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In this study, we present a bilevel programming model in which upper level is defined as a biobjective problem and the lower level
is considered as a stochastic user equilibrium assignment problem. It is clear that the biobjective problem has two objectives: the
first maximizes the reserve capacity whereas the second minimizes performance index of a road network. We use a weighted-sum
method to determine the Pareto optimal solutions of the biobjective problem by applying normalization approach for making the
objective functions dimensionless. Following, a differential evolution based heuristic solution algorithm is introduced to overcome
the problem presented by use of biobjective bilevel programming model. The first numerical test is conducted on two-junction
network in order to represent the effect of the weighting on the solution of combined reserve capacity maximization and delay
minimization problem. Allsop & Charlesworth’s network, which is a widely preferred road network in the literature, is selected for
the second numerical application in order to present the applicability of the proposed model on a medium-sized signalized road
network. Results support authorities who should usually make a choice between two conflicting issues, namely, reserve capacity
maximization and delay minimization.

1. Introduction

As it is well known, road users may be delayed at signal-
ized intersections on urban roads because of implementing
inappropriate signal timings even if traffic flow is less than
capacity. In order to minimize delay, signal timing optimiza-
tion concept has widely been used on intersection, arterial
or network levels. Implementation of proper signal timing
plans on a road network most likely leads to a decrease
on flow/capacity ratios and reveals the spare capacity of
road segments. This spare capacity can be utilized until the
increasing travel demand reaches a certain level.The problem
of how to determine this certain level of travel demand,
which leads to an flow/capacity ratio equal to one for at
least one road segment on the network, has been known as
reserve capacitymaximization problem (RCMP).The reserve
capacity can also be defined as the largest applicable demand
multiplier to an existing Origin-Destination (O-D) demand
matrix without violating the capacity of any link subject
to signal timing parameters and other related constraints.
By means of maximizing the reserve capacity of a road

network, decision makers reveal the spare capacity and the
network becomes more reliable when taking sudden spikes
in travel demand into account. Local authorities or agencies
that are responsible for traffic operations can benefit from
this improvement. On the other hand, road users may suffer
from growing travel demand and correspondingly increasing
delay. As it is well known, delay function is mainly used as
an objective to optimize signal timings for signalized road
networks. Although optimal signal timings can be easily
found for isolated intersections, signal timing optimization
in coordinated road networks becomes highly challenging
issue due to the vast search space considering the offset and
common cycle time components. Relevant literature provides
a large number of studies concerning both reserve capacity
maximization and delay minimization on road networks.
From the point of RCMP, Webster and Cobbe [1] firstly
studied on this problem and they determined the reserve
capacity of a signalized intersection by developing an explicit
formulation. In order to generalize this approach, Allsop
[2] proposed a new method for junctions with complicated
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signal plans. Afterward, Yagar [3, 4] improved the linear
program proposed by Allsop [2] considering different satu-
ration flows between successive stages. Wong and Yang [5]
applied the reserve capacity approach to a signalized network
by considering user equilibrium assignment. They aimed to
find the maximum O-D demand multiplier subject to link
flows not exceeding their capacities. Yang et al. [6] proposed
a bilevel programming model (BLPM) by using combined
assignment and trip distribution model to find the network
reserve capacity considering equilibrium constraints. Yang
andWang [7] investigated the results of applying twodifferent
objectives, namely, reserve capacity maximization and travel
cost minimization. It was found that the relationship between
these objectives depended on the level of congestion. At the
same year, Ziyou and Yifan [8] dealt with the RCMP in a
different viewpoint; that is, they considered different demand
multipliers between O-D pairs to create a condition closer
to the reality. Ge et al. [9] investigated whether the reserve
capacity was affected by the road users informed about the
network or not. Results showed that the reserve capacity
did not increase in a similar way with the information level
of road users. Ceylan and Bell [10] solved the RCMP by
optimizing traffic signal timings including offset term in
different stages. They developed a two-stage algorithm in
the stochastic user equilibrium (SUE) manner. Chen et al.
[11] proposed an approach considering both reliability and
capacity to solve the RCMP. For this purpose, they developed
a new index to determine the demand multiplier by using
a BLPM. Chiou [12] solved the RCMP based on a projected
gradient method. The proposed method was compared with
traditional methods and results showed that it outperformed
other methods by means of reducing delay.

