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Abstract. In this study, optimal design of the transversely vibrating Euler–Bernoulli beams segmented in the

longitudinal direction is explored. Mathematical formulation of the beams in bending vibration is obtained using

transfer matrix method, which is later coupled with an eigenvalue routine using the ‘‘fmincon solver’’ provided

in Matlab Optimization Toolbox. Characteristic equations, namely frequency equations, for determining natural

frequencies of the segmented beams for all end conditions are obtained and for each case, square of this equation

is selected as a fitness function together with constraints. Due to the explicitly unavailable objective functions

for the natural frequencies as a function of segment length and volume fraction of the materials, especially for

the beams made of a large number of segments, initially, prescribed value is assumed for the natural frequency

and then the variables minimizing objective function and satisfying the constraints are searched. Clamped–free,

clamped–clamped, clamped–pinned and pinned–pinned boundary conditions are considered. Among the end

conditions, maximum increment in the fundamental natural frequency is more pronounced for the case of

clamped–clamped end condition and for this case, maximum increment up to 17.3274% is attained. Finally, the

beam configurations maximizing fundamental natural frequencies will be presented.

Keywords. Segmented beam; bending vibration; natural frequencies; optimization.

1. Introduction

Nowadays, powder metallurgy has become an important

area for engineering, especially in terms of production of

structural elements such as beams, columns and plates.

Slender beams are the structural members that are widely

used in engineering areas such as mechanical, civil, marine

and aerospace. Natural frequency is one of their most

important dynamic characteristics. It is known that a reso-

nance phenomenon occurs when the main frequencies (i.e.,

working frequencies) of the structure or systems are equal

to or very close to their natural frequencies. That is to say,

all objects resonate at their natural frequency when excited.

This can cause catastrophic failures in structures, machines

and components. One way to solve this problem is to raise

the natural frequency enough outside the working range or

out of the excitation range. On the other hand, functionally

graded materials are the special materials that can be

characterized by the variation in composition and structure

gradually over the volume in a continuous or piecewise

manner, resulting in corresponding changes in the proper-

ties of the material such as elastic modulus and density. The

concept for functionally graded materials is to make a

composite material by varying the microstructure from one

material to another material with a specific gradient. This

enables the material to have the best of both materials.

Therefore, these special materials can be used for specific

function and applications. For the beam-type structures

made of functionally graded material, natural frequencies

can be controlled in a desired manner, i.e., so as to avoid

resonance events, and it can be said that design of the

beams by controlling their vibration frequencies has been of

great interest.

As far as uniform beams are considered, there are many

studies available about beam vibration in bending. These

problems are best solved using analytical, numerical and

experimental methods. Han et al [1] carried out a review

study examining four approximate models for a trans-

versely vibrating beam: the Euler–Bernoulli, Rayleigh,

shear and Timoshenko models. They presented basic for-

mulations and solutions of the models and they summarize

similarities and differences of the theories. In addition,

there have been extensive studies concerning optimization

of the transversely vibrating beam structures in open liter-

ature. This is not the case for the beam made of functionally

graded materials, especially in a piecewise manner, i.e., the

beam segmented in the longitudinal direction. The number

of studies available in literature is rather limited. Applica-

tion of the finite element to this problem can be found in [2]

and [3]. It is mentioned that finite elements with cubic

polynomial approximation for the displacement will not
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guarantee obtaining of global optimal solutions. Rather, the

