
Are Bitcoin Returns Predictable? 

Aygül Anavatan1, Eda Yalçın Kayacan2 

 

Abstract 

 Bitcoin is the most radical of the cryptocurrencies which are becoming popular 

nowadays. The advantage of the cryptocurrencies is that they are decentralized systems so do 

not need central banks. The purpose of this study is to determine if there is volatility in the 

returns of Bitcoin and if so, whether it is predictable. The volatility of the Bitcoin returns was 

investigated using the log-normal stochastic volatility (SV) model and SV model with leverage 

for daily data covering the period between 19.12.2011 and 29.01.2018. While there is no 

significant leverage effect in the Bitcoin returns, it can be said that the volatility is permanent 

and unpredictable. The unpredictability of Bitcoin returns’ fluctuations suggests that it is risky 

to use it as an investment tool or currency. It is increasing day by day that Bitcoin takes place 

of banknotes or digital money, which are conventional means of payment. The more widespread 

the system, the safer and the more resistant to speculative it will be. 

Keywords: Bitcoin, log-normal stochastic volatility model, stochastic volatility model with 

leverage, leverage effect 
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1. Introduction 

 Bitcoin is the most popular of the 897 cryptocurrencies as of February 2018. It is the 

first cryptocurrency proposed by Nakamoto (2008) and was released as open-source software 

in 2009. Bitcoin works with Blockchain technology, one of the world’s leading software 

platforms for digital assets. The most important feature of cryptocurrencies is that they are 

decentralized and that central banks are not needed in this mechanism. As the world has never 

seen such a fictional currency, it's really exciting to imagine how the cryptocurrencies will 

advance. In this study, our aim is to determine if there is volatility in the Bitcoin returns and if 

so, whether it is predictable. 

 In the related literature, Bech & Garratt (2017) suggest the central bank cryptographic 

currency concept. Nagpal (2018), explains the emergence, functioning, and risks of digital 

money. 

 Baur & Dimpfl (2017) examine the volatility of four different Bitcoin markets by 

comparing US dollar, the euro and the Japanese yen via fractional integration and Granger 

causality tests. Eross, Mcgroarty, Urquhart, & Wolfe (2017) investigate the relationship 

between returns, volume, bid-ask spread (BAS) and volatility of Bitcoin by using Granger 

causality. Chengyuan (2017) analyzes the volatility transmission of Bitcoin price between 

Chinese and US markets through the Granger causality test and the BEKK model. Urquhart 
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(2018) ascertains the relationship between realized volatility and volume of Bitcoin and investor 

attention by way of Vector Autoregression, Granger causality and Impulse Response analysis. 

Ciaian, Rajcaniova, & Kancs (2018) examine interdependencies between Bitcoin and 16 altcoin 

markets in the short- and long-run by using Autoregressive Distributed Lag (ARDL) model. 

 Fiser (2015) analyzes Bitcoin bubbles using ARIMA, GARCH and Log-Periodic Power 

Law model (LPPL) models. Kasper (2017) compares Bitcoin volatility to volatility of 

currencies of least developed countries and other cryptocurrencies by GARCH model. 

Stavroyiannis (2017) investigates volatility dynamics of the six major digital currencies, 

Bitcoin, Ethereum, Ripple, Litecoin, Dash, and NEM, using GARCH models. Corbet, Larkin, 

Lucey, Meegan, & Yarovaya (2017) examine the reaction of 100 digital assets to US policy 

announcements by use of GARCH model. Cermak (2017) researches whether Bitcoin is a useful 

currency by using GARCH model. Liu, Shao, & Wei (2017) compare the empirical 

performance of a standard normal distribution, the Student’s t distribution and the normal 

reciprocal inverse Gaussian (NRIG) for the daily Bitcoin exchange rate returns via GARCH 

model. Bouri, Azzi, & Dyhrberg (2018) investigate the return-volatility relationship for Bitcoin 

using the asymmetric GARCH model both before and after the price crash of 2013 and 

throughout the study period. Shi (2018) examines the effect of Bitcoin futures on the volatility 

and liquidity of the Bitcoin spot market through the asymmetric EGARCH model with a 

generalized error distribution (GED). 

 Cheah & Fry (2015) investigate whether there are the bubbles in Bitcoin markets by 

using a stochastic bubble model. Catania & Grassi (2017) use 289 cryptocurrencies and focus 

on four of them, Bitcoin, Ethereum, Ripple, and Litecoin, and extend Score-Driven GHSKT 

model considering the properties of long memory, leverage effect and time-varying higher order 

moments. Balcilar, Bouri, Gupta, & Roubaud (2017) examine the causality relationship 

between Bitcoin returns, volatility and trading volume by considering nonlinearity and 

structural breaks via a non-parametric causality-in- quantiles test. Lahmiri & Bekiros (2018) 

reveal the chaos, randomness, and multi-fractality in Bitcoin prices and returns which are 

separated into the low regime and high regime by using the largest Lyapunov exponent, 

Shannon entropy, and the multi-fractal detrended fluctuation analysis. 

