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Cubic quasicrystal (QC) is one of the important three-dimensional QCs. In this paper, according to
Bak’s arguments, dynamic elasticity equations for cubic QCs are considered. Fundamental solutions (FSs)
of the phonon-phason displacements, displacement speeds, and stresses arising from pulse point sources
are computed.
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1. Introduction

The three-dimensional QCs include icosahedral QCs
and cubic QCs. Cubic QC has a 3D structure quasiperi-
odic in three orthogonal directions that supports simul-
taneously phonon and phason fields [1]. Feng et al. [2–4]
have reported cubic QCs with cubic symmetry and
Wang et al. [5] have discussed the projection description
of the cubic QCs. Yang et al. [6] have studied the linear
elasticity theory. There are still many physical prop-
erties of the cubic quasicrystals which have not been
studied yet.

In the literature, there is not much work on solu-
tions of the cubic QCs. For elasticity problems of cu-
bic QCs, a large number of analytical results have been
obtained for static cases. In [7–9], plane problems with
simpler structure of the cubic QCs have been studied
for static case. Based on the complex potential method,
plane problems of cubic QC media containing an ellip-
tic hole subjected to uniform remote loadings have been
solved in [7]. Equations of plane elasticity of cubic QCs
have been simplified to an eighth-order partial differen-
tial governing equation and general solutions have been
established by using an operator method [8]. The prob-
lem of an infinite plane which is composed of two half-
planes with different cubic QC has been investigated
in [9]. A method for analyzing the static elasticity prob-
lem of cubic QC has been given and the solutions of elas-
tic field of cubic QC with a penny-shaped crack have
been obtained in [10]. The equations of wave propa-
gation in the cubic QCs and the analytical expression
of the phase velocity of wave propagation have been de-
rived in [11]. Based on the variation of the general poten-
tial function of QCs, the 3D finite element formulation
for cubic QCs has been developed in [12].
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Dynamic elasticity problems in 1D, 3D QCs and nor-
mal crystals, have been written as a symmetric hyper-
bolic system of the first order in [13–15]. Applying
the Fourier transform to the obtained systems and us-
ing some matrix computations, FSs have been computed.
In this paper, applying the same procedure to the cu-
bic QCs, phonon-phason displacements, displacement
speeds, and stresses arising from pulse point source are
computed at the same time. The wave propagation
in these crystals is also simulated.

2. The basic equations for cubic QCs

According to the generalized elasticity theory for QCs,
the generalized Hooke’s laws, and dynamic equilibrium
equations are given by [6, 12]:

ρ
∂2ui(x, t)

∂t2
=

3∑
j=1

∂σij(x, t)

∂xj
+ fi(x, t), (1)

ρ
∂2wi(x, t)

∂t2
=

3∑
j=1

∂Hij(x, t)

∂xj
+ gi(x, t),

i = 1, 2, 3, x ∈ R3, t ∈ R, (2)
where the constant ρ > 0 is the density, σij and Hij

are phonon and phason stresses, fi(x, t) and gi(x, t) are
body forces for the phonon and phason displacements,
respectively.

The phonon strain εkl and phason strain Fkl of cubic
QCs are given by equations:

εkl =
1

2

(∂uk
∂xl

+
∂ul
∂xk

)
, Fkl =

1

2

(∂wk
∂xl

+
∂wl
∂xk

)
,

k, l = 1, 2, 3 (3)
Here uk and wk are phonon and phason displacements,
while εkl(x, t) and Fkl(x, t) are phonon and phason
strains, respectively.

(474)

http://doi.org/10.12693/APhysPolA.136.474
mailto:hcerdik@pau.edu.tr


Deriving Fundamental Solutions for Equations of Elastodynamics. . . 475

Both equations (1), (2) follow Bak’s argument [16, 17].
According to Bak, phasons describe particular types of
structural disorder, or structural fluctuations. Further-
more, the phonons and phasons represent wave propaga-
tion in real space. The mathematical structure of the the-
ory is relatively simple, and its formulations are similar
to that of classical elasto-dynamics. Many researchers
followed these formulations to develop the elasto-
dynamics of quasicrystals and make applications in de-
fect dynamics and thermodynamics (for example,
see [1, 6, 18, 19]).