general solution to the fourth-order differential equation

that governs the vertical beam deflections should be used as

a displacement field to formulate the finite element mod-

elling of the beams. Lake and Mikulas [4] presented a study

regarding the lateral buckling and vibration of compres-

sively loaded column whose cross-section is piecewise

constant along its length. In the case of natural vibration of

columns without axial load, they considered two cases. In

the first case, mass and bending stiffness of the cross-sec-

tion are proportional, and in the second one the mass is

proportional to the cube root of the bending stiffness. As far

as fundamental vibration frequency is concerned, from the

parametric studies, they discerned that in the former case, a

column with piecewise constant cross-section is less effi-

cient than a uniform column, whereas, in the latter case, the

column with piecewise constant cross-section is more

efficient than the uniform column, based on either funda-

mental vibration frequency or buckling load. Kukla and

Rychlewska [5] conducted free vibration analysis of the

axially functionally graded clamped–clamped two-seg-

mented beams. This analysis is based on the approximation

of the functionally graded beam by piecewise exponentially

varying geometrical and material properties. They extended

their studies by considering a simply supported beam with

an arbitrary number of segments [6]. Some numerical

examples are tabulated and they mentioned that the accu-

racy of the eigenfrequencies improves as the number of

segments increases. Li et al [7] presented free vibration

analysis of cantilevered tall structures under various axial

loads. The beam considered is divided into several seg-

ments in such a manner that the segments are divided

appropriately and the distribution of flexural stiffness and

mass in each segment may match accurately or approxi-

mately the one described in a continuous manner. They

used transfer matrix method to solve the eigenvalue prob-

lems. Goupee and Vel [8] proposed a methodology for

optimizing natural frequencies of a functionally graded

beam with variable volume fraction of the constituent

materials along length and height directions. They used a

piecewise bi-cubic interpolation of volume fraction values

specified at a finite number of grid points, and applied

genetic algorithm method to find the optimum designs.

They considered three problems: finding material distribu-

tions maximizing each of the first three natural frequencies

of the beam, minimizing mass of the beam while con-

straining its natural frequencies lying outside certain pre-

scribed frequency bands and minimizing the mass of the

beam by simultaneously optimizing its thickness and

material distribution such that the fundamental frequency is

greater than a prescribed value. Finally, they pointed out

that material distribution has a significant influence on

natural frequencies. Kai-yuan et al [9] proposed a modified

step-reduction method to investigate dynamic response of

the Bernoulli–Euler beams with arbitrary nonhomogeneity

and variable cross-section under arbitrary loads. The

method requires discretizing the space domain into a

number of elements and each element is treated as a

homogeneous one with uniform thickness. They used initial

parameters method for the analytical solution of the prob-

lem and considered both free and force vibration cases. As

an example of free vibration case, they considered a step-

ped beam (a two-element stepped beam) and derived fre-

quency equation. Zhou and Ji [10] investigated dynamic

characteristics of a beam with continuously distributed

spring–mass. They thought that this condition resembles a

structure occupied by a crowd of people. Separating the

attached spring–mass from the beam segment and consid-

ering the actions of the spring–mass on the beam, the

governing differential equations of the beam segment and

the distributed spring–mass on the segment are given. Then,

the eigenvalue equations for the beam with different end

conditions are obtained using the transfer matrix method.

In the present study, optimal design of the segmented

Euler–Bernoulli beams in transverse vibrations is explored

using the ‘‘fmincon’’ solver provided in Matlab Optimiza-

tion Toolbox. In the first place, characteristic equations,

namely frequency equations, for determining natural fre-

quencies for all boundary conditions in the dimensionless

forms are obtained using the transfer matrix method. Then,

for each case, square of this equation is selected as an

objective function along with mass and length constraints.

However, it is very difficult to explicitly obtain objective

function for the natural frequencies as a function of volume

fraction and segment length. Therefore, for each boundary

condition, prespecified natural frequencies chosen to be

slightly larger than those obtained from uniform beams

given in table 1 are assumed and then design variables

satisfying constraints are explored. The design variables

are, on the other hand, volume fraction and length of the

segments. Clamped–free (cf), clamped–clamped (cc),

clamped–pinned (cp) and pinned–pinned (pp)-type bound-

ary conditions are considered. Finally, beam configurations

maximizing fundamental natural frequencies will be

determined. On the other hand, as far as beam design in

bending vibration in literature is considered, it can be

pointed out that the present study offers an objective

function formulation different from the one discussed ear-

lier. The fitness function formulation coupled with eigen-

value routine is the merit of this study and can also be

applied to any other problem, which includes transcen-

dental functions in particular.

2. Mathematical formulation for the segmented
beams

A true and robust optimization routine strongly depends on

the mathematical modelling of the problem. Hence, first, an

exact structural analysis of the beam should be carried out.

Figure 1 shows elastic and slender beam structures:
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uniform baseline beam consisting of one segment and

multi-segmented beam consisting of predetermined number

of uniform elements ðNsÞ [11].