 Johnson (2017) estimates SV models with heavy tails, leverage, and covariates by using 

particle Markov Chain Monte Carlo (MCMC) method for Bitcoin exchange rate data. Johnson 

(2017) analyzes the volatility of the Bitcoin returns using the SV models. The rest of the study 

has been organized as follows. Section 2 presents the methodology related to log-normal SV 

model and SV model with leverage. Section 3 introduces the dataset used in the analysis and 

reports the empirical results. Finally, Section 4 concludes.  

 

2. Methodology 

 The studies in order to model the volatility are based on Clark (1973). The increases in 

the price process Δ𝑥𝑡 = 𝑥𝑡 − 𝑥𝑡−1 are stationary in the mean and uncorrelated, where 𝑥𝑡 

indicates the price at time t. This situation can best be explained by a random walk as follows 

(Clark, 1973: 135); 
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𝑥𝑡 = 𝑥𝑡−1 + 𝜀𝑡, 𝐸(𝜀𝑡) = 0, 𝐸(𝜀𝑡𝜀𝑠) = 0, for 𝑡 ≠ 𝑠 (1) 

 Clark (1973) laid the foundations for the SV model by modelling the 𝜎2 process, which 

is the variance of 𝜀𝑡. There are several models in which variance and covariance change. The 

basis of models in which volatility is defined as an observable and deterministic variable is the 

autoregressive conditional variance (ARCH) model proposed by Engle (1982). The first order 

autoregressive model can be written as follows; 

𝑌𝑡 = 𝛾𝑌𝑡−1 + 𝜀𝑡 (2) 

where 𝑌𝑡 is a random variable drawn from the conditional density function 𝑓(𝑌𝑡|𝑌𝑡−1), 𝜀𝑡 is the 

white noise process which has the variance 𝜎2. The conditional mean and unconditional mean 

of 𝑌𝑡 are 𝛾𝑌𝑡−1 and zero, respectively. The conditional variance of 𝑌𝑡 is 𝜎2 while the 

unconditional variance is 𝜎2 1 − 𝛾2⁄ . The bilinear model which allows the conditional variance 

to depend on the past realization of the series is as follows (Engle, 1982: 987-988); 

𝑌𝑡 = 𝜀𝑡𝑌𝑡−1 (3) 

where the conditional variance is 𝜎2𝑌𝑡−1
2 . However, the unconditional variance is zero or 

infinite. Despite the fact that this problem is avoided with light measures, this is an undesirable 

situation. An ARCH model is defined as follows (Engle, 1982: 988); 

𝑌𝑡 = 𝜀𝑡ℎ𝑡
1 2⁄

 (4) 

ℎ𝑡 = 𝛼0 + 𝛼1𝑌𝑡−1
2  (5) 

where var(𝜀𝑡) = 1. In this model, the variance in time t is allowed to be a linear function of the 

squares of past observations. The generalized form of this model can be stated as in (6) (Engle, 

1982: 988); 

ℎ𝑡 = 𝛼0 + 𝛼1𝑌𝑡−1
2 +⋯+ 𝛼𝑝𝑌𝑡−𝑝

2  (6) 

 Taylor (1982), proposed a SV model that allows the volatility to be a function of the 

unobserved or latent component in parameter-based or state-space models. The volatility, which 

can be observed and modeled as a deterministic variable in ARCH-GARCH models, has an 

unobservable and stochastic structure in SV models. The volatility in SV models is determined 

by an unpredictable shock. While the conditional mean has a stochastic process in ARCH-

GARCH models, both the conditional mean and the conditional variance follow the stochastic 

process in the SV models (Göktaş & Hepsağ, 2016: 4). 

 Classical SV model is defined as follows (Taylor, 2008: 74); 

𝑦𝑡 = 𝜀𝑡 exp(ℎ𝑡 2⁄ ), 𝜀𝑡~𝑁(0,1)  (7) 

ℎ𝑡 = 𝛾 + 𝜙ℎ𝑡−1 + 𝜂𝑡, 𝜂𝑡~𝑁(0, 𝜎𝜂
2) (8) 

where is assumed that 𝜀𝑡 and 𝜂𝑡 are mutually independent and identically distributed (iid) 

random variables. ℎ𝑡 refers to the unobservable volatility. (7) and (8) are the mean and volatility 

equation, respectively. Because of the Gaussianity of 𝜂𝑡, this model is called as log-normal SV 

model. 𝜙 indicates the continuity (permanence) of the volatility. If 𝜙 is close to 1, it can be 

concluded the existence of volatility clustering in the data. 𝜎𝜂 also indicates the variability of 
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volatility. If 𝜎𝜂
2 is close to 0, it can be expressed that the volatility is predictable (Göktaş & 

Hepsağ, 2016: 11).  