As good examples in terms of biobjective problems,
Chiou [13, 14] presented novel algorithms for the solution
of the RCMP with toll settings. Encouraging results were
attained from two studies through the provided numerical
examples. Similarly, Chiou [15] introduced a hybrid approach
tomaximize the reserve capacity and tominimize delay based
on link capacity expansions. Another type of biobjective
problems has been tackled with minimizing delay and max-
imizing reserve capacity with time-invariant flows by Chiou
[16]. From a different viewpoint, Miandoabchi and Farahani
[17] solved the RCMP in the context of discrete network
design problem using a bilevel solution approach. In a similar
manner, Miandoabchi et al. [18] handled this combined
problem related to road network design to optimize network
reserve capacity and some related performance measures.
Chiou [19] defined the reserve capacity maximization and
delay minimization problems as a min-max problem subject
to the equilibrium constraints. Proposed model was applied
to two signal controlled benchmark networks, which have
widely been used in studies concerning network design
problem, and results showed that the model was capable of
solving theRCMPby taking delayminimization problem into
account. Wang et al. [20] solved the RCMP with SUE link
flows and subsequently extended it by consideringmaximum
link capacity expansions with limited budget. Xiao et al.
[21] investigated the RCMP from a different viewpoint, and
they developed a zone-based model to reveal the effects

of using maximum capacity on the land-use development.
Recently, Han and Cheng [22] studied on the effectiveness
of the tradable credit scheme, which is a particular type of
congestion pricing applications, by considering the RCMP
with SUE link flows. To this end, they developed a bilevel
model which was applied to two road networks to illustrate
the positive effect of the tradable credit scheme. Baskan
and Ozan [23] aimed to maximize the reserve capacity by
considering equity issue with deterministic user equilibrium
link flows. They presented a bilevel heuristic solution algo-
rithm based on Harmony Search (HS) technique. Results
indicated that the value of O-D demandmultiplier was highly
sensitive to the equity parameter. Recently, Li and Sun [24]
proposed a novel optimization method for signal control in
urban road networks by drawing attention to the lack of
studies on multiobjective optimization. Road networks with
different scales were used in order to reveal the applicability
of the proposed method by considering network throughput,
delay, and spillbacks. Results showed that the proposed
multiobjective optimization method was quite promising.