Based on the Euler–Bernoulli beam theory, the govern-

ing differential equation of the free transverse vibration of

the kth element is described by the following equation,

where Y is the bending deflection, x, axial coordinate, Ek,

Ik, Ak, Lk and qk are Young’s modulus, moment of inertia,

cross-section, length and mass density of the kth segment,

respectively, and x is the natural frequency of the beam:

EkIk
o4Y

ox4
� qkAkx

2Y ¼ 0; xk � x� xkþ1: ð1Þ

The various dimensionless quantities denoted by ^ are

defined as follows:

bEk ¼ Ek

E
, bI k ¼ Ik

I
, bAk ¼ Ak

A
, bqk ¼ qk

q , bY ¼ Y
L
, bx ¼ x

L
,

bLk ¼ Lk
L

, bx ¼ xL2

ffiffiffiffi

qA
EI

q

where E, I, A, q and L are the variables of the reference

baseline design beam structure defined as having uniform mass

and stiffness distributions and consisting of only one segment.

bY is the dimensionless bending deflection, bx, the dimensionless

axial coordinate and x̂, dimensionless fundamental natural

frequency.

It is assumed that the optimized design will have the

same total mass, total length, cross-sectional dimensions,

shape and type of material constructions and type of the

boundary conditions as those of baseline design. Substi-

tuting dimensionless quantities into Eq. (1) leads to the

following fourth-order differential equation:

o4
bY

obx
4
� k4

bY ¼ 0 ð2Þ

where the parameter k is defined as k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

bx

ffiffiffiffi

bqk

bEk

r

s

.

Equation (2) must be satisfied in the interval 0� x� Lk
where x ¼ bx � bxk. From the theory of linear differential

equations, the solution of Eq. (2) is

ŶðxÞ ¼ A1 sinðkxÞ þ A2 cosðkxÞ
þ A3 sinhðkxÞ þ A4 coshðkxÞ

ð3Þ

where Ai (i ¼ 1; 2; 3; 4) are unknown constants determined

from boundary conditions. On the other hand, it is known

that the Euler–Bernoulli beam theory neglects the effects of

both rotational inertia and shear deformation. However, for

the slender beams, the theory gives satisfactory results [1].

Table 1. Characteristic equations for the natural frequencies of the beams.

End type Boundary conditions Characteristic equation bx

cf Y1 ¼ h1 ¼ 0 and MNs
¼ FNs

¼ 0 T33T44 � T34T43 ¼ 0 3.5160

cc (whole span) Y1 ¼ h1 ¼ 0 and YNs
¼ hNs

¼ 0 T13T24 � T14T23 ¼ 0 22.3733

cc (half span) Y1 ¼ h1 ¼ 0 and hNs
¼ FNs

¼ 0 T23T44 � T24T43 ¼ 0 22.3733

cp Y1 ¼ h1 ¼ 0 and YNs
¼ MNs

¼ 0 T13T34 � T14T33 ¼ 0 15.4182

pp (whole span) Y1 ¼ M1 ¼ 0 and YNs
¼ MNs

¼ 0 T12T34 � T14T32 ¼ 0 9.8696

pp (half span) Y1 ¼ M1 ¼ 0 and hNs
¼ FNs

¼ 0 T22T44 � T24T42 ¼ 0 9.8696

Figure 1. General view of the one-segment and multi-segmented beam with Ns segments.
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A transfer matrix method is applied herein to establish

the eigenvalue equation for the transverse vibration of the

segmented beam. Detailed information about the transfer

matrix method can be found in [12]. For the Euler–Ber-

noulli beam, the relation between dimensionless displace-

ment ðbY Þ, slope (h), bending moment ð bMÞ and the shear

force ðbFÞ can be written as

bY ¼ bY ; h ¼ bY
0
; bM ¼ bEk

bI kbY
00

and bF ¼ bEk
bI kbY

000
: ð4Þ

The coefficients Ai of Eq. (3) can be expressed in terms

of the state variables using Eq. (4). At both nodes of the kth

segment, the following relation can be obtained:

Ŷkþ1

hkþ1

M̂kþ1

F̂kþ1

8

>

>

>

<

>

>

>

:

9

>

>

>

=

>

>

>

;

¼

S T=k U=ðbEkk
2Þ U=ðbEkk

3Þ
kV S T=ðbEkkÞ U=ðbEkk

2Þ
bEkk

2U bEkkV S T=k
bEkk

3T bEkk
2U kV S

2

6

6

6

6

4

3

7

7

7

7

5

Ŷk

hk
M̂k

F̂k

8

>

>

>

<

>

>

>

:

9

>

>

>

=

>

>

>

;

ð5Þ

where S ¼ ðchþ cÞ=2, T ¼ ðshþ sÞ=2, U ¼ ðch� cÞ=2,

V ¼ ðsh� sÞ=2, ch ¼ coshðkł), sh ¼ sinhðk ł), c ¼ cosðk ł)

and s ¼ sinðk ł). These abbreviations are taken from [13].

