	1,09	0,064
C14-H18	σ	1,98000	C12-C13	σ*	0,01939	4,08	1,08	0,059
			C12-C14	σ*	0,02101	0,88	1,08	0,028
			C14-C17	σ*	0,01174	0,86	1,11	0,028
			C17-C19	σ*	0,03103	3,78	1,09	0,057
C15-C19	σ	1,97980	C13-C15	σ^*	0,02692	3,72	1,29	0,062
			C13-H16	σ^*	0,01351	2,10	1,18	0,045
			C17-C19	σ^*	0,03103	3,09	1,27	0,056
			C17-H28	σ^*	0,01253	2,29	1,18	0,046
C15-O27	σ	1,99047	C12-C13	σ^*	0,01939	1,29	1,46	0,039
			C13-C15	σ^*	0,02692	1,02	1,49	0,035
			C17-C19	σ*	0,03103	1,94	1,47	0,048
C17-C19	σ	1,97605	C14-C17	σ*	0,01174	2,35	1,29	0,049
			C14-H18	σ*	0,01229	2,14	1,18	0,045
			C15-C19	σ*	0,04512	2,84	1,23	0,053
			C15-O27	σ^*	0,02763	2,65	1,05	0,047
			C17-H28	σ*	0,01253	1,16	1,18	0,033
			C19-O23	σ^*	0,02272	0,90	1,10	0,028
	π	1,61535	C12-C14	π^*	0,42623	24,72	0,28	0,075
			C13-C15	π^*	0,36034	17,61	0,28	0,063
			C17-C19	π^*	0,39259	0,90	0,28	0,014
C17-H28	σ	1,97994	C12-C14	σ*	0,02101	3,96	1,08	0,058

			C14-C17	σ*	0,01174	1,09	1,11	0,031
			C15-C19	σ*	0,04512	3,99	1,05	0,058
			C17-C19	σ^*	0,03103	0,77	1,09	0,026
C19-O23	σ	1,99090	C13-C15	σ^*	0,02692	1,94	1,51	0,049
			C14-C17	σ^*	0,01174	1,04	1,50	0,035
			C15-C19	σ*	0,04512	0,65	1,45	0,028
			C17-C19	σ*	0,03103	1,24	1,49	0,038
O22-H24	σ	1,98637	C5-C6	σ^*	0,02325	6,00	1,29	0,079
O25-H26	σ	1,98919	C1-C2	σ*	0,02204	4,64	1,30	0,070
O20	LP1	1,96080	C2-C3	σ*	0,01782	0,75	1,12	0,026
			C3-C4	σ^*	0,03196	6,42	1,10	0,075
			C10-C11	σ^*	0,02168	5,87	1,15	0,074
			C11-C12	σ^*	0,03029	1,05	1,02	0,029
	LP2	1,78843	C3-C4	π^*	0,47373	28,34	0,36	0,096
			C10-C11	π^*	0,24539	32,74	0,37	0,098
O21	LP1	1,96785	C4-C8	σ^*	0,05482	5,75	1,13	0,072
			O22-H24	σ^*	0,07645	4,92	1,08	0,066
	LP2	1,85838	C4-C8	σ^*	0,05482	10,75	0,79	0,084
			C8-C10	σ^*	0,04457	16,81	0,80	0,106
			O22-H24	σ^*	0,07645	27,32	0,73	0,128
O22	LP1	1,97308	C4-C5	σ^*	0,03431	7,56	1,09	0,081
	LP2	1,80677	C5-C6	π^*	0,38475	41,23	0,32	0,108
O23	LP1	1,95084	C15-C19	σ^*	0,04512	4,03	1,20	0,062
	LP2	1,78252	C17-C19	π^*	0,39259	39,27	0,32	0,105
	LP3	1,67426	C15-C19	σ^*	0,04512	4,24	0,93	0,061
			C17-C19	σ^*	0,03103	9,73	0,97	0,094
O25	LP1	1,97969	C1-C6	σ*	0,02341	6,12	1,15	0,075
	LP2	1,86136	C1-C2	π^*	0,41962	30,06	0,35	0,098
O27	LP1	1,95600	C15-C19	σ*	0,04512	3,95	1,20	0,061

-

	LP2	1,70168	C13-C15	σ*	0,02692	7,99	1,07	0,089
			C15-C19	σ^*	0,04512	2,78	1,00	0,050
	LP3	1,68935	C13-C15	π^*	0,36034	29,62	0,34	0,091
C8-O21	π^*		C5-C6	π^*	0,38475	1,09	0,02	0,006
			C10-C11	π^*	0,24539	139,64	0,02	0,078
Fe30	LP1	1,99714	C13-C15	σ^*	0,02692	0,12	0,85	0,009
			C15-O27	σ^*	0,02763	0,06	0,61	0,006
			C17-C19	σ^*	0,03103	0,11	0,83	0,009
	LP2	1,99194	C13-C15	π^*	0,36034	0,11	0,28	0,005
	LP3	1,99021	C13-C15	σ^*	0,02692	0,30	0,87	0,015
			C15-O27	σ^*	0,02763	1,09	0,63	0,023
			C17-C19	σ^*	0,03103	0,28	0,84	0,014
			C19-O23	σ^*	0,02272	0.59	0,68	0,018

4.2.2 Luteolin Co⁺² Şelasyonu

Şekil 4.25: Luteolin Co⁺² molekülünün geometrik yapısı

Şekil 4.25'te luteolin Co^{+2} molekülünün atom numaraları belirlenmiş bir şekilde optimize edilmiş hali gösterilmiştir. Luteolin Co^{+2} molekülü 32 atomdan oluşmaktadır.

Molekülün bağ uzunluğu ve bağ açıları gibi optimize edilmiş yapısal parametreleri sırasıyla Tablo 25 ve Tablo 26'da verilmiştir. Luteolin Co⁺² molekülü 25 bağ uzunluğu ve 37 bağ açısı ile tanımlanmıştır. Bağ uzunlukları incelendiğinde elde edilen sonuçların deneysel verilerle uyumlu olduğu görülmektedir. C-O bağ uzunlukları incelendiğinde C1-O25=1,37Å, C8=O21=1,26Å, C15-O27=1,37Å, C19-O23=1,34Å bağlarının deneysel sonuçlarla (Huheey, 1958), (Darwent, 1970), (Benson, 1965) eşit veya yakın değerlerde olduğu görülmektedir. (Deneysel sonuçlar: C-O=1,43Å, C=O=1,20Å, C-C=1,54Å, C=C=1,34Å). Kobalt iyonunun oksijen atomları ile oluşturduğu bağ uzunluğu ise sırasıyla O23-Co30=1,84Å ve O27-Co30=1,75Å olarak hesaplanmıştır.

C1-O25	1,365	C5-O22	1,340	C14-C17	1,394	
C1-C2	1,400	C8-O21	1,257	C15-O27	1,374	
C1-C6	1,401	C8-C10	1,444	C15-C19	1,415	
C2-C3	1,390	C10-C11	1,365	C17-C19	1,399	
C3-O20	1,372	C11-O20	1,365	C19-O23	1,343	
C3-C4	1,405	C11-C12	1,468	O23-Co30	1,837	
C4-C5	1,422	C12-C13	1,410	O27-Co30	1,748	
C4-C8	1,454	C12-C14	1,412			
C5-C6	1,395	C13-C15	1,386			

Tablo 25: Luteolin Co⁺² Bağ Uzunlukları

Tablo 26: Luteolin Co⁺² Bağ Açıları

C2-C1-C6	122,04	C1-C6-C5	119,48	C13-C15-C19	122,21
C2-C1-O25	116,44	C4-C8-C10	115,44	C13-C15-O27	123,29
C6-C1-025	121,53	C4-C8-O21	121,65	C19-C15-O27	114,50
C1-C2-C3	117,51	C10-C8-O21	122,91	C14-C17-C19	119,10
C2-C3-C4	122,76	C8-C10-C11	121,63	C15-C19-C17	118,93
C2-C3-O20	116,82	C10-C11-C12	126,53	C15-C19-O23	116,18
C4-C3-O20	120,42	C10-C11-O20	121,26	C17-C19-O23	124,89
C3-C4-C5	118,18	C12-C11-O20	112,20	C3-O20-C11	121,08
C3-C4-C8	120,17	C11-C12-C13	120,28	C19-C23-Co30	107,48
C5-C4-C8	121,65	C11-C12-C14	120,89	C15-C27-Co30	109,90
C4-C5-C6	120,03	C13-C12-C14	118,82	O23-Co30-O27	91,93
C4-C5-O22	120,13	C12-C13-C15	118,93		
C6-C5-O22	119,83	C12-C14-C17	122,01		

Tablo 27 incelendiğinde $E_{HOMO} = -5,42 \text{ eV}$ ve $E_{LUMO} = -2,52 \text{ eV}$ ve $\Delta E = 2,90 \text{ eV}$ olduğu görülmektedir. Luteolin Co⁺², HOMO-LUMO şekilleri (Şekil 4.26) incelendiğinde HOMO yerleşiminin kobalt atomu üzerinde ve LUMO yerleşiminin C, B, A halkaları üzerinde yoğunlaştığı görülmektedir. Dolayısıyla olası bir elektron transferinin kobalt atomundan C, B, A halkalarına doğru olacağı görülmektedir. Kimyasal sertlik değerine bakıldığında, kimyasal yumuşaklık değerinden büyük olduğu görülmektedir. Bu da yapıdaki elektron transferinin daha zor olacağı ve kararlı bir yapı olduğunun bir kanıtıdır. Luteolin Fe⁺² molekülü ile kıyaslandığında Luteolin Co⁺² molekülünün daha kararlı bir yapıda olduğunu söyleyebiliriz.

Molekül	Luteolin Co ⁺²
Multiplicity	2
HOMO (eV)	-5,42
LUMO (eV)	-2,52
$\Delta E (eV)$	2,90
I (eV)	5,42
A (eV)	2,52
χ (eV)	3,97
η (eV)	1,45
σ (1/eV)	0,69
μ (eV)	-3,97
ω (eV)	5,43

Tablo 27: Luteolin Co⁺² molekülü elektronik yapı parametreleri

Şekil 4.26: Luteolin Co⁺² molekülünün HOMO-LUMO gösterimi

Şekil 4.27'de mavi renkte olan bölgeler O27-H31, O23-H32 ve O25-H26 olarak görülmektedir. Elektrofilik özellik gösteren bu bölgeler olası bir elektron bağlanmasının yüksek ihtimalde olduğu bölgelerdir. Buna karşın O22-H24 ve O21 atomu etrafında nükleofilik özellik öne çıkmaktadır.

Tablo 28'de NBO analizleri incelendiğinde en önemli etkileşimlerin $\pi^*(C8-O21) \rightarrow \pi^*(C10-C11) = 67,49$ kcal/mol, anti- $\pi \rightarrow$ anti π orbitallerinde olduğu görülmektedir. $\pi^* \rightarrow \pi^*$ anti etkileşimlerinin haricinde $\sigma \rightarrow \sigma^*$ etkileşimlerine bakıldığında genel olarak O-H ve C-O bağ orbitallerinde olduğu görülmektedir. $\sigma(O22-H24) \rightarrow \sigma^*(C5-C6) = 3,00$ kcal/mol, $\sigma(C10-H29) \rightarrow \sigma^*(C11-O20) = 3,77$ kcal/mol, etkileşimleri olarak öne çıkmaktadır. $\sigma \rightarrow \sigma^*$ etkileşimlerinin luteolin Fe⁺² yapısına kıyasla daha az olduğu görülmektedir. Molekül içi $\pi \rightarrow \pi^*$ etkileşimlerine bakıldığında en önemli etkileşimlerin $\pi(C1-C2) \rightarrow \pi^*(C3-C4) = 14,59$ kcal/mol, $\pi(C3-C4) \rightarrow \pi^*(C5-C6) = 12,31$ kcal/mol, $\pi(C3-C4) \rightarrow \pi^*(C8-O21) = 15,21$ kcal/mol, $\pi(C10-C11) \rightarrow \pi^*(C8-O21) = 13,05$ kcal/mol, $\pi(C5-C6) \rightarrow \pi^*(C1-C2) = 14,63$ kcal/mol olduğu görülmektedir. Luteolin Fe⁺² yapısına kıyasla $\pi \rightarrow \pi^*$ etkileşim kararlılık enerjilerinin

yarısı değere sahip olduğu görülmektedir. Yapıdaki LP (lone pair) orbitallerindeki elektronların ise π^* orbitallerine doğru etkileşim gösterdiği bir diğer deyişle Oksijen atomlarındaki LP elektronlarının C-C bağlarındaki anti- π orbitallerine doğru etkileşim gösterdiği görülmektedir. Buradaki en önemli etkileşimler ise LP2 (O20) $\rightarrow \pi^*(C3-C4)$ =14,20 kcal/mol, LP2 (O20) $\rightarrow \pi^*(C10-C11)$ =16,36 kcal/mol, LP2 (O22) $\rightarrow \pi^*(C5-C6)$ =20,61 kcal/mol, LP2 (O25) $\rightarrow \pi^*(C1-C2)$ =15,02 kcal/mol olarak öne çıkmaktadır. Luteolin Co⁺² yapısını, luteolin Fe⁺² yapısı ile kıyasladığımızda LP $\rightarrow \pi^*$ etkileşim değerlerinin de yarısı değerde olduğu görülmektedir.

Verici	Type	ED/e	Alıcı	Type	ED/e	E ² (kcalmol ⁻¹)	E _j -E _i (a.u)	F _{ij} (a.u)
C1-C2	σ	0,98519	C1-C6	σ*	0,01171	1,60	1,26	0,057
			C2-C3	σ^*	0,00891	1,15	1,28	0,049
			C2-H7	σ^*	0,00550	0,74	1,18	0,037
			C3-O20	σ^*	0,01491	2,32	1,05	0,062
			C6-H9	σ^*	0,00595	1,03	1,17	0,044
			O25-H26	σ^*	0,00387	1,00	1,14	0,043
	π	0,82895	C1-C2	π^*	0,20960	1,36	0,28	0,025
			C3-C4	π^*	0,23686	14,59	0,27	0,083
			C5-C6	π^*	0,19226	6,27	0,28	0,054
C1-C6	σ	0,98949	C1-C2	σ^*	0,01101	1,79	1,27	0,060
			C2-H7	σ^*	0,00550	1,00	1,19	0,044
			C5-C6	σ^*	0,01162	1,22	1,28	0,050
			C5-O22	σ^*	0,00872	1,82	1,11	0,057
			C6-H9	σ^*	0,00595	0,67	1,17	0,036
C1-O25	σ	0,99725	C1-C2	σ^*	0,01101	0,27	1,48	0,025
			C1-C6	σ^*	0,01171	0,34	1,48	0,028
			C2-C3	σ^*	0,00891	0,73	1,49	0,042
			C5-C6	σ^*	0,01162	0,64	1,49	0,039
C2-C3	σ	0,98637	C1-C2	σ^*	0,01101	1,06	1,27	0,046
			C1-O25	σ^*	0,01099	1,79	1,06	0,055
			C2-H7	σ^*	0,00550	0,78	1,19	0,039
			C3-C4	σ^*	0,01599	2,10	1,27	0,065
			C4-C8	σ^*	0,02740	1,26	1,21	0,050
			C11-O20	σ^*	0,01495	1,37	1,06	0,048

 Tablo 28: Luteolin Co⁺² NBO Analizleri

C2-H7	σ	0,98794	C1-C2	σ*	0,01101	0,57	1,08	0,031
			C1-C6	σ^*	0,01171	2,05	1,08	0,059
			C1-O25	σ^*	0,01099	0,42	0,87	0,024
			C2-C3	σ^*	0,00891	0,60	1,10	0,032
			C3-C4	σ^*	0,01599	2,27	1,08	0,062
			C3-O20	σ^*	0,01491	0,45	0,87	0,025
C3-C4	σ	0,98623	C2-C3	σ^*	0,00891	2,00	1,29	0,064
			C2-H7	σ^*	0,00550	0,99	1,19	0,043
			C4-C5	σ^*	0,01716	1,57	1,25	0,056
			C4-C8	σ^*	0,02740	1,30	1,21	0,050
			C5-O22	σ^*	0,00872	1,52	1,11	0,052
			C8-O21	σ^*	0,00556	1,19	1,26	0,049
	π	0,82238	C1-C2	π^*	0,20960	6,35	0,28	0,054
			C3-C4	π^*	0,23686	1,64	0,28	0,028
			C5-C6	π^*	0,19226	12,31	0,29	0,076
			C8-O21	π^*	0,17972	15,21	0,27	0,081
C3-O20	σ	0,99472	C1-C2	σ^*	0,01101	0,65	1,48	0,039
			C3-C4	σ^*	0,01599	0,31	1,47	0,027
			C4-C5	σ^*	0,01716	0,76	1,46	0,042
			C11-C12	σ^*	0,01515	0,91	1,40	0,045
C4-C5	σ	0,98574	C3-C4	σ^*	0,01599	1,76	1,25	0,059
			C3-O20	σ^*	0,01491	2,05	1,04	0,058
			C4-C8	σ^*	0,02740	1,36	1,19	0,051
			C5-C6	σ^*	0,01162	1,49	1,26	0,055
			C6-H9	σ^*	0,00595	1,09	1,16	0,045
			C8-C10	σ^*	0,02230	0,84	1,20	0,040
C4-C8	σ	0,98728	C2-C3	σ*	0,00891	1,38	1,25	0,052
			C3-C4	σ*	0,01599	1,46	1,23	0,053
			C4-C5	σ*	0,01716	1,35	1,21	0,051

			C5-C6	σ*	0,01162	1,17	1,24	0,048
			C8-C10	σ^*	0,02230	0,57	1,18	0,033
			C8-O21	σ^*	0,00556	0,33	1,22	0,025
			C10-H29	σ^*	0,00628	0,99	1,15	0,043
C5-C6	σ	0,98754	C1-C6	σ^*	0,01171	1,23	1,26	0,050
			C1-O25	σ^*	0,01099	1,98	1,06	0,058
			C4-C5	σ^*	0,01716	1,53	1,24	0,055
			C4-C8	σ^*	0,02740	1,37	1,20	0,052
			C5-O22	σ^*	0,00872	0,25	1,11	0,021
			C6-H9	σ^*	0,00595	0,75	1,17	0,038
			O22-H24	σ^*	0,03828	0,91	1,14	0,041
	π	0,83775	C1-C2	π^*	0,20960	14,63	0,28	0,082
			C3-C4	π^*	0,23686	6,27	0,27	0,054
			C5-C6	π^*	0,19226	1,22	0,28	0,024
C5-O22	σ	0,99706	C1-C6	σ^*	0,01171	0,71	1,47	0,041
			C3-C4	σ^*	0,01599	0,82	1,47	0,044
			C4-C5	σ^*	0,01716	0,43	1,45	0,032
			C5-C6	σ^*	0,01162	0,49	1,48	0,034
C6-H9	σ	0,98795	C1-C2	σ^*	0,01101	2,08	1,08	0,060
			C1-C6	σ^*	0,01171	0,45	1,08	0,028
			C1-O25	σ^*	0,01099	0,35	0,88	0,022
			C4-C5	σ^*	0,01716	2,16	1,06	0,061
			C5-C6	σ^*	0,01162	0,56	1,10	0,031
			C5-O22	σ^*	0,00872	0,35	0,93	0,023
C8-10	σ	0,98935	C4-C5	σ*	0,01716	1,47	1,21	0,054
			C4-C8	σ*	0,02740	0,66	1,17	0,035
			C8-O21	σ*	0,00556	0,45	1,22	0,030
			C10-C11	σ*	0,01086	1,29	1,28	0,051
			C10-H29	σ*	0,00628	0,51	1,16	0,031

			C11-C12	σ*	0,01515	2,04	1,15	0,061
C8-O21	σ	0,99749	C3-C4	σ^*	0,01599	0,71	1,56	0,042
			C4-C8	σ^*	0,02740	0,64	1,50	0,040
			C8-C10	σ^*	0,02230	0,75	1,51	0,043
			C10-C11	σ^*	0,01086	0,50	1,61	0,036
			O22-H24	σ^*	0,03828	0,42	1,44	0,032
	π	0,98623	C3-C4	π^*	0,23686	2,22	0,37	0,041
			C8-O21	π^*	0,17972	0,26	0,36	0,013
			C10-C11	π^*	0,12119	2,51	0,38	0,041
C10-C11	σ	0,99075	C8-C10	σ^*	0,02230	0,98	1,25	0,044
			C8-O21	σ^*	0,00556	1,33	1,29	0,052
			C10-H29	σ^*	0,00628	0,80	1,23	0,040
			C11-C12	σ^*	0,01515	1,85	1,22	0,060
			C12-C13	σ^*	0,00985	0,83	1,30	0,042
	π	0,90007	C8-O21	π^*	0,17972	13,05	0,29	0,081
			C10-C11	π^*	0,12119	1,16	0,31	0,024
			C12-C13	π^*	0,22292	4,84	0,31	0,052
С10-Н29	σ	0,98558	C4-C8	σ^*	0,02740	1,68	1,02	0,053
			C8-C10	σ^*	0,02230	0,28	1,03	0,022
			C10-C11	σ^*	0,01086	0,94	1,13	0,041
			C11-O20	σ^*	0,01495	3,77	0,87	0,072
C11-C12	σ	0,98610	C3-O20	σ^*	0,01491	1,53	1,02	0,050
			C8-C10	σ^*	0,02230	1,12	1,18	0,046
			C10-C11	σ^*	0,01086	1,70	1,28	0,059
			C12-C13	σ^*	0,00985	1,13	1,23	0,047
			C12-C14	σ^*	0,01045	1,15	1,24	0,048
			C13-C15	σ*	0,01347	0,87	1,27	0,042
			C14-C17	σ*	0,00602	0,94	1,26	0,044
C11-O20	σ	0,99456	C2-C3	σ^*	0,00891	0,98	1,50	0,049

