Characterization of the compact operators on the class $\left(b v, b v_{k}^{\theta}\right)$

Cite as: AIP Conference Proceedings 2183, 050010 (2019); https://doi.org/10.1063/1.5136148 Published Online: 06 December 2019

Fadime Gökçe, and M. Ali Sarıgöl

View Online

ARTICLES YOU MAY BE INTERESTED IN

Matrix operators involving the space $b v_{k}^{\theta}$
AIP Conference Proceedings 2183, 050011 (2019); https://doi.org/10.1063/1.5136149
Necessary and sufficient Tauberian conditions under which convergence of double sequences
follows from A summability
AIP Conference Proceedings 2183, 050012 (2019); https://doi.org/10.1063/1.5136150
A new generalization on absolute Riesz summability
AIP Conference Proceedings 2183, 050017 (2019); https://doi.org/10.1063/1.5136155

Characterization of the compact operators on the class $\left(b v, b v_{k}^{\theta}\right)$

Fadime Gökçe ${ }^{1, a)}$ and M. Ali Sarıgöl ${ }^{1, b)}$
${ }^{1)}$ Department of Mathematics, University of Pamukkale, Denizli, Turkey
${ }^{a}$ Corresponding author: fgokce@ pau.edu.tr
${ }^{\text {b) }}$ msarigol@pau.edu.tr

Abstract

The space $b v$, the set of all bounded variation sequences, has an important role in the summability theory. In recent study, this spaces has been extended to the space $b v_{k}^{\theta}$ and some matrix class on this space has been characterized [2]. In the present paper, for $1 \leq k<\infty$, computing Hausdorff measure of non-compactness, we characterize compact operators in the class $\left(b v, b v_{k}^{\theta}\right)$, where θ is a sequence of positive numbers. Keywords: Sequence spaces, matrix transformations, $b v_{k}^{\theta}$ spaces PACS: 40C05, 40D25, 40F05, 46A45

INTRODUCTION

Let ω be the set of all complex sequences, $l_{k}(1 \leq k<\infty)$ and c be the set of all k-absolutely convergent series and convergent sequences, respectively. We write $b v=\left\{x=\left(x_{k}\right) \in w: \sum_{n=0}^{\infty}\left|\triangle x_{n}\right|<\infty\right\}$ for the set of all sequences of bounded variation. In [2], extending the space $b v$, the space $b v_{k}^{\theta}$ has been defined by

$$
b v_{k}^{\theta}=\left\{x=\left(x_{k}\right) \in w: \sum_{n=0}^{\infty} \theta_{n}^{k-1}\left|\triangle x_{n}\right|^{k}<\infty, x_{-1}=0\right\}
$$

which is a $B K$ space for $1 \leq k<\infty$, where $\left(\theta_{n}\right)$ is a sequence of nonnegative terms and $\triangle x_{n}=x_{n}-x_{n-1}$ for all n .
Also, it is reduced to $b v^{k}$ in the special case $\theta_{n}=1$ for all n, studied by Malkowsky, V.Rakočević and Živković [1], and $b v_{1}^{\theta}=b v$ for $k=1$.

Let X and Y be subspaces of w and $A=\left(a_{n v}\right)$ be an arbitrary infinite matrix of complex numbers. By $A(x)=$ $\left(A_{n}(x)\right)$, we denote the A-transform of the sequence $x=\left(x_{v}\right)$, i.e.,

$$
A_{n}(x)=\sum_{v=0}^{\infty} a_{n v} x_{v}
$$

provided that the series are convergent for $v, n \geq 0$. Then, A defines a matrix transformation from X into Y, denoted by $A \in(X, Y)$, if the sequence $A x=\left(A_{n}(x)\right) \in Y$ for all sequence $x \in X$.