From the point of delay minimization problem,
TRANSYT-7F traffic software, which consists of a traffic
model and a signal timing optimizer, is nearly most preferred
tool for signalized networks (see for details McTrans Center
[25]) in order to optimize signal timings. It simulates
traffic in a signalized road network to produce flow profiles
which are then used to determine a performance index
(PI) by considering specific stage plans and signal timing
parameters. The PI, which is used to define the cost of traffic
congestion in a road network, is defined as the sum of a
weighted combination of delay and number of stops. In this
context, several studies have been presented in the literature.
As known, Webster [26] presented one of the first studies
using mathematical framework in order to minimize delay
on an isolated junction. This study was further extended by
Allsop [27] to develop amore general approach in which total
delay was minimized by formulating signal setting problem
as a convex mathematical programming. After these first
attempts to optimize traffic signal timings,Wong [28] carried
perspective on signal timing optimization a step further
and developed approximate mathematical expressions for
the derivatives of PI by considering phase-based control
variables. It was concluded from this study that the use
of approximate expressions provided benefit in terms of
computational effort. A year later, Heydecker [29] applied
decomposition approach to optimize traffic signal timings
for road networks. Application of this method to a small
example network showed significant benefits in terms of
network performance. Wong [30] used group-based control
variables to optimize signal timings with fixed link flows.
For this purpose, the PI was considered as a function of
group-based control variables. To overcome some drawbacks
in the study by Wong [30] in terms of computational
effort, parallel computing technique was presented to
reduce computational time by Wong [31]. In Wong et al.
[32], TRANSYT traffic model was converted to a time-
dependent model to determine PI. Girianna and Benekohal
[33] developed two different heuristic algorithms based
on Genetic Algorithm (GA) for oversaturated signalized
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networks. Results indicated that micro-GA method was
able to reach quickly to the near-global signal timings in
comparison with the traditional GA. Ceylan and Bell [34]
introduced a GA-based model to optimize signal timings
with SUE link flows. They employed TRANSYT software
to calculate performance index of a road network whereas
SUE link flows were calculated using path flow estimator.
Similarly, Ceylan andBell [35], a year later, used the sameGA-
based model to reveal its capability in finding optimal signal
timings under congestion with different demand conditions.
Ceylan [36] proposed a GA-based model using TRANSYT
Hill-Climbing (HC) optimization tool for area traffic control.
The proposed algorithm outperformed TRANSYT in terms
of performance index although it had some deficiencies
regarding computational burden due to the use of HC
optimization tool. Chen and Xu [37] used Particle Swarm
Optimization (PSO) algorithm in order to find optimal signal
timings. Their results revealed that the proposed algorithm
was applicable especially in different demand conditions.
Dan and Xiaohong [38] investigated the use of improved
version of the GA to solve signal timing problem by taking
the offset term into account and they reached valuable
results in terms of minimizing delay and improving the
network capacity. Li [39] developed an optimization model
considering an arterial road to find optimal signal settings
under oversaturated conditions. Moreover, developed model
was able to take complex flow interaction between lanes into
account with the cell transmission concept. Liu and Chang
[40] presented a new signal optimization model considering
mutual interaction between queues occurred on different
lanes on arterial links. Results showed that their model
outperformed TRANSYT-7F for planning arterial signals.
Ceylan and Ceylan [41] developed a hybrid algorithm
integrating HS and HC optimization methods. In order
to find optimal signal settings, the performance index was
determined by TRANSYT traffic software. Results revealed
that the proposed algorithm outperformed conventional HS
andGAmethods in terms ofPI. Dell’Orco et al. [42] presented
aHS-basedmethodusingBLPM for signalized roadnetworks
by considering SUE link flows. Similarly, Dell’Orco et al.
[43] attempted to solve area traffic control problem by using
Artificial Bee Colony (ABC) algorithm with TRANSYT-7F.
Results revealed that the ABC algorithm outperformed the
GA andHCmethods in terms of PI. Zhu et al. [44] developed
Reinforcement Learning (RL) based Junction Tree Algorithm
for solving signal control problem in which agents present
traffic signals. Results proved that the proposed algorithm
was able to produce better results than other RL-based
methods. Ozan et al. [45] developed amodified RL algorithm
to optimize traffic signal timings for road networks. Results
showed that the proposed algorithm was capable of finding
optimal signal parameters even in the case of increasing
demand conditions. Christofa et al. [46] presented a real-
time signal control system aiming to minimize person delay
by optimizing signal timings based on mixed integer linear
programming approach. Field tests proved that the person
based minimization approach outperforms fixed-time signal
timings. Zhang et al. [47] developed two novel models in
order to solve signal coordination problem especially for

long arterials and grid networks. Proposed models were
in the form of a mixed-integer linear program. Numerical
experiments revealed that both models were able to produce
consistent coordination plans in terms of travel speed, stop,
and delay. Srivastava and Sahana [48] proposed a hybrid
evolutionary approach to optimize signal timings using
BLPM. Comparative experiments showed that the hybrid
model outperforms Ant Colony Optimization (ACO) and
GA techniques. Recently,Memoli et al. [49] focused on signal
setting design at network-level by introducing a stage-based
method. In proposed method, stage sequences, stage lengths,
and offsets were optimized simultaneously. In order to show
the applicability of the proposed model, two example test
networks have been analyzed. Results indicated that the
developed method was an effective way to design network
signal settings.

In the relevant literature, reserve capacity maximization
or delay minimization has been mostly performed by opti-
mizing traffic signal timings. However, to the best of our
knowledge, there is no study inwhich they are simultaneously
considered. Although Ceylan and Bell [10] presented a two-
stage approach to the solution of the RCMP by taking delay
minimization into account, their study had a limitation,
that is, the signal timings were optimized in one stage by
minimizing PI. The largest O-D matrix multiplier was found
in the second stage subject to the best signal timings found
in the first stage. This means that the biobjective BLPM was
separately solved in their study. Therefore, we define a new
approach for investigating the advantage of the simultaneous
solution of the RCMP and delay minimization problem
which are both considered as a biobjective problem. To
evaluate the users’ reaction to this arrangement performed
at the upper level, the lower level is presented as a SUE
assignment problem. In this context, it is assumed that the
local authority tries to simultaneously optimize traffic signal
timings by maximizing the reserve capacity and minimizing
PI by taking into account the users’ reactions in SUEmanner.
This mutual interaction between users and local authority is
presented by using biobjective BLPM. In summary, themajor
contributions to the current literature made in this paper are
as follows. (i) A biobjective BLPM is proposed. The upper
level maximizes the reserve capacity of a road network and
minimizes PI. The lower level solves SUE problem by using
the path flow estimator (PFE)which follows logit route choice
model. (ii) A weighted-sum method is applied to find Pareto
optimal solutions of the biobjective problem by normalizing
the objective functions. (iii) A biobjective BLPM is applied to
a medium-sized signalized road network.