Successively applying Eq. (5) to all segments of the

beam and considering continuity conditions, the state

variables at both ends of the beam can be related to each

other through a matrix [T] called as the transfer matrix of

the Euler–Bernoulli beam components and given as

½T� ¼ ½Tn�½Tn�1� � � � ½T2�½T1�: ð6Þ

Hence, implementing the boundary conditions and con-

sidering non-trivial solutions, associated eigenfrequency

equations that will be used for constructing objective

functions of the design problems can be obtained. Table 1

shows the reference dimensionless fundamental natural

frequencies, ðx̂Þ, and the characteristic equations of a one-

segment beam on different end conditions, namely baseline

beam design, which will be used for comparison. The same

results can also be found using segmented beams. In this

case, all segments have equal length and each has equal

volume fraction of the materials.

3. Optimization problem formulation
for the natural frequencies of the beams

The beam considered consists of different numbers of seg-

ments and each segment is made of two different materials

denoted as A and B. Hence, each segment has different

material properties (i.e., elastic modulus and mass density)

depending on volume fraction of the materials used. In

addition, all segments have the same cross-sectional prop-

erties (i.e., moment of inertia and cross-sectional dimen-

sions). For prediction of Young’s modulus and mass density,

the Halpin–Tsai model is used and the following relations

under the assumption that no voids are present can be written:

VAðxÞ þ VBðxÞ ¼ 1 ð7Þ

EðxÞ ¼ VAðxÞEA þ VBðxÞEB ð8Þ

qðxÞ ¼ VAðxÞqA þ VBðxÞqB ð9Þ

where VA, EA and qA are volume fraction, elastic modulus

and mass density of the material A, respectively. VB, EB and

qB denote volume fraction, elastic modulus and mass

density of the material B, respectively.

On the other hand, all natural frequencies obtained from

optimization cycle are compared to those obtained from

baseline designs having uniform material properties and

constructed from the same type of composite material with

equal volume fraction of its constituents, that is

VA ¼ VB ¼ 50%. Hence, Young’s modulus and mass den-

sity of baseline design can be calculated as

E ¼ðEA þ EBÞ
2

ð10Þ

q ¼ðqA þ qBÞ
2

ð11Þ

and for each segment of the beam, Young’s modulus and

mass density can be determined from the following relations:

q̂k ¼
qAVðA;kÞ þ qBVðB;kÞ

q
; k ¼ 1 to Ns ð12Þ

Êk ¼
EAVðA;kÞ þ EBVðB;kÞ

E
; k ¼ 1 to Ns ð13Þ

in which q̂k and Êk are the dimensionless mass density and

Young’s modulus of the kth segment, respectively. VðA;kÞ
and VðB;kÞ are defined as the volume fraction of the mate-

rials A and B in the kth segment, respectively.

It is also noted that the non-dimensional mass of the

beam ðM̂sÞ can be calculated using Eq. (14), which is the

equality constraint of the optimization problem. It implies

that the optimized beam has the same total mass as its

baseline beam structure.

M̂s ¼
Ms

M
¼

X

k¼1

Ns

q̂kL̂k ¼ 1 ð14Þ

where M is the total mass of the baseline beam, Ms, total

mass of the optimized segmented beam structure and L̂k,

non-dimensional length of the kth segment.
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On the other hand, it is well known that Young’s mod-

ulus and mass density, both of which are functions of

volume fractions of the materials and segment length, are

some of the main factors affecting the natural frequencies

of the beam; x̂, the fitness function, should be explicitly

obtained as a function of these. This is not the case for the

present problem, especially for the beam structures con-

sisting of higher number of segments, as mentioned in the

preceding section. Therefore, x̂ is assumed to take prede-

fined values depending on the end conditions. Its value is

somewhat bigger than the one given in table 1 for each end

condition. After assigning its value, then, V (volume frac-

tion of the materials A or B) and bLk that minimize square of

the characteristic equation are searched during the opti-

mization cycle. If it exists, squaring the characteristic

equation ensures that the minimum value would be zero

[14, 15]. Also, for realistic beam design in terms of pro-

duction, side constraints are present and upper and lower

limits should be prescribed. Finally, the present optimiza-

tion problem can be stated as follows:

find

x ¼

x1

x1

:

