Characterization of the compact operators on the class (bv, bv_k^{θ})

Cite as: AIP Conference Proceedings **2183**, 050010 (2019); https://doi.org/10.1063/1.5136148 Published Online: 06 December 2019

Fadime Gökçe, and M. Ali Sarıgöl

Matrix operators involving the space bv_k^{θ} AIP Conference Proceedings **2183**, 050011 (2019); https://doi.org/10.1063/1.5136149

Necessary and sufficient Tauberian conditions under which convergence of double sequences follows from A summability AIP Conference Proceedings **2183**, 050012 (2019); https://doi.org/10.1063/1.5136150

A new generalization on absolute Riesz summability AIP Conference Proceedings **2183**, 050017 (2019); https://doi.org/10.1063/1.5136155

AIP Conference Proceedings **2183**, 050010 (2019); https://doi.org/10.1063/1.5136148 © 2019 Author(s).

Characterization of the compact operators on the class (bv, bv_k^{θ})

Fadime Gökçe^{1,a)} and M. Ali Sarıgöl^{1,b)}

¹⁾ Department of Mathematics, University of Pamukkale, Denizli, Turkey

^{a)}Corresponding author: fgokce@pau.edu.tr b)msarigol@pau.edu.tr

Abstract. The space by, the set of all bounded variation sequences, has an important role in the summability theory. In recent study, this spaces has been extended to the space bv_k^{θ} and some matrix class on this space has been characterized [2]. In the present paper, for $1 \le k < \infty$, computing Hausdorff measure of non-compactness, we characterize compact operators in the class (bv, bv_k^{θ}) , where θ is a sequence of positive numbers.

Keywords: Sequence spaces, matrix transformations, bv_k^{θ} spaces PACS: 40C05, 40D25, 40F05, 46A45

INTRODUCTION

Let ω be the set of all complex sequences, l_k $(1 \le k < \infty)$ and c be the set of all k-absolutely convergent series and convergent sequences, respectively. We write $bv = \left\{ x = (x_k) \in w : \sum_{n=0}^{\infty} |\triangle x_n| < \infty \right\}$ for the set of all sequences of bounded variation. In [2], extending the space bv, the space bv_k^{θ} has been defined by

$$bv_k^{\theta} = \left\{ x = (x_k) \in w : \sum_{n=0}^{\infty} \theta_n^{k-1} \left| \triangle x_n \right|^k < \infty, \ x_{-1} = 0 \right\},$$

which is a *BK* space for $1 \le k < \infty$, where (θ_n) is a sequence of nonnegative terms and $\Delta x_n = x_n - x_{n-1}$ for all n. Also, it is reduced to bv^k in the special case $\theta_n = 1$ for all *n*, studied by Malkowsky, V.Rakočević and Živković [1], and $bv_1^{\theta} = bv$ for k = 1.

Let X and Y be subspaces of w and $A = (a_{nv})$ be an arbitrary infinite matrix of complex numbers. By A(x) = $(A_n(x))$, we denote the A-transform of the sequence $x = (x_v)$, i.e.,

$$A_n(x) = \sum_{\nu=0}^{\infty} a_{n\nu} x_{\nu},$$

provided that the series are convergent for $v, n \ge 0$. Then, A defines a matrix transformation from X into Y, denoted by $A \in (X, Y)$, if the sequence $Ax = (A_n(x)) \in Y$ for all sequence $x \in X$.

Let $1 \le k < \infty$. *Then,* $A \in (\ell, \ell_k)$ *if and only if* Lemma 1

$$\|A\|_{(\ell,\ell_k)} = \sup_{v} \left\{ \sum_{n=0}^{\infty} |a_{nv}|^k \right\}^{1/k} < \infty$$

[1].

Third International Conference of Mathematical Sciences (ICMS 2019) AIP Conf. Proc. 2183, 050010-1-050010-4; https://doi.org/10.1063/1.5136148 Published by AIP Publishing. 978-0-7354-1930-8/\$30.00

050010-1

If *S* and *H* are subsets of a metric space (X,d) and $\varepsilon > 0$, then *S* is called an ε -net of *H*, if, for every $h \in H$, there exists an $s \in S$ such that $d(h,s) < \varepsilon$; if *S* is finite, then the ε -net *S* of *H* is called a finite ε -net of *H*. By \mathcal{M}_X , we denote the collection of all bounded subsets of *X*. If $Q \in \mathcal{M}_X$, then the Hausdorff measure of noncompactness of *Q* is defined by

$$\chi(Q) = \{\varepsilon > 0 : Q \text{ has a finite } \varepsilon \text{-net in } X\}.$$

The function $\chi : \mathscr{M}_X \to [0,\infty)$ is called the Hausdorff measure of noncompactness [4].