Lemma 1 Let $1 \leq k<\infty$. Then, $A \in\left(\ell, \ell_{k}\right)$ if and only if

$$
\|A\|_{\left(\ell, \ell_{k}\right)}=\sup _{v}\left\{\sum_{n=0}^{\infty}\left|a_{n v}\right|^{k}\right\}^{1 / k}<\infty
$$

[1].

If S and H are subsets of a metric space (X, d) and $\varepsilon>0$, then S is called an ε-net of H, if, for every $h \in H$, there exists an $s \in S$ such that $d(h, s)<\varepsilon$; if S is finite, then the ε-net S of H is called a finite ε-net of H. By \mathscr{M}_{X}, we denote the collection of all bounded subsets of X. If $Q \in \mathscr{M}_{X}$, then the Hausdorff measure of noncompactness of Q is defined by

$$
\chi(Q)=\{\varepsilon>0: Q \text { has a finite } \varepsilon \text {-net in } X\} .
$$

The function $\chi: \mathscr{M}_{X} \rightarrow[0, \infty)$ is called the Hausdorff measure of noncompactness [4].
If X and Y are normed spaces, $\mathscr{B}(X, Y)$ states the set of all bounded linear operators from X to Y and is also a normed space the norm

$$
\|L\|=\sup _{x \in S_{X}}\|L(x)\|,
$$

where S_{X} is a unit sphere in X, i.e., $S_{X}=\{x \in X:\|x\|=1\}$. Further, a lineer operator $L: X \rightarrow Y$ is said to be compact if its domain is all of X and the sequence $\left(L\left(x_{n}\right)\right)$ has convergent subsequence in Y for every bounded sequence $x=\left(x_{n}\right) \in X$. We denote the set of such operators by $\mathscr{C}(X, Y)$.

The following results are important tool to compute Hausdorff measure of noncompactness.
Lemma 2 Let X and Y be Banach spaces, $L \in \mathscr{B}(X, Y)$. Then, the Hausdorff measure of noncompactness of L, denoted by $\|L\|_{\chi}$, is defined

$$
\|L\|_{\chi}=\chi\left(L\left(S_{X}\right)\right),
$$

and

$$
L \in \mathscr{C}(X, Y) \text { iff }\|L\|_{\chi}=0
$$

[3].
Lemma 3 Let Q be a bounded subset of the normed space X where $X=\ell_{k}$ for $1 \leq k<\infty$. If $P_{n}: X \rightarrow X$ is the operator defined by $P_{r}(x)=\left(x_{0}, x_{1}, \ldots, x_{r}, 0, \ldots\right)$ for all $x \in X$, then

$$
\chi(Q)=\lim _{r \rightarrow \infty} \sup _{x \in Q}\left\|\left(I-P_{r}\right)(x)\right\|
$$

where I is the identity operator on X [4].
Lemma $4 \quad$ Let X be normed sequence space, χ_{T} and χ denote the Hausdorff measures of noncompactness on $\mathscr{M}_{X_{T}}$ and \mathscr{M}_{X}, the collections of all bounded sets in X_{T} and X, respectively. Then, $\chi_{T}(Q)=\chi\left(T(Q)\right.$ for all $Q \in \mathscr{M}_{X_{T}}$, where T is an infinite triangle matrix [3].

Compact operators in the class $\left(b v, b v_{k}^{\theta}\right)$

The class $\left(b v, b v_{k}^{\theta}\right)$ of infinite matrices has more recently been characterized by Hazar and Sarıgöl [2] as follows. In the present paper, by computing Hausdorff measure of noncompactness, we characterize compact operators in the same class.