			C10-C11	σ*	0,01086	0,42	1,53	0,032
			C10-H29	σ^*	0,00628	0,69	1,41	0,039
			C12-C14	σ^*	0,01045	0,80	1,49	0,044
C12-C13	σ	0,98401	C10-C11	σ^*	0,01086	1,12	1,29	0,048
			C11-C12	σ^*	0,01515	1,01	1,16	0,043
			C12-C14	σ^*	0,01045	1,84	1,25	0,061
			C13-C15	σ^*	0,01347	1,25	1,27	0,050
			C13-H16	σ*	0,00663	0,65	1,16	0,035
			C14-H18	σ*	0,00616	1,06	1,16	0,044
			C15-O27	σ^*	0,01316	2,53	1,03	0,064
	π	0,81917	C10-C11	π^*	0,12119	9,06	0,27	0,065
			C14-C17	π^*	0,17354	10,78	0,28	0,069
C12-C14	σ	0,98629	C11-C12	σ*	0,01515	1,27	1,16	0,049
			C11-O20	σ^*	0,01495	1,12	1,04	0,043
			C12-C13	σ*	0,00985	1,85	1,25	0,061
			C13-H16	σ*	0,00663	1,08	1,17	0,045
			C14-C17	σ^*	0,00602	1,25	1,27	0,050
			C14-H18	σ^*	0,00616	0,59	1,17	0,033
			C17-H28	σ^*	0,00614	1,08	1,17	0,045
C13-C15	σ	0,98796	C11-C12	σ^*	0,01515	1,64	1,19	0,056
			C12-C13	σ^*	0,00985	1,43	1,27	0,054
			C13-H16	σ^*	0,00663	0,71	1,20	0,037
			C15-C19	σ^*	0,02283	1,79	1,25	0,060
			C15-O27	σ*	0,01316	0,32	1,06	0,023
			C19-O23	σ*	0,01136	1,25	1,09	0,047
С13-Н16	σ	0,98881	C12-C13	σ*	0,00985	0,53	1,08	0,030
			C12-C14	σ*	0,01045	1,93	1,08	0,058
			C13-C15	σ*	0,01347	0,55	1,11	0,031
			C15-C19	σ*	0,02283	2,26	1,05	0,062

			C15-O27	σ*	0,01316	0,31	0,86	0,021
C14-C17	σ	0,98757	C11-C12	σ^*	0,01515	1,62	1,17	0,055
			C12-C14	σ^*	0,01045	1,49	1,26	0,055
			C14-H18	σ^*	0,00616	0,61	1,17	0,034
			C17-C19	σ^*	0,01489	1,24	1,26	0,050
			C17-H28	σ*	0,00614	0,66	1,17	0,035
			C19-O23	σ*	0,01136	2,41	1,06	0,064
	π	0,84627	C12-C13	π^*	0,22292	8,47	0,28	0,064
C14-H18	σ	0,99007	C12-C13	σ*	0,00985	2,06	1,08	0,060
			C12-C14	σ*	0,01045	0,48	1,09	0,029
			C14-C17	σ*	0,00602	0,43	1,10	0,028
			C17-C19	σ*	0,01489	1,84	1,09	0,057
C15-C19	σ	0,98969	C13-C15	σ*	0,01347	1,89	1,30	0,063
			C13-H16	σ*	0,00663	1,06	1,19	0,045
			C17-C19	σ*	0,01489	1,68	1,28	0,059
			C17-H28	σ*	0,00614	1,10	1,19	0,046
C15-O27	σ	0,99460	C12-C13	σ*	0,00985	0,66	1,45	0,039
			C13-C15	σ*	0,01347	0,51	1,48	0,035
			C17-C19	σ*	0,01489	0,99	1,46	0,048
C17-C19	σ	0,98796	C14-C17	σ*	0,00602	1,20	1,29	0,050
			C14-H18	σ*	0,00616	1,07	1,19	0,045
			C15-C19	σ*	0,02283	1,61	1,24	0,057
			C15-O27	σ*	0,01316	1,36	1,05	0,048
			C17-H28	σ*	0,00614	0,59	1,18	0,034
			C19-O23	σ*	0,01136	0,37	1,08	0,025
C17-H28	σ	0,98987	C12-C14	σ*	0,01045	1,91	1,09	0,058
			C14-C17	σ*	0,00602	0,52	1,10	0,030
			C15-C19	σ*	0,02283	2,07	1,05	0,059
			C17-C19	σ*	0,01489	0,41	1,09	0,027

			C19-O23	σ*	0,01136	0,26	0,89	0,019
C19-O23	σ	0,99540	C13-C15	σ*	0,01347	0,96	1,50	0,048
			C14-C17	σ^*	0,00602	0,56	1,49	0,036
			C15-C19	σ^*	0,02283	0,26	1,44	0,025
			C17-C19	σ^*	0,01489	0,57	1,48	0,037
O22-H24	σ	0,99318	C5-C6	σ^*	0,01162	3,00	1,29	0,079
O25-H26	σ	0,99460	C1-C2	σ^*	0,01101	2,32	1,30	0,070
C15	LP1	0,52045	C12-C13	π^*	0,22292	38,76	0,15	0,112
O20	LP1	0,98043	C2-C3	σ*	0,00891	0,38	1,12	0,026
			C3-C4	σ^*	0,01599	3,21	1,10	0,075
			C10-C11	σ*	0,01086	2,94	1,15	0,074
			C11-C12	σ*	0,01515	0,52	1,02	0,029
	LP2	0,87364	C3-C4	π^*	0,23686	14,20	0,36	0,096
			C10-C11	π^*	0,12119	16,36	0,37	0,098
O21	LP1	0,98393	C4-C8	σ^*	0,02740	2,88	1,13	0,073
			O22-H24	σ*	0,03828	2,47	1,08	0,066
	LP2	0,92915	C4-C8	σ*	0,02740	5,37	0,79	0,084
			C8-C10	σ*	0,02230	8,41	0,80	0,106
			O22-H24	σ*	0,03828	13,69	0,73	0,128
O22	LP1	0,98654	C4-C5	σ*	0,01716	3,78	1,09	0,081
	LP2	0,90338	C5-C6	π^*	0,19226	20,61	0,32	0,108
O23	LP1	0,97194	C15-C19	σ*	0,02283	1,71	1,23	0,058
	LP3	0,84163	C15-C19	σ*	0,02283	2,11	0,94	0,061
			C17-C19	σ*	0,01489	4,39	0,98	0,089
O25	LP1	0,98985	C1-C6	σ*	0,01171	3,06	1,15	0,075
	LP2	0,93070	C1-C2	π^*	0,20960	15,02	0,35	0,098
O27	LP1	0,98101	C15-C19	σ*	0,02283	2,39	1,17	0,067
	LP2	0,88068	C13-C15	σ*	0,01347	3,78	1,10	0,086
			C15-C19	σ*	0,02283	1,06	1,04	0,044

C8-O21	π^*		C5-C6	π*	0,19226	0,54	0,02	0,006
			C10-C11	π^*	0,12119	67,49	0,02	0,078
Co30	LP1	0,99871	C13-C15	σ^*	0,01347	0,03	0,90	0,006
			C15-O27	σ^*	0,01316	0,10	0,66	0,010
			C17-C19	σ^*	0,01489	0,03	0,88	0,006
	LP3	0,99503	C13-C15	σ^*	0,01347	0,15	0,90	0,015
			C15-O27	σ^*	0,01316	0,42	0,65	0,021
			C17-C19	σ^*	0,01489	0,14	0,88	0,014
			C19-O23	σ^*	0,01136	0,15	0,68	0,013

4.2.3 Luteolin Cu⁺² Şelasyonu

Şekil 4.28: Luteolin Cu⁺² molekülünün geometrik yapısı

Şekil 4.28'de luteolin Cu^{+2} molekülünün atom numaraları belirlenmiş bir şekilde optimize edilmiş hali gösterilmiştir. Luteolin Cu^{+2} molekülü 32 atomdan oluşmaktadır.

Molekülün bağ uzunluğu ve bağ açıları gibi optimize edilmiş yapısal parametreleri sırasıyla Tablo 29 ve Tablo 30'da verilmiştir. Luteolin Cu^{+2} molekülü 25 bağ uzunluğu ve 37 bağ açısı ile tanımlanmıştır. Bağ uzunlukları incelendiğinde elde edilen sonuçların deneysel verilerle uyumlu olduğu görülmektedir. C-O bağ uzunlukları incelendiğinde C1-O25=1,37Å, C8=O21=1,26Å, C15-O27=1,37Å, C19-O23=1,34Å bağlarının deneysel sonuçlarla (Huheey, 1958), (Darwent, 1970), (Benson, 1965) eşit veya yakın değerlerde olduğu görülmektedir. (Deneysel sonuçlar: C-O=1,43Å, C=O=1,20Å, C-C=1,54Å, C=C=1,34Å). Bakır iyonunun oksijen atomları ile oluşturduğu bağ uzunluğu ise sırasıyla O23-Cu30=1,84Å ve O27-Cu30=1,75Å olarak hesaplanmıştır.

C1-O25	1,365	C5-O22	1,340	C14-C17	1,394	
C1-C2	1,399	C8-O21	1,257	C15-O27	1,374	
C1-C6	1,401	C8-C10	1,444	C15-C19	1,415	
C2-C3	1,390	C10-C11	1,365	C17-C19	1,399	
C3-O20	1,372	C11-O20	1,365	C19-O23	1,343	
C3-C4	1,405	C11-C12	1,468	O23-Cu30	1,837	
C4-C5	1,422	C12-C13	1,410	O27-Cu30	1,748	
C4-C8	1,454	C12-C14	1,412			
C5-C6	1,395	C13-C15	1,386			

Tablo 29: Luteolin Cu⁺² Bağ Uzunlukları

 Tablo 30:
 Luteolin Cu⁺² Bağ Açıları

C2-C1-C6	122,04	C1-C6-C5	119,48	C13-C15-C19	122,21
C2-C1-O25	116,44	C4-C8-C10	115,44	C13-C15-O27	123,29
C6-C1-025	121,53	C4-C8-O21	121,65	C19-C15-O27	114,50
C1-C2-C3	117,51	C10-C8-O21	122,91	C14-C17-C19	119,10
C2-C3-C4	122,76	C8-C10-C11	121,63	C15-C19-C17	118,93
C2-C3-O20	116,82	C10-C11-C12	126,53	C15-C19-O23	116,18
C4-C3-O20	120,42	C10-C11-O20	121,26	C17-C19-O23	124,89
C3-C4-C5	118,18	C12-C11-O20	112,20	C3-O20-C11	121,08
C3-C4-C8	120,17	C11-C12-C13	120,28	C19-C23-Cu30	107,48
C5-C4-C8	121,65	C11-C12-C14	120,89	C15-C27-Cu30	109,90
C4-C5-C6	120,03	C13-C12-C14	118,82	O23-Cu30-O27	91,93
C4-C5-O22	120,13	C12-C13-C15	118,93		
C6-C5-O22	119,83	C12-C14-C17	122,01		

Tablo 31 incelendiğinde $E_{HOMO} = -4,36$ eV ve $E_{LUMO} = -2,35$ eV ve $\Delta E = 2.01$ eV olduğu görülmektedir. Kimyasal sertlik ve kimyasal yumuşaklık değerlerine bakıldığında, kimyasal sertlik değerinin yüksek olması moleküldeki yük transferinin daha zor olacağını ve yapının daha kararlı olduğunu göstermektedir. Luteolin Cu⁺², HOMO-LUMO şekilleri (Şekil 4.29) incelendiğinde HOMO yerleşiminin bakır atomu üzerinde ve LUMO yerleşiminin C, B, A halkaları üzerinde yoğunlaştığı görülmektedir. Dolayısıyla olası bir elektron transferinin bakır atomundan C, B, A halkalarına doğru olacağı görülmektedir.

Molekül	Luteolin Cu ⁺²
Multiplicity	2
HOMO (eV)	-4,36
LUMO (eV)	-2,35
$\Delta E (eV)$	2,01
I (eV)	4,36
A (eV)	-2,01
χ (eV)	1,17
η (eV)	3,18
σ (eV)	0,31
μ (eV)	-1,17
ω (eV)	0,22

Tablo 31: Luteolin Cu⁺² molekülü elektronik yapı parametreleri

Şekil 4.29: Luteolin Cu⁺² molekülünün HOMO-LUMO gösterimi

Şekil 4.30 Luteolin_Cu⁺² ESP haritası incelendiğinde mavi renkte olan bölgeler O27-H31, O23-H32, O25-H26 elektrofilik özellik gösterirken O22-H24 ve O21 bölgeleri kırmızı bölgeler dolayısıyla nükleofilik özellik göstermektedir.

Tablo 32'de NBO analizleri incelendiğinde en önemli etkileşimlerin $\pi^*(C8-O21) \rightarrow \pi^*(C10-C11) = 97,45$ kcal/mol, anti- $\pi \rightarrow$ anti π orbitallerinde olduğu görülmektedir. $\pi^* \rightarrow \pi^*$ anti etkileşimlerinin haricinde $\sigma \rightarrow \sigma^*$ etkileşimlerine bakıldığında genel olarak O-H ve C-O bağ orbitallerinde olduğu görülmektedir. $\sigma(O22-H24) \rightarrow \sigma^*(C5-C6) = 2,97$ kcal/mol, $\sigma(C10-H29) \rightarrow \sigma^*(C11-O20) = 3,72$ kcal/mol, etkileşimleri olarak öne çıkmaktadır. $\sigma \rightarrow \sigma^*$ etkileşimlerinin luteolin Fe⁺² yapısına kıyasla daha az olduğu, luteolin Co⁺² yapısı ile de benzer etkileşimler sergilediği görülmektedir. Molekül içi $\pi \rightarrow \pi^*$ etkileşimlerine bakıldığında en önemli etkileşimlerin $\pi(C1-C2) \rightarrow \pi^*(C3-C4) = 14,90$ kcal/mol, $\pi(C3-C4) \rightarrow \pi^*(C5-C6) = 12,24$ kcal/mol, $\pi(C3-C4) \rightarrow \pi^*(C8-O21) = 15,61$ kcal/mol, $\pi(C10-C11) \rightarrow \pi^*(C8-O21) = 13,07$ kcal/mol, $\pi(C5-C6) \rightarrow \pi^*(C1-C2) = 14,57$ kcal/mol, olduğu görülmektedir. Yapıdaki LP (lone pair) orbitallerindeki elektronların ise π^* orbitallerine doğru

etkileşim gösterdiği bir diğer deyişle Oksijen atomlarındaki LP elektronlarının C-C bağlarındaki anti- π orbitallerine doğru etkileşim gösterdiği görülmektedir. Buradaki en önemli etkileşimler ise LP2 (O20) $\rightarrow \pi^*(C3-C4) = 14,16$ kcal/mol, LP2 (O20) $\rightarrow \pi^*(C10-C11) = 17,34$ kcal/mol, LP2 (O22) $\rightarrow \pi^*(C5-C6) = 20,51$ kcal/mol, LP2 (O25) $\rightarrow \pi^*(C1-C2) = 15,21$ kcal/mol olarak öne çıkmaktadır. Luteolin Cu⁺² yapısını, luteolin Fe⁺² yapısı ile kıyasladığımızda LP $\rightarrow \pi^*$ etkileşim değerlerinin yarısı değerde olduğu ve luteolin Co⁺² yapısı ile de benzer etkileşimler gösterdiği görülmektedir.

 Tablo 32: Luteolin Cu⁺² NBO Analizleri

Verici	Туре	ED/e	Alıcı	Туре	ED/e	E ² (kcalmol ⁻¹)	E_j - E_i (a.u)	F _{ij} (a.u)
C1-C2	σ	0,98513	C1-C6	σ*	0,01174	1,58	1,26	0,056
			C2-C3	σ^*	0,00883	1,15	1,28	0,049
			C2-H7	σ^*	0,00545	0,73	1,18	0,037
			C3-O20	σ^*	0,01486	2,34	1,05	0,063
			C6-H9	σ^*	0,00591	1,02	1,17	0,044
			O25-H26	σ^*	0,00387	1,02	1,14	0,043
	π	0,82489	C1-C2	π^*	0,20950	1,38	0,28	0,025
			C3-C4	π^*	0,23957	14,90	0,27	0,083
			C5-C6	π^*	0,18998	6,35	0,28	0,054
C1-C6	σ	0,98952	C1-C2	σ^*	0,01105	1,76	1,27	0,060
			C2-H7	σ^*	0,00545	0,99	1,19	0,043
			C5-C6	σ^*	0,01154	1,22	1,28	0,050
			C5-O22	σ^*	0,00870	1,82	1,11	0,057
			C6-H9	σ^*	0,00591	0,67	1,18	0,036
C1-O25	σ	0,99726	C1-C2	σ^*	0,01105	0,27	1,48	0,025
			C1-C6	σ^*	0,01174	0,34	1,48	0,029
			C2-C3	σ^*	0,00883	0,73	1,50	0,042
			C5-C6	σ^*	0,01154	0,64	1,49	0,039
C2-C3	σ	0,98641	C1-C2	σ^*	0,01105	1,05	1,27	0,046
			C1-O25	σ^*	0,01087	1,76	1,07	0,055
			C2-H7	σ^*	0,00545	0,79	1,19	0,039
			C3-C4	σ^*	0,01604	2,10	1,27	0,065
			C4-C8	σ^*	0,02733	1,26	1,21	0,050
			C11-O20	σ^*	0,01432	1,38	1,06	0,048
C2-H7	σ	0,98784	C1-C2	σ^*	0,01105	0,57	1,08	0,031
			C1-C6	σ^*	0,01174	2,04	1,08	0,059
			C1-O25	σ^*	0,01087	0,43	0,88	0,024

			C2-C3	σ*	0,00883	0,61	1,10	0,033
			C3-C4	σ*	0,01604	2,29	1,07	0,063
			C3-O20	σ^*	0,01486	0,46	0,87	0,025
C3-C4	σ	0,98621	C2-C3	σ^*	0,00883	2,00	1,29	0,064
			C2-H7	σ^*	0,00545	0,98	1,19	0,043
			C4-C5	σ^*	0,01723	1,56	1,25	0,056
			C4-C8	σ^*	0,02733	1,30	1,21	0,050
			C5-O22	σ^*	0,00870	1,52	1,11	0,052
			C8-O21	σ*	0,00550	1,23	1,26	0,050
	π	0,81772	C1-C2	π^*	0,20950	6,34	0,28	0,054
			C3-C4	π^*	0,23957	1,65	0,28	0,028
			C5-C6	π^*	0,18998	12,24	0,29	0,076
			C8-O21	π^*	0,16957	15,61	0,27	0,082
C3-O20	σ	0,99470	C1-C2	σ*	0,01105	0,65	1,48	0,039
			C2-C3	σ^*	0,00883	0,25	1,50	0,025
			C3-C4	σ^*	0,01604	0,30	1,47	0,027
			C4-C5	σ^*	0,01723	0,75	1,46	0,042
			C11-C12	σ*	0,01557	0,96	1,39	0,046
C4-C5	σ	0,98571	C3-C4	σ*	0,01604	1,75	1,24	0,059
			C3-O20	σ*	0,01486	2,05	1,04	0,058
			C4-C8	σ^*	0,02733	1,37	1,19	0,051
			C5-C6	σ^*	0,01154	1,48	1,26	0,055
			C6-H9	σ^*	0,00591	1,09	1,16	0,045
			C8-C10	σ*	0,02282	0,87	1,19	0,041
C4-C8	σ	0,98743	C2-C3	σ*	0,00883	1,35	1,25	0,052
			C3-C4	σ^*	0,01604	1,46	1,23	0,053
			C4-C5	σ^*	0,01723	1,36	1,21	0,051
			C5-C6	σ^*	0,01154	1,15	1,25	0,048
			C8-C10	σ*	0,02282	0,55	1,17	0,032

			C8-O21	σ*	0,00550	0,36	1,22	0,027
			C10-H29	σ*	0,00640	0,96	1,15	0,042
C5-C6	σ	0,98754	C1-C6	σ*	0,01174	1,22	1,26	0,050
			C1-O25	σ^*	0,01087	1,97	1,06	0,058
			C4-C5	σ*	0,01723	1,53	1,24	0,055
			C4-C8	σ*	0,02733	1,37	1,20	0,052
			C5-O22	σ*	0,00870	0,25	1,11	0,021
			C6-H9	σ*	0,00591	0,75	1,17	0,038
			O22-H24	σ*	0,03657	0,92	1,15	0,042
	π	0,83772	C1-C2	π^*	0,20950	14,57	0,28	0,082
			C3-C4	π^*	0,23957	6,30	0,27	0,054
			C5-C6	π^*	0,18998	1,24	0,28	0,024
C5-O22	σ	0,99707	C1-C6	σ^*	0,01174	0,71	1,47	0,041
			C3-C4	σ^*	0,01604	0,82	1,46	0,044
			C4-C5	σ^*	0,01723	0,43	1,45	0,032
			C5-C6	σ^*	0,01154	0,49	1,48	0,034
C6-H9	σ	0,98790	C1-C2	σ^*	0,01105	2,08	1,08	0,060
			C1-C6	σ^*	0,01174	0,45	1,08	0,028
			C1-O25	σ^*	0,01087	0,35	0,88	0,022
			C4-C5	σ^*	0,01723	2,18	1,06	0,061
			C5-C6	σ^*	0,01154	0,57	1,10	0,031
			C5-O22	σ^*	0,00870	0,35	0,93	0,023
C8-10	σ	0,98929	C4-C5	σ^*	0,01723	1,49	1,21	0,054
			C4-C8	σ^*	0,02733	0,63	1,17	0,035
			C8-O21	σ^*	0,00550	0,42	1,22	0,029
			C10-C11	σ^*	0,01081	1,24	1,28	0,050
			C10-H29	σ^*	0,00640	0,48	1,16	0,030
			C11-C12	σ^*	0,01557	2,11	1,15	0,062
C8-O21	σ	0,99749	C3-C4	σ^*	0,01604	0,71	1,56	0,042