If X and Y are normed spaces, $\mathscr{B}(X,Y)$ states the set of all bounded linear operators from X to Y and is also a normed space the norm

$$||L|| = \sup_{x \in S_X} ||L(x)||,$$

where S_X is a unit sphere in X, *i.e.*, $S_X = \{x \in X : ||x|| = 1\}$. Further, a lineer operator $L : X \to Y$ is said to be compact if its domain is all of X and the sequence $(L(x_n))$ has convergent subsequence in Y for every bounded sequence $x = (x_n) \in X$. We denote the set of such operators by $\mathscr{C}(X, Y)$.

The following results are important tool to compute Hausdorff measure of noncompactness.

Lemma 2 Let X and Y be Banach spaces, $L \in \mathscr{B}(X,Y)$. Then, the Hausdorff measure of noncompactness of L, denoted by $||L||_{\gamma}$, is defined

$$\|L\|_{\boldsymbol{\gamma}} = \boldsymbol{\chi}\left(L(S_X)\right),$$

and

$$L \in \mathscr{C}(X,Y)$$
 iff $||L||_{\gamma} = 0$

[3].

Lemma 3 Let Q be a bounded subset of the normed space X where $X = \ell_k$ for $1 \le k < \infty$. If $P_n : X \to X$ is the operator defined by $P_r(x) = (x_0, x_1, ..., x_r, 0, ...)$ for all $x \in X$, then

$$\chi(Q) = \lim_{r \to \infty} \sup_{x \in Q} \left\| (I - P_r)(x) \right\|,$$

where I is the identity operator on X [4].

Lemma 4 Let X be normed sequence space, χ_T and χ denote the Hausdorff measures of noncompactness on \mathscr{M}_{χ_T} and \mathscr{M}_X , the collections of all bounded sets in X_T and X, respectively. Then, $\chi_T(Q) = \chi(T(Q))$ for all $Q \in \mathscr{M}_{\chi_T}$, where T is an infinite triangle matrix [3].

Compact operators in the class (bv, bv_k^{θ})

The class (bv, bv_k^{θ}) of infinite matrices has more recently been characterized by Hazar and Sarıgöl [2] as follows. In the present paper, by computing Hausdorff measure of noncompactness, we characterize compact operators in the same class.

Theorem 1 Let $1 \le k < \infty$ and $\theta = (\theta_n)$ be a sequence of positive numbers. Further let $A = (a_{nv})$ be an infinite matrix of complex numbers for all $n, v \ge 0$. Then, $A \in (bv, bv_k^{\theta})$ if and only

$$\lim_{n \to \infty} \sum_{j=\nu}^{\infty} a_{nj} \ exists \tag{1}$$

$$\sup_{n,\nu} \left| \sum_{j=\nu}^{\infty} a_{nj} \right| < \infty \tag{2}$$

$$\sup_{\mathcal{V}}\sum_{n=0}^{\infty} \left| \theta_n^{1-1/k} \sum_{j=\mathcal{V}}^{\infty} \left(a_{nj} - a_{n-1,j} \right) \right|^k < \infty$$
(3)

For $\theta_v = 1$, this theorem also includes the following result of [1].

Corollary 1 Let $A = (a_{nv})$ be an infinite matrix of complex numbers for all $n, v \ge 0$ and $1 < k < \infty$. Then, $A \in (bv, bv^k)$ if and only if (1), (2) hold and

$$\sup_{\mathbf{v}}\sum_{n=0}^{\infty}\left|\sum_{j=\mathbf{v}}^{\infty}\left(a_{nj}-a_{n-1,j}\right)\right|^{k}<\infty$$

Now we give the following theorem.

Theorem 2 Let $1 \le k < \infty$ and $\theta = (\theta_n)$ be a sequence of positive numbers. If $A \in (bv, bv_k^{\theta})$, then

$$||A||_{\chi} = \lim_{r \to \infty} \left(\sum_{n=r+1}^{\infty} \left| \theta_n^{1-1/k} \sum_{j=\nu}^{\infty} \left(a_{nj} - a_{n-1,j} \right) \right|^k \right)^{1/k}$$

and

$$A \in \mathscr{C}\left(bv_k^{\theta}, bv\right) \text{ iff } \lim_{r \to \infty} \sum_{n=r+1}^{\infty} \left| \theta_n^{1-1/k} \sum_{j=v}^{\infty} \left(a_{nj} - a_{n-1,j} \right) \right|^k = 0.$$