 The SV model with dynamic leverage effect, including the asymmetric relations due to 

the direct negative correlation between the changes in volatility, and returns, is as follows (Asai 

& McAleer, 2005: 320); 

𝑦𝑡 = 𝜀𝑡 exp(ℎ𝑡 2⁄ ), 𝜀𝑡~𝑁(0,1) (9) 

ℎ𝑡+1 = 𝜇 + 𝜑ℎ𝑡 + 𝜂𝑡, 𝜂𝑡~𝑁(0, 𝜎𝜂
2) (10) 

𝐸(𝜀𝑡, 𝜂𝑡) = 𝜌𝜎𝜂 (11) 

 While it is assumed that 𝜀𝑡 and 𝜂𝑡 are mutually independent in SV models, 𝜀𝑡 and 𝜂𝑡 are 

allowed to be the contemporaneous relationship in SV models with dynamic leverage effect. In 

this case, the relationship becomes asymmetric (Ghysels, Harvey, & Renault, 1996: 139). 𝜌 is 

the relationship between the variation in volatility, and return series, and can be stated as 

𝑐𝑜𝑟𝑟(𝜀𝑡, 𝜂𝑡) = 𝜌. If 𝜌 is negative, the negative changes in εt cause the higher volatility in 

contemporaneous and following periods. On the other hand, positive changes in 𝜀𝑡 are 

associated with decreases in volatility. That is, when 𝜌 is negative, negative shocks increase the 

fluctuation more than positive shocks. This asymmetry is called as leverage effect (Jacquier, 

Polson, & Rossi, 2004: 193). 

 As the time dimension increases or the dimension of ℎ𝑡 goes above 1, the sample size 

grows (Shephard, 1996: 28). Because the sample size is often large and no traditional integral 

technique can be used to estimate the model, the Bayesian method MCMC procedure is used to 

estimate SV model and SV model with dynamic leverage effect (Danielsson, 1994: 376). In the 

MCMC method, parameters are estimated using Gibbs or Metropolis sampling. 

 

3. Dataset and Empirical Results  

 In this study, volatility behavior of Bitcoin returns for closing prices is investigated 

using SV and SV with dynamic leverage effect. The Bitcoin price index is taken in USD-

denominated for the period between 19.12.2011 and 29.01.2018 on Bitstamp, which is obtained 

from www.bitcoincharts.com. Bitstamp is the most rooted European Bitcoin exchange and 

dates back 2011, also mainly focus on trading Bitcoin. Table 1 reports the descriptive statistics 

for the return of the Bitcoin index for 2234 observations.  

 

Table 1: Descriptive statistics 

Mean Median Minimum Maximum 
Standard 

Deviation 
Skewness Kurtosis 

Jarque-

Bera 
Probability 

0.003613 0.002553 -0.663948 0.337486 0.048971 -1.365440 26.41153 51713.13 0.0000 

 

 Considering the descriptive statistics of the Bitcoin returns, it is observed that the mean 

value of the return series is smaller than the standard deviation. This situation is consistent with 

the fact that the financial time series generally follow the random walk process. It is seen that 
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the series of returns are negative skewed and has higher kurtosis than normal distribution. The 

Jarque-Bera test statistic also shows that the distribution of return series is not normal. By virtue 

of these features, it can be stated that the Bitcoin index carries the typical financial time series 

feature. 

 The natural logarithm of the data and the return series for the bitcoin index, are presented 

in Figure 1. It is clear that there is an increasing trend in the bitcoin returns and that there are 

volatility clusters in the return series. 

 

Figure 1: a) Natural logarithm of Bitcoin returns. b) Bitcoin returns 

a. b. 

 

 

 

 

 

 

 

 

 The preliminary distributions for the parameters to be estimated using the Gibbs sampler 

in the estimation of SV model and SV model with dynamic leverage effect were obtained from 

the codes used in the studies performed by Yasuhiro Omori. In the estimates made using the 

WinBUGS 1.4.3 package program, the initial values for the estimation method were determined 

by the package program and 100,000 samples were made. 

 Table 2 reports the results of the estimated log-normal SV model for the Bitcoin returns. 