			C4-C8	σ*	0,02733	0,68	1,50	0,041
			C8-C10	σ^*	0,02282	0,72	1,50	0,042
			C10-C11	σ^*	0,01081	0,50	1,61	0,036
			O22-H24	σ^*	0,03657	0,36	1,45	0,030
	π	0,98335	C3-C4	π^*	0,23957	2,17	0,37	0,041
			C8-O21	π^*	0,16957	0,28	0,36	0,013
			C10-C11	π^*	0,10674	2,37	0,37	0,040
C10-C11	σ	0,99101	C8-C10	σ*	0,02282	0,91	1,25	0,043
			C8-O21	σ*	0,00550	1,28	1,30	0,052
			C10-H29	σ^*	0,00640	0,79	1,23	0,040
			C11-C12	σ*	0,01557	1,81	1,22	0,059
			C12-C13	σ^*	0,00943	0,84	1,34	0,042
	π	0,88731	C8-O21	π^*	0,16957	13,07	0,29	0,082
			C10-C11	π^*	0,10674	1,21	0,30	0,025
			C12-C13	π^*	0,09735	4,95	0,31	0,053
С10-Н29	σ	0,98567	C4-C8	σ^*	0,02733	1,65	1,03	0,052
			C10-C11	σ^*	0,01081	0,92	1,13	0,041
			C11-O20	σ^*	0,01432	3,72	0,88	0,072
			C14-H18	σ^*	0,00655	0,27	1,00	0,021
C11-C12	σ	0,98645	C3-O20	σ^*	0,01486	1,50	1,03	0,050
			C8-C10	σ^*	0,02282	1,08	1,18	0,045
			C10-C11	σ^*	0,01081	1,68	1,29	0,059
			C12-C13	σ^*	0,00943	1,35	1,27	0,052
			C12-C14	σ^*	0,09735	0,80	1,20	0,039
			C13-C15	σ^*	0,01790	1,07	1,22	0,046
			C14-C17	σ^*	0,00617	0,78	1,30	0,040
C11-O20	σ	0,99460	C2-C3	σ^*	0,00883	0,96	1,51	0,048
			C10-C11	σ^*	0,01081	0,45	1,53	0,033
			C10-H29	σ^*	0,00640	0,68	1,41	0,039

			C12-C14	σ*	0,09735	0,86	1,44	0,044
C12-C13	σ	0,98706	C10-C11	σ*	0,01081	1,12	1,31	0,048
			C11-C12	σ*	0,01557	1,20	1,18	0,048
			C12-C14	σ*	0,09735	1,72	1,22	0,058
			C13-C15	σ*	0,01790	0,95	1,24	0,043
			C13-H16	σ*	0,00701	0,74	1,20	0,038
			C14-H18	σ*	0,00655	0,89	1,18	0,041
			C15-O27	σ*	0,00749	1,54	1,19	0,054
	π	0,86579	C10-C11	π^*	0,10674	9,95	0,28	0,068
			C14-C17	π^*	0,05760	8,52	0,29	0,063
C12-C14	σ	0,98617	C11-C12	σ^*	0,01557	0,93	1,15	0,041
			C11-O20	σ^*	0,01432	1,27	1,03	0,046
			C12-C13	σ^*	0,00943	1,73	1,27	0,059
			C13-H16	σ^*	0,00701	1,18	1,17	0,047
			C14-C17	σ*	0,00615	1,18	1,30	0,050
			C14-H18	σ*	0,00655	0,42	1,16	0,028
			C17-H28	σ*	0,00646	1,20	1,16	0,047
C13-C15	σ	0,98810	C11-C12	σ^*	0,01557	1,84	1,17	0,059
			C12-C13	σ^*	0,00943	1,43	1,28	0,054
			C13-H16	σ^*	0,00701	0,45	1,18	0,029
			C15-C19	σ*	0,04039	0,59	1,13	0,033
			C15-O27	σ^*	0,00749	0,53	1,18	0,031
			C19-O23	σ*	0,00730	1,07	1,18	0,045
C13-H16	σ	0,98887	C12-C13	σ^*	0,00943	0,72	1,11	0,036
			C12-C14	σ^*	0,09735	2,33	1,03	0,062
			C13-C15	σ*	0,01790	0,34	1,05	0,024
			C15-C19	σ*	0,04039	2,10	0,95	0,057
			C15-O27	σ^*	0,00749	0,28	1,00	0,021
C14-C17	σ	0,98987	C11-C12	σ^*	0,01557	1,38	1,19	0,051

			C12-C14	σ*	0,09735	1,36	1,23	0,052
			C14-H18	σ^*	0,00655	0,73	1,19	0,037
			C17-C19	σ^*	0,01950	0,96	1,24	0,044
			C17-H28	σ^*	0,00646	0,75	1,20	0,038
			C19-O23	σ^*	0,00730	1,56	1,21	0,055
	π	0,89724	C12-C13	π^*	0,09735	7,38	0,29	0,062
C14-H18	σ	0,99008	C12-C13	σ^*	0,00943	1,77	1,12	0,056
			C12-C14	σ^*	0,09735	0,26	1,04	0,021
			C14-C17	σ^*	0,00615	0,60	1,15	0,033
			C17-C19	σ^*	0,01950	2,16	1,05	0,060
C15-C19	σ	0,98992	C13-C15	σ^*	0,01790	0,61	1,21	0,034
			C13-H16	σ^*	0,00701	0,98	1,16	0,043
			C17-C19	σ^*	0,01950	0,57	1,19	0,033
			C17-H28	σ^*	0,00646	1,01	1,15	0,043
C15-O27	σ	0,99718	C12-C13	σ^*	0,00943	0,56	1,58	0,038
			C13-C15	σ^*	0,01790	0,67	1,53	0,041
			C15-C19	σ^*	0,04039	0,26	1,42	0,025
			C17-C19	σ^*	0,01950	0,54	1,51	0,036
	π	0,95494	C12-C13	π^*	0,09735	3,84	0,39	0,050
			C19-O23	π^*	0,11277	4,42	0,35	0,052
C17-C19	σ	0,98854	C14-C17	σ^*	0,00615	1,21	1,31	0,050
			C14-H18	σ^*	0,00655	1,23	1,17	0,048
			C15-C19	σ^*	0,04039	0,52	1,12	0,031
			C15-O27	σ^*	0,00749	1,11	1,17	0,046
			C17-H28	σ*	0,00646	0,37	1,17	0,027
			C19-O23	σ^*	0,00730	0,54	1,18	0,032
C17-H28	σ	0,98966	C12-C14	σ^*	0,01135	2,29	1,03	0,061
			C14-C17	σ^*	0,00615	0,71	1,13	0,036
			C15-C19	σ*	0,04039	1,96	0,95	0,055

			C17-C19	σ*	0,01950	0,25	1,04	0,020
C19-O23	σ	0,99738	C13-C15	σ*	0,01790	0,54	1,54	0,037
			C14-C17	σ*	0,00615	0,47	1,62	0,035
			C15-C19	σ*	0,04039	0,28	1,43	0,026
			C17-C19	σ^*	0,01950	0,61	1,52	0,039
	π	0,96198	C14-C17	π^*	0,05760	3,50	0,40	0,047
			C15-O27	π^*	0,11944	4,04	0,36	0,050
O22-H24	σ	0,99325	C5-C6	σ*	0,01154	2,97	1,29	0,078
O25-H26	σ	0,99455	C1-C2	σ*	0,01105	2,33	1,30	0,070
C15	LP1		C12-C13	π^*	0,09735	34,25	0,16	0,107
O20	LP1	0,98012	C2-C3	σ*	0,00883	0,38	1,13	0,026
			C3-C4	σ*	0,01604	3,21	1,10	0,075
			C10-C11	σ*	0,01081	2,99	1,15	0,074
			C11-C12	σ*	0,01557	0,55	1,02	0,030
			C13-H16	σ*	0,00701	0,25	1,03	0,021
	LP2	0,87608	C3-C4	π^*	0,23957	14,16	0,36	0,096
			C10-C11	π^*	0,10674	17,34	0,37	0,100
O21	LP1	0,98405	C4-C8	σ*	0,02733	2,82	1,14	0,072
			O22-H24	σ*	0,03657	2,38	1,09	0,065
	LP2	0,93015	C4-C8	σ*	0,02733	5,53	0,79	0,085
			C8-C10	σ*	0,02282	8,64	0,78	0,106
			O22-H24	σ*	0,03657	12,74	0,73	0,124
O22	LP1	0,98654	C4-C5	σ*	0,01723	3,80	1,09	0,081
	LP2	0,90230	C5-C6	π^*	0,18998	20,51	0,32	0,108
O23	LP1	0,98128	C15-C19	σ*	0,04039	3.04	1.08	0.073
	LP2	0,91459	C15-C19	σ*	0,04039	3,48	0,81	0,069
		,	C17-C19	σ*	0,01950	6,26	0,90	0,098
O25	LP1	0,98973	C1-C6	σ*	0,01174	3,10	1,15	0,075
	LP2	0,92842	C1-C2	π^*	0,20950	15,21	0,34	0,098
027	I D1	0.08124	C15 C10	c *	0.04030	3.02	1.08	0.073
--------	---------	---------	---------	------------	---------	-------	------	-------
027		0,90124	C13-C19	-*	0,04039	5,02	1,08	0,073
	LP2	0,90971	013-015	σ*	0,01790	6,04	0,92	0,097
			C15-C19	σ^*	0,04039	3,34	0,82	0,067
C8-O21	π^*		C5-C6	π^*	0,18998	0,45	0,02	0,006
			C10-C11	π^*	0,10674	97,45	0,01	0,076
Cu30	LP1	0,99750	C13-C15	σ*	0,01790	0,03	0,75	0,006
			C15-O27	σ*	0,00749	0,08	0,70	0,009
			C17-C19	σ^*	0,01950	0,03	0,73	0,006
			C19-O23	σ^*	0,00730	0,09	0,71	0,010
	LP2	0,99580	C13-C15	σ*	0,01790	0,03	0,75	0,006
			C15-O27	σ^*	0,00749	0,08	0,70	0,009
			C17-C19	σ^*	0,01950	0,03	0,73	0,006
			C19-O23	σ^*	0,00730	0,07	0,70	0,009
	LP3	0,99576	C15-O27	σ^*	0,00749	0,07	0,69	0,009
			C19-O23	σ*	0,00730	0,08	0,70	0,010
	LP4	0,99332	C13-C15	σ*	0,01790	0,07	0,75	0,009
			C15-O27	σ*	0,00749	0,11	0,70	0,011
			C17-C19	σ^*	0,01950	0,07	0,73	0,009
			C19-O23	σ*	0,00730	0,10	0,71	0,011
	LP5	0,93357	C15-O27	σ*	0,00749	0,53	0,21	0,014
			C19-O23	σ*	0,00730	0,38	0,21	0,011

4.3 MİRİSETİN

Şekil 4.31: Mirisetin molekülünün geometrik yapısı

Şekil 4.31'de mirisetin molekülünün atom numaraları belirlenmiş bir şekilde optimize edilmiş hali gösterilmiştir. Mirisetin molekülü 33 atomdan oluşmaktadır.

Molekülün bağ uzunluğu ve bağ açıları gibi optimize edilmiş yapısal parametreleri sırasıyla Tablo 33 ve Tablo 34'te verilmiştir. Mirisetin molekülü 25 bağ uzunluğu ve 38 bağ açısı ile tanımlanmıştır. Bağ uzunlukları incelendiğinde elde edilen sonuçların deneysel verilerle uyumlu olduğu görülmektedir. C-O bağ uzunlukları incelendiğinde C1-O30=1,43Å, C15-O32=1,43Å, C8=O21=1,26Å bağlarının deneysel sonuçlarla (Huheey, 1958), (Darwent, 1970), (Benson, 1965) eşit veya yakın değerlerde olduğu görülmektedir. (Deneysel sonuçlar: C-O=1,43Å, C=O=1,20Å C-C=1,54Å, C=C=1,34Å)

C1-O30	1,430	C5-O22	1,345	C13-C15	1,392	
C1-C2	1,395	C8-O21	1,263	C14-C17	1,386	
C1-C6	1,400	C8-C10	1,447	C15-C19	1,394	
C2-C3	1,395	C10-C11	1,374	C15-O32	1,430	
C3-O20	1,363	C10-O23	1,361	C17-C19	1,406	
C3-C4	1,407	C11-C12	1,464	C17-O24	1,378	
C4-C5	1,424	C11-O20	1,371	C19-O25	1,359	
C4-C8	1,440	C12-C13	1,410			
C5-C6	1,394	C12-C14	1,413			

Tablo 33: Mirisetin Bağ Uzunlukları

Tablo 34: Mirisetin Bağ Açıları

C2-C1-C6	122,25	C1-C6-C5	119,62	C12-C13-C15	120,99
C2-C1-O30	118,89	C4-C8-C10	117,05	C12-C14-C17	120,17
C6-C1-030	118,86	C4-C8-O21	124,15	C13-C15-C19	120,34
C1-C2-C3	117,84	C10-C8-O21	118,80	C13-C15-O32	120,97
C2-C3-C4	121,71	C8-C10-C11	121,69	C19-C15-O32	118,69
C2-C3-O20	117,67	C8-C10-O23	114,85	C14-C17-C19	121,07
C4-C3-O20	120,62	C11-C10-O23	123,47	C14-C17-O24	124,06
C3-C4-C5	119,15	C10-C11-C12	128,61	C19-C17-O24	114,87
C3-C4-C8	118,82	C10-C11-O20	118,90	C15-C19-C17	119,05
C5-C4-C8	122,03	C12-C11-O20	112,50	C15-C19-O25	120,07
C4-C5-C6	119,43	C11-C12-C13	120,12	C17-C19-O25	120,87
C4-C5-O22	120,51	C11-C12-C14	121,51	C3-O20-C11	122,92
C6-C5-O22	120,06	C13-C12-C14	118,37		

Tablo 35 incelendiğinde mirisetin molekülü için hesaplanan HOMO ve LUMO değerleri sırasıyla E_{HOMO} =-5,91 eV, E_{LUMO} =-2,27 eV olarak elde edilmiştir. HOMO-LUMO enerji değerleri arasındaki fark ise ΔE =3,65 eV'tur. HOMO-LUMO enerji farkının yüksek çıkması molekülün kararlı bir yapıda olduğunu göstermektedir. HOMO-LUMO enerji değerlerinden yararlanarak elde edilen diğer elektriksel parametreler de Tablo 35'te yer almaktadır. Burada kimyasal sertlik ve kimyasal yumuşaklık değerleri incelendiğinde kimyasal sertlik değerinin kimyasal yumuşaklık değerine göre daha büyük olması, yapıdaki elektron transferinin zor olacağını ve daha kararlı bir yapı olduğunu göstermektedir. Şekil 4.32'de mirisetin için oluşturulan HOMO-LUMO diyagramı görülmektedir. Diyagram incelendiğinde HOMO ve LUMO'nun kendi içinde simetrik olarak dağılmakla beraber, HOMO elektronlarının halka üzerinde (C, B, A), LUMO elektronlarının ise daha çok C-O bağları üzerinde yoğunlaştığı görülmektedir.

Molekül	Mirisetin
Multiplicity	1
HOMO (eV)	-5,91
LUMO (eV)	-2,27
$\Delta E (eV)$	3,65
I (eV)	5,91
<i>A</i> (eV)	2,27
χ (eV)	4,09
η (eV)	1,82
σ (eV)	0,55
μ (eV)	-4,09
ω (eV)	4,59

Tablo 35: Mirisetin molekülü elektronik yapı parametreleri

Şekil 4.32: Mirisetin molekülünün HOMO-LUMO gösterimi

Şekil 4.33 Mirisetin molekülü için ESP haritasını göstermektedir. O22-H26 O32-H33 ve O21 bölgeleri nükleofilik özellik gösterirken bunların haricindeki O-H grupları elektrofilik özellik göstermektedir.

Tablo 36'da NBO analizleri incelendiğinde en önemli etkileşimlerin $\pi^*(C3-C4) \rightarrow \pi^*(C5-C6) = 308,18 \text{ kcal/mol}, \pi^*(C8-O21) \rightarrow \pi^*(C10-C11) = 109,08 \text{ kcal/mol}, \pi^*(C10-C11) \rightarrow \pi^*(C12-C13) = 189,21 \text{ kcal/mol}, anti-\pi \rightarrow anti \pi orbitallerinde olduğu görülmektedir. <math>\pi^* \rightarrow \pi^*$ anti etkileşimlerinin haricinde $\sigma \rightarrow \sigma^*$ etkileşimlerine bakıldığında genel olarak O-H, C-O ve C-C bağ orbitallerinde olduğu görülmektedir. $\sigma(O23-H29) \rightarrow \sigma^*(C10-C11) = 6,46 \text{ kcal/mol}, \sigma(O25-H28) \rightarrow \sigma^*(C15-C19) = 4,77 \text{ kcal/mol}, \sigma(O30-H31) \rightarrow \sigma^*(C1-C2) = 4,64 \text{ kcal/mol}, \sigma(O32-H33) \rightarrow \sigma^*(C13-C15) = 5,26 \text{ kcal/mol} \sigma(C1-C2) \rightarrow \sigma^*(C3-O20) = 4,63 \text{ kcal/mol}, \sigma(C12-C14) \rightarrow \sigma^*(C17-O24) = 4,82 \text{ kcal/mol} etkileşimleri olarak öne çıkmaktadır. Molekül içi <math>\pi \rightarrow \pi^*$ etkileşimlerine bakıldığında en önemli etkileşimlerin $\pi(C1-C2) \rightarrow \pi^*(C3-C4) = 29,26 \text{ kcal/mol}, \pi(C3-C4) \rightarrow \pi^*(C5-C6) = 24,67 \text{ kcal/mol}, \pi(C3-C4) \rightarrow \pi^*(C8-O21) = 35,10 \text{ kcal/mol}, \sigma(C5-C6) \rightarrow \sigma^*(C1-C2) = 27,90 \text{ kcal/mol}, \pi(C10-C11) \rightarrow \pi^*(C8-O21) = 24,65 \text{ kcal/mol}, \pi(C10-C11) \rightarrow \pi^*(C8-O21) = 24,65 \text{ kcal/mol}, \pi(C10-C11) \rightarrow \pi^*(C8-O21) = 24,65 \text{ kcal/mol}, \pi(C10-C11) \rightarrow \pi^*(C8-O21) = 24,65 \text{ kcal/mol}, \pi(C10-C11) \rightarrow \pi^*(C8-O21) = 24,65 \text{ kcal/mol}, \pi(C10-C11) \rightarrow \pi^*(C8-O21) = 24,65 \text{ kcal/mol}, \pi(C10-C11) \rightarrow \pi^*(C8-O21) = 24,65 \text{ kcal/mol}, \pi(C10-C11) \rightarrow \pi^*(C8-O21) = 24,65 \text{ kcal/mol}, \pi(C10-C11) \rightarrow \pi^*(C8-O21) = 24,65 \text{ kcal/mol}, \pi(C10-C11) \rightarrow \pi^*(C8-O21) = 24,65 \text{ kcal/mol}, \pi(C10-C11) \rightarrow \pi^*(C8-O21) = 24,65 \text{ kcal/mol}, \pi(C10-C11) \rightarrow \pi^*(C8-O21) = 24,65 \text{ kcal/mol}, \pi(C10-C11) \rightarrow \pi^*(C8-O21) = 24,65 \text{ kcal/mol}, \pi(C10-C11) \rightarrow \pi^*(C8-O21) = 24,65 \text{ kcal/mol}, \pi(C10-C11) \rightarrow \pi^*(C8-O21) = 24,65 \text{ kcal/mol}, \pi(C10-C11) \rightarrow \pi^*(C8-O21) = 24,65 \text{ kcal/mol}, \pi(C10-C11) \rightarrow \pi^*(C8-O21) = 24,65 \text{ kcal/mol}, \pi(C10-C11) \rightarrow \pi^*(C8-O21) = 24,65 \text{ kcal/mol}, \pi(C10-C11) \rightarrow \pi^*(C8-O21) = 24,65 \text{ kcal/mol}, \pi(C10-C11) \rightarrow \pi^*(C8-O21) = 24,65 \text{ kcal/mol}, \pi(C10-C11) \rightarrow \pi^*(C8-O21) = 24,65 \text{ kcal/mol}, \pi(C10-C11) \rightarrow \pi^*(C8-O21) = 24,65 \text{ kcal/mol}, \pi(C10-C11) \rightarrow \pi^*(C8-O$

kcal/mol, π (C15-C19)→ π *(C14-C17) =22,74 kcal/mol olduğu görülmektedir. Yapıdaki LP (lone pair) orbitallerindeki elektronların ise π * orbitallerine doğru etkileşim gösterdiği bir diğer deyişle Oksijen atomlarındaki LP elektronlarının C-C bağlarındaki anti- π orbitallerine doğru etkileşim gösterdiği görülmektedir. Buradaki en önemli etkileşimler ise LP2 (O20)→ π *(C3-C4) =30,69 kcal/mol, LP2 (O20)→ π *(C10-C11) =28,11 kcal/mol, LP2 (O22)→ π *(C5-C6) =39,61 kcal/mol, LP2 (O24)→ π *(C17-C19) =25,14 kcal/mol, LP2 (O25)→ π *(C15-C19) =24,09 kcal/mol LP2 (O30)→ π *(C1-C2) =30,80 kcal/mol, LP2 (O32)→ π *(C15-C19) =28,65 kcal/mol olarak öne çıkmaktadır.

