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Abstract
The main  purpose  of  this  paper  is  to  obtain  the  wave solutions  of  conformable  time fractional  Boussinesq–
Whitham–Broer–Kaup equation arising as a model of shallow water waves. For this aim, the authors employed
auxiliary equation method which is based on a nonlinear ordinary differential equation. By using conformable wave
transform and chain rule, a nonlinear fractional partial differential equation is converted to a nonlinear ordinary
differential equation. This is a significant impact because neither Caputo definition nor Riemann–Liouville definition
satisfies the chain rule. While the exact solutions of the fractional partial derivatives cannot be obtained due to the
existing drawbacks of Caputo or Riemann–Liouville definitions, the reliable solutions can be achieved for the
equations defined by conformable fractional derivatives.
Key words: time fractional coupled Boussinesq–Whitham–Broer–Kaup equation, conformable fractional derivative,

auxiliary equation method
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1  Introduction
In recent years, fractional calculus has attracted many

researches in the area of applied mathematics, physics and
branches of engineering (Sabatier et al., 2007). Since L'Hos-
pital asked the question, in 1695, what might be a derivat-
ive order of 1/2, many researchers tried to find a definition
of fractional derivative. Most of the studies focused on an
integral form of fractional derivative. Two most famous ap-
proaches are the Riemann–Liouville definition and the Cap-
uto definition. However, the two definitions have some
drawbacks. For instance,
• Dα1 = 0
α

 Riemann–Liouville definition does not satisfy 
when  is not a natural number.
• Caputo definition assumes that the function is differ-

entiable.
• Both definitions do not satisfy the derivative of the

product of two functions.
• Both definitions do not satisfy the derivative of the

quotient of two functions.
• Both definitions do not satisfy the chain rule.
• Both definitions do not satisfy the index rule.
We overcome these deficiencies of the existing defini-

tions using conformable fractional derivatives. In this paper,

α

we first give the definition and some properties of conform-
able fractional derivative and integral. Then Boussinesq–
Whitham–Broer–Kaup (BWBK) equation and a brief de-
scription of the auxiliary equation method are expressed.
We illustrate one example that shows reliability and effi-
ciency of the presented method. Also, figures of the differ-
ent values of  and the parameters in the solutions are
presented. To the best of our knowledge, these solutions
have not been given in literature before. Recently, Khalil et
al. (2014) have introduced a new definition of fractional de-
rivative and integral, called conformable fractional derivat-
ive and integral.

f : [0,∞)→ R αDefinition 1.1 Let  is a function -th or-
der “conformable functional derivate” defined by

Tα( f )(t) = lim
ε→0

f (t+ εt1−α)− ( f )(t)
ε

for all t > 0, α ∈ (0,1). (1)

a ⩾ 0
Definition 1.2 The conformable integral of a function f

starting from  is defined by Khalil et al. (2014) as:

Ia
α( f )(s) =

s
∫
a

f (t)
t1−α dt. (2)

Similarly, the definitions of conformable fractional par-
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tial derivative are given by Atangana et al. (2015).

x1, ..., xn,

α ∈ (0,1] xi

Definition 1.3 Let f be a function with n variables such
as  and the conformable partial derivatives of f of
order  in  are defined as follows:
dα

dxαi
f (x1, ..., xn) =

lim
ε→0

f (x1, ..., xi−1, xi+ εx1−α
i , ..., xn)− f (x1, ..., xn)
ε

. (3)