The phonon stress σij and phason stress Hij are given
in the following vector form [12]:
τ = C · Y . (4)

Here
τ = (σ11, σ22, σ33, σ23, σ13, σ12, H11, H22, H33,

H23, H13, H12)
∗,

Y = (ε11, ε22, ε33, 2ε23, 2ε13, 2ε12, F11, F22, F33,

2F23, 2F31, 2F12)
∗,

C =



c1,1 c1,2 c1,2 0 0 0 R1 R2 R2 0 0 0

c1,2 c1, 2 c1,1 0 0 0 R2 R2 R2 0 0 0

c1,2 c1, 2 c1,1 0 0 0 R2 R2 R1 0 0 0

0 0 0 c4,4 0 0 0 0 0 R3 0 0

0 0 0 0 c4,4 0 0 0 0 0 R3 0

0 0 0 0 0 c4,4 0 0 0 0 0 R3

R1 R2 R2 0 0 0 K1,1 K1,2 K1,2 0 0 0

R2 R1 R2 0 0 0 K1,2 K1,1 K1,2 0 0 0

R2 R2 R1 0 0 0 K1,2 K1,2 K1,1 0 0 0

0 0 0 R3 0 0 0 0 0 K4,4 0 0

0 0 0 0 R3 0 0 0 0 0 K4,4 0

0 0 0 0 0 R3 0 0 0 0 0 K4,4


12×12

The symbol ∗ denotes the sign of the transposition, c1,1,
c1,2, c4,4 are the phonon elastic constants, K1,1, K1,2,
K4,4 are the phason elastic constants, and R1, R2, R3

are the phonon-phason coupling elastic constants. From
the positivity of elastic strain energy density [7], the ma-
trix C is positive definite.

3. Reduction of equations
of anisotropic elastodynamics in cubic QCs

to a symmetric hyperbolic system

Differentiating Eq.(4) with respect to t and multiplying
the left hand side of the resulting formula by the inverse
of C (denoted as C−1), we find the following matrix rep-
resentation

C−1
∂T

∂t
+

3∑
j=1

(
(A1

j )
∗ 06,3

06,3 (A1
j )
∗

)
∂

∂xj

(
U

W

)
=012,1, (5)

where

A1
1 =

 −1 0 0 0 0 0

0 0 0 0 0 −1
0 0 0 0 −1 0

 ,

A1
2 =

 0 0 0 0 0 −1
0 −1 0 0 0 0

0 0 0 −1 0 0

 ,

A1
3 =

 0 0 0 0 −1 0

0 0 0 −1 0 0

0 0 −1 0 0 0

 , (6)

U = (U1, U2, U3), W = (W1,W2,W3),

Ui(x, t) =
∂ui(x, t)

∂t
, Wi(x, t) =

∂wi(x, t)

∂t
, i = 1, 2, 3.

The 0l,n is the zero matrix of the order l × n.

Equations (1), (2) can be written as

ρ
∂

∂t

(
U

W

)
+

3∑
j=1

(
A1
j 03,6

03,6 A1
j

)
∂T

∂xj
= F , (7)

where F = (f1, f2, f3, g1, g2, g3)
∗.

The relations (5) and (7) can be represented by

A0
∂V

∂t
+

3∑
j=1

Aj
∂V

∂xj
= F, x ∈ R3, t ∈ R, (8)

where
F = (f1, f2, f3, g1, g2, g3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

∗,

V = (U11, U22, U33,W1,W2,W3, σ11, σ22, σ33, σ23,

σ13, σ12, H11, H22, H33, H23, H13, H12)
∗,
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A0 =

(
ρI6 06,12
012,6 C−1

)
18×18

Aj =


03,6 A1

j 03,6
03,6 03,6 A1

j

(A1
j )
∗ 06,9 06,6

06,3 (A1
j )
∗ 06,12


18×18

(9)

We note that the matrices Aj , for j = 1, 2, 3, are symmet-
ric. Since C is positive definite and symmetric, and ρ > 0,
the matrix A0 is symmetric and positive definite. There-
fore, system (8) is a symmetric hyperbolic system [20].