The rest of this paper is organized as follows. The next
section is about the problem formulation. Section 3 presents
detailed explanations of the proposed b-objective BLPM.
The numerical experiments are given in Section 4. The
conclusions and future directions are given in the last section.

2. Problem Formulation

Considering that the local authorities or agencies are respon-
sible for traffic planning, data collection, sign and signal
operations, etc., they desire robust road networks in terms
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of congestion and delay even in case of sudden spikes in
travel demand. On the other hand, traffic flow is distributed
on a road network based on route choice behaviour of users
that aim to complete their travels within the shortest possible
travel time.Therefore, maximizing reserve capacity andmin-
imizing delay provide reasonable benefits for local authorities
and road users, respectively. However, maximizing reserve
capacity may reduce network performance by increasing
delay because of growing travel demand. In this study, this
trade-off is investigated by defining a biobjective BLPM. At
the upper level of the proposed model, combined reserve
capacity maximization and delay minimization problem is
solved, while SUE assignment problem is performed using
PFE at the lower level. Considering a road network with a set
of O-D pairs,𝐾, a set of directed links,𝐴, a set of paths,𝑃, and
a set of nodes,𝑁, the proposed biobjective BLPM is presented
as follows:

max
𝜓,x∗

𝜇 (1)

min
𝜓,x∗

𝑃𝐼 = ∑
𝑎∈𝐴

[𝑤𝑑𝑎 ⋅ 𝑑𝑎 (𝜓) + 𝐾 ⋅ 𝑤𝑠𝑎 ⋅ 𝑆𝑎 (𝜓)] (2)

subject to

𝜓 (𝑐, 𝜃,𝜑) ∈ Ω0;
{{{{{{{{{{{{{{{{{{{

𝑐min ≤ 𝑐 ≤ 𝑐max

0 ≤ 𝜃 < 𝑐
𝜑min ≤ 𝜑 ≤ 𝑐
𝑧∑
𝑖=1

(𝜑 + 𝐼)𝑖 = 𝑐
(3)

𝑥∗𝑎 (𝜇,𝜓) ≤ 𝐶𝑎 (𝜓, 𝑠𝑎) (4)

where (1) represents the problem of reserve capacity maxi-
mization and (2) is related to delay minimization problem.
In addition, 𝜇 is the demand matrix multiplier, 𝑑𝑎 is delay on
link 𝑎, 𝑎 ∈ 𝐴, 𝑆𝑎 is the number of stops on link 𝑎, 𝑤𝑑𝑎 and 𝑤𝑠𝑎
are weighting factors for 𝑑𝑎 and for 𝑆𝑎 on link 𝑎, respectively,𝐾 is stop penalty factor, x∗ is vector of equilibrium link flows,𝑐 is common cycle time, 𝑐min and 𝑐max are possible bounds for
common cycle time, 𝜑 is stage green time, 𝜑min is the mini-
mum green time, 𝐼 is intergreen time, 𝜃 is offset,𝜓 is vector of
signal timings, Ω0 is feasible region for signal timings, and 𝑧
is the number of stages. In addition to signal timings related
constraints, (4) represents link capacity constraint in which𝑠𝑎 is the saturation flow, 𝐶𝑎 is the capacity, and 𝑥∗𝑎 (𝜇,𝜓) is
equilibrium flow on link 𝑎. Link flows can be obtained by
solving SUE problem using (5)-(6) at the lower level [50].

min
x(𝜓)