α

α

The authors proved the product rule and showed how to
prove the fractional Rolle Theorem and Mean Value Theor-
em for -differentiable functions using their conformable
definition. Abdeljawad (2015) improved their study by in-
troducing left and right conformable fractional derivatives
and provided the fractional versions of chain rule, exponen-
tial functions, Laplace transforms, Gronwall’s inequality,
Taylor power series expansions. Batarfi et al. (2015) ap-
plied conformable fractional derivative on a boundary value
problem. Eslami and Rezazadeh (2016b) used the first in-
tegral method to construct exact solutions of the time-frac-
tional Wu–Zhang system by describing the fractional deriv-
atives using conformable idea. Iyiola and Nwaeze (2016)
proved extended mean value theorem and the Racetrack-
type principle for -differentiable functions using conform-
able fractional derivatives and fractional integral. Tasbozan
et al. (2018) used sine-Gordon expansion method to obtain
the Drinfeld–Sokolov–Wilson system in shallow water
waves. Aminikhah et al. (2016) employed sub-equation
method to find the exact solutions to the fractional (1+1)
and (2+1) regularized long-wave equations. Eslami and
Mirzazadeh (2013) implemented first integral method to ob-
tain the exact solutions of nonlinear Schrödinger equation.
Rezazadeh (2018) used the new extended direct algebraic
method to construct the exact solutions of the complex Gin-
zburg–Landau equation. Rezazadeh et al. (2018a) build the
exact solutions of Schrödinger–Hirota equation with the
help of new extended direct algebraic method. Many differ-
ent and powerful methods such as the sine–cosine function
method (Eslami and Mirzazadeh, 2016a), trial solution
method (Eslami, 2016), the extended Fan sub-equation
method (Tariq et al., 2018), Liu’s extended trial function
scheme (Rezazadeh et al., 2018c), modified Kudryashov’s
method (Biswas et al., 2018b, 2018c), modified simple
equation method (Biswas et al., 2018a), Riccati sub equa-
tion method (Khodadad et al., 2017), functional variable
method (Eslami et al., 2017), sine-Gordon expansion meth-
od (Rezazadeh et al., 2018b), and the unified method (Os-
man et al., 2018) were applied to obtain the exact solutions
of various partial differential.

The properties of this new definition (Khalil et al., 2014)
are given below.

α ∈ (0,1] f ,g α
t > 0

Theorem 1.4 Let  and  functions are -dif-
ferentiable at point , then

Tα(m f +ng) = mTα( f )+nTα(g) m,n ∈ R(1)  for all ;

Tα(tp) = ptp−α p(2)  for all ;
Tα( f .g) = f Tα(g)+gTα( f )(3) ;

Tα( f
g ) =

gTα( f )− f Tα(g)
g2(4) ;

Tα(c) = 0 f (t) = c(5)  for all constant functions ;
Tα( f )(t) =

t1−α d f (t)
dt

(6) If, in addition, f is differentiable, then 

.

∂φ/∂x
∂φ/∂z

g

z = η(x, t)
(x,z)

The Boussinesq estimation for water waves is a suitable
approximation for weakly nonlinear and fairly long waves
in fluid mechanics. The approximation is named after
Joseph Valentin Boussinesq (1842–1929), who first derived
them in reply to the investigation by John Scott Russell of
the wave of translation (Boussinesq, 1872). Let v =  be
the horizontal flow velocity component, w =  be the
vertical flow component and  be the acceleration by grav-
ity, the following equation denotes the boundary conditions
at the free surface elevation  for water waves on an
incompressible fluid and irrotational flow in the  plane
with reference to Boussinesq’s paper (Boussinesq, 1872),
∂η
∂t
+ v

∂η
∂x
−w = 0;

∂φ
∂t
+

1
2

(v2+w2)+gη = 0. (4)

η ∂φb/∂x
z = −h

In Eq. (4) only considered are the linear and quadratic terms
with respect to  and vb (vb = , the horizontal velo-
city at ). By neglecting the cubic and the higher order
terms the following partial equations are acquired:

∂η
∂t
+

∂
∂x

[
(h+η)vb

]
=

1
6

h3 ∂
3vb

∂x3 ;

∂vb

∂t
+ vb

∂vb

∂x
+g

∂η
∂x
=

1
2

h2 ∂3vb

∂t∂x2 . (5)

By setting the right side of the equations to zero, they be-
come shallow water equation. By adding some approxima-
tions at the same accuracy, Eq. (5) can be written in the
form

∂2η
∂t2 −gh

∂2η
∂x2 −gh

∂2

∂x2

(
3η2

2h
+

h2

3
∂2η
∂x2

)
= 0.

