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ABSTRACT

In the present paper, new analytical solutions for the conformable space-time fractional
Sharma-Tasso-Olever (STO), Zakharov Kuznetsov Benjamin Bona Mahony (ZKBBM) and
coupled Boussinesq equations are obtained by using the Exp-function method. The obtained
traveling wave solutions are presented by exponential functions. Simulations of the obtained

solutions are given at the end of the paper.

1. Introduction

Conformable fractional derivative has been defined
by Khalil et al. (Khalil, Horani, Yousef, & Sababheh,
2014). Whereas other derivatives such as Riemman-
Liouville, Caputo, Grunwald-Letnikov are defined
with complex formulas, conformable fractional
derivative is defined with simple formula. The applic-
ability of the conformable derivative model has been
theoretically and practically verified by investigating
the chloride ions transport in reinforced concrete
(Khitab, Lorente, & Ollivier, 2005; Thomas &
Bamforth, 1999). Conformable fractional partial differ-
ential equations have been also used in modeling
electromagnetic fields of media, quantum mechanics
(see, for example (Anderson & Ulness, 2015; Zhao,
Pan, & Luo, 2018).

In the solitary wave theory, traveling waves are
particularly interesting. They appear in many areas
such as elastic media, plasmas, solid state physics,
condensed matter physics, electrical circuits, optical
fibers, chemical kinematics, fluids, bio-genetics, etc.
Three types of traveling waves are given as
(Kichenassamy & Olver, 1992; Whitham, 1999): the
solitary waves, which are localized traveling waves,
asymptotically zero at large distances, the periodic
solutions, the kink waves which rise or descend from
one asymptotic state to another. Solitonic solutions
of nonlinear partial differential equations have been
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investigated in (Dai & Wang, 2008; Dai & Xu, 2015;
Ding et al., 2017; Wang, Zhang, & Dai, 2016).
Exp-function method has been proposed to seek
traveling wave solutions of nonlinear differential
equations in (He & Wu, 2006). The method has been
also applied to the following nonlinear evolution
equations: Drinfel'd-Sokolov-Wilson system, Burgers-
type equation, Schrodinger equation, Calogero-
Bogoyavlenskii-Schiff equation, Zakharov equations,
Cahn-Hilliard equation, Allen-Cahn equation and
Steady-State equation (see, for example (Abdou,
2008; Abdou, Soliman, & Basyony, 2007; Ali, Igbal, &
Mohyud-Din, 2016; Ayub, Khan, & Mahmood-UlI-
Hassan, 2017; El-Wakil, Madkour, & Abdou, 2007;
Gurefe & Misirli, 2011; Mohyud-Din, Noor, & Noor,
2010; Parand & Rad, 2012; Wu & He, 2007). However,
its applications to fractional nonlinear evolution
equations have been studied. For example, nonlinear
fractional Telegraph equation, Kolmogorov-
Petrovskii-Piskunovequation (Guner & Bekir, 2017),
fractional Fokas equation and the nonlinear frac-
tional Sharma-Tasso-Olver equation (Zheng, 2013),
fractional reaction-diffusion and nonlinear fractional
wave equations (Bekir, Guner, Bhraw, & Biswas,
2015), nonlinear fractional Zoomeron equation
(Guner, Bekir, & Bilgil, 2015), fractional Boussinesq-
Like equations (Rahmatullah, Ellahi, Mohyud-Din, &
Khan, 2018), fractional Kawahara equation and frac-
tional advection-diffusion-reaction equation (Guner &
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Atik, 2016) have been solved by using Exp-function
method. Here, fractional derivatives have been
defined in Jumaries modified Riemann-Liouville
sense. In (He, 2013; Jia, Hu, Chen, & Jai, 2015), the
method has been applied to the nonlinear fractional
evolution equations with local fractional.