:

:

xn

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

9

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

;

that minimizes

½characteristic equationðV; bLkÞ�2

subject to h1ðxÞ ¼ M̂s = 1 and

h2ðxÞ ¼
X

k¼1

Ns

L̂k ¼ 1

or for symmetric cases

h1ðxÞ ¼M̂s ¼ 0:5 and

h2ðxÞ ¼
X

k¼1

Ns

L̂k ¼ 0:5;

side constraints:

0�ðV ; bLkÞ� 1 for whole span

0�V � 1 and 0� bLk � 0:5 for half span:

Due to the symmetric conditions, it is possible to consider

only half of the beam structures for the pp and cc end

conditions. Hence, the total mass and the total length of the

beam are reduced to half. It is also noted that using mass–

end length constraints, the number of design variables can

be reduced for the sake of reducing CPU time.

There is no single method for solving such a constrained

optimization problem stated earlier. Extensive traditional

and modern optimization methods have been developed for

solving different types of optimization problems. As far as

frequency optimization is concerned, there are many stud-

ies using different optimization techniques. The modified

feasible direction (MFD) method [16], Artificial Bee Col-

ony Algorithm (ABCA) [17] and teaching-learning-based

optimization (TLBO) [18] are some examples of the tech-

niques. Detailed information about optimization techniques

can be found in the books [19, 20]. On the other hand, in

this study, ‘‘fmincon solver’’ coupled with an eigenvalue

routine is used as a tool for solving the problem stated

earlier. The flowchart of the optimization procedure is

given in figure 2.

Matlab Optimization Toolbox provides functions for

finding parameters that minimize or maximize objectives

while satisfying constraints. The toolbox includes solvers

for linear and nonlinear programming; ‘‘fmincon’’ is a

nonlinear programming solver using four algorithm

options. They are ‘‘interior-point’’ (default), ‘‘trust-region-

reflective’’, ‘‘SQP (Sequential Quadratic Programming)’’

and ‘‘active-set’’. As mentioned in [21], among the fmincon

algorithms used, it is recommended that ‘‘interior-point’’ is

first used. Reasoning behind this recommendation is that

the interior-point algorithm is used for general nonlinear

optimization. It is especially useful for large-scale problems

Figure 2. Flowchart of the optimization procedure.
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that have structure, and tolerates user-defined objective and

constraint function evaluation failures. It is based on a

barrier function, and optionally keeps all iterations strictly

feasible with respect to bounds during the optimization run.

The fmincon interior-point algorithm can accept a Hessian

function as an input. It can also be possible for the user to

Table 2. Results of the optimization routine for the beams with clamped–free end conditions for different segment numbers (Ns).

Segment number Optimization routine parameters Values

Ns ¼ 2 Design variables (0.5402 0.4597 0.5010 0.4990)

Fitness function 1.1135e–21

Function evaluations 95

Mass constraint 0

Length constraint 0

bx 3.6570

Gain (%) 4.0094

Elapsed time (s) 1.007590

Ns ¼ 3 Design variables (0.6141 0.4951 0.3910 0.3380 0.3229 0.3392)

Fitness function 4.3144e–21

Function evaluations 608

Mass constraint 0

Length constraint 2.2204e–16

bx 3.9000

Gain (%) 10.9215

Elapsed time (s) 1.047910

Ns ¼ 4 Design variables (0.6510 0.5480 0.4464 0.3541 0.2590 0.2409 0.2417 0.2584)

Fitness function 7.1175e–21

Function evaluations 1764

Mass constraint 2.2204e–16

Length constraint 0

bx 4.0000

Gain (%) 13.7656

Elapsed time (s) 1.351997

Table 3. Results of the optimization routine for the beams with clamped–pinned end conditions for different segment numbers (Ns).