𝐹 (x (𝜓) ,𝜓)
= −𝜇qTy (x (𝜓) ,𝜓) + xTt (x (𝜓) ,𝜓)
− ∑
𝑎∈𝐴

∫𝑥𝑎(𝜓)
0

𝑡𝑎 (𝜓, 𝑤) 𝑑𝑤
(5)

subject to

𝜇q = Λh,

x (𝜓) = 𝛿h,
h ≥ 0

(6)

where q is the vector of travel demand, t and y represent
vectors of link and path travel times for the given vector of
link flows x(𝜓), respectively, h is the vector of path flows, 𝛿
represents the link/path incidence matrix where 𝛿𝑎𝑝 = 1 if
link 𝑎 is on path𝑝, and 𝛿𝑎𝑝 = 0 otherwise [𝛿𝑎𝑝; ∀𝑎 ∈ 𝐴; ∀𝑝 ∈𝑃], and Λ is the O-D/path incidence matrix [Λ 𝑝; ∀𝑝 ∈ 𝑃].
The SUE problem given in (5) can be solved by the PFE [51].
The PFE is a logit based traffic assignment tool and its most
important advantage is that it does not require path enumer-
ation.Therefore it is most preferable option for researches for
the solution of SUE assignment [34, 35, 41, 50].

Since there are two objectives in the upper level in (1)-(4),
which are mutually interacted, it is not easy to find optimal
solution between two objectives.Thus, a suitable solution has
to be found among Pareto optimal solutions. Although there
are several efficient methods to find the set of Pareto optimal
solutions of biobjective problems, the weighted-sum method
can be used as an efficient tool to convert a biobjective prob-
lem into single-objective by using convex linear combination
of objectives [52]. On the other hand, since each single-
objective problem (delay minimization and reserve capacity
maximization) has a different unit, they cannot be directly
added. To overcome this issue, they can be normalized before
applying the weighted-sum method as given in

𝑍1 = 𝜇∗𝜇 (7)

𝑍2 = 𝑃𝐼𝑃𝐼∗ (8)

where 𝜇∗ can be stated as an upper limit of reserve capacity
maximization problem which is the solution of the single-
objective problem given in (1) subject to (3)-(6). On the other
hand, 𝑃𝐼∗ is the lower limit of delay minimization problem
and can be found by solving (2) subject to (3) and (5)-(6).
It should be emphasized that the use of 𝑍1 converts the
reserve capacity maximization problem into a minimization
problem. Thus, objective functions 𝑍1 and 𝑍2 can be stated
as minimization problems. After normalizing the objective
functions, they are considered as scalar, and thus there is
no further obstacle for applying the weighted-sum method
to convert the biobjective problem into a single-objective
problem as given in (9) subject to (3)-(6).

min𝑍 (𝜇, x∗,𝜓) = 𝛼Z1 + (1 − 𝛼)𝑍2 (9)

For applying weighted-sum method we have used a
weighting factor 𝛼 in order to present relative importance
of one objective to other. In other words, the value of 𝛼 is
specified to find the balance between solutions of network
reserve capacity maximization and delay minimization
problems. It should be noted that a larger value of 𝛼 implies
that the local authority should be more attentive to the
improvement of network reserve capacity. On the other side,
the authority prioritizes to minimize network overall delay
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Figure 1: The reserve capacity maximization model.

in comparison with reserve capacity maximization when
a smaller value of 𝛼 is used. Choosing a suitable value of
weighting factor can be performed by generating a uniform
set of weights as 𝛼 = {0, 1/𝑚, 2/𝑚, ...., (𝑚 − 1)/𝑚, 1}, where𝑚 is a positive integer number [53].

3. Model Development

In this study, the proposed biobjective BLPM is developed
based on differential evolution (DE) optimization frame-
work. As known, DE is referred as a robust and simple
metaheuristic algorithm proposed by [54]. On the other
hand, several studies in the relevant literature support this
claim by introducing the advantages of DE in solving dif-
ferent complex optimization problems. Nolle et al. [55] have
made a comparison of self-organizing migration algorithm
(SOMA) with simulated annealing (SA) and DE algorithms
for automated waveform tuning. Although a slight difference
has been observed between performances of DE and SOMA
algorithms, they produced similar computational perfor-
mance in this application outperforming SA. In the study by
Vincenzi et al. [56] the performance ofDE algorithmhas been
compared with Coupled LocalMinimizers (CLM) for solving
dynamic damage detection problem. Results revealed thatDE
outperforms CLM method especially in case the number of
decision variables is increased. Similarly, a comparison of DE
algorithm with superior metaheuristic algorithms has been
performed on different benchmark functions by Civicioglu
and Besdok [57]. According to the results, DE produces more
robust results comparedwith othermetaheuristic algorithms.