Theorem 1 Let $1 \leq k<\infty$ and $\theta=\left(\theta_{n}\right)$ be a sequence of positive numbers. Further let $A=\left(a_{n v}\right)$ be an infinite matrix of complex numbers for all $n, v \geq 0$. Then, $A \in\left(b v, b v_{k}^{\theta}\right)$ if and only

$$
\begin{gather*}
\lim _{n \rightarrow \infty} \sum_{j=v}^{\infty} a_{n j} \text { exists } \tag{1}\\
\sup _{n, v}\left|\sum_{j=v}^{\infty} a_{n j}\right|<\infty \tag{2}\\
\sup _{v} \sum_{n=0}^{\infty}\left|\theta_{n}^{1-1 / k} \sum_{j=v}^{\infty}\left(a_{n j}-a_{n-1, j}\right)\right|^{k}<\infty \tag{3}
\end{gather*}
$$

For $\theta_{v}=1$, this theorem also includes the following result of [1].
Corollary 1 Let $A=\left(a_{n v}\right)$ be an infinite matrix of complex numbers for all $n, v \geq 0$ and $1<k<\infty$. Then, $A \in$ $\left(b v, b v^{k}\right)$ if and only if (1),(2) hold and

$$
\sup _{v} \sum_{n=0}^{\infty}\left|\sum_{j=v}^{\infty}\left(a_{n j}-a_{n-1, j}\right)\right|^{k}<\infty .
$$

Now we give the following theorem.
Theorem 2 Let $1 \leq k<\infty$ and $\theta=\left(\theta_{n}\right)$ be a sequence of positive numbers. If $A \in\left(b v, b v_{k}^{\theta}\right)$, then

$$
\|A\|_{\chi}=\lim _{r \rightarrow \infty}\left(\sum_{n=r+1}^{\infty}\left|\theta_{n}^{1-1 / k} \sum_{j=v}^{\infty}\left(a_{n j}-a_{n-1, j}\right)\right|^{k}\right)^{1 / k}
$$

and

$$
A \in \mathscr{C}\left(b v_{k}^{\theta}, b v\right) \text { iff } \lim _{r \rightarrow \infty} \sum_{n=r+1}^{\infty}\left|\theta_{n}^{1-1 / k} \sum_{j=v}^{\infty}\left(a_{n j}-a_{n-1, j}\right)\right|^{k}=0
$$

Proof Let $T^{\prime}: b v \rightarrow \ell$ and $T^{\prime \prime}: b v_{k}^{\theta} \rightarrow \ell_{k}$ be given by $T^{\prime}(x)=x_{v}-x_{v-1}, x_{-1}=0$ and $T^{\prime \prime}(x)=$ $\theta_{v}^{1 / k^{*}}\left(x_{v}-x_{v-1}\right), x_{-1}=0$. Then, it is easy to show that T^{\prime} and $T^{\prime \prime}$ are linear bijection preseving norms, i.e., $\|x\|_{b v}=\|x\|_{\ell}$ and $\|x\|_{b v_{k}^{\theta}}=\|x\|_{\ell_{k}}$. So, $b v$ and $b v_{k}^{\theta}$ are norm isometric to the spaces ℓ and ℓ_{k}, respectively, i.e., $b v \simeq \ell$ and $b v_{k}^{\theta} \simeq \ell_{k}$. Note that $T^{\prime}(x)=y$ for $x \in b v$. Then, $x=T^{\prime-1}(y) \in S_{b v}$ if and only if $y \in S_{\ell}$, where S_{X} is unit sphere. Further, we define the infinite matrix D by

$$
d_{n v}=\theta_{n}^{1-1 / k} \sum_{j=v}^{\infty}\left(a_{n j}-a_{n-1, j}\right) .
$$

Note that we get

$$
\begin{array}{ccc}
b v & \xrightarrow{A} & b v_{k}^{\theta} \\
T^{\prime} \downarrow & & T^{\prime \prime} \downarrow \\
\ell & \xrightarrow{D} & \ell_{k}
\end{array}
$$

and so, $T^{\prime \prime} A T^{\prime-1}=D$ and $A \in\left(b v, b v_{k}^{\theta}\right)$ iff $D \in\left(\ell, \ell_{k}\right)$. Also,

$$
\begin{aligned}
\|A\|_{\left(b v, b v_{k}^{\theta}\right)} & =\sup _{x \neq 0} \frac{\|A(x)\|_{b v_{k}^{\theta}}}{\|x\|_{b v}}=\sup _{x \neq 0} \frac{\left\|T^{\prime \prime-1} D T^{\prime}(x)\right\|_{b v_{k}^{\theta}}}{\|x\|_{b v}} \\
& =\sup _{y \neq 0} \frac{\|D(y)\|_{\ell_{k}}}{\|y\|_{\ell}}=\|D\|_{\left(\ell, \ell_{k}\right)} .
\end{aligned}
$$