Using the water depth h and gravitational acceleration g for
non-dimensionalization yields

∂2ψ
∂τ2
−gh

∂2ψ
∂χ2 −

∂2

∂χ2

(
1
2
ψ2+

∂2ψ
∂χ2

)
= 0, (6)

ψ = 3
η
h
, τ =

√
3

g
h

t χ =
√

3
x
h

where  and . Then Eq. (6) can be
written as:

utt −uxx −
(

1
2

u2+quxx

)
xx
= 0, (7)

|q| = 1 q
q

quxx qutt

where  is a real parameter. If  is set to –1, we get the
well-posed Boussinesq equation. Similarly, if  is set to 1,
we get the ill-posed classical Boussinesq equation. In Eq.
(7), when the term  is changed to , the new equa-
tion named the improved Boussinesq equation is obtained as
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follows:

utt −uxx −
(

1
2

u2+qutt

)
xx
= 0. (8)

Finally, variant Boussinesq equation
ut +uux − vx +quxx = 0;
vt + (uv)x + puxxx −qvxx = 0, (9)

w = 1+ v
studied by Sachs (1988). Sachs used the new variable

 and rewrite the system as:
ut +wx +uux = 0;
wt +uxxx + (wu)x = 0, (10)

u = u(x, t) v = v(x, t)where  is the velocity, and  is the height
of the free wave surface for fluid in the trough, and the sub-
scripts denote the partial derivatives (Sachs, 1988).

With superiority of conformable fractional derivative
over the other fractional derivative definitions, we can ob-
tain the analytical solutions for nonlinear partial differential
equation. For instance, the analytical solution of time frac-
tional coupled Boussinesq–Whitham–Broer–Kaup equation
cannot be obtained using other fractional derivative defini-
tions. They do not satisfy the chain rule, in spite of that we
can obtain the analytical solution of conformable time frac-
tional coupled Boussinesq–Whitham–Broer–Kaup equation.

2  Time fractional coupled Boussinesq–Whitham– Bro-
er–Kaup equation
The investigation of the exact travelling wave solutions

has always been a challenging research area in physics and
in applied mathematics since most approximations consist
of partial differential equations. In 1870, Boussinesq sug-
gested some equations for the propagation of small amp-
litude and long waves of water. Whitham used Lagrangian
approach to find linear and non-linear dispersive waves
(Whitham, 1965) and developed a theory for slowly vary-
ing wave trains (Whitham and Lighthill, 1967).

In this paper, we use the auxiliary equation method to
find a solution set for the system given in Eq. (10) by means
of conformable fractional derivative. By using the conform-
able fractional derivative Eq. (10) is generalized to non-in-
teger order partial differential equation as follows:
Dα

t v+Dx(uv)+Dxxxu = 0;
Dα

t u+Dxv+uDxu = 0. (11)

3  A brief description of the auxiliary equation method
Auxiliary equation method has been used to get exact

solutions of nonlinear partial differential equations
(Sirendaoreji and Jiong, 2003). This method is applicable to
all nonlinear partial differential equations if the equations
consist of only even-order partial derivative terms or only
odd-order partial derivative terms. Using this method,
Sirendaoreji and Jiong (2003) provided new exact travel-
ling wave solutions with the aid of symbolic computation.
Zhang and Xia defined a generalized auxiliary equation
method (Zhang and Xia, 2007) inspired by Tasbozan et al.

(2018), and applied their method to the combined KdV-mK-
dV equation and the (2+1)-dimensional asymmetric Nizh-
nik–Novikov–Vesselov equations. Yomba (2008) applied
the auxiliary equation method to solve the nonlinear
Klein–Gordon equation and generalized Camassa–Holm
equations.

Auxiliary equation method which depends on the differ-
ential equation was firstly mentioned by Sirendaoreji and
Jiong (2003):(

dz
dξ

)2

= az2(ξ)+bz3(ξ)+ cz4(ξ) (12)

By using Eq. (12), they obtained the analytical solutions of
some nonlinear partial differential equations (Sirendaoreji
and Jiong, 2003). To explain the method clearly, we will il-
lustrate the steps as follows.

Step 1. The general form of nonlinear conformable frac-
tional differential equation can be written as:

P
(
∂αu
∂tα
,
∂u
∂x
,
∂2αu
∂t2α ,

∂2u
∂x2 , ...

)
= 0, (13)

P
∂2αu
∂t2α

u(x, t)

where the arguments, subscripts of Polynomial  shows

partial derivatives and  means two times conformable
derivative of the function .