Tablo 36: Mirisetin NBO Analizleri

Verici	Type	ED/e	Alıcı	Туре	ED/e	E ² (kcalmol ⁻¹)	E_j - $E_i(a.u)$	F _{ij} (a.u)
C1-C2	σ	1,97094	C1-C6	σ*	0,02367	3,13	1,26	0,056
			C2-C3	σ^*	0,01777	2,24	1,28	0,048
			C2-H7	σ^*	0,01080	1,48	1,19	0,038
			C3-O20	σ^*	0,02785	4,63	1,07	0,063
			C6-H9	σ^*	0,01171	1,99	1,17	0,043
			O30-H31	σ^*	0,00770	2,03	1,14	0,043
	π	1,66066	C1-C2	π^*	0,40726	2,87	0,28	0,026
			C3-C4	π^*	0,49176	29,26	0,27	0,083
			C5-C6	π^*	0,36976	12,52	0,28	0,053
C1-C6	σ	1,97872	C1-C2	σ^*	0,02181	3,48	1,27	0,059
			C2-H7	σ^*	0,01080	1,99	1,19	0,044
			C5-C6	σ^*	0,02242	2,45	1,28	0,050
			C5-O22	σ^*	0,01773	3,79	1,10	0,058
			C6-H9	σ^*	0,01171	1,31	1,17	0,035
C1-O30	σ	1,99450	C1-C2	σ^*	0,02181	0,56	1,48	0,026
			C1-C6	σ^*	0,02367	0,66	1,47	0,028
			C2-C3	σ^*	0,01777	1,49	1,49	0,042
			C5-C6	σ^*	0,02242	1,26	1,49	0,039
C2-C3	σ	1,97242	C1-C2	σ^*	0,02181	2,09	1,27	0,046
			C1-O30	σ^*	0,02153	3,55	1,07	0,055
			C2-H7	σ^*	0,01080	1,52	1,19	0,038
			C3-C4	σ*	0,03235	3,98	1,26	0,063
			C4-C8	σ^*	0,04900	2,52	1,23	0,050
			C11-O20	σ^*	0,02087	2,94	1,06	0,050
C2-H7	σ	1,97553	C1-C2	σ^*	0,02181	1,18	1,08	0,032
			C1-C6	σ^*	0,02367	4,19	1,07	0,060
			C1-O30	σ*	0,02153	0,87	0,88	0,025

			C2-C3	σ*	0,01777	1,18	1,09	0,032
			C3-C4	σ^*	0,03235	4,51	1,07	0,062
			C3-O20	σ^*	0,02785	0,87	0,88	0,025
C3-C4	σ	1,97130	C2-C3	σ^*	0,01777	3,76	1,28	0,062
			C2-H7	σ^*	0,01080	1,96	1,19	0,043
			C4-C5	σ*	0,03504	3,19	1,24	0,056
			C4-C8	σ^*	0,04900	2,86	1,23	0,053
			C5-O22	σ^*	0,01773	3,03	1,10	0,052
			C8-O21	σ^*	0,01124	3,17	1,23	0,056
	π	1,62638	C1-C2	π^*	0,40726	12,42	0,29	0,054
			C3-C4	π^*	0,49176	3,31	0,28	0,028
			C5-C6	π^*	0,36976	24,67	0,29	0,075
			C8-O21	π^*	0,41637	35,10	0,26	0,086
C3-O20	σ	1,99000	C1-C2	σ*	0,02181	1,23	1,50	0,038
			C2-C3	σ^*	0,01777	0,59	1,51	0,027
			C3-C4	σ^*	0,03235	0,66	1,48	0,028
			C4-C5	σ*	0,03504	1,56	1,46	0,043
			C11-C12	σ^*	0,02858	1,60	1,42	0,043
C4-C5	σ	1,97144	C3-C4	σ^*	0,03235	3,49	1,24	0,059
			C3-O20	σ*	0,02785	3,83	1,06	0,057
			C4-C8	σ*	0,04900	3,08	1,21	0,055
			C5-C6	σ^*	0,02242	2,99	1,27	0,055
			C6-H9	σ*	0,01171	2,22	1,16	0,046
			C8-C10	σ*	0,06063	1,99	1,18	0,044
C4-C8	σ	1,97322	C2-C3	σ*	0,01777	2,64	1,27	0,052
			C3-C4	σ*	0,03235	3,13	1,24	0,056
			C4-C5	σ*	0,03504	2,88	1,23	0,053
			C5-C6	σ*	0,02242	2,16	1,27	0,047
			C8-C10	σ*	0,06063	1,44	1,17	0,037

			C8-O21	σ*	0,01124	1,16	1,22	0,034
			C10-O23	σ^*	0,01655	2,42	1,06	0,045
C5-C6	σ	1,97495	C1-C6	σ*	0,02367	2,42	1,26	0,049
			C1-O30	σ*	0,02153	3,79	1,06	0,057
			C4-C5	σ^*	0,03504	3,10	1,24	0,056
			C4-C8	σ^*	0,04900	2,84	1,23	0,053
			C5-O22	σ^*	0,01773	0,53	1,10	0,022
			C6-H9	σ^*	0,01171	1,54	1,17	0,038
			O22-H26	σ^*	0,05746	1,85	1,16	0,042
	π	1,69284	C1-C2	π^*	0,40726	27,90	0,28	0,081
			C3-C4	π^*	0,49176	12,21	0,27	0,054
			C5-C6	π^*	0,36976	2,48	0,28	0,024
C5-O22	σ	1,99419	C1-C6	σ^*	0,02367	1,43	1,47	0,041
			C3-C4	σ^*	0,03235	1,64	1,46	0,044
			C4-C5	σ^*	0,03504	0,81	1,45	0,031
			C5-C6	σ^*	0,02242	0,99	1,49	0,034
C6-H9	σ	1,97571	C1-C2	σ^*	0,02181	4,09	1,09	0,060
			C1-C6	σ^*	0,02367	0,86	1,08	0,027
			C1-O30	σ^*	0,02153	0,70	0,88	0,022
			C4-C5	σ^*	0,03504	4,42	1,06	0,061
			C5-C6	σ^*	0,02242	1,18	1,10	0,032
			C5-O22	σ^*	0,01773	0,71	0,92	0,023
C8-C10	σ	1,97763	C4-C5	σ^*	0,03504	3,16	1,22	0,056
			C4-C8	σ^*	0,04900	1,62	1,20	0,040
			C8-O21	σ^*	0,01124	0,61	1,21	0,024
			C10-C11	σ^*	0,02865	3,25	1,28	0,058
			C11-C12	σ^*	0,02858	3,91	1,17	0,061
C8-O21	σ	1,99392	C3-C4	σ^*	0,03235	1,39	1,55	0,042
			C4-C8	σ*	0,04900	1,81	1,52	0,047

			C8-C10	ح*	0.06063	1 19	1 49	0.038
			C10-C11	۰ ۲	0.02865	1,19	1,19	0.044
			022-H26	۰ ۲	0,02005	0.52	1,00	0.025
	π	1 97507	C3-C4	π^*	0,05740	4.12	0.38	0,020
	n	1,97507	C8-021	π^*	0.41637	-1,12	0,36	0,040
			$C_{10}C_{11}$	π^*	0.31472	5 17	0,30	0.043
C10-C11	G	1 97930	$C_{8}C_{10}$	π σ*	0,01472	2 56	1.23	0,043
010-011	0	1,7750	$C_{8} - O_{21}$	۰ ۳	0,00003	1.82	1,25	0.043
			C_{10}	۰ ح*	0,01124	0.03	1,20	0,043
			C10-023 C11-C12	۰ ح*	0,01055	3.83	1,12	0,027
			C12-C13	۰ ۳	0,02858	1,61	1,24	0,002
			023 H20	0 6*	0,01803	1,01	1,55	0,041
	π	1 76917	C_{2}^{-112}	0 #*	0,03317	1,55	0.28	0,039
	n	1,70047	$C_{0} - O_{2}$	π* π*	0,41057	24,03	0,28	0,078
C10,022	~	1 00157	C12-C13	π* σ*	0,43799	11,87	0,52	0,038
C10-025	0	1,99137	C4-C6	0 · -*	0,04900	1,55	1,42	0,042
			C_{0}	0· _*	0,00005	0,34	1,58	0,023
			C10-C11	σ*	0,02865	1,39	1,49	0,041
G11 G10		1 07000	C11-020	σ*	0,02087	2,35	1,25	0,049
C11-C12	σ	1,97232	C3-O20	σ*	0,02785	2,97	1,04	0,049
			C8-C10	σ*	0,06063	2,40	1,15	0,047
			C10-C11	σ*	0,02865	3,39	1,26	0,058
			C12-C13	σ*	0,01805	2,33	1,25	0,048
			C12-C14	σ^*	0,02037	2,27	1,24	0,047
			C13-C15	σ^*	0,02037	1,84	1,26	0,043
			C14-C17	σ^*	0,02291	1,90	1,26	0,044
C11-O20	σ	1,98653	C2-C3	σ^*	0,01777	2,06	1,48	0,049
			C10-C11	σ^*	0,02865	0,76	1,50	0,030
			C10-O23	σ^*	0,01655	2,88	1,28	0,054
			C12-C14	σ*	0,02037	1,74	1,47	0,045

C12-C13 σ 1,97055 C10-C11 σ^* 0,02865 2,59 C11-C12 σ^* 0,02858 2,18 C12-C14 σ^* 0,02037 3,73	1,27 1,16 1,24 1,27	0,051 0,045 0,061
C11-C12 σ^* 0,02858 2,18 C12-C14 σ^* 0.02037 3.73	1,16 1,24 1,27	0,045 0,061
C12-C14 σ^* 0.02037 3.73	1,24 1,27	0,061
	1,27	· ·
C13-C15 σ* 0,02037 2,28	/	0,048
C13-H16 σ* 0,01260 1,46	1,18	0,037
C14-H18 σ* 0,01726 2,21	1,17	0,046
C15-O32 σ* 0,01863 3,95	1,05	0,058
π 1,67000 C10-C11 π^* 0,31472 18,96	0,27	0,064
C14-C17 π^* 0,40379 17,24	0,27	0,062
C15-C19 π^* 0,44209 22,06	0,27	0,071
C12-C14 σ 1,9673 C11-C12 σ* 0,02858 2,33	1,16	0,047
C11-O20 σ* 0,02087 2,47	1,02	0,045
C12-C13 σ* 0,01805 3,68	1,25	0,061
C13-H16 σ* 0,01260 2,11	1,18	0,045
C14-C17 σ* 0,02291 2,55	1,26	0,051
C14-H18 σ* 0,01726 1,63	1,17	0,039
C17-O24 σ* 0,02217 4,82	1,02	0,063
C13-C15 σ 1,97322 C11-C12 σ* 0,02858 3,26	1,18	0,055
C12-C13 σ* 0,01805 2,79	1,27	0,053
C13-H16 σ* 0,01260 1,31	1,19	0,035
C15-C19 σ* 0,03627 3,31	1,25	0,058
C15-O32 σ* 0,01863 0,51	1,07	0,021
C19-O25 σ* 0,01757 3,40	1,05	0,053
O32-H33 σ* 0,01184 1,81	1,15	0,041
C13-H16 σ 1,97645 C12-C13 σ* 0,01805 1,21	1,08	0,032
C12-C14 σ* 0,02037 4,04	1,07	0,059
C13-C15 σ* 0,02037 1,03	1,10	0,030
C15-C19 σ* 0,03627 4,52	1,06	0,062
C15-O32 σ* 0,01863 0,81	0,88	0,024

C14-C17	σ	1,97721	C11-C12	σ*	0,02858	3,20	1,20	0,055
			C12-C14	σ*	0,02037	3,00	1,28	0,055
			C14-H18	σ*	0,01726	1,37	1,20	0,036
			C17-C19	σ*	0,03685	4,14	1,26	0,065
			C19-O25	σ*	0,01757	3,61	1,06	0,055
	π	1,70264	C12-C13	π^*	0,43799	18,65	0,30	0,069
			C15-C19	π^*	0,44209	17,39	0,29	0,065
C14-H18	σ	1,97472	C12-C13	σ*	0,01805	3,80	1,09	0,058
			C12-C14	σ*	0,02037	1,38	1,08	0,035
			C14-C17	σ*	0,02291	1,08	1,10	0,031
			C17-C19	σ*	0,03685	4,60	1,07	0,063
			C17-O24	σ*	0,02217	0,63	0,86	0,021
C15-C19	σ	1,97423	C13-C15	σ*	0,02037	3,35	1,30	0,059
			C13-H16	σ*	0,01260	1,91	1,21	0,043
			C17-C19	σ*	0,03685	3,24	1,27	0,057
			C17-O24	σ*	0,02217	3,06	1,05	0,051
			O25-H28	σ*	0,01250	1,87	1,16	0,042
	π	1,6234	C12-C13	π^*	0,43799	18,30	0,30	0,067
			C14-C17	π^*	0,40379	22,74	0,29	0,073
C15-O32	σ	1,99344	C12-C13	σ*	0,01805	1,49	1,47	0,042
			C13-C15	σ*	0,02037	0,92	1,48	0,033
			C15-C19	σ*	0,03627	0,67	1,45	0,028
			C17-C19	σ*	0,03685	1,66	1,45	0,044
C17-C19	σ	1,97300	C14-C17	σ*	0,02291	3,51	1,30	0,060
			C14-H18	σ*	0,01726	1,92	1,21	0,043
			C15-C19	σ*	0,03627	3,45	1,27	0,059
			C15-O32	σ*	0,01863	3,21	1,09	0,053
			O24-H27	σ*	0,00734	1,96	1,16	0,043
C17-O24	σ	1,99379	C12-C14	σ*	0.02037	1.30	1,47	0.039

			C14-C17	σ*	0,02291	1,00	1,49	0,035
			C15-C19	σ*	0,03627	1,94	1,45	0,048
C19-O25	σ	1,9937	C13-C15	σ*	0,02037	1,64	1,49	0,044
			C14-C17	σ^*	0,02291	1,50	1,49	0,042
			C15-C19	σ*	0,03627	0,62	1,46	0,027
			C17-C19	σ*	0,03685	0,91	1,46	0,033
O22-H26	σ	1,98695	C5-C6	σ*	0,02242	5,71	1,30	0,077
O23-H29	σ	1,98539	C8-C10	σ*	0,06063	0,59	1,20	0,024
			C10-C11	σ*	0,02865	6,46	1,31	0,083
O24-H27	σ	1,98925	C17-C19	σ^*	0,03685	4,15	1,30	0,066
O25-H28	σ	1,98855	C15-C19	σ^*	0,03627	4,77	1,30	0,071
O30-H31	σ	1,98911	C1-C2	σ^*	0,02181	4,64	1,30	0,070
O32-H33	σ	1,98845	C13-C15	σ^*	0,02037	5,26	1,31	0,074
O20	LP1	1,95809	C2-C3	σ^*	0,01777	0,85	1,11	0,028
			C3-C4	σ^*	0,03235	6,85	1,09	0,077
			C10-C11	σ^*	0,02865	5,75	1,13	0,072
			C10-O23	σ^*	0,01655	0,58	0,91	0,021
			C11-C12	σ^*	0,02858	1,09	1,03	0,030
			C13-H16	σ^*	0,01260	0,55	1,04	0,022
	LP2	1,74963	C3-C4	π^*	0,49176	30,69	0,36	0,099
			C10-C11	π^*	0,31472	28,11	0,37	0,092
O21	LP1	1,96409	C4-C8	σ^*	0,04900	3,67	1,21	0,060
			C8-C10	σ^*	0,06063	0,77	1,17	0,027
			O22-H26	σ^*	0,05746	5,38	1,14	0,070
			O23-H29	σ^*	0,03317	2,04	1,13	0,043
	LP2	1,85632	C4-C8	σ^*	0,04900	12,20	0,79	0,090
			C8-C10	σ^*	0,06063	15,93	0,75	0,100
			C10-C11	σ^*	0,02865	0,50	0,86	0,019
			O22-H26	σ*	0,05746	16,91	0,72	0,101

			O23-H29	σ*	0,03317	4,40	0,71	0,051
O22	LP1	1,97385	C4-C5	σ^*	0,03504	7,56	1,09	0,081
	LP2	1,81492	C5-C6	π^*	0,36976	39,61	0,33	0,106
O23	LP1	1,97223	C8-C10	σ^*	0,06063	5,22	1,07	0,067
			C14-H18	σ^*	0,01726	3,22	1,09	0,053
	LP2	1,86586	C10-C11	π^*	0,31472	30,92	0,34	0,096
O24	LP1	1,97387	C14-C17	σ^*	0,02291	6,24	1,19	0,077
			C17-C19	σ^*	0,03685	0,54	1,16	0,022
			O25-H28	σ^*	0,01250	1,86	1,05	0,040
	LP2	1,89366	C14-C17	π^*	0,40379	25,14	0,36	0,092
O25	LP1	1,97212	C17-C19	σ^*	0,03685	6,63	1,15	0,078
			O32-H33	σ^*	0,01184	1,79	1,05	0,039
	LP2	1,88145	C15-C19	π^*	0,44209	24,09	0,35	0,090
O30	LP1	1,97938	C1-C6	σ^*	0,02367	6,19	1,14	0,075
	LP2	1,85603	C1-C2	π^*	0,40726	30,80	0,35	0,099
O32	LP1	1,97675	C15-C19	σ^*	0,03627	6,54	1,13	0,077
	LP2	1,87107	C15-C19	π^*	0,44209	28,65	0,33	0,095
C3-C4	π*		C5-C6	π^*	0,36976	308,18	0,01	0,079
			C10-C11	π^*	0,31472	6,09	0,01	0,011
C8-O21	π^*		C3-C4	π^*	0,49176	211,04	0,02	0,081
			C5-C6	π^*	0,36976	0,64	0,03	0,006
			C10-C11	π^*	0,31472	109,08	0,03	0,081
C10-C11	π*		C12-C13	π^*	0,43799	189,21	0,01	0,069

4.3.1 Mirisetin Fe⁺² Şelasyonu

Şekil 4.34: Mirisetin Fe⁺² molekülünün geometrik yapısı

Şekil 4.34'te mirisetin Fe^{+2} molekülünün atom numaraları belirlenmiş bir şekilde optimize edilmiş hali gösterilmiştir. Mirisetin Fe^{+2} molekülü 34 atomdan oluşmaktadır.

Molekülün bağ uzunluğu ve bağ açıları gibi optimize edilmiş yapısal parametreleri sırasıyla Tablo 37 ve Tablo 38'de verilmiştir. Mirisetin Fe⁺² molekülü 27 bağ uzunluğu ve 38 bağ açısı ile tanımlanmıştır. Bağ uzunlukları incelendiğinde elde edilen sonuçların deneysel verilerle uyumlu olduğu görülmektedir. C-O bağ uzunlukları incelendiğinde C1-O30=1,43Å, C8=O21=1,26Å bağlarının deneysel sonuçlarla (Huheey, 1958), (Darwent, 1970), (Benson, 1965) eşit veya yakın değerlerde olduğu görülmektedir. (Deneysel sonuçlar: C-O=1,43Å, C=O=1,20Å C-C=1,54Å, C=C=1,34Å). C15-O31=1,58Å ve C19-O25=1,58Å bağlarının uzunluklarının büyük olması demir iyonun etkisiyle meydana gelmektedir. Demir iyonunun oksijen atomları ile oluşturduğu bağ uzunlukları birbirine eşit ve 2,57Å olarak hesaplanmıştır.

C1-O30	1,430	C5-O22	1,301	C13-C15	1,405	
C1-C2	1,402	C8-O21	1,258	C14-C17	1,398	
C1-C6	1,401	C8-C10	1,526	C15-C19	1,625	
C2-C3	1,403	C10-C11	1,353	C15-O31	1,579	
C3-O20	1,444	C10-O23	1,430	C17-C19	1,405	
C3-C4	1,405	C11-C12	1,540	C17-O24	1,430	
C4-C5	1,401	C11-O20	1,441	C19-O25	1,579	
C4-C8	1,390	C12-C13	1,398	O25-Fe32	2,570	
C5-C6	1,400	C12-C14	1,394	O31-Fe32	2,570	

Tablo 37: Mirisetin Fe⁺² Bağ Uzunlukları

Tablo 38: Mirisetin Fe⁺² Bağ Açıları

C2-C1-C6	120,06	C4-C8-C10	118,09	C13-C15-C19	115,99
C2-C1-O29	119,98	C4-C8-O21	120,95	C13-C15-O31	110,72
C6-C1-029	199,97	C10-C8-O21	120,95	C19-C15-O31	133,29
C1-C2-C3	120,26	C8-C10-C11	119,26	C14-C17-C19	122,49
C2-C3-C4	119,31	C8-C10-O23	120,36	C19-C17-O24	118,76
C2-C3-O20	118,70	C11-C10-O23	120,37	C15-C19-C17	115,99
C4-C3-O20	121,98	C10-C11-C12	119,28	C15-C19-O25	133,29
C3-C4-C5	120,31	C12-C11-O20	119,26	C17-C19-O25	110,72
C3-C4-C8	119,75	C11-C12-C13	119,24	C3-O20-C11	115,40
C5-C4-C8	119,94	C11-C12-C14	119,24	C19-O25-Fe32	89,20
C4-C5-O22	120,02	C13-C12-C14	121,53	C15-O31-Fe32	89,20
C6-C5-O22	120,02	C12-C13-C15	122,49	O25-Fe32-O31	95,02
C1-C6-C5	119,91	C12-C14-C17	121,53		

Tablo 39 incelendiğinde $E_{HOMO} = -3,31$ eV ve $E_{LUMO} = -2,67$ eV ve $\Delta E = 0,65$ eV olduğu görülmektedir. HOMO-LUMO enerji farkının düşük olması molekülün kararlılığının düşük olduğunu göstermektedir. Molekülün kimyasal sertlik ve kimyasal yumuşaklık değerlerine bakıldığında ise, kimyasal sertlik değerinin oldukça düşük olması molekül içerisindeki yük transferinin daha kolay olabileceğini göstermektedir. İyonlaşma enerjilerine bakıldığında ise mirisetin molekülünden düşük olması Mirisetin Fe⁺² molekülünün yük transferinde daha az enerjiye ihtiyaç duyduğunu göstermektedir. Mirisetin Fe⁺², HOMO-LUMO şekilleri (Şekil 4.35) incelendiğinde HOMO yerleşiminin demir atomu üzerinde ve LUMO yerleşiminin C, B, A halkaları üzerinde yoğunlaştığı görülmektedir. Dolayısıyla olası bir elektron transferinin demir atomurato

Molekül	Mirisetin Fe ⁺²
Multiplicity	1
HOMO (eV)	-3,31
LUMO (eV)	-2,67
$\Delta E (eV)$	0,65
I (eV)	3,31
A (eV)	2,67
χ (eV)	2,99
η (eV)	0,32
σ (eV)	3,08
μ (eV)	-2,99
ω (eV)	13,78

Tablo 39: Mirisetin Fe⁺² molekülü elektronik yapı parametreleri

Şekil 4.35: Mirisetin Fe⁺² molekülünün HOMO-LUMO gösterimi

Şekil 4.36 incelendiğinde O-H (O24-H27, O29-H30) bölgelerinin mavi renkte dolayısıyla elektrofilik özellik gösteren bölgeler olduğu görülmektedir. Demir atomunun olduğu bölge ise nükleofilik özellik göstermektedir. Diğer bölgelere bakıldığında nötral bir durum söz konusudur.