So, it follows from Lemma 2, Lemma 3 and Lemma 4 that

$$
\begin{aligned}
\|A\|_{\chi} & =\chi\left(A S_{b v}\right)=\chi\left(T^{\prime \prime} A S_{b v}\right) \\
& =\chi\left(D T^{\prime} S_{b v}\right)=\lim _{r \rightarrow \infty} \sup _{y \in S_{\ell}}\left\|\left(I-P_{r}\right) D(y)\right\|_{\ell_{k}} \\
& =\lim _{r \rightarrow \infty} \sup _{y \in S_{\ell}}\left\|D^{(r)}(y)\right\|_{k}=\lim _{r \rightarrow \infty}\left\|D^{(r)}\right\|_{\left(\ell, \ell_{k}\right)} \\
& =\lim _{r \rightarrow \infty} \sup _{v}\left(\sum_{n=r+1}^{\infty}\left|d_{n v}\right|^{k}\right)^{1 / k}
\end{aligned}
$$

where $P_{r}: \ell \rightarrow \ell$ is defined by $P_{r}(y)=\left(y_{0}, y_{1}, \ldots, y_{r}, 0, \ldots\right)$, and

$$
d_{n v}^{(r)}=\left\{\begin{array}{lr}
0, & 0 \leq n \leq r \\
d_{n v}, & n>r
\end{array}\right.
$$

which complete the proof together with Lemma 2.
In the special case, the following result is immediate.
Corollary 2 Let $1 \leq k<\infty$. If $A \in\left(b v^{k}, b v\right)$, then

$$
\|A\|_{\chi}=\lim _{r \rightarrow \infty} \sup _{v}\left(\sum_{n=r+1}^{\infty}\left|\sum_{j=v}^{\infty}\left(a_{n j}-a_{n-1, j}\right)\right|^{k}\right)^{1 / k}
$$

and

$$
A \in \mathscr{C}\left(b v, b v^{k}\right) \text { iff } \lim _{r \rightarrow \infty} \sup _{v} \sum_{n=r+1}^{\infty}\left|\sum_{j=v}^{\infty}\left(a_{n j}-a_{n-1, j}\right)\right|^{k}=0 .
$$

REFERENCES

[1] E. Malkowsky, V. Rakočević and S. Živković, Matrix transformations between the sequence space $b v^{k}$ and certain BK spaces, Bull. Cl. Sci. Math. Nat. Sci. Math. 123, 33-46 (2002).
[2] G. C. Hazar and M. A. Sarıgöl, "The space $b v_{k}^{\theta}$ and matrix transformations," in Proceedings of the 8th Internetional Eurasian Conference On Mathematical Sciences And Applications Baku, Azerbaijan, (2019), (in press).
[3] E. Malkowsky and V. Rakočević, An introduction into the theory of sequence space and measures of noncompactness, Zb. Rad. (Beogr) 17, 143-234 (2000).
[4] V. Rakočević, Measures of noncompactness and some applications, Filomat 12, 87-120 (1998).
[5] M. A. Sarıgöl, Extension of Mazhar's theorem on summability factors, Kuwait J. Sci. 42, 3, 28-35 (2015).
[6] M. Stieglitz and H. Tietz, Matrixtransformationen von Folgenraumen Eine Ergebnisüberischt, Math Z. 154, 1, 1-16 (1977).