Segment number Optimization routine parameters Values

Ns ¼ 2 Design variables (0.6533 0.4247 0.3293 0.6707)

Fitness function 6.2082e–19

Function evaluations 495

Mass constraint 0

Length constraint 0

bx 15.7000

Gain (%) 1.8277

Elapsed time (s) 1.098915

Ns ¼ 3 Design variables (0.8260 0.3056 0.4751 0.2124 0.2928 0.4947)

Fitness function 2.3717e–18

Function evaluations 769

Mass constraint 0

Length constraint 0

bx 16.5000

Gain (%) 7.0164

Elapsed time (s) 1.184472

Ns ¼ 4 Design variables (0.8561 0.2861 0.5144 0.3966 0.2096 0.2608 0.3049 0.2247)

Fitness function 9.5957e–18

Function evaluations 1410

Mass constraint 5.5511e–16

Length constraint 0

bx 16.6500

Gain (%) 7.9893

Elapsed time (s) 1.615644
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specify the type of Hessian approximation or exact func-

tion. Approximation types that users can choose are

Broyden-Fletcher-Goldfarb-Shanno (BFGS), Limited-

memory Broyden-Fletcher-Goldfarb-Shanno (LBFGS)

and finite difference on gradients. The algorithm satisfies

bounds at all iterations, and can recover from ‘‘NaN’’ or

‘‘Inf’’ results. The fmincon solver finds the minimum of

constrained nonlinear multi-variable function. It finds the

minimum of the problem specified as

minxf ðxÞ such that

cðxÞ� 0

ceqðxÞ ¼ 0

Ax� b

Aeq:x ¼ beq

lb� x� ub

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

9

>

>

>

>

>

>

=

>

>

>

>

>

>

;

where b and beq are vectors, A and Aeq are matrices,

c(x) and ceq(x) are functions that return vectors and f(x) is a

function that returns a scalar; x, lb and ub can be considered

as vectors or matrices. On the other hand, f(x) refers to the

objective function, x, design vector, lb, lower bounds and

ub, upper bounds of the design variables [21].

4. Result and discussion

The segmented beams considered are made of two different

materials (e-glass/epoxy) and their material properties are

qA ¼ 2:54 g/cm3, qB ¼ 1:27 g/cm3, EA ¼ 73 GPa and EB ¼
4:3 GPa [11]. Four different end conditions are considered:

cc, cf, cp and pp. Three different beam structures made of

2, 3 and 4 segments for cf- and cp-type boundary conditions

are examined. For simply supported and cc end conditions

showing symmetry properties, half-span beams consisting

of 1 segment, 2 and 3 segments and corresponding whole-

span beams consisting of 2, 4 and 6 segments are also

considered.

Table 4. Results of the optimization routine for the beams with pinned–pinned end conditions for different segment numbers (Ns).

Segment

number

Optimization routine

parameters Values

Whole

span

Ns ¼ 4 Design variables (0.4258 0.5725 0.5725 0.4258 0.2471 0.2529 0.2529 0.2471)

Fitness function 4.222e–21

Function evaluations 259

Mass constraint 2.2204e–16

Length constraint 1.1102e–16

bx 10.0670

Gain (%) 2.0001

Elapsed time (s) 1.243094

Half span Ns ¼ 2 Design variables (0.4256 0.5718 0.2456 0.2544)

Fitness function 7.3143e–24

Function evaluations 145

Mass constraint 0

Length constraint 0

bx 10.0670

Gain (%) 2.0001

Elapsed time (s) 1.179807

Whole

span

Ns ¼ 6 Design variables (0.1610 0.4501 0.6658 0.6658 0.4501 0.1610 0.1055 0.1375 0.2570 0.2570

0.1375 0.1055)

Fitness function 8.8533e–18

Function evaluations 2292

Mass constraint 0

Length constraint 0

bx 10.3039

Gain (%) 4.4004

Elapsed time (s) 2.670104

Half span Ns ¼ 3 Design variables (0.1597 0.4518 0.6671 0.1055 0.1395 0.2550)

Fitness function 4.5835e–17

Function evaluations 1145

Mass constraint 0

Length constraint 0

bx 10.3039

Gain (%) 4.4004

Elapsed time (s) 1.429477
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As far as manufacturing aspects are considered, rounding

numerical values to some extent depending on the usage

can be used. As the fmincon parameters, tolerance values

for objective function, constraints (mass and length con-

straints) and design variables are chosen to be 10�15 (de-

fault values are 10�6). Moreover, in the following tables,

the gain is the percentage increase in the fundamental

natural frequency and it is calculated by comparing the

results obtained from the one-segment baseline and multi-

segmented beams.