Deb et al. [58] have compared the performances of DE, PSO,
and GA in solving design problem of circularly polarized
microstrip antennas. DE based algorithm outperformed GA
and PSO according to the numerical applications. Recently,
Dezelak et al. [59] tested the performances of DE and PSO
algorithms for power plants modelling. Results have shown
that DE produces better results in reasonable computation
time than PSO. In the light of short review of DE algorithm,
it has been chosen for solving the biobjective BLPM by
considering its successful applications.

3.1. Reserve Capacity Maximization Model. As previously
mentioned, values of the maximum O-D multiplier, 𝜇∗, and
the minimum network performance index, 𝑃𝐼∗, are required
to set up the single-objective model given in (9) for obtaining
the Pareto optimal solutions of the biobjective optimization
problem. In this context, both problems are handled with
a BLPM based on the DE solution framework to obtain𝜇∗ and 𝑃𝐼∗, in which the network O-D multiplier and PI
are optimized at the upper level. On the other hand, SUE
assignment problem is solved to determine equilibrium link
flows at the lower levels of both models. In this context,
maximization of the O-D multiplier is formulated as a
minimization problem subject to (3)-(6) as follows:

min 𝑢 (𝜇, x∗,𝜓)
= 1𝜇 + 𝜎[∑

𝑎∈𝐴

max (𝑥∗𝑎 (𝜇,𝜓) − 𝐶𝑎 (𝜓, 𝑠𝑎) , 0)] (10)

where 𝜎 is a constant penalty weighting factor. Five-step
solution framework is illustrated in Figure 1.
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Step 1. The objective function representing the maximization
of network reserve capacity given in (10) and the possible
bounds for decision variables, which are common cycle
time, stage green times, and O-D multiplier, are primarily
initialized. Subsequently, network parameters, namely, satu-
ration flows, free-flow travel times, and travel demand, are
represented. Initialization of three DE algorithm parameters
is also carried out at this step. The first one is population
size, 𝑁𝑝, and the next one is mutation factor, F, which is
used to create mutant vector. Crossover rate (𝐶𝑅) is the third

parameter, which is employed in creating the trial vector [54].
At the end of this step, generation number (gen) is set to 1,
iteration number (𝑛) is set to 0, and maximum number of
generations (maxgen) is identified as the stopping criterion.

Step 2. At this step, initial solution vectors Γ including O-
D multipliers and signal timings are generated considering
preset bounds of decision variables. Subsequently, objective
function values are calculated and represented as given
in

[[[[[[[[[[[[[[[[[[[
[

O-D Cycle Green

multipliers times times⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞𝜇1
𝜇2
...

𝜇𝑁𝑝−1
𝜇𝑁𝑝

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞𝑐1
𝑐2
...

𝑐𝑁𝑝−1
𝑐𝑁𝑝

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞𝜑11,1 𝜑11,2 ⋅ ⋅ ⋅ 𝜑11,𝑧1 𝜑12,1 ⋅ ⋅ ⋅ 𝜑1𝑁,𝑧𝑛𝜑21,1 𝜑21,2 ⋅ ⋅ ⋅ 𝜑21,𝑧1 𝜑22,1 ⋅ ⋅ ⋅ 𝜑2𝑁,𝑧𝑛... ... ... ... ... ... ...
𝜑𝑁𝑝−11,1 𝜑𝑁𝑝−11,2 ⋅ ⋅ ⋅ 𝜑𝑁𝑝−11,𝑧1 𝜑𝑁𝑝−12,1 ⋅ ⋅ ⋅ 𝜑𝑁𝑝−1𝑁,𝑧𝑛𝜑𝑁𝑝1,1 𝜑𝑁𝑝1,2 ⋅ ⋅ ⋅ 𝜑𝑁𝑝1,𝑧1 𝜑𝑁𝑝2,1 ⋅ ⋅ ⋅ 𝜑𝑁𝑝𝑁,𝑧𝑛⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Solution vectors,Γ

]]]]]]]]]]]]]]]]]]]
]

󳨐⇒

[[[[[[[[[[[[[[[[
[

Objective

functions⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞𝑢 (x∗ (Γ) , Γ)1
𝑢 (x∗ (Γ) , Γ)2

⋅ ⋅ ⋅
𝑢 (x∗ (Γ) , Γ)𝑁𝑝−1
𝑢 (x∗ (Γ) , Γ)𝑁𝑝

]]]]]]]]]]]]]]]]
]

(11)

where 𝜑𝑖,𝑗 is the 𝑗th stage green time of intersection 𝑖 and 𝑧𝑛
is the number of stages at 𝑛th intersection (𝑖 = 1, 2, . . . , 𝑁
and 𝑗 = 1, 2, . . . , 𝑧𝑛). In this study, initial values of the O-D
multipliers and signal timing parameters are obtained in the
following way.