Step 2. Using the wave transformation

u(x, t) = u(ξ), ξ = kx+w
tα

α
, (14)

k win which  shows the number of wave and  denotes the ve-
locity of the wave. With the aid of this transformation, Eq.
(13) fractional derivatives can be rewritten as:
∂α(.)
∂tα
= k

d(.)
dξ
,
∂(.)
∂x
= w

d(.)
dξ
, . . . (15)

Using the transformation given in Eq. (14) inside Eq. (13),
we obtain the following ordinary differential equation
G(U,U′,U′′,U′′′, ...) = 0, (16)

ξwhere the derivatives are respect to .
U(ξ)Step 3. Now, consider  is a sum of serial such as:

U(ξ) =
n∑

i=0

aizi(ξ), (17)

z(ξ)
a, b, c, k, w, ai n

where  is the solution of the nonlinear differential Eq.
(12),  are the real constants and  is the pos-
itive integer to be determined by a balancing procedure
(Malfliet, 1992).

n

z(ξ) z(ξ)

a, b, c, k, w, ai

Step 4. Balancing the linear terms of highest order in the
ordinary differential equation (ODE) Eq. (16) with the
highest order nonlinear terms gives us the parameter .
Then we place Eq. (17) into the ODE Eq. (16). After this
procedure we get an equation consisting of the powers of

. All coefficients of  are equal to zero in the final
equation. This procedure arouses the system of algebraic
equations including . Solving this system
with respect to these parameters and using the following ta-
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ble which expresses the exact solutions of Eq. (12) give the
analytical solutions.

4  Implementation of the method
Consider the time fractional coupled Boussinesq–

Whitham–Broer–Kaup equation
Dα

t v+Dx(uv)+Dxxxu = 0;
Dα

t u+Dxv+uDxu = 0, (18)
where the fractional derivatives are in conformable sense.
With the wave transform Eq. (14) and integrating both
equations once, the system becomes:

wv+ kuv+ k3u′′ = 0;

wu+ kv+ k
u2

2
= 0, (19)

ξ v = −w
k

u− u2

2

where the prime denotes the derivative of the functions with

respect to . From the second equation,  is obta-
ined. Using this equality in the first equation of Eq. (10) yields

2w2u+3kwu2+ k2u3−2k4u′′ = 0. (20)

n = 1 u(ξ)

Now using the balancing procedure for the highest or-
der nonlinear term and highest order linear term in Eq. (20)
yields . Thus, the unknown function  can be con-
sidered as:
u(ξ) = a0+a1z(ξ). (21)

z(ξ)
z(ξ)

Placing Eq. (21) into Eq. (20) and using Eq. (12) led to
an algebraic equation with respect to . Equating all the
coefficients of the same powers of  to zero arouses an al-
gebraic equation system. Solving this system gives follow-
ing solution sets.

Set 1:

a0 = 0, a1 = 1, a =
w2

k4 , b =
w
k3 , c =

1
4k2 .

Set 2:

a0 = −
2w
k
, a1 = 1, a =

w2

k4 , b = − w
k3 , c =

1
4k2 .

Set 3:

a0 = −
w
k
, a1 = 1, a = − w2

2k4 , b = 0, c =
1

4k2 .

∆ = 0Using the solution of Set 1, we obtain  and by
looking Table 1, the new wave solutions of time fractional
coupled Boussinesq–Whitham–Broer–Kaup Eq. (18) can be
given as follows:

u1(x, t) =
w (1− coth A)

k
;

v1(x, t) =
w2 (1− coth A)

k2 − w2(1− coth A)2

2k2 ;

u2(x, t) =− w (1− tanh A)
k

;

v2(x, t) =
w2 (1− tanh A)

k2 − w2(1− tanh A)2

2k2 ;

u3(x, t) =− w3sech2A
k7

[
w2

k6 −
w2(tanh A+1)2

4k6

]−1

;

v3(x, t) =
w4sech2A

k8

[
w2

k6 −
w2(tanh A+1)2

4k6

] −
w6sech4A

2k14

[
w2

k6 −
w2(tanh A+1)2

4k6

]2 ;

u4(x, t) =
w3csch2A

k7

[
w2

k6 −
w2(coth A+1)2

4k6

]−1

;

v4(x, t) =− w6csch4A

2k14

[
w2

k6 −
w2(coth A+1)2

4k6

]2−

w4csch2A

k8

[
w2

k6 −
w2(coth A+1)2

4k6

] ,
u5(x, t) =

4w2e2A

k4

[(
e2A− w

k3

)2
− w2

k6

]−1

;