Tablo 40'ta NBO analizleri incelendiğinde en önemli etkileşimlerin $\pi^*(C3-C4) \rightarrow \pi^*(C5-C6) = 333,74$ kcal/mol, $\pi^*(C8-O21) \rightarrow \pi^*(C3-C4) = 212,51$ kcal/mol, $\pi^*(C8-O21) \rightarrow \pi^*(C10-C11) = 106,69$ kcal/mol, $\pi^*(C10-C11) \rightarrow \pi^*(C12-C14) = 206,12$ kcal/mol, $\pi^*(C17-C19) \rightarrow \pi^*(C13-C15) = 273,45$ kcal/mol anti- $\pi \rightarrow$ anti π orbitallerinde olduğu görülmektedir. $\pi^* \rightarrow \pi^*$ anti etkileşimlerinin haricinde $\sigma \rightarrow \sigma^*$ etkileşimlerine bakıldığında genel olarak O-H ve C-C bağ orbitallerinde olduğu görülmektedir. $\sigma(O22-H26) \rightarrow \sigma^*(C5-C6) = 5,72$ kcal/mol, $\sigma(O23-H28) \rightarrow \sigma^*(C10-C11) = 6,51$ kcal/mol, $\sigma(O24-H27) \rightarrow \sigma^*(C17-C19) = 5,01$ kcal/mol, $\sigma(O29-H30) \rightarrow \sigma^*(C1-C2) = 4,64$ kcal/mol, $\sigma(C1-C2) \rightarrow \sigma^*(C3-O20) = 4,60$ kcal/mol, $\sigma(C12-C13) \rightarrow \sigma^*(C15-O31) = 4,67$ kcal/mol etkileşimleri olarak öne çıkmaktadır. Molekül içi $\pi \rightarrow \pi^*$ etkileşimlerine bakıldığında en önemli etkileşimlerin π (C1-C2) $\rightarrow \pi^*$ (C3-C4) =29,01 kcal/mol, π (C3-C4) $\rightarrow \pi^*$ (C5-C6) =24,80 kcal/mol, π (C3-C4) $\rightarrow \pi^*$ (C8-O21) =35,10 kcal/mol, π (C5-C6) $\rightarrow \pi^*$ (C1-C2) =27,86 kcal/mol, π (C10-C11) $\rightarrow \pi^*$ (C8-O21) =24,95 kcal/mol, π (C12-C14) $\rightarrow \pi^*$ (C17-C19) =22,68 kcal/mol, π (C13-C15) $\rightarrow \pi^*$ (C12-C14) =23,55 kcal/mol, π (C17-C19) $\rightarrow \pi^*$ (C13-C15) =21,72 kcal/mol olduğu görülmektedir. Yapıdaki LP (lone pair) orbitallerindeki elektronların ise π^* orbitallerine doğru etkileşim gösterdiği bir diğer deyişle Oksijen atomlarındaki LP elektronlarının C-C bağlarındaki anti- π orbitallerine doğru etkileşim gösterdiği görülmektedir. Buradaki en önemli etkileşimler ise LP2 (O20) $\rightarrow \pi^*$ (C3-C4) =31,11 kcal/mol, LP2 (O20) $\rightarrow \pi^*$ (C10-C11) =27,93 kcal/mol, LP2 (O22) $\rightarrow \pi^*$ (C17-C19) =30,12 kcal/mol LP2 (O29) $\rightarrow \pi^*$ (C1-C2) =30,63 kcal/mol, LP2 (O31) $\rightarrow \pi^*$ (C13-C15) =37,29 kcal/mol olarak öne çıkmaktadır.

Tablo 40: Mirisetin Fe⁺² NBO Analizleri

Verici	Туре	ED/e	Alıcı	Туре	ED/e	E ² (kcalmol ⁻¹)	E_j - $E_i(a,u)$	F _{ij} (a,u)
C1-C2	σ	1,97081	C1-C6	σ*	0,02366	3,14	1,26	0,056
			C2-C3	σ*	0,01786	2,24	1,28	0,048
			C2-H7	σ*	0,01084	1,48	1,19	0,038
			C3-O20	σ*	0,02772	4,60	1,07	0,063
			C6-H9	σ*	0,01175	1,99	1,17	0,043
			O29-H30	σ^*	0,00772	2,03	1,14	0,043
	π	1,66399	C1-C2	π^*	0,40681	2,87	0,28	0,026
			C3-C4	π^*	0,49033	29,01	0,27	0,082
			C5-C6	π^*	0,37062	12,46	0,28	0,053
C1-C6	σ	1,97869	C1-C2	σ*	0,02177	3,50	1,27	0,060
			C2-H7	σ*	0,01084	1,99	1,19	0,044
			C5-C6	σ*	0,02244	2,46	1,28	0,050
			C5-O22	σ*	0,01775	3,80	1,10	0,058
			C6-H9	σ^*	0,01175	1,31	1,17	0,035
C1-O29	σ	1,99450	C1-C2	σ*	0,02177	0,56	1,48	0,026
			C1-C6	σ*	0,02366	0,65	1,47	0,028
			C2-C3	σ*	0,01786	1,49	1,49	0,042
			C5-C6	σ*	0,02244	1,26	1,49	0,039
C2-C3	σ	1,97236	C1-C2	σ*	0,02177	2,10	1,27	0,046
			C1-O29	σ*	0,02161	3,57	1,07	0,055
			C2-H7	σ*	0,01084	1,52	1,19	0,038
			C3-C4	σ*	0,03245	3,95	1,26	0,063
			C4-C8	σ*	0,04888	2,51	1,23	0,050
			C11-O20	σ*	0,02118	2,96	1,06	0,050
C2-H7	σ	1,97561	C1-C2	σ*	0,02177	1,18	1,08	0,032
			C1-C6	σ*	0,02366	4,20	1,07	0,060
			C1-O29	σ*	0,02161	0,87	0,87	0,025

			C2-C3	σ*	0,01786	1,17	1,09	0,032
			C3-C4	σ^*	0,03245	4,49	1,07	0,062
			C3-O20	σ^*	0,02772	0,86	0,89	0,025
C3-C4	σ	1,97126	C2-C3	σ^*	0,01786	3,74	1,28	0,062
			C2-H7	σ^*	0,01084	1,97	1,19	0,043
			C4-C5	σ^*	0,03505	3,19	1,24	0,056
			C4-C8	σ^*	0,04888	2,87	1,23	0,053
			C5-O22	σ^*	0,01775	3,04	1,10	0,052
			C8-O21	σ^*	0,01128	3,17	1,23	0,056
	π	1,62598	C1-C2	π^*	0,40681	12,44	0,29	0,054
			C3-C4	π^*	0,49033	3,32	0,28	0,028
			C5-C6	π^*	0,37062	24,80	0,29	0,075
			C8-O21	π^*	0,41968	35,10	0,26	0,086
C3-O20	σ	1,99005	C1-C2	σ^*	0,02177	1,22	1,50	0,038
			C2-C3	σ^*	0,01786	0,60	1,51	0,027
			C3-C4	σ^*	0,03245	0,68	1,48	0,028
			C4-C5	σ^*	0,03505	1,56	1,46	0,043
			C11-C12	σ^*	0,02833	1,55	1,42	0,042
C4-C5	σ	1,97148	C3-C4	σ^*	0,03245	3,48	1,24	0,059
			C3-O20	σ^*	0,02772	3,81	1,06	0,057
			C4-C8	σ^*	0,04888	3,09	1,21	0,055
			C5-C6	σ^*	0,02244	2,99	1,27	0,055
			C6-H9	σ^*	0,01175	2,24	1,16	0,046
			C8-C10	σ^*	0,06061	1,99	1,18	0,044
C4-C8	σ	1,97325	C2-C3	σ^*	0,01786	2,65	1,27	0,052
			C3-C4	σ^*	0,03245	3,15	1,24	0,056
			C4-C5	σ^*	0,03505	2,89	1,22	0,053
			C5-C6	σ^*	0,02244	2,17	1,27	0,047
			C8-C10	σ*	0,06061	1,44	1,17	0,037

			C8-O21	σ*	0,01128	1,16	1,22	0,034
			C10-O23	σ^*	0,01649	2,38	1,06	0,045
C5-C6	σ	1,97494	C1-C6	σ^*	0,02366	2,43	1,26	0,049
			C1-O29	σ^*	0,02161	3,79	1,06	0,057
			C4-C5	σ^*	0,03505	3,11	1,24	0,056
			C4-C8	σ^*	0,04888	2,83	1,23	0,053
			C5-O22	σ^*	0,01775	0,53	1,10	0,022
			C6-H9	σ^*	0,01175	1,54	1,17	0,038
			O22-H26	σ^*	0,05803	1,85	1,15	0,042
	π	1,69414	C1-C2	π^*	0,40681	27,86	0,28	0,081
			C3-C4	π^*	0,49033	12,14	0,27	0,054
			C5-C6	π^*	0,37062	2,47	0,28	0,024
C5-O22	σ	1,99420	C1-C6	σ^*	0,02366	1,43	1,47	0,041
			C3-C4	σ^*	0,03245	1,64	1,46	0,044
			C4-C5	σ^*	0,03505	0,81	1,45	0,031
			C5-C6	σ^*	0,02244	0,99	1,49	0,034
C6-H9	σ	1,97575	C1-C2	σ^*	0,02177	4,08	1,09	0,060
			C1-C6	σ^*	0,02366	0,86	1,08	0,027
			C1-O29	σ^*	0,02161	0,70	0,88	0,022
			C4-C5	σ^*	0,03505	4,40	1,06	0,061
			C5-C6	σ^*	0,02244	1,18	1,10	0,032
			C5-O22	σ^*	0,01775	0,71	0,92	0,023
C8-C10	σ	1,97771	C4-C5	σ^*	0,03505	3,17	1,22	0,056
			C4-C8	σ^*	0,04888	1,63	1,20	0,040
			C8-O21	σ^*	0,01128	0,61	1,21	0,024
			C10-C11	σ^*	0,02883	3,20	1,28	0,057
			C11-C12	σ^*	0,02833	3,86	1,18	0,060
C8-O21	σ	1,99393	C3-C4	σ^*	0,03245	1,39	1,55	0,042
			C4-C8	σ*	0,04888	1,80	1,52	0,047

			C8-C10	σ^*	0,06061	1,19	1,49	0,038
			C10-C11	σ^*	0,02883	1,50	1,60	0,044
			O22-H26	σ^*	0,05803	0,53	1,45	0,025
	π	1,97516	C3-C4	π^*	0,49033	4,12	0,38	0,040
			C8-O21	π^*	0,41968	0,65	0,36	0,015
			C10-C11	π^*	0,31697	5,12	0,39	0,043
C10-C11	σ	1,97935	C8-C10	σ^*	0,06061	2,53	1,23	0,050
			C8-O21	σ^*	0,01128	1,82	1,27	0,043
			C10-O23	σ^*	0,01649	0,94	1,12	0,029
			C11-C12	σ^*	0,02833	3,81	1,24	0,061
			C12-C13	σ^*	0,01857	1,55	1,32	0,040
			O23-H28	σ^*	0,03355	1,57	1,19	0,039
	π	1,76131	C8-O21	π^*	0,41968	24,95	0,28	0,078
			C12-C14	π^*	0,45919	11,12	0,32	0,057
C10-O23	σ	1,99163	C4-C8	σ^*	0,04888	1,56	1,42	0,042
			C8-C10	σ^*	0,06061	0,54	1,38	0,025
			C10-C11	σ^*	0,02883	1,40	1,49	0,041
			C11-O20	σ^*	0,02118	2,31	1,25	0,048
C11-C12	σ	1,97251	C3-O20	σ^*	0,02772	2,99	1,03	0,050
			C8-C10	σ^*	0,06061	2,39	1,15	0,047
			C10-C11	σ^*	0,02883	3,40	1,26	0,058
			C12-C13	σ^*	0,01857	2,16	1,24	0,046
			C12-C14	σ^*	0,02045	2,24	1,24	0,047
			C13-C15	σ^*	0,02834	1,75	1,27	0,042
			C14-C17	σ^*	0,02234	1,98	1,25	0,045
C11-O20	σ	1,98653	C2-C3	σ^*	0,01786	2,07	1,48	0,050
			C10-C11	σ*	0,02883	0,72	1,50	0,029
			C10-O23	σ*	0,01649	2,89	1,28	0,054
			C12-C14	σ^*	0,02045	1,71	1,48	0,045

C12-C13	σ	1,96987	C10-C11	σ*	0,02883	2,72	1,26	0,052
			C11-C12	σ^*	0,02833	2,06	1,16	0,044
			C12-C14	σ^*	0,02045	3,73	1,24	0,061
			C13-C15	σ^*	0,02834	2,34	1,27	0,049
			C13-H16	σ*	0,01363	1,36	1,17	0,036
			C14-H18	σ*	0,01718	2,14	1,17	0,045
			C15-O31	σ*	0,02253	4,67	1,08	0,063
C12-C14	σ	1,96849	C11-C12	σ*	0,02833	2,33	1,16	0,046
			C11-O20	σ*	0,02118	2,53	1,02	0,045
			C12-C13	σ*	0,01857	3,73	1,24	0,061
			C13-H16	σ*	0,01363	2,08	1,17	0,044
			C14-C17	σ*	0,02234	2,42	1,26	0,049
			C14-H18	σ*	0,01718	1,64	1,17	0,039
			C17-O24	σ*	0,02068	4,11	1,04	0,059
	π	1,67610	C10-C11	π^*	0,31697	16,60	0,26	0,059
			C13-C15	π^*	0,38165	14,36	0,28	0,058
			C17-C19	π^*	0,44548	22,68	0,27	0,072
C13-C15	σ	1,97516	C11-C12	σ*	0,02833	3,26	1,18	0,055
			C12-C13	σ*	0,01857	2,75	1,26	0,053
			C13-H16	σ*	0,01363	1,44	1,19	0,037
			C15-C19	σ*	0,04196	3,08	1,24	0,055
			C15-O31	σ*	0,02253	0,88	1,10	0,028
			C19-O25	σ*	0,02331	2,57	1,07	0,047
	π	1,66269	C12-C14	π^*	0,45919	22,55	0,28	0,073
			C13-C15	π^*	0,38165	0,75	0,29	0,013
			C17-C19	π^*	0,44548	16,67	0,27	0,062
C13-H16	σ	1,97798	C12-C13	σ*	0,01857	1,12	1,07	0,031
			C12-C14	σ*	0,02045	3,96	1,07	0,058
			C13-C15	σ*	0,02834	1,10	1,11	0,031

			<i>Q15 Q10</i>	ماد	0.04107	4.00	1.05	0.0.00
			C15-C19	σ*	0,04196	4,32	1,05	0,060
C14-C17	σ	1,97662	C11-C12	σ^*	0,02833	3,10	1,18	0,054
			C12-C14	σ^*	0,02045	3,03	1,27	0,055
			C14-H18	σ^*	0,01718	1,28	1,19	0,035
			C17-C19	σ^*	0,04151	3,67	1,26	0,061
			C19-O25	σ^*	0,02331	4,31	1,07	0,061
C14-H18	σ	1,97448	C12-C13	σ^*	0,01857	3,97	1,08	0,059
			C12-C14	σ^*	0,02045	1,36	1,08	0,034
			C14-C17	σ^*	0,02234	0,97	1,09	0,029
			C17-C19	σ^*	0,04151	4,34	1,08	0,061
			C17-O24	σ^*	0,02068	0,67	0,88	0,022
C15-C19	σ	1,97783	C13-C15	σ^*	0,02834	3,38	1,29	0,059
			C13-H16	σ^*	0,01363	2,21	1,19	0,046
			C17-C19	σ*	0,04151	3,31	1,25	0,058
			C17-O24	σ^*	0,02068	3,45	1,06	0,054
C15-O31	σ	1,98970	C12-C13	σ*	0,01857	1,29	1,46	0,039
			C13-C15	σ*	0,02834	1,32	1,49	0,040
			C15-C19	σ*	0,04196	0,63	1,43	0,027
			C17-C19	σ*	0,04151	2,07	1,45	0,049
C17-C19	σ	1,97183	C14-C17	σ*	0,02234	2,98	1,29	0,055
			C14-H18	σ*	0,01718	1,93	1,20	0,043
			C15-C19	σ*	0,04196	2,79	1,25	0,053
			C15-O31	σ*	0,02253	2,24	1,11	0,045
			C19-O25	σ*	0,02331	0,78	1,08	0,026
			O24-H27	σ*	0,00750	1,89	1,15	0,042
	π	1,62129	C12-C14	π^*	0,45919	17,39	0,29	0,065
			C13-C15	π^*	0,38165	21,72	0,30	0,072
C17-O24	σ	1,99418	C12-C14	σ*	0,02045	1,36	1,47	0,040
			C14-C17	σ^*	0,02234	0,94	1,48	0,033

			C15-C19	σ*	0,04196	1,62	1,44	0,044
			C17-C19	σ^*	0,04151	0,52	1,46	0,025
C19-O25	σ	1,99066	C13-C15	σ^*	0,02834	1,91	1,50	0,048
			C14-C17	σ^*	0,02234	1,29	1,48	0,039
			C15-C19	σ^*	0,04196	0,63	1,44	0,027
			C17-C19	σ^*	0,04151	0,96	1,46	0,034
O22-H26	σ	1,98694	C5-C6	σ^*	0,02244	5,72	1,30	0,077
O23-H28	σ	1,98526	C8-C10	σ^*	0,06061	0,60	1,20	0,024
			C10-C11	σ^*	0,02883	6,51	1,31	0,083
O24-H27	σ	1,98820	C17-C19	σ^*	0,04151	5,01	1,29	0,072
O29-H30	σ	1,98914	C1-C2	σ^*	0,02177	4,64	1,31	0,070
O20	LP1	1,95808	C2-C3	σ^*	0,01786	0,87	1,11	0,028
			C3-C4	σ^*	0,03245	6,93	1,08	0,078
			C10-C11	σ^*	0,02883	5,70	1,13	0,072
			C10-O23	σ*	0,01649	0,58	0,91	0,021
			C11-C12	σ^*	0,02833	1,07	1,03	0,030
			C13-H16	σ*	0,01363	0,55	1,04	0,021
	LP2	1,74819	C3-C4	π^*	0,49033	31,11	0,35	0,100
			C10-C11	π^*	0,31697	27,93	0,37	0,092
O21	LP1	1,96391	C4-C8	σ^*	0,04888	3,67	1,21	0,060
			C8-C10	σ^*	0,06061	0,76	1,17	0,027
			O22-H26	σ^*	0,05803	5,43	1,14	0,071
			O23-H28	σ^*	0,03355	2,10	1,13	0,044
	LP2	1,85599	C4-C8	σ^*	0,04888	12,14	0,79	0,090
			C8-C10	σ^*	0,06061	15,90	0,75	0,100
			O22-H26	σ^*	0,05803	17,10	0,72	0,101
			O23-H28	σ^*	0,03355	4,46	0,71	0,052
O22	LP1	1,97388	C4-C5	σ^*	0,03505	7,55	1,09	0,081
	LP2	1,81526	C5-C6	π^*	0,37062	39,61	0,33	0,107

023	LP1	1 97215	C8-C10	σ*	0.06061	5.22	1 07	0.067
025		1,97213	C14-H18	σ*	0.01718	3,30	1.09	0.054
	LP2	1.86343	C10-C11	π^*	0.31697	31.17	0.34	0.096
O24	LP1	1.97949	C14-C17	σ*	0.02234	6.29	1.19	0.076
021	LP2	1.87183	C17-C19	π^*	0.44548	28.10	0.34	0.095
025	LP1	1.95713	C15-C19	σ*	0.04196	4.16	1.20	0.063
	LP2	1.70320	C15-C19	σ*	0.04196	2.77	1.01	0.050
		_,	C17-C19	π^*	0.44548	9.00	1.03	0.092
	LP3	1.68137	C17-C19	π^*	0.44548	30.12	0.33	0.093
O29	LP1	1,97947	C1-C6	σ*	0,02366	6,16	1.14	0,075
	LP2	1,85733	C1-C2	π^*	0,40681	30,63	0,35	0,099
O31	LP1	1,94948	C15-C19	σ*	0,04196	3,87	1,20	0,061
	LP2	1,80167	C13-C15	π^*	0,38165	37,29	0,32	0,103
	LP3	1,67027	C13-C15	σ*	0,02834	9,22	0,99	0,093
		,	C15-C19	σ*	0,04196	4,10	0,93	0,060
C3-C4	π^*		C5-C6	π^*	0,37062	333,74	0,01	0,079
			C10-C11	π^*	0,31697	5,65	0,01	0,011
C8-O21	π^*		C3-C4	π^*	0,49033	212,51	0,02	0,081
			C5-C6	π^*	0,37062	0,67	0,03	0,006
			C10-C11	π^*	0,31697	106,69	0,03	0,081
C10-C11	π^*		C12-C14	π^*	0,45919	206,12	0,01	0,074
C12-C14	π^*		C13-C15	π^*	0,38165	327,20	0,01	0,080
C17-C19	π^*		C13-C15	π^*	0,44548	273,45	0,01	0,081
Fe32	LP1	1,99707	C13-C15	σ*	0,02834	0,12	0,85	0,009
			C17-C19	σ*	0,04151	0,13	0,81	0,009
			C19-O25	σ*	0,02331	0,07	0,62	0,006
	LP2	1,99287	C17-C19	σ*	0,04151	0,11	0,27	0,005
	LP3	1,99010	C13-C15	σ*	0,02834	0,27	0,86	0,014
			C15-O31	σ*	0,02253	0,62	0,67	0,018

C17-C19	σ*	0,04151	0,32	0,83	0,015
C19-O25	σ^*	0,02331	1,06	0,64	0023

4.3.2 Mirisetin Co⁺² Şelasyonu

Şekil 4.37: Mirisetin Co⁺² molekülünün geometrik yapısı

Şekil 4.37'de mirisetin Co⁺² molekülünün atom numaraları belirlenmiş bir şekilde optimize edilmiş hali gösterilmiştir. Mirisetin Co⁺² molekülü 34 atomdan oluşmaktadır.