Proof Let $T': bv \to \ell$ and $T'': bv_k^{\theta} \to \ell_k$ be given by $T'(x) = x_v - x_{v-1}$, $x_{-1} = 0$ and $T''(x) = \theta_v^{1/k^*}(x_v - x_{v-1})$, $x_{-1} = 0$. Then, it is easy to show that T' and T'' are linear bijection preseving norms, i.e., $||x||_{bv} = ||x||_{\ell}$ and $||x||_{bv_k^{\theta}} = ||x||_{\ell_k}$. So, bv and bv_k^{θ} are norm isometric to the spaces ℓ and ℓ_k , respectively, i.e., $bv \simeq \ell$ and $bv_k^{\theta} \simeq \ell_k$. Note that T'(x) = y for $x \in bv$. Then, $x = T'^{-1}(y) \in S_{bv}$ if and only if $y \in S_{\ell}$, where S_X is unit sphere. Further, we define the infinite matrix D by

$$d_{n\nu} = \theta_n^{1-1/k} \sum_{j=\nu}^{\infty} \left(a_{nj} - a_{n-1,j} \right)$$

Note that we get

$$\begin{array}{cccc} bv & \stackrel{A}{\rightarrow} & bv_k^{\theta} \\ T' \downarrow & & T'' \downarrow \\ \ell & \stackrel{D}{\rightarrow} & \ell_k \end{array}$$

and so, $T''AT'^{-1} = D$ and $A \in (bv, bv_k^{\theta})$ iff $D \in (\ell, \ell_k)$. Also,

$$\begin{aligned} \|A\|_{(bv,bv_k^{\theta})} &= \sup_{\substack{x\neq 0}} \frac{\|A(x)\|_{bv_k^{\theta}}}{\|x\|_{bv}} = \sup_{\substack{x\neq 0}} \frac{\|T'^{-1}DT'(x)\|_{bv_k^{\theta}}}{\|x\|_{bv}} \\ &= \sup_{\substack{y\neq 0}} \frac{\|D(y)\|_{\ell_k}}{\|y\|_{\ell}} = \|D\|_{(\ell,\ell_k)}. \end{aligned}$$

So, it follows from Lemma 2, Lemma 3 and Lemma 4 that

$$\begin{split} \|A\|_{\chi} &= \chi \left(AS_{bv}\right) = \chi (T''AS_{bv}) \\ &= \chi (DT'S_{bv}) = \lim_{r \to \infty} \sup_{y \in S_{\ell}} \|(I-P_r)D(y)\|_{\ell_k} \\ &= \lim_{r \to \infty} \sup_{y \in S_{\ell}} \left\|D^{(r)}(y)\right\|_k = \lim_{r \to \infty} \left\|D^{(r)}\right\|_{(\ell,\ell_k)} \\ &= \lim_{r \to \infty} \sup_{v} \left(\sum_{n=r+1}^{\infty} |d_{nv}|^k\right)^{1/k} \end{split}$$

where $P_r: \ell \to \ell$ is defined by $P_r(y) = (y_0, y_1, \dots, y_r, 0, \dots)$, and

$$d_{nv}^{(r)} = \begin{cases} 0, & 0 \le n \le r \\ d_{nv}, & n > r \end{cases}$$

which complete the proof together with Lemma 2.

In the special case, the following result is immediate.

Corollary 2 Let $1 \le k < \infty$. If $A \in (bv^k, bv)$, then

$$\left\|A\right\|_{\chi} = \limsup_{r \to \infty} \sup_{\nu} \left(\sum_{n=r+1}^{\infty} \left| \sum_{j=\nu}^{\infty} \left(a_{nj} - a_{n-1,j} \right) \right|^k \right)^{1/k},$$

and

$$A \in \mathscr{C}\left(bv, bv^{k}\right) \text{ iff } \limsup_{r \to \infty} \sup_{v} \sum_{n=r+1}^{\infty} \left| \sum_{j=v}^{\infty} \left(a_{nj} - a_{n-1,j} \right) \right|^{k} = 0.$$

REFERENCES

- [1] E. Malkowsky, V. Rakočević and S. Živković, Matrix transformations between the sequence space bv^k and certain BK spaces, Bull. Cl. Sci. Math. Nat. Sci. Math. **123**, 33–46 (2002).
- [2] G. C. Hazar and M. A. Sarıgöl, "The space bv_k^{θ} and matrix transformations," in Proceedings of the 8th Internetional Eurasian Conference On Mathematical Sciences And Applications Baku, Azerbaijan, (2019), (in press).
- [3] E. Malkowsky and V. Rakočević, An introduction into the theory of sequence space and measures of noncompactness, Zb. Rad. (Beogr) **17**, 143-234 (2000).
- [4] V. Rakočević, Measures of noncompactness and some applications, Filomat 12, 87-120 (1998).
- [5] M. A. Sarıgöl, Extension of Mazhar's theorem on summability factors, Kuwait J. Sci. 42, 3, 28-35 (2015).
- [6] M. Stieglitz and H. Tietz, Matrixtransformationen von Folgenraumen Eine Ergebnisüberischt, Math Z. **154**, 1, 1-16 (1977).