v5(x, t) =− 8w4e4A

k8

[(
e2A− w

k3

)2
− w2

k6

]2 −
4w3e2A

k5

[(
e2A− w

k3

)2
− w2

k6

] ,

u6(x, t) =− w2sech2A
k4

 w
k3 +

√
w2

k6 tanh A


−1

,

v6(x, t)=
w3sech2A

k5

 w
k3 +

√
w2

k6 tanh A


− w4sech4A

2k8

 w
k3 +

√
w2

k6 tanh A


2 ,

u7(x, t) =
w2csch2A

k4

 w
k3 +

√
w2

k6 coth A


−1

,

v7(x, t) =− w4csch4A

2k8

 w
k3+

√
w2

k6 coth A


2 −

w3csch2A

k5

 w
k3+

√
w2

k6 coth A


.

A =
1
2

√
w2

k4

(
kx+

wtα

α

)
where, .

∆ = 0Considering the solution Set 2, we obtain . With
the aid of Table 1, wave solutions of the coupled system
(18) are given below

u8(x, t) =
w (1− tanh A)

k
− 2w

k
;

v8(x, t) =−1
2

[
w (1−tanh A)

k
−2w

k

]2

−w
k

[
w (1− tanh A)

k
−2w

k

]
;

u9(x, t) =
w (1− coth A)

k
− 2w

k
;

v9(x, t) =−1
2

[
w (1−coth A)

k
−2w

k

]2

−w
k

[
w (1−coth A)

k
−2w

k

]
;

u10(x, t) =
4w2e2A

k4

[(
e2A+

w
k3

)2
− w2

k6

]−1

− 2w
k

;
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v10(x, t) =− 1
2

4w2e2A

k4

[(
e2A+

w
k3

)2
− w2

k6

]−1

− 2w
k


2

−

w
k

4w2e2A

k4

[(
e2A+

w
k3

)2
− w2

k6

]−1

− 2w
k

 ;

u11(x, t) =
w2csch2A

k4


√

w2

k6 coth A− w
k3


−1

− 2w
k

;

v11(x, t) =− 1
2

w2csch2A
k4


√

w2

k6 coth A− w
k3


−1

− 2w
k


2

−

w
k

w2csch2A
k4


√

w2

k6 coth A− w
k3


−1

− 2w
k

 ,
u12(x, t) =− w2sech2A

k4


√

w2

k6 tanh A− w
k3


−1

− 2w
k
,

v12(x, t) =− 1
2

−w2sech2A
k4


√

w2

k6 tanh A− w
k3


−1

− 2w
k


2

−

w
k

−w2sech2A
k4


√

w2

k6 tanh A− w
k3


−1

− 2w
k

 ;

u13(x, t) =
w3sech2A

k7

[
w2

k6 −
w2(tanh A+1)2

4k6

]−1

− 2w
k
,

v13(x, t) =− 1
2

w3sech2A
k7

[
w2

k6 −
w2(tanh A+1)2

4k6

]−1

−2w
k


2

−

w
k

w3sech2A
k7

[
w2

k6 −
w2(tanh A+1)2

4k6

]−1

− 2w
k

 ,
u14 =−

w3csch2A
k7

[
w2

k6 −
w2(coth A+1)2

4k6

]−1

− 2w
k
,

v14 =−
1
2

−w3csch2A
k7

[
w2

k6 −
w2(coth A+1)2

4k6

]−1

−2w
k


2

−

w
k

−w3csch2A
k7

[
w2

k6 −
w2(coth A+1)2

4k6

]−1

−2w
k

 .
∆ =

w2

2k6Finally regarding solutions Set 3, we obtain .