In recent years, many techniques have been used to
obtain analytical and numerical solutions of the frac-
tional STO, ZKBBM and coupled Boussinesq equations.
Time fractional STO equation with Jumarie’s modified
Riemann-Liouville derivative has been solved by using
the iterative method, simplest equation method, Khater
method and modified trial equation method in (Bibi,
Mohyud-Din, Khan, & Ahmed, 2017; Bulut & Pandir,
2013; Sontakke & Shaikh, 2016; Taghizadeh, Mirzazadeh,
Rahimian, & Akbari, 2013), respectively. Time fractional
STO equations with Caputo derivative and conformable
derivative have been studied in (Rezazadeh, Khodadad,
& Manafian, 2017; Song et al, 2009), respectively.
Improved tanh-coth method has been applied to the
space-time fractional STO equation with Jumarie’s modi-
fied Riemann-Liouville derivative in (Cesar & Gomez,
2015).(G'/G?)  -expansion method, sub-equation
method, Jacobi elliptic function method and exponen-
tial rational function method have been applied to the
space-time fractional ZKBBM equation with Jumarie’s
modified Riemann-Liouville derivative in (Aksoy, Kaplan,
& Bekir, 2016; Alzaidy, 2013; Gepreel, 2014; Mohyud-Din
& Bibi, 2018), respectively. Traveling wave solutions for
the space-time fractional coupled Boussinesq equations
with the Jumaries modified Riemann-Liouville derivative
have been obtained by using the modified extended
tanh method (Shallal, Jabbar, & Ali, 2018). Time fractional
coupled Boussinesq equations with the conformable
derivative have been solved by using exp (—¢(¢))
method and modified Kudryashov method in (Hosseini,
Bekir, & Ansari, 2017; Hosseini & Ansari, 2017).

In general, STO, ZKBBM and coupled Boussinesq
equations have been studied for the case of time frac-
tional in the literature. For the space-time fractional
STO, ZKBBM and coupled Boussinesq equations,
Jumarie’s modified Riemann-Liouville derivatives have
been used. In this paper, we consider space-time frac-
tional STO, ZKBBM and coupled Boussinesq equations.
Here, fractional derivatives are defined in conformable
sense. Applying Exp-function method we have obtain
analytic solutions including exponential functions for
conformable space-time fractional STO, ZKBBM and
coupled Boussinesq equations.

2. Description of conformable fractional
derivative and its properties

For a function f: (0,00) — R, the conformable frac-
tional derivative of f of order 0 <o < 1 is defined as
(see, for example (Khalil et al., 2014))

T2£(t) = tim 20

e—0 &

(M

Some important properties of the the conformal
fractional derivative are as follows:

T/ (af 4 bg)(t) = aTf(t) + bT/g(t), for all a,b € R,
() =
T (f(g(1) = t'*g'(f (g(t)).

3. Analytic solutions to the conformable
space-time fractional STO equation

Conformable space-time fractional STO equation is
denoted by (Sontakke & Shaikh, 2016; Taghizadeh
et al,, 2013)

T*u+3c(Thu)* +3c®TPu+3cuTE T u+cTET TP u =0,
0<a<1, 0<p<.
(3)

Note that for « = f =1, conformable space-time
fractional STO equation is reduced to classical STO
equation. Classical STO equation is a prominent dou-
ble nonlinear dispersive model. Here ¢ # 0 is a con-
stant, u = u(x,t) is a field variable, x is the spatial
coordinate in the propagation direction and t is the
temporal coordinates, which occur in different con-
texts in mathematical physics. The dissipative Uy
term provides damping at small scales, and the non-
linear term u?uy stabilizes by transferring energy
between large and small scales.

Using the following transformation for Eq. (3)

o B
e, ) = U(E), €=k +m’.

where k and m are non zero arbitrary constants, and
integrating resulting equation with zero constant we
have

(4)

kU + 3cm?UU" + cmU? + ecm®U" = 0. (5)

According to Exp-function method, the solution
of Eq. (5) can be expressed in the following form

oy - Zia
ijfh bj explj¢]

where t, s, h and | are positive integers which are
known to be further determined, a; and b; are
unknown constants.