 

Table 2: The results of the estimated log-normal SV model 

  Coefficient Standard Deviation MC Error Confidence Interval 

𝜇 -7.263* 0.1755 0.005369 (-7.604, -6.908) 

𝜙 0.9243* 0.01364 4.193E-4 (0.8964, 0.9488) 

𝜎𝜂 0.5865* 0.0469 0.001607 (0.4975, 0.6796) 

Note: * denotes the rejection of the null hypothesis at the 5% significance level. 

 

 According to the estimation results of SV model shown in Table 2, the φ coefficient 

indicating the permanence of Bitcoin volatility is statistically significant at 5% significance 

level and is obtained as 0.9243. It is understood that the volatility is permanent and volatility 

clusters have arisen in Bitcoin returns take part in the Bitstamp market. The 𝜎𝜂 coefficient 

indicating the variability of the volatility is also statistically significant at the 5% significance 
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level and is obtained as 0.5865 (𝜎𝜂
2 = 0.3440). Accordingly, there is a high level of variability 

in Bitstamp market volatility. Given the fact that the 𝜎𝜂
2 coefficient is not close to 0, it can be 

made the interpretation that the volatility is not predictable. To sum up, it can be said that the 

volatility is permanent, the variability of the volatility is high and the volatility is not 

predictable. 

 Figure 2 shows the graph of estimated volatility values obtained from the model results 

belongs to Bitcoin returns. It is observed that the return volatility on 11.04.2013 is the highest 

level. It may be the cause of this volatility that the intense demand for Bitcoin, which has 

reached its highest closing price on 10.04.2013, was locked the system and not allowed new 

purchases for three days (www.bitstamp.net). It is also seen that the return volatility is at the 

lowest level on 28.12.2012. 

 

Figure 2: The volatility of Bitcoin returns 

 

 

 The estimation results for the SV model with dynamic leverage effect belongs to the 

Bitcoin returns are given in Table 3. 

 

Table 3: The results of the estimated SV model with dynamic leverage effect 

 Coefficient Standard Deviation MC Error Confidence Interval 

𝜇 -7.229* 0.1684 0.00532 (-7.568, -6.923) 

𝜙 0.9233* 0.01293 6.46E-04 (0.8975, 0.9472) 

𝜌 -0.02426 0.04674 0.001848 (-0.1186, 0.06251) 

𝜎𝜀 0.02703* 0.002259 7.21E-05 (0.02273, 0.03139) 
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𝜎𝜂 0.5883* 0.04543 0.002126 (0.5037, 0.6831) 

Note: * denotes the rejection of the null hypothesis at the 5% significance level. 

 

 According to the estimation results of SV model with dynamic leverage effect shown in 

Table 3, the φ coefficient indicating the permanence of Bitcoin volatility is statistically 

significant at 5% significance level and is obtained as 0.9233. It is understood that the volatility 

is permanent and volatility clusters have arisen in Bitcoin returns take part in the Bitstamp 

market. The 𝜎𝜂 coefficient indicating the variability of the volatility is also statistically 

significant at the 5% significance level and is obtained as 0.5883 (𝜎𝜂
2 = 0.3461). Accordingly, 

there is a high level of variability in Bitstamp market volatility. Given the fact that the 𝜎𝜂
2 

coefficient is not close to 0, it can be made the interpretation that the volatility is not predictable. 

To sum up, it can be said that the volatility is permanent, the variability of the volatility is high 

and the volatility is not predictable. These findings are consistent with those of the log-normal 

SV model. The 𝜌 coefficient indicating the relationship between Bitcoin returns and the changes 

in the volatility is not statistically significant at the 5% significance level. For this reason, it 

cannot be said that the leverage effect exists in Bitcoin returns. 

 

4. Conclusion 

 SV models are used in order to model time series data, especially in financial 

applications. The motivation for this study is to determine if there is volatility in the Bitcoin 

returns and if so, whether it is predictable. Although the use of Bitcoin is now not popular 

enough to have a huge impact on the real economy, it is worth to examine in terms of 

understanding the trajectory of cryptocurrencies. 

 In this study, it is found that the volatility is permanent in Bitcoin returns, the variability 

of the volatility is high, and the volatility is not predictable. Also, there is no leverage effect, 

which refers to the asymmetric reaction of the volatility process to past positive and negative 

returns, on Bitcoin returns. The unpredictability of Bitcoin fluctuations suggests that it is risky 

to use it as an investment tool or currency.  

 This study can be developed by examining other cryptocurrencies with SV models or 

searching the volatility of Bitcoin returns with other methods. In addition, the presence of 

structural breaks or regime changes in the analysis can also be taken into account. 
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