Molekülün bağ uzunluğu ve bağ açıları gibi optimize edilmiş yapısal parametreleri sırasıyla Tablo 41 ve Tablo 42'de verilmiştir. Mirisetin Co^{+2} molekülü 27 bağ uzunluğu ve 38 bağ açısı ile tanımlanmıştır. Bağ uzunlukları incelendiğinde elde edilen sonuçların deneysel verilerle uyumlu olduğu görülmektedir. C-O bağ uzunlukları incelendiğinde C1-O29=1,36Å, C8=O21=1,26Å bağlarının deneysel sonuçlarla (Huheey, 1958), (Darwent, 1970), (Benson, 1965) eşit veya yakın değerlerde olduğu görülmektedir. (Deneysel sonuçlar: C-O=1,43Å, C=O=1,20Å C-C=1,54Å, C=C=1,34Å). Kobalt atomunun oksijen oluşturduğu bağ uzunlukları ise sırasıyla O25-Co32=1,75Å ve O31-Co32=1,83Å olarak hesaplanmıştır.

C1-O29	1,363	C5-O22	1,344	C13-C15 1,390
C1-C2	1,397	C8-O21	1,264	C14-C17 1,397
C1-C6	1,406	C8-C10	1,451	C15-C19 1,414
C2-C3	1,392	C10-C11	1,374	C15-O31 1,350
C3-O20	1,359	C10-O23	1,358	C17-C19 1,400
C3-C4	1,408	C11-C12	1,465	C17-O24 1,365
C4-C5	1,424	C11-O20	1,375	C19-O25 1,364
C4-C8	1,433	C12-C13	1,414	O25-Co32 1,751
C5-C6	1,391	C12-C14	1,412	O31-Co32 1,834

 Tablo 41: Mirisetin Co⁺² Bağ Uzunlukları

Tablo 42: Mirisetin Co⁺² Bağ Açıları

C2-C1-C6	122,25	C4-C8-C10	117,05	C13-C15-C19	120,59
C2-C1-O29	116,48	C4-C8-O21	124,23	C13-C15-O31	124,09
C6-C1-O29	121,27	C10-C8-O21	118,73	C19-C15-O31	115,32
C1-C2-C3	117,60	C8-C10-C11	121,57	C14-C17-C19	119,10
C2-C3-C4	122,19	C8-C10-O23	114,58	C14-C17-O24	122,92
C2-C3-O20	117,44	C11-C10-O23	123,85	C19-C17-O24	117,98
C4-C3-O20	120,37	C10-C11-C12	128,90	C15-C19-C17	120,55
C3-C4-C5	118,71	C10-C11-O20	118,74	C15-C19-O25	115,54
C3-C4-C8	119,15	C12-C11-O20	112,36	C17-C19-O25	123,91
C5-C4-C8	122,14	C11-C12-C13	119,11	C3-O20-C11	123,13
C4-C5-C6	119,82	C11-C12-C14	120,75	C19-O25-Co32	109,51
C4-C5-O22	120,28	C13-C12-C14	120,13	C15-O31-Co32	107,61
C6-C5-O22	119,90	C12-C13-C15	119,06	O25-Co32-O31	92,02
C1-C6-C5	119,43	C12-C14-C17	120,57		

Tablo 43 incelendiğinde $E_{HOMO} = -5,22 \text{ eV}$ ve $E_{LUMO} = -2,57 \text{ eV}$ ve $\Delta E = 2,64$ eV olduğu görülmektedir. Mirisetin Fe⁺² yapısı ile karşılaştırıldığında, Mirisetin Co⁺² yapısının HOMO-LUMO enerji farkının daha yüksek olduğu görülmektedir ki bu da bu yapının daha kararlı bir yapı olduğunu göstermektedir. Kimyasal sertlik değerinin yüksek olması da yapıdaki yük transferinin daha zor olacağını göstermektedir. Mirisetin Co⁺², HOMO-LUMO şekilleri (Şekil 4.38) incelendiğinde HOMO yerleşiminin kobalt atomu üzerinde ve LUMO yerleşiminin C, B, A halkaları üzerinde yoğunlaştığı görülmektedir. Dolayısıyla olası bir elektron transferinin kobalt atomundan C, B, A halkalarına doğru olacağı görülmektedir.

Molekül	Mirisetin Co ⁺²
Multiplicity	2
HOMO (eV)	-5,22
LUMO (eV)	-2,57
$\Delta E (eV)$	2,64
I (eV)	5,22
A (eV)	2,57
χ (eV)	3,90
η (eV)	1,32
σ (eV)	0,76
μ (eV)	-3,90
ω (eV)	5,74

Tablo 43: Mirisetin Co⁺² molekülü elektronik yapı parametreleri

Şekil 4.38: Mirisetin Co⁺² molekülünün HOMO-LUMO gösterimi

Şekil 4.39: Mirisetin_Co⁺² molekülünün ESP gösterimi

Şekil 4.39 ESP haritası incelendiğinde elektrofilik bölgelerin genellikle O-H (O31-O33, O25-H34, O24-H27, O29-H30) bağları tarafında olduğu görülmektedir. Kobalt atomu etrafında ise nükleofilik özellik öne çıkmaktadır.

Tablo 44'te NBO analizleri incelendiğinde diğer yapıların aksine $\pi^* \rightarrow \pi^*$ anti bağ etkileşimleri görülmemektedir. Molekül içi $\pi \rightarrow \pi^*$ etkileşimlerine bakıldığında en önemli etkileşimlerin $\pi(C1-C2) \rightarrow \pi^*(C3-C4) = 14,44$ kcal/mol, $\pi(C3-C4) \rightarrow \pi^*(C5-C6) = 12,44$ kcal/mol, $\pi(C3-C4) \rightarrow \pi^*(C8-O21) = 17,38$ kcal/mol, $\pi(C5-C6) \rightarrow \pi^*(C1-C2) = 13,96$ kcal/mol, $\pi(C10-C11) \rightarrow \pi^*(C8-O21) = 12,56$ kcal/mol, $\pi(C12-C13) \rightarrow \pi^*(C15-C19) = 11,88$ kcal/mol, $\pi(C15-C19) \rightarrow \pi^*(C14-C17) = 11,70$ kcal/mol, olduğu görülmektedir. Yapıdaki LP (lone pair) orbitallerindeki elektronların ise π^* orbitallerine doğru etkileşim gösterdiği bir diğer deyişle Oksijen atomlarındaki LP elektronlarının C-C bağlarındaki anti- π orbitallerine doğru etkileşim gösterdiği görülmektedir. Buradaki en önemli etkileşimler ise LP2 (O20) $\rightarrow \pi^*(C3-C4) = 15,51$ kcal/mol, LP2 (O20)→ π^* (C10-C11) =13,89 kcal/mol, LP2 (O22)→ π^* (C5-C6) =19,81 kcal/mol, LP2 (O24)→ π^* (C14-C17) =14,14 kcal/mol, LP3 (O25)→ π^* (C15-C19) =15,26 kcal/mol LP2 (O29)→ π^* (C1-C2) =15,26 kcal/mol, LP2 (O31)→ π^* (C15-C19) =15,20 kcal/mol olarak öne çıkmaktadır.
Tablo 44: Mirisetin Co⁺² NBOAnalizleri

Verici	Туре	ED/e	Alıcı	Туре	ED/e	E ² (kcalmol ⁻¹)	E_j - $E_i(a,u)$	F _{ij} (a,u)
C1-C2	σ	0,98540	C1-C6	σ*	0,01182	1,58	1,26	0,056
			C2-C3	σ*	0,00894	1,12	1,28	0,048
			C2-H7	σ*	0,00543	0,74	1,19	0,038
			C3-O20	σ^*	0,01387	2,30	1,07	0,063
			C6-H9	σ^*	0,00588	1,00	1,17	0,043
			O29-H30	σ^*	0,00386	1,01	1,14	0,043
	π	0,83274	C1-C2	π^*	0,20364	1,42	0,28	0,026
			C3-C4	π^*	0,24448	14,44	0,27	0,082
			C5-C6	π^*	0,18581	6,22	0,28	0,053
C1-C6	σ	0,98934	C1-C2	σ^*	0,01088	1,76	1,27	0,060
			C2-H7	σ^*	0,00543	1,00	1,19	0,044
			C5-C6	σ^*	0,01124	1,23	1,28	0,050
			C5-O22	σ*	0,00887	1,90	1,10	0,058
			C6-H9	σ^*	0,00588	0,66	1,17	0,035
C1-O29	σ	0,99725	C1-C2	σ*	0,01088	0,28	1,48	0,026
			C1-C6	σ^*	0,01182	0,32	1,47	0,028
			C2-C3	σ^*	0,00894	0,74	1,49	0,042
			C5-C6	σ*	0,01124	0,63	1,49	0,039
C2-C3	σ	0,98617	C1-C2	σ^*	0,01088	1,05	1,27	0,046
			C1-O29	σ*	0,01083	1,79	1,06	0,055
			C2-H7	σ*	0,00543	0,76	1,19	0,038
			C3-C4	σ*	0,01619	1,98	1,26	0,063
			C4-C8	σ*	0,02451	1,26	1,23	0,050
			C11-O20	σ*	0,01055	1,48	1,06	0,050
C2-H7	σ	0,98783	C1-C2	σ^*	0,01088	0,59	1,08	0,032
			C1-C6	σ^*	0,01182	2,10	1,07	0,060
			C1-O29	σ*	0,01083	0,43	0,87	0,025

			C2-C3	σ*	0,00894	0,58	1,09	0,032
			C3-C4	σ^*	0,01619	2,24	1,07	0,062
			C3-O20	σ^*	0,01387	0,43	0,89	0,025
C3-C4	σ	0,98563	C2-C3	σ^*	0,00894	1,88	1,28	0,062
			C2-H7	σ^*	0,00543	0,99	1,19	0,043
			C4-C5	σ^*	0,01749	1,60	1,24	0,056
			C4-C8	σ^*	0,02451	1,43	1,23	0,053
			C5-O22	σ^*	0,00887	1,52	1,10	0,052
			C8-O21	σ^*	0,00564	1,57	1,23	0,056
	π	0,81364	C1-C2	π^*	0,20364	6,23	0,28	0,054
			C3-C4	π^*	0,24448	1,66	0,28	0,028
			C5-C6	π^*	0,18581	12,44	0,29	0,076
			C8-O21	π^*	0,21011	17,38	0,26	0,086
C3-O20	σ	0,99503	C1-C2	σ^*	0,01088	0,61	1,50	0,038
			C2-C3	σ^*	0,00894	0,30	1,51	0,027
			C3-C4	σ^*	0,01619	0,34	1,48	0,028
			C4-C5	σ^*	0,01749	0,78	1,46	0,043
			C11-C12	σ^*	0,01416	0,78	1,43	0,042
C4-C5	σ	0,98574	C3-C4	σ^*	0,01619	1,75	1,24	0,059
			C3-O20	σ^*	0,01387	1,91	1,06	0,057
			C4-C8	σ^*	0,02451	1,54	1,21	0,055
			C5-C6	σ^*	0,01124	1,50	1,27	0,055
			C6-H9	σ^*	0,00588	1,12	1,16	0,046
			C8-C10	σ^*	0,03003	0,99	1,18	0,043
C4-C8	σ	0,98657	C2-C3	σ^*	0,00894	1,33	1,27	0,052
			C3-C4	σ^*	0,01619	1,57	1,24	0,056
			C4-C5	σ^*	0,01749	1,44	1,22	0,053
			C5-C6	σ^*	0,01124	1,09	1,27	0,047
			C8-C10	σ*	0,03003	0,73	1,18	0,037

			C8-O21	σ*	0,00564	0,57	1,22	0,033
			C10-O23	σ*	0,00828	1,21	1,06	0,045
C5-C6	σ	0,98747	C1-C6	σ^*	0,01182	1,22	1,26	0,049
			C1-O29	σ^*	0,01083	1,90	1,06	0,057
			C4-C5	σ^*	0,01749	1,55	1,24	0,056
			C4-C8	σ^*	0,02451	1,42	1,23	0,053
			C5-O22	σ^*	0,00887	0,26	1,10	0,021
			C6-H9	σ^*	0,00588	0,77	1,17	0,038
			O22-H26	σ^*	0,02938	0,92	1,15	0,042
	π	0,84694	C1-C2	π^*	0,20364	13,96	0,28	0,081
			C3-C4	π^*	0,24448	6,07	0,27	0,054
			C5-C6	π^*	0,18581	1,23	0,28	0,024
C5-O22	σ	0,99710	C1-C6	σ^*	0,01182	0,72	1,47	0,041
			C3-C4	σ^*	0,01619	0,82	1,46	0,044
			C4-C5	σ*	0,01749	0,41	1,45	0,031
			C5-C6	σ^*	0,01124	0,49	1,49	0,034
C6-H9	σ	0,98789	C1-C2	σ^*	0,01088	2,04	1,09	0,060
			C1-C6	σ^*	0,01182	0,43	1,08	0,027
			C1-O29	σ^*	0,01083	0,35	0,88	0,022
			C4-C5	σ^*	0,01749	2,20	1,06	0,061
			C5-C6	σ^*	0,01124	0,59	1,10	0,032
			C5-O22	σ^*	0,00887	0,35	0,92	0,023
C8-C10	σ	0,98887	C4-C5	σ^*	0,01749	1,58	1,22	0,056
			C4-C8	σ^*	0,02451	0,82	1,20	0,040
			C8-O21	σ^*	0,00564	0,31	1,21	0,025
			C10-C11	σ^*	0,01440	1,62	1,28	0,058
			C11-C12	σ^*	0,01416	1,92	1,18	0,060
C8-O21	σ	0,99695	C3-C4	σ^*	0,01619	0,70	1,55	0,042
			C4-C8	σ*	0,02451	0,89	1,52	0,047

			C8-C10	σ*	0,03003	0,61	1,49	0,039
			C10-C11	σ^*	0,01440	0,76	1,59	0,044
			O22-H26	σ^*	0,02938	0,27	1,45	0,025
	π	098754	C3-C4	π^*	0,24448	2,06	0,38	0,040
			C8-O21	π^*	0,21011	0,33	0,36	0,015
			C10-C11	π^*	0,15896	2,58	0,39	0,043
C10-C11	σ	0,98963	C8-C10	σ*	0,03003	1,29	1,23	0,051
			C8-O21	σ*	0,00564	0,92	1,27	0,043
			C10-O23	σ*	0,00828	0,46	1,12	0,029
			C11-C12	σ*	0,01416	1,92	1,24	0,062
			C12-C13	σ*	0,00942	0,79	1,32	0,041
			O23-H28	σ*	0,01656	0,78	1,19	0,039
	π	0,88115	C8-O21	π^*	0,21011	12,56	0,28	0,079
			C12-C13	π^*	0,23006	5,94	0,32	0,059
C10-O23	σ	0,99578	C4-C8	σ^*	0,02451	0,79	1,42	0,043
			C8-C10	σ^*	0,03003	0,27	1,38	0,025
			C10-C11	σ*	0,01440	0,69	1,49	0,041
			C11-O20	σ*	0,01055	1,16	1,24	0,048
C11-C12	σ	0,98622	C3-O20	σ*	0,01387	1,49	1,03	0,050
			C8-C10	σ*	0,03003	1,20	1,15	0,047
			C10-C11	σ^*	0,01440	1,71	1,26	0,059
			C12-C13	σ^*	0,00942	1,10	1,24	0,047
			C12-C14	σ^*	0,01021	1,16	1,24	0,048
			C13-C15	σ*	0,01365	0,86	1,27	0,042
			C14-C17	σ^*	0,01120	0,99	1,25	0,044
C11-O20	σ	0,99326	C2-C3	σ*	0,00894	1,04	1,48	0,050
			C10-C11	σ*	0,01440	0,36	1,50	0,029
			C10-O23	σ*	0,00828	1,44	1,28	0,054
			C12-C14	σ*	0,01021	0,87	1,48	0,045

C12-C13	σ	0,98466	C10-C11	σ*	0,01440	1,35	1,26	0,052
			C11-C12	σ^*	0,01416	1,05	1,16	0,044
			C12-C14	σ^*	0,01021	1,87	1,24	0,061
			C13-C15	σ*	0,01365	1,20	1,27	0,049
			C13-H16	σ^*	0,00671	0,68	1,17	0,036
			C14-H18	σ^*	0,00858	1,08	1,17	0,045
			C15-O31	σ^*	0,01115	2,38	1,05	0,063
	π	0,82669	C10-C11	π^*	0,15896	9,59	0,26	0,063
			C14-C17	π^*	0,20494	8,25	0,27	0,061
			C15-C19	π^*	0,22778	11,88	0,27	0,073
C12-C14	σ	0,98421	C11-C12	σ*	0,01416	1,21	1,17	0,047
			C11-O20	σ*	0,01055	1,25	1,02	0,045
			C12-C13	σ*	0,00942	1,87	1,24	0,061
			C13-H16	σ*	0,00671	1,06	1,17	0,045
			C14-C17	σ*	0,01120	1,22	1,26	0,050
			C14-H18	σ*	0,00858	0,82	1,17	0,039
			C17-O24	σ*	0,01026	2,04	1,04	0,058
C13-C15	σ	0,98746	C11-C12	σ*	0,01416	1,64	1,19	0,056
			C12-C13	σ*	0,00942	1,40	1,26	0,053
			C13-H16	σ^*	0,00671	0,72	1,19	0,037
			C15-C19	σ*	0,02113	1,74	1,25	0,059
			C15-O31	σ*	0,01115	0,35	1,07	0,025
			C19-O25	σ^*	0,01091	1,33	1,06	0,047
C13-H16	σ	0,98891	C12-C13	σ^*	0,00942	0,56	1,08	0,031
			C12-C14	σ^*	0,01021	1,94	1,08	0,058
			C13-C15	σ^*	0,01365	0,57	1,11	0,032
			C15-C19	σ^*	0,02113	2,22	1,06	0,061
			C15-O31	σ^*	0,01115	0,29	0,89	0,020
C14-C17	σ	0,98818	C11-C12	σ^*	0,01416	1,57	1,19	0,055

			C12-C14	σ*	0,01021	1,53	1,25	0,056
			C14-H18	σ^*	0,00858	0,63	1,19	0,035
			C17-C19	σ^*	0,02070	1,86	1,26	0,062
			C19-O25	σ^*	0,01091	2,16	1,06	0,061
	π	0,83587	C12-C13	π^*	0,23006	10,35	0,29	0,071
			C14-C17	π^*	0,20494	0,26	0,29	0,011
			C19-O25	π^*	0,01091	8,45	0,28	0,064
C14-H18	σ	0,98721	C12-C13	σ^*	0,00942	1,99	1,08	0,059
			C12-C14	σ^*	0,01021	0,67	1,08	0,034
			C14-C17	σ^*	0,01120	0,47	1,09	0,029
			C17-C19	σ^*	0,02070	2,19	1,08	0,062
			C17-O24	σ^*	0,01026	0,34	0,88	0,022
C15-C19	σ	0,98875	C13-C15	σ^*	0,01365	1,84	1,30	0,062
			C13-H16	σ^*	0,00671	1,06	1,19	0,045
			C17-C19	σ^*	0,02070	1,69	1,26	0,059
			C17-O24	σ^*	0,01026	1,72	1,06	0,054
	π	0,80246	C12-C13	π^*	0,23006	8,90	0,29	0,065
			C14-C17	π^*	0,20494	11,70	0,29	0,074
C15-O31	σ	0,99482	C12-C13	σ^*	0,00942	0,68	1,45	0,040
			C13-C15	σ^*	0,01365	0,60	1,48	0,038
			C15-C19	σ^*	0,02113	0,25	1,43	0,024
			C17-C19	σ^*	0,02070	1,02	1,45	0,049
C17-C19	σ	0,98570	C14-C17	σ^*	0,01120	1,52	1,29	0,056
			C14-H18	σ^*	0,00858	0,94	1,20	0,043
			C15-C19	σ^*	0,02113	1,51	1,25	0,055
			C15-O31	σ^*	0,01115	1,26	1,08	0,047
			C19-O25	σ^*	0,01091	0,39	1,07	0,026
			O24-H27	σ^*	0,00367	0,93	1,15	0,042
C17-O24	σ	0,99702	C12-C14	σ*	0,01021	0,68	1,47	0,040