Design variables, fitness function, function evaluations,

constraints values, dimensionless fundamental natural fre-

quencies, gains and elapsed time are tabulated for different

end conditions and segment numbers in the following

tables. As mentioned before, the design variables are the

segment length and the volume fraction of the materials.

Hence, the numbers within the parentheses appearing in the

design variables represent

ðVk; LkÞ ¼ ðVA1;VA2; :::;VANS
; Lk1; Lk2; :::; LkNS

Þ.

As an example, for a three-segmented beam, design

variable takes the form

x ¼ ðVk; LkÞ ¼ ðVA1;VA2;VA3; Lk1;Lk2; Lk3Þ in which

VA1, VA2 and VA3 represent volume fraction of the material

A of the first, second and third segments and Lk1, Lk2 and

Lk3 refer to the lengths of the first, second and third seg-

ments of the beam structure, respectively. This is the case

for all design variables appearing in tables 2, 3, 4 and 5.

In tables 2, 3, 4 and 5, it is observed that for all cases,

parallel to an increase in the segment number, dimension-

less fundamental natural frequencies increase and at the

same time, the gain increases. That is to say, the more the

segment number, the higher the natural frequencies

obtained. Hence, the maximum non-dimensional natural

frequencies are attained for the beam structure with four

segments. Therefore, the following results correspond to

the beams with four segments. The maximum non-dimen-

sional natural frequency for the cantilevered beam structure

is 4.0000, which represents 13:7656% optimization gain. It

Table 5. Results of the optimization routine for the beams with clamped–clamped end conditions for different segment numbers (Ns).

Segment

number

Optimization routine

parameters Values

Whole

span

Ns ¼ 4 Design variables (0.9701 0.2176 0.2176 0.9701 0.1876 0.3124 0.3124 0.1876)

Fitness function 9.7389e–18

Function evaluations 979

Mass constraint 0

Length constraint 0

bx 26

Gain (%) 16.2099

Elapsed time (s) 1.285894

Half span Ns ¼ 2 Design variables (0.9700 0.2166 0.1881 0.3119)

Fitness function 6.6589e–17

Function evaluations 473

Mass constraint 0

Length constraint 0

bx 26

Gain (%) 16.2099

Elapsed time (s) 1.236247

Whole

span

Ns ¼ 6 Design variables (0.9775 0.1448 0.2811 0.2811 0.1448 0.9775 0.1922 0.1791 0.1287 0.1287

0.1791 0.1922)

Fitness function 6.8386e–17

Function evaluations 2655

Mass constraint 0

Length constraint 0

bx 26.25

Gain (%) 17.3274

Elapsed time (s) 3.049958

Half span Ns ¼ 3 Design variables (0.9776 0.1452 0.2813 0.1920 0.1789 0.1291)

Fitness function 5.9561e–16

Function evaluations 1107

Mass constraint 1.1102e–16

Length constraint 0

bx 26.25

Gain (%) 17.3274

Elapsed time (s) 1.443906
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is 16.6500 (7:9893% optimization gain) for the cp, 10.3039

(corresponding to 4:4004% gain) for the pp and 26.2500

(17:3274% optimization gain) for the cc beams. From the

results, it is discerned that the maximum increment in the

dimensionless natural frequencies of the beam is observed

for the cc end condition. Every dynamic system (beam,

plate, etc.) has stiffness and mass properties. Stiffness

comes from potential energy, which is a function of

boundary condition. Different boundary conditions intro-

duce different reactions (forces and moments) at the sup-

ports, so the stiffness of the vibrating system changes while

mass remains the same. Among the end conditions con-

sidered, the structure with cc boundary conditions has

higher stiffness, which in turns results in higher natural

frequencies. Hence, the reason for the maximum increase in

the frequency of the beam with fixed–fixed end conditions

can be attributed to this fact. Considering the simply sup-

ported case, there is a satisfactory agreement between the

results obtained from the present study and [2]. At the same

time, it should not be forgotten that care must be taken for

the increased manufacturing costs. Hence, there should be a

balance between the initial design requirements and the

beam configurations.