Substituting Eq. (6) into Eqg. (5) and balancing in
the obtained equation, we get r=s=h=1=1, so
Eq. (6) reduces to

(6)

ue) =& exp(¢] +ao + a1 exp[—¢]

“bhewld+ bt b ew—g

By substituting Eq. (7) into Eq. (5), and collecting
all the terms with the same power of € (s=



3,2,1,0,—1,—2,-3), we can obtain a set of alge-
braic equations for the unknowns ay, a,, a_;, by, b,
b,1, k, m:

cma3 + ka1 b3 =0,

3bocaim? + 3agcazm—bocasbym?—3agcar bym?
+2bokaby + agcb?m? + agkb? = 0,
3caiaim—3caibim? + 3cdgarbom*—cagbobym?
+2kadgboby + 6b_1caim?

+3a_ica?m + ca;bim? + ka,b3—4b_ica;bym?
—60,1ca1b1m2 + 2b,1ka1 b]

+4a_1cbtm® +a_1kb? =0,

Gob%k + agcm + 200b1b,1k + 201b0b,1k
+2a_1bgb1k 4+ 6apa;a_,cm
+9a9a1b_1cm?—9aga_,b;cm?—6agb1b_1cm?
+3a1bob,1cm3 + 3a,1bob1cm3 =0,

3cada_1m + 3cab_m*—3capa_ bom?
—cdgbob_1m? + 2kagbob_1—6b,ca* ,m?
+3G1C02_1m +ca_, bém3 + ka,1b§—4b1ca,1b,1m3
+601ca,1b,1m2 + 2b1ka,1 b,1 + 4a1cb31m3
+a1kb2,1 - O>

—3bgca® ;m?* + 3dgca® ,m—bgca_b_m?
+3apca_1b_ym? + 2bgka_b_,

+docb? ,m? + agkb? , = 0,

cma®, +ka_1b*, = 0.

Solving the algebraic equations in the Mathematica,
we obtain the following set of solutions:

Case 1:
dy
a) =ay, Q4o = do, Gq:aa
2
a a
b1:—, b():O7 b,1=— 0 s k:—cm3,
m 4a:m

where a, and a, are free parameters.

—em3t o a (—em3t X
arexp|—cm> &+ m%| +ao + 7 exp am* L+ mY
u(x, t) = }

o exp [<7cm3 L4 m’%‘)] - 4:?’" exp [7 <7cm3 L4 m’%})

(8)

Case 2:
ay=a;, do=4d, d-1=0, ,
a, do 2ag 3
b'I:_a b0:__7 b—1:_—7 k:—Cm,
m m am

where a, and qq is free parameter.
a exp[(fcm3§+m%)} + ao
. .
%exp{(—cm3§ + m%)] —@_ %’qexp[(cm3§ - m’%’)}

&)

uz(x,t) =

4. Analytic solutions to the conformable
space-time fractional ZKBBM equation

Conformable space-time fractional ZKBBM equation
is given in the following form (Mohyud-Din & Bibi,
2018; Shakeel & Tauseef Mohyud-Din, 2015)

Tu+ Thu—2auTfu—bT (T4TIu) =0, 0<a <1, 0<f <1,
(10)
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where q, b are real-valued constants. It is well known
that ZK (Zakharov Kuznetsov) equation models are
weakly nonlinear ion-acoustic waves in strongly
magnetized lossless plasmas. ZK-BBM equation is the
conjunction of ZK equation and BBM (Benjamin-
Bona-Mahony) equation that models shallow
water waves.

Substituting Eqg. (4) into Eq. (10) and integrating
resulting equation with zero constant we have

(k + m)U—amU?*—bm?kU" = 0. (11)

Substituting Eq. (6) into Eq. (11) and balancing in
the obtained equation, we get r=s=h=1/=1, so
Eqg. (6) reduces to Eq. (7). By substituting Eq. (7) into
Eqg. (11), and collecting all the terms with the same
power of e (s=3,2,1,0,—1,-2,-3), we can
obtain a set of algebraic equations for the unknowns
do, Ay, A_1, bo, by, b_q, k, m:

a1bk + a1b?m—aazbym = 0,

aob?k + agb?m—aazbom + 2a1bobrk + 2a1bgbym
—aobb2km?—2aaga;by.m + a,bbob1km? = 0,
a1b2k + a_1b*k + a163m + a_1b*m—aabim
—aa3b_1m + 2agbob1k