			C14-C17	σ*	0,01120	0,47	1,48	0,033
			C15-C19	σ^*	0,02113	0,83	1,44	0,044
			C17-C19	σ^*	0,02070	0,26	1,46	0,025
C19-O25	σ	0,99464	C13-C15	σ^*	0,01365	0,98	1,49	0,049
			C14-C17	σ^*	0,01120	0,66	1,47	0,039
			C15-C19	σ^*	0,02113	0,31	1,44	0,027
			C17-C19	σ^*	0,02070	0,48	1,46	0,033
O22-H26	σ	0,99346	C5-C6	σ^*	0,01124	2,86	1,30	0,077
O23-H28	σ	0,99268	C8-C10	σ^*	0,03003	0,29	1,21	0,024
			C10-C11	σ*	0,01440	3,24	1,31	0,083
O24-H27	σ	0,99413	C17-C19	σ^*	0,02070	2,48	1,29	0,072
O29-H30	σ	0,99458	C1-C2	σ*	0,01088	2,32	1,31	0,070
O20	LP1	0,97911	C2-C3	σ*	0,00894	0,43	1,11	0,028
			C3-C4	σ*	0,01619	3,45	1,09	0,077
			C10-C11	σ^*	0,01440	2,84	1,13	0,072
			C10-O23	σ^*	0,00828	0,29	0,91	0,021
			C11-C12	σ*	0,01416	0,53	1,03	0,030
			C13-H16	σ*	0,00671	0,27	1,04	0,021
	LP2	0,87441	C3-C4	π^*	0,24448	15,51	0,35	0,100
			C10-C11	π^*	0,15896	13,89	0,37	0,092
O21	LP1	0,98194	C4-C8	σ*	0,02451	1,85	1,21	0,060
			C8-C10	σ*	0,03003	0,37	1,18	0,027
			O22-H26	σ*	0,02938	2,73	1,14	0,071
			O23-H28	σ*	0,01656	1,03	1,13	0,043
	LP2	0,92797	C4-C8	σ^*	0,02451	6,04	0,79	0,089
			C8-C10	σ*	0,03003	7,90	0,76	0,100
			O22-H26	σ^*	0,02938	8,71	0,72	0,102
			O23-H28	σ^*	0,01656	2,18	0,71	0,051
O22	LP1	0,98694	C4-C5	σ*	0,01749	3,77	1,09	0,081

	LP2	0,90765	C5-C6	π^*	0,18581	19,81	0,33	0,107
O23	LP1	0,98612	C8-C10	σ^*	0,03003	2,60	1,07	0,067
			C14-H18	σ^*	0,00858	1,63	1,09	0,053
	LP2	0,93241	C10-C11	π^*	0,15896	15,49	0,34	0,096
O24	LP1	0,98981	C14-C17	σ^*	0,01120	3,13	1,16	0,076
	LP2	0,93762	C14-C17	π^*	0,20494	14,14	0,34	0,095
O25	LP1	0,98152	C15-C19	σ^*	0,02113	2,49	1,18	0,068
	LP2	0,88062	C15-C19	σ^*	0,02113	1,05	1,05	0,044
			C17-C19	σ^*	0,02070	4,22	1,06	0,089
	LP3	0,86696	C15-C19	π^*	0,22778	13,37	0,33	0,088
O29	LP1	0,98976	C1-C6	σ^*	0,01182	3,07	1,14	0,075
	LP2	0,92909	C1-C2	π^*	0,20364	15,26	0,35	0,098
O31	LP1	0,97120	C15-C19	σ^*	0,02113	1,62	1,24	0,057
	LP2	0,90840	C15-C19	π^*	0,22778	15,20	0,32	0,095
	LP3	0,83864	C13-C15	σ^*	0,01365	4,15	1,00	0,088
			C15-C19	σ^*	0,02113	2,05	0,94	0,060
Co32	LP1	0,99871	C17-C19	σ^*	0,02070	0,03	0,87	0,006
			C19-O25	σ^*	0,01091	0,11	0,67	0,011
	LP3	0,99512	C13-C15	σ^*	0,01365	0,14	0,90	0,014
			C15-O31	σ^*	0,01115	0,15	0,68	0,013
			C17-C19	σ^*	0,02070	0,16	0,87	0,015
			C19-O25	σ^*	0,01091	0,39	0,66	0,021

4.3.3 Mirisetin Cu⁺² Şelasyonu

Şekil 4.40: Mirisetin Cu⁺² molekülünün geometrik yapısı

Şekil 4.40'ta mirisetin Cu^{+2} molekülünün atom numaraları belirlenmiş bir şekilde optimize edilmiş hali gösterilmiştir. Mirisetin Cu^{+2} molekülü 34 atomdan oluşmaktadır.

Molekülün bağ uzunluğu ve bağ açıları gibi optimize edilmiş yapısal parametreleri sırasıyla Tablo 45 ve Tablo 46'da verilmiştir. Mirisetin Cu⁺² molekülü 27 bağ uzunluğu ve 38 bağ açısı ile tanımlanmıştır. Bağ uzunlukları incelendiğinde elde edilen sonuçların deneysel verilerle uyumlu olduğu görülmektedir. C-O bağ uzunlukları incelendiğinde C1-O29=1,36Å, C8=O21=1,26Å bağlarının deneysel sonuçlarla (Huheey, 1958), (Darwent, 1970), (Benson, 1965) eşit veya yakın değerlerde olduğu görülmektedir. (Deneysel sonuçlar: C-O=1,43Å, C=O=1,20Å C-C=1,54Å, C=C=1,34Å). Bakır atomunun oksijen oluşturduğu bağ uzunlukları ise sırasıyla O25-Cu32=1,75Å ve O31-Cu32=1,83Å olarak hesaplanmıştır.

C1-O29	1,363	C5-O22	1,344	C13-C15	1,390
C1-C2	1,397	C8-O21	1,264	C14-C17	1,397
C1-C6	1,406	C8-C10	1,451	C15-C19	1,414
C2-C3	1,392	C10-C11	1,374	C15-O31	1,350
C3-O20	1,359	C10-O23	1,358	C17-C19	1,400
C3-C4	1,408	C11-C12	1,465	C17-O24	1,365
C4-C5	1,424	C11-O20	1,375	C19-O25	1,364
C4-C8	1,433	C12-C13	1,414	O25-Cu32	1,751
C5-C6	1,391	C12-C14	1,412	O31-Cu32	1,834

 Tablo 45: Mirisetin Cu⁺² Bağ Uzunlukları

Tablo 46: Mirisetin Cu⁺² Bağ Açıları

C2-C1-C6	122,25	C4-C8-C10	117,05	C13-C15-C19	120,59
C2-C1-O29	116,48	C4-C8-O21	124,23	C13-C15-O31	124,09
C6-C1-O29	121,27	C10-C8-O21	11,73	C19-C15-O31	115,32
C1-C2-C3	117,60	C8-C10-C11	121,57	C14-C17-C19	119,10
C2-C3-C4	122,19	C8-C10-O23	114,58	C14-C17-O24	122,92
C2-C3-O20	117,44	C11-C10-O23	123,85	C19-C17-O24	117,98
C4-C3-O20	120,37	C10-C11-C12	128,90	C15-C19-C17	120,55
C3-C4-C5	118,71	C10-C11-O20	118,74	C15-C19-O25	115,54
C3-C4-C8	119,15	C12-C11-O20	112,36	C17-C19-O25	123,91
C5-C4-C8	122,14	C11-C12-C13	119,11	C3-O20-C11	123,13
C4-C5-C6	119,82	C11-C12-C14	120,75	C19-O25-Cu32	109,51
C4-C5-O22	120,28	C13-C12-C14	120,13	C15-O31-Cu32	107,61
C6-C5-O22	119,90	C12-C13-C15	119,06	O25-Cu32-O31	92,02
C1-C6-C5	119,43	C12-C14-C17	120,57		

Tablo 47 incelendiğinde $E_{HOMO} = -4,11$ eV ve $E_{LUMO} = -2,48$ eV ve $\Delta E = 1,64$ eV olduğu görülmektedir. HOMO-LUMO enerji farkının düşük olması yapının daha az kararlı olduğunu göstermektedir. Mirisetin Cu⁺², HOMO-LUMO şekilleri (Şekil 4.41) incelendiğinde HOMO yerleşiminin bakır atomu üzerinde ve LUMO yerleşiminin C, B, A halkaları üzerinde yoğunlaştığı görülmektedir. Dolayısıyla olası bir elektron transferinin bakır atomundan C, B, A halkalarına doğru olacağı görülmektedir. Kimyasal sertlik ve kimyasal yumuşaklık değerlerine bakıldığında, kimyasal sertlik değerinin daha düşük olduğu görülmektedir. Bu durum moleküldeki yük transferinin daha kolay bir şekilde meydana geleceğini göstermektedir.

Molekül	Mirisetin Cu ⁺²
Multiplicity	2
HOMO (eV)	-4,11
LUMO (eV)	-2,48
$\Delta E (eV)$	1,64
I (eV)	4,11
A (eV)	2,48
χ (eV)	3,30
η (eV)	0,82
σ(eV)	1,22
μ (eV)	-3,30
ω (eV)	6,63

Tablo 47: Mirisetin Cu⁺² molekülü elektronik yapı parametreleri

Şekil 4.41: Mirisetin Cu⁺² molekülünün HOMO-LUMO gösterimi

Şekil 4.42 Mirisetin_Cu⁺² yapısı ESP haritasında elektrofilik bölgelerin genellikle O-H (O29-H30, O24-H27, O31-H33) bağları üzerinde olduğu görülmektedir. Nükleofilik bölgelerin ise bakır atomu etrafında O22-H26 etrafında olduğu görülmektedir.

Tablo 48'de NBO analizleri incelendiğinde en önemli etkileşimlerin $\pi^*(C3-C4) \rightarrow \pi^*(C5-C6) = 145,82$ kcal/mol, anti- $\pi \rightarrow$ anti π orbitallerinde olduğu görülmektedir. Molekül içi $\pi \rightarrow \pi^*$ etkileşimlerine bakıldığında en önemli etkileşimlerin $\pi(C1-C2) \rightarrow \pi^*(C3-C4) = 14,96$ kcal/mol, $\pi(C3-C4) \rightarrow \pi^*(C5-C6) = 12,30$ kcal/mol, $\pi(C3-C4) \rightarrow \pi^*(C8-O21) = 18,27$ kcal/mol, $\pi(C5-C6) \rightarrow \pi^*(C1-C2) = 14,09$ kcal/mol, $\pi(C10-C11) \rightarrow \pi^*(C8-O21) = 10,83$ kcal/mol, $\pi(C12-C13) \rightarrow \pi^*(C15-O31) = 17,95$ kcal/mol, $\pi(C14-C17) \rightarrow \pi^*(C19-O25) = 210,27$ kcal/mol, olduğu görülmektedir. Yapıdaki LP (lone pair) orbitallerindeki elektronların ise π^* orbitallerine doğru etkileşim gösterdiği bir diğer deyişle Oksijen atomlarındaki LP elektronlarının C-C bağlarındaki anti- π orbitallerine doğru etkileşim gösterdiği görülmektedir. Buradaki en önemli etkileşimler ise LP2 (O20) $\rightarrow \pi^*(C3-C4) = 15,50$

kcal/mol, LP2 (O20)→ π^* (C10-C11) =12,84 kcal/mol, LP2 (O22)→ π^* (C5-C6) =20,01 kcal/mol, LP2 (O23)→ π^* (C10-C11) =17,98 kcal/mol, LP2 (O24)→ π^* (C14-C17) =17,31 kcal/mol, LP2 (O29)→ π^* (C1-C2) =15,66 kcal/mol, olarak öne çıkmaktadır.

 Tablo 48: Mirisetin Cu⁺² NBO Analizi

Verici	Туре	ED/e	Alıcı	Туре	ED/e	E ² (kcalmol ⁻¹)	E_j - E_i (a,u)	F _{ij} (a,u)
C1-C2	σ	0,98538	C1-C6	σ*	0,01185	1,55	1,26	0,056
			C2-C3	σ*	0,00888	1,12	1,28	0,048
			C2-H7	σ*	0,00538	0,73	1,19	0,037
			C3-O20	σ*	0,01385	2,32	1,07	0,063
			C6-H9	σ*	0,00585	0,99	1,17	0,043
			O29-H30	σ^*	0,00386	1,02	1,14	0,043
	π	0,82755	C1-C2	π^*	0,20335	1,55	0,28	0,027
			C3-C4	π^*	0,24753	14,96	0,27	0,083
			C5-C6	π^*	0,18279	6,15	0,28	0,053
C1-C6	σ	0,98937	C1-C2	σ^*	0,01091	1,73	1,27	0,059
			C2-H7	σ*	0,00538	0,99	1,19	0,043
			C5-C6	σ^*	0,01117	1,22	1,28	0,050
			C5-O22	σ*	0,00886	1,90	1,10	0,058
			C6-H9	σ*	0,00585	0,65	1,17	0,035
C1-O29	σ	0,99726	C1-C2	σ*	0,01091	0,28	1,48	0,026
			C1-C6	σ*	0,01185	0,33	1,47	0,028
			C2-C3	σ^*	0,00888	0,74	1,50	0,042
			C5-C6	σ*	0,01117	0,63	1,49	0,039
C2-C3	σ	0,98620	C1-C2	σ*	0,01091	1,04	1,27	0,046
			C1-O29	σ*	0,01072	1,76	1,07	0,055
			C2-H7	σ*	0,00538	0,76	1,20	0,038
			C3-C4	σ*	0,01629	1,98	1,26	0,063
			C4-C8	σ*	0,02431	1,25	1,23	0,050
			C11-O20	σ*	0,01078	1,49	1,06	0,050
C2-H7	σ	0,98772	C1-C2	σ^*	0,01091	0,59	1,08	0,032
			C1-C6	σ*	0,01185	2,10	1,07	0,060
			C1-O29	σ^*	0,01072	0,44	0,88	0,025

			C2-C3	σ*	0,00888	0,60	1,09	0,032
			C3-C4	σ*	0,01629	2,27	1,06	0,062
			C3-O20	σ*	0,01385	0,44	0,88	0,025
C3-C4	σ	0,98562	C2-C3	σ*	0,00888	1,87	1,29	0,062
			C2-H7	σ*	0,00538	0,98	1,19	0,043
			C4-C5	σ^*	0,01760	1,59	1,24	0,056
			C4-C8	σ*	0,02431	1,44	1,23	0,053
			C5-O22	σ^*	0,00886	1,51	1,10	0,052
			C8-O21	σ^*	0,00563	1,62	1,23	0,057
	π	0,80733	C1-C2	π^*	0,20335	6,14	0,29	0,053
			C3-C4	π^*	0,24753	1,72	0,28	0,028
			C5-C6	π^*	0,18279	12,30	0,29	0,075
			C8-O21	π^*	0,19314	18,27	0,26	0,087
C3-O20	σ	0,99503	C1-C2	σ^*	0,01091	0,61	1,50	0,038
			C2-C3	σ^*	0,00888	0,30	1,51	0,027
			C3-C4	σ^*	0,01629	0,33	1,48	0,028
			C4-C5	σ^*	0,01760	0,78	1,46	0,043
			C11-C12	σ^*	0,01425	0,78	1,43	0,042
C4-C5	σ	0,98573	C3-C4	σ^*	0,01629	1,74	1,24	0,059
			C3-O20	σ^*	0,01385	1,90	1,06	0,057
			C4-C8	σ^*	0,02431	1,56	1,21	0,055
			C5-C6	σ^*	0,01117	1,49	1,27	0,055
			C6-H9	σ*	0,00585	1,11	1,16	0,046
			C8-C10	σ^*	0,03082	1,02	1,17	0,044
C4-C8	σ	0,98677	C2-C3	σ^*	0,00888	1,31	1,27	0,052
			C3-C4	σ^*	0,01629	1,57	1,24	0,056
			C4-C5	σ^*	0,01760	1,45	1,23	0,053
			C5-C6	σ^*	0,01117	1,07	1,27	0,047
			C8-C10	σ*	0,03082	0,71	1,17	0,037

			C8-O21	σ*	0,00563	0,61	1,22	0,034
			C10-O23	σ*	0,00816	1,14	1,07	0,044
C5-C6	σ	0,98748	C1-C6	σ*	0,01185	1,21	1,26	0,049
			C1-O29	σ*	0,01072	1,89	1,07	0,057
			C4-C5	σ*	0,01760	1,55	1,24	0,055
			C4-C8	σ^*	0,02431	1,42	1,23	0,053
			C5-O22	σ*	0,00886	0,27	1,10	0,022
			C6-H9	σ^*	0,00585	0,77	1,18	0,038
			O22-H26	σ*	0,02803	0,93	1,16	0,042
	π	0,84703	C1-C2	π^*	0,20335	14,09	0,28	0,082
			C3-C4	π^*	0,24753	5,98	0,27	0,054
			C5-C6	π^*	0,18279	1,30	0,28	0,025
C5-O22	σ	0,99710	C1-C6	σ*	0,01185	0,72	1,47	0,041
			C3-C4	σ*	0,01629	0,82	1,46	0,044
			C4-C5	σ*	0,01760	0,40	1,45	0,031
			C5-C6	σ*	0,01117	0,50	1,49	0,034
C6-H9	σ	0,98783	C1-C2	σ*	0,01091	2,05	1,09	0,060
			C1-C6	σ*	0,01185	0,43	1,08	0,027
			C1-O29	σ*	0,01072	0,35	0,88	0,022
			C4-C5	σ*	0,01760	2,21	1,05	0,061
			C5-C6	σ*	0,01117	0,59	1,10	0,032
			C5-O22	σ*	0,00886	0,36	0,92	0,023
C8-C10	σ	0,98883	C4-C5	σ*	0,01760	1,60	1,22	0,056
			C4-C8	σ*	0,02431	0,81	1,21	0,040
			C8-O21	σ*	0,00563	0,28	1,21	0,023
			C10-C11	σ*	0,01455	1,56	1,27	0,056
			C11-C12	σ*	0,01425	1,93	1,18	0,060
C8-O21	σ	0,99697	C3-C4	σ*	0,01629	0,69	1,56	0,042
			C4-C8	σ*	0,02431	0,93	1,53	0,048

$\pi \qquad \begin{array}{ccccccccccccccccccccccccccccccccccc$	0,037 0,044 0,024 0,041 0,046 0,049
$\pi \qquad \begin{array}{ccccccccccccccccccccccccccccccccccc$	0,044 0,024 0,041 0,046 0,049
$\pi \qquad \begin{array}{ccccccccccccccccccccccccccccccccccc$	0,024 0,041 0,046 0.049
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0,041 0,046 0.049
C10-C11 π^* 0,15096 2,92 0,39	0,046 0.049
	0.049
C10-C11 σ 0,98982 C8-C10 σ^* 0,03082 1,22 1,23	-,,
C8-O21 σ* 0,00563 0,88 1,28	0,042
C10-O23 σ^* 0,00816 0,47 1,12	0,029
C11-C12 σ* 0,01425 1,90 1,25	0,062
C12-C13 σ^* 0,00941 0,78 1,35	0,041
O23-H28 σ* 0,01747 0,79 1,19	0,039
π 0,86912 C8-O21 π^* 0,19314 10,83 0,28	0,072
C12-C13 π^* 0,13904 8,44 0,34	0,067
C10-O23 σ 0,99592 C4-C8 σ* 0,02431 0,77 1,43	0,042
C8-C10 σ^* 0,03082 0,26 1,38	0,024
C10-C11 σ* 0,01455 0,70 1,49	0,041
C11-O20 σ* 0,01078 1,12 1,25	0,047
C11-C12 σ 0,98646 C3-O20 σ* 0,01385 1,48 1,04	0,050
C8-C10 σ^* 0,03082 1,16 1,15	0,047
C10-C11 σ^* 0,01455 1,70 1,26	0,058
C12-C13 σ* 0,00941 1,30 1,27	0,051
C12-C14 σ* 0,01083 0,95 1,21	0,043
C13-C15 σ^* 0,01741 1,01 1,25	0,045
C14-C17 σ^* 0,01087 0,86 1,29	0,042
C11-O20 σ 0,99321 C2-C3 σ^* 0,00888 1,03 1,48	0,049
C10-C11 σ* 0,01455 0,36 1,49	0,029
C10-O23 σ* 0,00816 1,45 1,28	0,054
C12-C14 σ^* 0,01083 0,89 1,44	0,045
C12-C13 σ 0,98665 C10-C11 σ* 0,01455 1,36 1,27	0,052