In addition, extensive computer analysis shows that there

is no way to increase dimensionless fundamental frequen-

cies of the segmented beams, bx, above the one given in

table 1 for the one-segmented half-span beams and corre-

sponding two-segmented whole-span beams with cc

boundary conditions and thus, the results for these cases are

not tabulated in tables 4 and 5. A similar conclusion was

made in the study dealing with the column buckling under

cc boundary conditions in [22]. From the present study, it

can be concluded that this is the case for the pp end con-

ditions. In this case, the results showed that all segments of

the beams have equal length and each segment has equal

volume fraction of the materials, that is VA ¼ VB ¼ 50%.

Moreover, it is observed from tables 4 and 5 that there is a

small difference between design vectors for the half-span

beams and corresponding whole-span ones. However, bx
and corresponding gains for these cases are seen to be the

same. This is not the case in reality if the more significant

numbers are used. Nevertheless, it can be said that the

differences between them can be regarded to be in the

tolerable levels in view of production aspects.

On the other hand, in figures 3–5, the total function

evaluations and the objective function versus iteration

numbers are presented only for the cantilevered boundary

condition. Other end conditions are not presented. Only

their values are tabulated in tables 2, 3, 4 and 5. As

expected, the number of total function evaluations and

Figure 4. Total function evaluations and objective function

value for the three-segmented beam with clamped–free end

condition.

Figure 5. Total function evaluations and objective function

value for the four-segmented beam with clamped–clamped end

condition.

Figure 3. Total function evaluations and objective function

value for the two-segmented beam with clamped–free end

condition.
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iteration number increased for the cases with higher seg-

ment numbers due to increasing design space. This is the

case for all other end conditions.

5. Conclusion

In this study, optimal design of the transversely vibrating

Euler–Bernoulli beams segmented in the longitudinal

direction under different end conditions is discussed and it

is aimed to maximize the fundamental natural frequencies

of the beams while keeping the total length and total mass

of the optimized beams the same as those of the baseline

design beam structures. The following results can be

obtained:

� As mentioned in [14], selecting an objective function

by taking the square of the characteristic equations ensures

that the minimum would be around zero depending on the

tolerance values. This is also the case for the present study.

Hence, it is concluded that solving an eigenvalue problem,

i.e., frequency equations, to obtain exact natural frequen-

cies is identical to searching the design variables mini-

mizing the objective functions and satisfying length and

mass constraints.

� It is confirmed that for all boundary conditions, the

fundamental natural frequency of the multi-segmented

beams increases when compared with those of the one-

segment uniform beams. An increase in the segment

number results in an increase in the natural frequency

values. At the same time, it should not be forgotten that the

manufacturing cost will increase. Therefore, the designer or

engineer should determine the beam configurations

according to his/her initial design requirements.

� Among the end conditions, maximum increment in the

fundamental natural frequency is more pronounced for the

case of cc boundary condition. The fundamental natural

frequency of the three-segment half-span and correspond-

ing six-segment whole-span beams fixed at both ends is

about 26.2500, which represents 17:3274% optimization

gain. The structure with cc end conditions has higher

stiffness, which in turn results in higher natural frequencies.

Hence, the reason for observing the maximum increase in

frequency of the beam with fixed–fixed boundary condi-

tions can be attributed to this fact.

� It is also confirmed that there is no way to increase bx
above the one given in table 1 for the one-segmented half-

span and corresponding two-segmented whole-span beam

structures with cc boundary conditions. A similar conclu-

sion is made for the column buckling problems considering

cc end conditions in [22]. It is discerned from the present

study that this is also the case for the simply supported end

conditions.

On the other hand, the number of total function evalua-

tions increased for the beam structures having higher seg-

ment numbers due to the increased design search spaces.

Finally, it can be said that this study is aimed to give some

insight to the engineers/designers during their design

stages.

List of symbols

Y deflection of the beam

x axial coordinate

Ns number of segments

Ek Young’s modulus of the kth segment

Ik moment of inertia of the kth segment

Ak cross-section of the kth segment

qk density of the kth segment

Lk length of the kth segment

E Young’s modulus of the one-segmented beam

I moment of inertia of the one-segmented beam

A cross-section of the one-segmented beam

L total length of the beam

q density of the one-segmented beam

x natural frequency of the beam

x̂ dimensionless natural frequency of the beam

bY dimensionless displacement

h slope

bM dimensionless bending moment

bF dimensionless shear force

M total mass of the baseline beam

Ms total mass of the optimized segmented beam

V volume fraction of the materials
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