+201b1b,1k + 200b0b1m + 201b1b,1m—a1 bb%kmz
—4a_1bb2km?—2adga,.bom—2aa,a_1b1m
+adobbob, km? + 4a1bb1b,1km2 =0,

aobgk + aobgm—aagbom + 200b1b,1k + 26’1b0b,1k
+2a_1bobr1k + 2apb1.b_1m + 2a,bgb_1m
+2a_1bgbym—2aagab_1m—2aaga_bym—2aaa_,
.bom + 6aobb1b,1km2—3a1bbob,1km2
—3a,1bbob1km2 = 07

a_1bzk + a 6%k + a_1b3m + a,b? ;m—aaib_1m
—aa® bim + 2agbob_1k

+2071 b1 b,1k + 200b0b71m + 20,1b1b,1m
—a_,bb3km*—4a,bb? | km?
—2aa,a_bom—2aa,a_,b_1m + agbbob_1km?
+4a,1bb1b,1km2 = 07

aob? |k + agb* ;m—aa® bom + 2a_1bob_1k
+Za,1bob,1m—aobbi1km2

—2adyd_1b_1m + a_,bbob_1km? = 0,

a_1b% k+a_1b?> ,m—aa*,b_1m = 0.

Solving the algebraic equations in the Mathematica,
we obtain the following set of solution:

Figure 1. 3D plot of the obtained traveling wave solutions
ui(x,t) of Eq. (3).
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o — b,bm? o 2bbym? horizontal scale is much larger than the depth of the
"Ta(1+m2)” ° a1 +m2b)’ water (Madsen, Murray, & Sorensen, 1991).
o - bbym? Substituting Eq. (4) into Egs. (13)-(14) we obtain
© 4bya(1+m?b)’ the following differential equations
_ _ _b _.m , ,_
by =by, by = by, b—1—E, k—*m, kU +mV' =0, (15)

where b, and b, are free parameters.

b,bm? ox om ﬁ+mx_ﬁ B 2bbym?
a(1+ m2b) P 14+bm?a B a(1 + m?b)

u(x,t) =
by ex m ta+mx—ﬂ +b +b—(2)ex Lﬁ—mx—ﬂ
P T T T eme e T 26, P T em2x M B )
bbom? ox m ﬁ_mx_ﬁ
N abra(l+m2b) P \Tremza Mg
b ex m t“-i-mxﬁ +b+b3ex Lﬁ—mx—ﬁ |
TR\ T T emz o T B T a0, TP T emia T B

5. Analytic solutions to the conformable
space-time fractional coupled
Boussinesq equations

Finally, we consider the conformable space-time frac-
tional coupled Boussinesq equations (Hosseini et al.,
2017; Hosseini & Ansari, 2017)

TPu+Thv =0, (13)

Tov 4+ ATHW?) —uTPTPTPu =0, 0<a <1, 0<p < 1.
(14)

Boussinesq type equations can be considered as the
first model for nonlinear, dispersive wave propaga-
tion and describe the surface water waves whose

Figure 3. 3D plot of the obtained traveling wave solutions
u(x, t) of Eq. (10).

u(x,1)

1.0

-1.0

Figure 2. 2D plot of the obtained traveling wave solutions u;(x, 1) of Eq. (3).



ARAB JOURNAL OF BASIC AND APPLIED SCIENCES 167

0.1
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Figure 4. 2D plot of the obtained traveling wave solutions u(x, 1) of Eq. (10).

+2a_12a1b1m*—a_1b3k*—4a_ub2m* = 0,

kV' + )bm(Uz)l_’um3U’” =0. (16) Géboim2—200b1 b_1k2—26’1 bob_1k2—20_1bob1k2
. . —aobék2 + 2ag9a,b_4
Integrating Egs. (15)-(16) and using V =—XU we AM? + 20a0a_1b1m? + 2a1d_1bgim? + 6agbi1b_1m*

have —3a,bob_ym*u—3a_1bobym*u = 0,
K2 2aib_1m* + 2iapa_1bom?*—2agbob_1k*
—EU—FimUz—,umg’U” =0. (17)  +uagbob_1m* + by ia* ,m?