4. Fundamental solution
of anisotropic elastodynamics in cubic QCs

In this section, we give explicit formula of the FS
for the equations of elastodynamics in 3D cubic QC.

Let m run values 1, 2, 3, 4, 5, 6. The time-dependent
FS of elasticity for cubic QCs is a 18× 6 matrix, whose
m-th column is a vector function
V m(x, t) =

(
Um1 (x, t), Um2 (x, t), Um3 (x, t),Wm

1 (x, t),

Wm
2 (x, t),Wm

3 (x, t), σm11(x, t), σ
m
22(x, t), σ

m
33(x, t),

σm23(x, t), σ
m
13(x, t), σ

m
12(x, t), H

m
11(x, t), H

m
22(x, t),

Hm
33(x, t), H

m
23(x, t), H

m
31(x, t), H

m
12(x, t)

)∗
satisfying the following IVP

A0
∂V m

∂t
+

3∑
j=1

Aj
∂Vm

∂xj
= Emδ(x, t), x ∈ R3, t ∈ R

(10)

V m(x, t)|t<0 = 0. (11)
Here, Em = (δm1 , δ

m
2 , δ

m
3 , δ

m
4 , δ

m
5 , δ

m
6 , 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0)∗, δmn denotes the Kronecker symbol, i.e., δmn = 1
if n = m, and δmn = 0 if n 6= m, for n,m = 1, 2, 3, 4, 5, 6.
The δ(x) = δ(x1)δ(x2)δ(x3) is the Dirac delta function
of the space variable concentrated at x1 = 0, x2 = 0,
x3 = 0. The δ(t) is the Dirac delta function of the time
variable concentrated at t = 0. Applying the Fourier
transformation to the IVP (10) and (11) with respect
to x ∈ R3 and using the matrix transformations, an ex-
plicit formula for m-th column of the FS is found [13–15]
by the inverse Fourier transform as follows:

V m(x, t)=
θ(t)

(2π)3

∞∫
−∞

∞∫
−∞

∞∫
−∞

T (ν) cos
(
D(ν)t−I(ν · x)

)
×T ∗(ν)Emdν1dν2dν3,

V m(x, t)=(V1(x, t), V2(x, t), V3(x, t), . . . , V18(x, t))
∗, (12)

where cos
(
D(ν)t− I(ν · x)

)
is the diagonal matrix.

Non-singular matrix T (ν) and a diagonal matrix
D(ν) = diag(dk(ν)), for k = 1, 2, . . . , 18, with real valued
elements, can be computed as follows

T ∗(ν)A0T (ν) = I, (13)

T ∗(ν)
(
ν1A1 + ν2A2 + ν3A3

)
T (ν) = D(ν), (14)

where I is the identity matrix, T ∗(ν) is the transposed
matrix to T (ν).

Integrating the first six components of V m(x, t) with
respect to t, the FS for phonon and phason displacements
of elastodynamics of cubic QCs can be found [13-15] as
follows

umn (x, t) =
θ(t)

(2π)3

×
∞∫
−∞

∞∫
−∞

∞∫
−∞

[
T (ν)S(ν, t, x)T ∗(ν)Em

]
n
dν1dν2dν3,

wmn (x, t) =
θ(t)

(2π)3
(15)

×
∞∫
−∞

∞∫
−∞

∞∫
−∞

[
T (ν)S(ν, t, x)T ∗(ν)Em

]
n+3

dν1dν2dν3,

where n = 1, 2, 3, and components of the matrix S are
given by

Skk(ν, t) =

{
sin(dk(ν)t−νx)

dk(ν)
+ sin(νx)

dk(ν)
, if dk(ν) 6= 0,

t cos(ν x), if dk(ν) = 0,

Skj(ν, t, x) = 0, j 6= k, k, j = 1, . . . , 18. (16)

5. Application

In this section, we compute and simulate the FS of
the elastodynamics in 3D cubic QC.