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $									
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				C11-C12	σ*	0,01425	1,25	1,18	0,048
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				C12-C14	σ^*	0,01083	1,79	1,22	0,059
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				C13-C15	σ*	0,01741	1,01	1,26	0,045
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				C13-H16	σ^*	0,00702	0,75	1,19	0,038
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				C14-H18	σ^*	0,00899	0,93	1,18	0,042
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				C15-O31	σ*	0,00744	1,62	1,19	0,056
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		π	0,85796	C10-C11	π^*	0,15096	7,60	0,26	0,057
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				C12-C13	π^*	0,13904	0,58	0,29	0,016
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				C14-C17	π^*	0,10981	5,14	0,29	0,049
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				C15-O31	π^*	0,15204	17,95	0,26	0,086
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	C12-C14	σ	0,98376	C11-C12	σ*	0,01425	0,99	1,15	0,043
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				C11-O20	σ*	0,01078	1,36	1,00	0,047
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				C12-C13	σ*	0,00941	1,80	1,26	0,060
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				C13-H16	σ*	0,00702	1,14	1,16	0,040
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				C14-C17	σ*	0,01087	1,26	1,28	0,051
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				C14-H18	σ*	0,00899	0,67	1,16	0,035
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				C17-O24	σ*	0,01079	2,31	1,03	0,062
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	C13-C15	σ	0,98814	C11-C12	σ*	0,01425	1,78	1,17	0,058
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				C12-C13	σ*	0,00941	1,47	1,27	0,055
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				C13-H16	σ*	0,00702	0,54	1,18	0,032
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				C15-C19	σ*	0,03899	0,72	1,13	0,037
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				C15-O31	σ*	0,00744	0,60	1,18	0,034
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				C19-O25	σ*	0,00613	1,06	1,19	0,045
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	C13-H16	σ	0,98860	C12-C13	σ*	0,00941	0,69	1,10	0,035
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				C12-C14	σ*	0,01083	2,25	1,04	0,061
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				C13-C15	σ*	0,01741	0,44	1,07	0,028
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				C15-C19	σ*	0,03899	2,16	0,96	0,058
<u>C14-C17</u> σ 0,99054 C11-C12 σ* 0,01425 1,34 1,21 0,051				C15-O31	σ*	0,00744	0,26	1,00	0,021
	C14-C17	σ	0,99054	C11-C12	σ*	0,01425	1,34	1,21	0,051

$\begin{array}{c c c c c c c c c c c c c c c c c c c $									
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				C12-C14	σ*	0,01083	1,50	1,25	0,055
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				C14-H18	σ*	0,00899	0,79	1,22	0,039
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				C17-C19	σ*	0,02752	1,48	1,22	0,054
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				C19-O25	σ*	0,00613	1,18	1,23	0,048
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		π	0,89505	C12-C13	π^*	0,13904	9,59	0,31	0,070
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				C14-C17	π^*	0,10981	0,36	0,31	0,013
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				C19-O25	π^*	0,08406	10,27	0,28	0,068
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	C14-H18	σ	0,98739	C12-C13	σ*	0,00941	1,77	1,11	0,056
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				C12-C14	σ*	0,01083	0,49	1,05	0,029
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				C14-C17	σ*	0,01087	0,67	1,13	0,035
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				C17-C19	σ*	0,02752	2,49	1,02	0,064
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				C17-O24	σ*	0,01079	0,37	0,89	0,023
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C15-C19	σ	0,98913	C13-C15	σ*	0,01741	0,79	1,22	0,039
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				C13-H16	σ*	0,00702	1,03	1,15	0,044
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				C17-C19	σ^*	0,02752	0,58	1,16	0,033
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				C17-O24	σ*	0,01079	1,51	1,02	0,050
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	C15-O31	σ	0,99694	C12-C13	σ^*	0,00941	0,61	1,56	0,039
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				C13-C15	σ*	0,01741	0,76	1,53	0,044
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				C15-C19	σ*	0,03899	0,28	1,42	0,025
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				C17-C19	σ*	0,02752	0,60	1,47	0,038
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		π	0,96129	C12-C13	π^*	0,13904	3,09	0,38	0,046
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				C19-O25	π^*	0,08406	4,09	0,35	0,049
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	C17-C19	σ	0,98536	C14-C17	σ^*	0,01087	1,45	1,29	0,055
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				C14-H18	σ*	0,00899	1,13	1,17	0,046
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				C15-C19	σ*	0,03899	0,49	1,13	0,030
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				C15-O31	σ^*	0,00744	1,04	1,18	0,044
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				C19-O25	σ*	0,00613	0,56	1,19	0,033
<u>C17-O24</u> σ 0,99700 C12-C14 σ* 0,01083 0,80 1,44 0,043				O24-H27	σ*	0,00399	1,02	1,12	0,043
	C17-O24	σ	0,99700	C12-C14	σ*	0,01083	0,80	1,44	0,043

			C14-C17	σ*	0,01087	0,58	1,52	0,038
			C15-C19	σ*	0,03899	0,74	1,36	0,041
C19-O25	σ	0,99716	C13-C15	σ*	0,01741	0,53	1,56	0,037
			C14-C17	σ*	0,01087	0,56	1,61	0,038
			C15-C19	σ*	0,03899	0,39	1,45	0,030
			C17-C19	σ^*	0,02752	0,57	1,50	0,037
	π	0,96082	C14-C17	π^*	0,10981	3,98	0,39	0,052
			C15-O31	π^*	0,15204	4,29	0,36	0,053
O22-H26	σ	0,99350	C5-C6	σ*	0,01117	2,84	1,30	0,077
O23-H28	σ	0,99250	C8-C10	σ*	0,03082	0,31	1,20	0,025
			C10-C11	σ*	0,01455	3,31	1,31	0,083
O24-H27	σ	0,99388	C17-C19	σ*	0,02752	2,43	1,23	0,070
O29-H30	σ	0,99454	C1-C2	σ*	0,01091	2,32	1,30	0,070
O20	LP1	0,97894	C2-C3	σ*	0,00888	0,43	1,11	0,028
			C3-C4	σ*	0,01629	3,47	1,08	0,078
			C10-C11	σ*	0,01455	2,87	1,12	0,072
			C10-O23	σ*	0,00816	0,29	0,91	0,021
			C11-C12	σ^*	0,01425	0,53	1,03	0,030
			C13-H16	σ*	0,00702	0,28	1,04	0,022
	LP2	0,87781	C3-C4	π^*	0,24753	15,50	0,35	0,100
			C10-C11	π^*	0,15096	12,84	0,36	0,088
O21	LP1	0,98194	C4-C8	σ*	0,02431	1,77	1,21	0,059
			C8-C10	σ^*	0,03082	0,41	1,17	0,028
			O22-H26	σ*	0,02803	2,68	1,14	0,070
			O23-H28	σ*	0,01747	1,10	1,13	0,045
	LP2	0,92801	C4-C8	σ*	0,02431	6,17	0,79	0,091
			C8-C10	σ*	0,03082	8,01	0,75	0,100
			C10-C11	σ*	0,01455	0,26	0,86	0,019
			O22-H26	σ*	0,02803	8,10	0,72	0,099

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
C14-H18 σ^* 0,008991,721,090,055LP20,91696C10-C11 π^* 0,1509617,980,340,102O24LP10,98955C14-C17 σ^* 0,010873,161,190,078	
LP20,91696C10-C11 π^* 0,1509617,980,340,102O24LP10,98955C14-C17 σ^* 0,010873,161,190,078	
O24LP10,98955C14-C17σ*0,010873,161,190,078	
C17-C19 σ^* 0,02752 0,29 1,09 0,023	
LP2 0,91744 C14-C17 π^* 0,10981 17,31 0,35 0,100	
O25 LP1 0,98212 C15-C19 σ* 0,03899 3,01 1,08 0,073	
LP2 0,90691 C15-C19 σ* 0,03899 3,42 0,81 0,068	
C17-C19 σ^* 0,02752 6,99 0,86 0,101	
O29 LP1 0,98965 C1-C6 σ* 0,01185 3,11 1,14 0,075	
LP2 0,92604 C1-C2 π^* 0,20335 15,66 0,34 0,099	
O31 LP1 1,97675 C15-C19 σ* 0,03899 3,10 1,07 0,073	
LP2 0,98059 C13-C15 σ* 0,01741 5,90 0,93 0,097	
C15-C19 σ* 0,03899 3,23 0,82 0,067	
C3-C4 π^* C5-C6 π^* 0,18279 145,82 0,01 0,079	
Cu32 LP1 0,99753 C13-C15 σ* 0,01741 0,03 0,77 0,006	
C15-O31 σ* 0,00744 0,09 0,70 0,010	
C17-C19 σ* 0,02752 0,03 0,70 0,005	
C19-O25 σ* 0,00613 0,06 0,71 0,008	
LP2 0,99578 C15-O31 σ* 0,00744 0,05 0,69 0,008	
C19-O25 σ^* 0,00613 0,11 0,71 0,011	
LP3 0,99577 C15-O31 σ* 0,00744 0,33 0,22 0,012	
C19-O25 σ^* 0,00613 0,32 0,22 0,011	
LP4 0,99330 C13-C15 σ* 0,01741 0,07 0,77 0,009	
C15-O31 σ* 0,00744 0,13 0,70 0,012	
<u>C17-C19</u> σ* 0,02752 0,07 <u>0,70</u> 0,009	

		C19-O25	σ*	0,00613	0,10	0,71	0,011
LP5	0,94811	C15-O31	σ^*	0,00744	0,34	0,21	0,011
		C19-O25	σ^*	0,00613	0,44	0,21	0,012

5. SONUÇLAR VE ÖNERİLER

Bu tez çalışmasında, kuersetin, luteolin ve mirisetin moleküllerinin ve bu moleküllerin Co^{+2} , Cu^{+2} , Fe^{+2} iyonlarıyla etkileşim yaptıklarındaki elektronik özelliklerini incelendi. Giriş bölümünde bahsedildiği üzere, bu moleküllerin metal iyonlarıyla etkileşim yapabileceği üç bölge vardır. Bu moleküller için üç bölgeden hangisinde metal iyonlarıyla etkileşiminin uygun olacağına karar verebilmek için ESP yüzeylerine bakıldı. ESP gösterimine göre, metal iyonlarının etkileşimlerinin B halkası tarafından yapılmasının daha uygun olacağı görüldü. Bunun sebebi ise B halkasına bağlı O-H gruplarının bulunduğu bölgenin teorik hesaplama sonucunda elde edilen üçboyutlu gösterimde artı potansiyelde olmasıdır. Bu yüzden bu bölgeler elektrofilik özellik göstermesi beklenmektedir. Ayrıca, molekülün anti-oksidan özelliklerinin ortaya çıkarılması O-H gruplarının varlığı ile doğrudan ilgili olduğundan metal iyonlarının B halkası tarafına eklenmesinin en uygun olduğu düşünülmüştür. Bu vüzden metal ivonları (Fe^{+2} , Co^{+2} , Cu^{+2}) ile molekül (kuersetin, mirisetin ve luteolin) etkileşimi bu bölgeden yapılmıştır. Ayrıca, moleküllerin ESP haritaları incelendiğinde metal iyonu bağlanmadan önce elektrofilik bölgenin, metal iyonu bağlandıktan sonra nükleofilik duruma geçtiği ve elektrofilik bölgelerin yer değiştirdiği görülmektedir. Bunun anlamı ise metal iyonu bağlı bölgelerin elektronca zengin bölgeler olduğu ve olası bir bağlanmanın diğer artı potansiyelde bulunan kısımlardan olabileceğini göstermektedir. Bu durum aynı zamanda, kimyasal sertlik değerleri ile de belirlenmektedir. Kimyasal olarak sert olan molekülde yük yoğunluğu fazladır. Bu durumda da kimyasal sertliği en yüksek bileşik, luteolin Cu⁺²'dir.

Molekül yapılarının elektronik parametreleri incelendiğinde, en dikkat çekici değişimler ΔE parametresi değerlerinde görüldü. ΔE değeri molekülün HOMO-LUMO orbitalleri arasındaki enerji farkıdır. Bu fark, molekülün iletkenliği hakkında bilgi verir. Bu orbitaller arasındaki farkın, düşük olması iletkenlik bandı ile valans bandı arasındaki mesafenin daha kısa olması ve elektron alış-verişinin daha kolay gerçekleşmesi anlamına gelir. Başka bir ifadeyle, molekülün iletkenliği hakkında bilgi verir. HOMO-LUMO enerji seviyeleri arasındaki fark küçüldükçe, iletkenliği artmakta, buna karşın fark büyüdükçe molekül elektriksel açıdan daha yalıtkan diyebiliriz. Bizim bulgularımızda, kuersetin Fe^{+2} , mirisetin Fe^{+2} , luteolin Fe^{+2} bileşiklerinin ΔE değerleri incelediğimiz diğer bileşiklere göre daha küçüktür. Dolayısıyla, kuersetin Fe^{+2} , mirisetin Fe^{+2} , luteolin Fe^{+2} bileşikleri, incelediğimiz diğer bileşiklere göre daha iletkendirler. Yapıların HOMO-LUMO enerji diyagramları incelendiğinde ise; LUMO orbitallerinin simetrik olarak molekül boyunca dağıldığı, HOMO orbitallerinin ise metal iyonunun etkileşim yaptığı atom üzerinde olduğu görülmektedir.

Moleküllerin NBO analizi, bağlar arasında meydana gelen elektron transferleri ve molekül içi ve moleküller arası bağlanmanın nasıl olduğu açıklamak için yapılmıştır. Buna göre; Fe⁺² iyonu bağlı yapıların yük transferlerindeki değerlerinin diğer yapılara nazaran daha yüksek enerjili olması da bu yapıların daha az kararlı yapılar olduğu ve iletkenlik durumlarının diğer yapılara göre daha fazla olduğu söylenebilir. Bu durumda; NBO analizinden elde edilen sonuçlar ile HOMO-LUMO orbital analizinden elde edilen sonuçlar birbiriyle uyuşmaktadır.

Bu tez çalışmasında; kuersetin, mirisetin ve luteolin bileşiklerinin ve Co⁺², Cu⁺² ve Fe⁺² iyonlarıyla etkileşimlerinin elektronik özellikleri incelenmiş olup biyolojik bazlı iletkenler ile ilgili yapılacak çalışmalarla malzeme ve molekül fiziğine önemli katkılar sağlayacağı düşünülmektedir.

6. KAYNAKLAR

Aguirre L., Arias N., Macarulla M. T., Gracia A., Portillo M. P., "Beneficial effects of quercetin on obesity and diabetes", *Open Nutraceuticals J.*, 4,189–198, (2011).

Ballantyne, B., "Optalmic Effects of Oximes: A Review", Vet. Hum. Toxicol, 33, 151-154, (1991).

Benson, S. W., "Bond Energies", Journal Chem Educ., 42, 502, (1965).

Birman, H., "Bitkisel Flavonoid Bileşiklerinin Biyoaktiviteleri Ve Muhtemel Etki Mekanizmaları", *İst Tıp Fak Derg.*, 75:3, (2012).

Cao, G., Sofic, E., And Prior, R., "Antioxidant and Prooxidant Behavior of flavonoids: stucture-activity relationships", *Free Radical Biology & Medicine*, 22, 749-760, (1997).

Cheng IF, Breen K., "On the ability of four flavonoids baicilein, luteolin, naringenin and quercetin to supress the Fenton reaction of the iron-ATP complex", *Biometals*, 13., 77-83, (2000).

Cottrell, T. L., "The Strengths of Chemical Bonds", 2nd ed., *Huheey*, A-21-A34, Butterworths, London, (1958).

Cox J. P., Kumarasamy Y., Nahar L., Satyajit D. Sarkera, Shoeb M., "Luteolin", *Acta Crystallographica*, 59, 975-977, (2003).

Darwent, B. deB., "National Standart Reference Data Series", *National Bureau of Standarts*, No:31, Washington DC, (1970).

Davis, J. M., Murphy, E. A., Carmichael, M. D., "Effects of the dietary flavonoid quercetin upon performance and health", *Curr Sports Med Rep.*, 8(4)., 206-213, (2009).

Dernek, S., Ikizler M., Erkasap N., Ergun B., Koken T., Yılmaz K., Sevin B., Kaygısız Z., Kural T., "Cardioprotection with resveratrol pretreatment: improved beneficial effects over standard treatment in rat hearts after global ischemia", *Scand Cardiovasc J.*, 84, 245-54, (2004).

Erdem, S. S., "Organik Kimyada Teorik Yöntemler", Marmara Üniversitesi Fen Bilimleri Enstitüsü Organik Kimya Programı Ders Notları, 113, (2007).

Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Petersson, G. A., Nakatsuji, H., Li, X., Caricato, M., Marenich, A. V., Bloino, J., Janesko, B. G., Gomperts, R., Mennucci, B., Hratchian, H. P., Ortiz, J. V., Izmaylov, A. F., Sonnenberg, J. L., Williams-Young, D., Ding, F., Lipparini, F., Egidi, F., Goings, J., Peng, B., Petrone, A., Henderson, T., Ranasinghe, D., Zakrzewski, V. G., Gao, J., Rega, N., Zheng, G., Liang, W., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Throssell, K., Montgomery, J. A., Jr., Peralta, J. E., Ogliaro, F., Bearpark, M. J., Heyd, J. J., Brothers, E. N., Kudin, K. N., Staroverov, V. N., Keith, T. A., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A. P., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Millam, J. M., Klene, M., Adamo, C., Cammi, R., Ochterski, J. W., Martin, R. L., Morokuma, K., Farkas, O., Foresman, J. B., Fox, D. J., "Gaussian 16, Revision B.01", *Gaussian, Inc.*, Wallingford CT., (2016).

Fukui, K., "Role of Frontier Orbitals in Chemical Reactions", *Science*, 218(4574), 747-754, (1982).

Glendening, E. D., Reed, A. E., Carpenter, J. E., and Weinhold, F., "NBO 3.0 Program Manual", *Am. Chem. Soc.*, 102, 7211-7218, (1980).

Günay, N., Pir, H., Atalay, Y., "L-Asparaginyum Pikrat Molekülünün Apektroskopik Özelliklerinin Teorik Olarak İncelenmesi", *SAÜ Fen Edebiyat Dergisi*, 1,(2011).

Hanasaki, Y., Ogawa, S., Fukui, S., "The correlation between active oxygen scavenging and antioxidative effects of flavonoids", *Free Radical Biology & Medicine*. 16, 845-850, (1994).

Heim, K. E., Tagliaferro, A. R. and Bobilya, D. J., "Flavonoid antioxidants: chemistry, metabolism and structure-activity relationships", *Journal of Nutritional Biochemistry*, 13, 572-584, (2002).

Hohenberg, P., and W. Kohn, Phys. Rev., 136, 864B, (1964).

Jensen, F., "Introduction to Computational Chemistry", New York., *John Wiley* and Sons Inc., (1999).

Kara, İ., Kiraz, A. Ö., Çetişli, H., Donat, R., Kolsuz, N., "Theoritical Calculation On a Compound Formed by Methyl Alcohol and Simmondsin", *International Journal Of Secondary Metabolite*, Vol. 3, (1), 39-48, (2016).

Karayel, A., "1,2,4-Triazol Benzimidazol Türevlerinin Kristal Yapıları ve Yapı Aktivite İlişkilerinin X ışınlarıyla ve Kuantum Mekaniksel Yöntemlerle İncelenmesi", Doktora Tezi, *Hacettepe Üniversitesi Fen Bilimleri Enstitüsü*, Ankara, (2010).

Kasprzak, M., M., Erxleben, A., Ochocki, J., "Properties and Application of Flavonoid Metal Complexes", *RSC Adv.*, 5, 45853, (2015).

Kohn, W., and L. J. Sham, Phys. Rev., 140, 1133A, (1965).

Libretexts, "Electrostatic Potential Maps", [online] (29 Haziran 2019), https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry _Textbook_Maps/Supplemental_Modules_(Physical_and_Theoretical_Chemi stry)/Chemical_Bonding/Fundamentals_of_Chemical_Bonding/Electrostatic_Potential_maps, (2019).

Lv, P., Li, H., Xue, J., Shi, L., Zhu, H., "Synthesis and biological evaluation of novel luteolin derivatives as antibacterial agents", *European Journal of Medicinal Chemistry*, 44, 908-914, (2009).

Ong, K.C., Khoo, H., "Biological effects of myricetin", *General Pharmacology*, 29, 121-126, (1997).

Pearson, R. G., "Absolute electronegativity and Hardness: Applications to Organic Chemistry", *The Journal of Organic Chemistry*, 54, 1423-1430, (1989).

Pearson, R. G., "Absolute electronegativity and Hardness Correlated With Molecular Orbital Theory", *Proceeding of the National Academic of Sciences*, 83, 8440-8441, (1986).

Pulay, P., "Ab initio Calculation of Force Constants and Equilibrium Geometries", *I. Theory, Mol. Phys.*, 17, 197, (1969).

Reed, A. E., Curtiss, L. A., Weinhold, F., Intermolecular interactions from a Natural Bond Orbital, Donor-Acceptor viewpoint, *Chem. Rev.*, 88(6), 899-926, (1988).

Schwenke, D. W., Truhlar, D. G., "Systematic study of basis set superposition errors in the calculated interaction energy of two hf molecules", *Journal of Chmical Physics*, 82, 5, 2418-2427, (1985).

Shaanxi NHK Technology Co., Ltd., "What are the health benefits of luteolin", (Jun 22, 2016), http://tr.gmp-factory.com/info/what-are-the-health-benefits-o-897317.html, (2016).

Szabo, A., Ostlund, N. S., "Modern Quantum Chemistry", *Dover Publications*, New York, 10-45, (1996).

Xi'an Natural Field Bio-Technique Co., Ltd., "Luteolin benefits & side effects", (Sept. 04, 2017), http://tr.nfnatural.com/info/luteolin-benefits-side-effects-20793350.html, (2017).

7. ÖZGEÇMİŞ

Adı Soyadı	: FATİH YALÇIN
Doğum Yeri ve Tarihi	: AKDAĞMADENİ / 05.04.1987
Lisans Üniversite	: PAMUKKALE ÜNİVERSİTESİ
Elektronik posta	: fatihyalcin6635@gmail.com
İletişim Adresi	: 693/16 Sk. No:4 D:4 Göksu Mah. Buca/İZMİR