—d_1 bgszﬂa,1 b(z,m472b1 a_q b,1 k2 + 4b1 Ha_ b,1 m4

By balancing in Eq. (17), we set r=s=h=1=1,
so Eq. (6) reduces to form of the Eq. (7). By substitut-
ing Eq. (7) into Eqg. (17) and collecting all the terms
with the same power of e (s=
3,2,1,0,—1,—2,—-3), we can obtain a set of alge-
braic equations for the unknowns aq, a,, a_q, bg, b,,
b_17 k, m:

Jazbim?—ab3k* =0,

boiaim?—2bya;bik? + bopa;bym* + 2agia,b1m?

—apb?k?—aoubim* = 0,

Aaob1m +2)Laoa1 bom 200b0b1k +,uaob0b1m

+b_12a2m?—a,b3k>

—ud bém4—2b,1a1b1k2 + 4b,1,ua1b1m4

+2a17a_1b_ym*—a,b* k*—4a,ub®> ;m* = 0,
bo)xai1m2—2boa,1 b,1k2 + boﬂG,1b,1m4
+2ap/a_1b_ym?—agb* |k*—aoub* ,m* = 0,
Ja* b im*—a_b%.k* = 0.

Solving the algebraic equations in the
Mathematica, we obtain the following set of solu-
tion:

bym? 2bom? b2m?
a, = ! 'uv do = — 0~ 'u7 a1 = 0 A'ua
A A 4b]/L
b2
by =by, by=by, b_; :ﬁ, k=Fm*y/p,
1

where b, and b, are free parameters.

2 B 2
bm; ﬂexpl<+m \/_ + Xﬁﬂ—ZboT a
u(x,t) = " ; bl 5
b, exp[<+m2\/— +mﬁ> + by +—> 2b, eprﬂ“m \/_——mﬁ>]
o)
4b1 B
Jr

b1exp[< Fm2,/li— +mﬁ>

v(x,t) = =m/.U (Imz\/ﬁg + m=

+ bg + —exp

4b,

vt o]

xP
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6. Results and discussion

In this section, the solutions (8), (12) and (18) of
fractional STO, ZKBBM and coupled Boussinesq
equations are simulated as traveling wave solu-
tions for various values of the physical parame-
ters in Figures 1-6. Figure 1 and Figure 2 show
kink wave solution u;(x,t) in Eq. (8). 3D plot of
the obtained solution uq(x,t) is given for o=
0.75, f=1,a¢ =1, ao=-5,c=1, m=1. Figure
2 also illustrates the same solution with 2D plot
for —20<x<20 at t=1. Figure 3 and Figure 4
show singular kink wave solution u(x, t) in Eq.
(12). Figure 3 is 3D plot of the singular kink

20

Figure 5. 3D plot of the obtained traveling wave solutions
u(x, t) of Egs. (13)-(14).

wave solution u(x, t) for «=0.5, f=1,by=
1, by=-2a=2, b=1, m=—-05,-20<x< 20,
0<t<20. Figure 4 shows 2D plot of the travel-
ing wave solution u(x,1) for the same parame-
ters. Figure 5 and Figure 6 show solitary wave
solution u(x, t) in Eq. (18). Figure 5 is 3D plot of
the traveling wave solution u(x, t) in Eq. (18) for
2=075 f=1,bp=1, by=1,1=1, u=1, m=
0.5,—20<x<20, 0<t<10. Figure 6 also illus-
trates the same solution with 2D plot for
—20<x<20 at t=1.

Note that the 3D graphs describe the behav-
ior of u in space x at time t, which represents
the change of amplitude and shape for each
obtained solitary wave solutions. 2D graphs
describe the behavior of u in space x at fixed
time t=1. All graphics are drawn by the aid of
Mathematica 10.

7. Conclusion

In this paper, Exp-function method has been
applied to the conformable space-time fractional
STO, ZKBBM and coupled Boussinesq equations.
The method can be used directly without requir-
ing linearization, discretization or perturbation.
New solitary wave solutions for conformable
space-time fractional STO, ZKBBM and coupled
Boussinesq equations have been obtained. It has
been checked that all of the obtained solutions
satisfy the corresponding equations.

u(x,1)

20

Figure 6. 2D plot of the obtained traveling wave solutions u(x, 1) of Egs. (13)-(14).
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