With the help of Table 1, wave solutions of Eq. (18) are ob-
tained as:

u15(x, t) =−
√

2w2 sec
(√

2A
)

k4
√

w2/k6
− w

k
;

v15(x, t) =− 1
2

−
√

2w2 sec
(√

2A
)

k4
√

w2/k6
− w

k


2

−

w
k

−
√

2w2 sec
(√

2A
)

k4
√

w2/k6
− w

k

 ;

u16(x, t) = −
√

2w2 csc
(√

2A
)

k4
√

w2/k6
− w

k
,

v16(x, t) =− 1
2

−
√

2w2 csc
(√

2A
)

k4
√

w2/k6
− w

k


2

−

w
k

−
√

2w2 csc
(√

2A
)

k4
√

w2/k6
− w

k

 ,
u17(x, t) =

w2 csc
(
A/
√

2
)
sec

(
A/
√

2
)

√
2k4

√
w2/k6

− w
k
,

v17(x, t) =− 1
2

w2 csc
(
A/
√

2
)
sec

(
A/
√

2
)

√
2k4

√
w2/k6

− w
k


2

−

w
k

w2 csc
(
A/
√

2
)
sec

(
A/
√

2
)

√
2k4

√
w2/k6

− w
k

 .
∆ = b2−4ac ε = ±1Table 1   Solutions of Eq. (12) with  and 

No z(ξ)

1
−absech2

(√
aξ/2

)
b2−ac

[
1+ ε tanh

(√
aξ/2

)]2 a > 0

2
abcsch2

(√
aξ/2

)
b2−ac

[
1+ εcoth

(√
aξ/2

)]2 a > 0

3
2asech(

√
aξ)

ε
√
△−bsech(

√
aξ)

a > 0, ∆ > 0

4
2asec(

√
−aξ)

ε
√
△−bsec(

√
−aξ)

a < 0, ∆ > 0

5
2acsch(

√
aξ)

ε
√
− △−bcsch(

√
aξ)

a > 0, ∆ < 0

6
2acsc(

√
−aξ)

ε
√
△−bcsc(

√
−aξ)

a < 0, ∆ > 0

7
−asech2

(√
aξ/2

)
b+2ε

√
ac tanh

(√
aξ/2

) a > 0, c > 0

8
−asec2

(√
aξ/2

)
b+2ε

√
−ac tan

(√
aξ/2

) a < 0, c > 0

9
acsch2

(√
aξ/2

)
b+2ε

√
accoth

(√
aξ/2

) a > 0, c > 0

10
−acsc2

(√
aξ/2

)
b+2ε

√
−accot

(√
aξ/2

) a < 0, c > 0

11 −a
b

[
1+ ε tanh

(√
aξ/2

)]
a > 0, ∆ = 0

12 −a
b

[
1+ εcoth

(√
aξ/2

)]
a > 0, ∆ = 0

13
4aeε

√
aξ(

eε
√

aξ−b
)2−4ac

a > 0

14
±4aeε

√
aξ

1−4ace2ε
√

aξ
a > 0, b = 0
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ε = 1
ε = −1

Remark 4.1 We take  in the solutions given above.
One can easily find any other solutions for  using
Table 1.

5  Graphical simulations

k,w,α
x, t

In this chapter we give some graphical illustrations of
chosen solutions for different values of  in different
ranges of . Figs. 1–6 show that the obtained solutions are
wave solutions of Eq. (18).

6  Conclusion
We have successfully found many new types of exact

traveling wave solutions of time fractional coupled
Boussinesq–Whitham–Broer–Kaup equation by using the
auxiliary equation method. The procedure shows that using
conformable fractional derivative and auxiliary equation
method gives a reliable and effective way to obtain the non-
linear fractional partial differential equations. This method
is based on an auxiliary differential equation so the solu-
tions procedure becomes simple and understandable. By us-
ing conformable fractional derivative one can obtain analyt-
ical solutions of the nonlinear partial differential equations

 
u3(x, t) w = 2 k = 1

α = 0.8
Fig. 1.   Graph of the exact solution  in Eq. (18) where , ,

.

 
v3(x, t) w = 2 k = 1

α = 0.8
Fig. 2.   Graph of the exact solution  in Eq. (18) where , ,

.

 
u8(x, t) w = 2

k = 0.8 α = 0.5
Fig. 3.   Graph of the exact solution  in Eq. (18) where ,

, .

 
v8(x, t) w = 2

k = 0.8 α = 0.5
Fig. 4.   Graph of the exact solution  in Eq. (18) where ,

, .

 
u17(x, t) w = 5 k = 1

α = 0.5
Fig. 5.   Graph of the exact solution  in Eq. (18) where , ,

.

 
v17(x, t) w = 4 k = 1

α = 0.5
Fig. 6.   Graph of the exact solution  in Eq. (18) where , ,

.
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which cannot be solved in Caputo and Riemann–Liouville
definitions.
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