Since elastic constants for cubic QCs are not available
presently, we choose ρ = 1× 103 [kg/m3] and
c1,1 = 112.1, c1,2 = 60.3, c4,4 = 32.8, (17)

R1 = 0.5, R2 = −0.2, R4 = 0.7, (18)

K1,1 = 300, K1,2 = 100, K4.4 = 50 × [1010Pa]. (19)
Using the presented method in Sect. 4, we compute
the solution
V 2(x, t) = (V 2

1 (x, t), V
2
2 (x, t), V

2
3 (x, t), . . . , V

2
18(x, t))

of problem (10) and (11). We give the simulations of
the computational experiment in Figs. 1–10.

Figures 1 and 2 present 2D level plots of the sec-
ond and third phason displacements w2

2(0, x2, x3, 0.1) and
w2

3(0, x2, x3, 0.1), respectively. These figures present view
from the top of the magnitude axes w2

2(0, x2, x3, 0.1) and
w2

3(0, x2, x3, 0.1). Figures 3–5 show simulation of the sec-
ond phonon speed U2

2 (0, x2, x3, t) for different times t =
0.05, 0.1, 0.25. Figures 4, and 5 show 3D and 2D plots
of dynamic distribution for the second component
of the phonon stress σ2

22(0, x2, x3, 0.1). Figure 4 shows
3D plot of the σ2

22(0, x2, x3, t) at the time t =
0.1. Here, the horizontal axes are x2 and x3.
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Fig. 1. The second component of the phason displace-
ment w2

2(0, x2, x3, t) at time t = 0.1.

Fig. 2. The third component of the phason displace-
ment w2

3(0, x2, x3, t) at time t = 0.1.

Fig. 3. The second component of the phonon displace-
ment speed U2

2 (0, x2, x3, t) at time t = 0.05.

Fig. 4. The second component of the phonon displace-
ment speed U2

2 (0, x2, x3, t) at time t = 0.1 .

Fig. 5. The second component of the phonon displace-
ment speed U2

2 (0, x2, x3, t) at time t = 0.25 .

Fig. 6. The second component of the phonon stress
σ2
22(0, x2, x3, t) at time t = 0.1.

Fig. 7. The second component of the phonon stress
σ2
22(0, x2, x3, t) at time t = 0.1.

Fig. 8. The second component of the phason stress
H2

22(0, x2, x3, t) at time t = 0.1.
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Fig. 9. The third component of the phason stress
H2

33(0, x2, x3, t) at time t = 0.1.

Fig. 10. The third component of the phason stress
H2

33(0, x2, x3, t) at time t = 0.1.

The vertical axis is the magnitude of σ2
22(0, x2, x3, 0.1).

Figure 5 shows 2D plot of dynamic distribution
for the second component of the phonon stress
σ2
22(0, x2, x3, 0.1). This figure presents view from the top

of the magnitude axis σ2
22(0, x2, x3, 0.1). Figure 6

shows 2D plot of dynamic distribution for the sec-
ond component of the phason stress H2

22(0, x2, x3, 0.1).
Figures 7 and 8 show 3D and 2D plots of dynamic dis-
tribution for the third component of the phason stress
H2

33(0, x2, x3, 0.1).
In this example, the wave propagation of the second

and third phason displacements, the second phonon dis-
placement speed, the second phonon and the third pha-
son stresses in 3D cubic QCs arising from pulse point
sources E2δ(x, t) have been given. Since our problem fol-
lows Bak’s argument, the solutions for the phonon and
phason fields are dominated by wave propagation.

6. Conclusion

To our knowledge, in the literature, simulation
of the elastic wave propagation arising from pulse point
sources in 3D cubic QCs has not yet been obtained.

In this paper, FS for phonon and phason displacements,
displacement speeds, and stresses in 3D cubic QCs has
been computed by using Fourier transformation and some
matrix computations. As an application, simulations
of the FSs of the phonon and phason displacements, dis-
placement speeds, and stresses for 3D cubic QC have
been given by using MATLAB programming. The re-
sults of simulations provide with a possibility to observe
and analyze the elastic wave propagation arising from
pulse point sources in 3D cubic QCs.
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