(i) O-D multiplier is generated between 0 and possible
upper bound as given in

𝜇 = 𝑟𝑎𝑛𝑑 (0, 1] × 𝜇max (12)

(ii) Cycle time is randomly generated between the possible
bounds as given in

𝑐 = int [𝑟𝑎𝑛𝑑 [0, 1] × (𝑐max − 𝑐min) + 𝑐min] (13)

(iii) Stage green times at intersections are generated
between 𝜑min and 𝑐 as shown in

𝜑𝑖,𝑗 = int [𝑟𝑎𝑛𝑑 [0, 1] × (𝑐 − 𝜑min) + 𝜑min] (14)

Subsequently, generated green timing values are revised since
all green plus intergreen times must be equal to the cycle

time for a given intersection. This procedure is carried out
by

𝜑𝑖,𝑗 = 𝜑min + 𝜑𝑖,𝑗∑𝑧𝑖𝑗=1 𝜑𝑖,𝑗 [𝑐 − 𝑧𝑖 × (𝐼 + 𝜑min)]
𝑖 = 1, 2, . . . .𝑧

(15)

As can be seen in (11) the equilibrium link flows, x∗, are
required to calculate the objective function values. In this
context, the SUE assignment problem,whichwas given in (5),
is solved by the PFE traffic assignment tool, the pseudo code
of which is given in Algorithm 1.

In Algorithm 1, 𝛽 represents dispersion parameter. Note
that if 𝛽 is zero then the path costs are not fully taken into
account in path choice which means even highest cost paths
can be chosen by road users. On the contrary, drivers become
sensitive to cost in path choice while 𝛽 tends to infinity.

Step 3. The mutation is carried out at this step by using
three different, randomly chosen solution vectors which are
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different from target vector (i.e., solution vector) and a
mutant vector, 𝜌𝑖, is created as given in

𝜌𝑖,𝑔𝑒𝑛 = Γ𝑟0,𝑔𝑒𝑛 + 𝐹 ⋅ (Γ𝑟1,𝑔𝑒𝑛 − Γ𝑟2,𝑔𝑒𝑛) (16)

where 𝑟0, 𝑟1, and 𝑟2 are indices of randomly chosen solution
vectors.

Step 4. At this step, crossover is applied by choosing each
member of the trial vector, Ε𝑖, from the target or the mutant
vectors with the probabilities of 𝐶𝑅 or 1-𝐶𝑅, respectively, as
given in

Ε𝑖,𝑔𝑒𝑛 = 𝜀𝑗,𝑖,𝑔𝑒𝑛
= {{{

𝜌𝑗,𝑖,𝑔𝑒𝑛 if (𝑟𝑎𝑛𝑑𝑗 (0, 1) ≤ 𝐶𝑅 or 𝑗 = 𝑗𝑟𝑎𝑛𝑑)
𝛾𝑗,𝑖,𝑔𝑒𝑛 otherwise

(17)

where the condition of 𝑗 = 𝑗𝑟𝑎𝑛𝑑 provides that target and
trial vectors are definitely different from each other. After
determining themembers of the trial vector, their related SUE
link flows and the objective function value are calculated.

Step 5. At the last step, the target vector, Γ𝑖,𝑔𝑒𝑛+1, for the next
generation is selected by comparing the objective function
values of trial and target vectors as given in

Γ𝑖,𝑔𝑒𝑛+1

= {{{
Ε𝑖,𝑔𝑒𝑛 if 𝑢 (x∗ (Ε𝑖,𝑔𝑒𝑛) ,Ε𝑖,𝑔𝑒𝑛) ≤ 𝑢 (x∗ (Γ𝑖,𝑔𝑒𝑛) , Γ𝑖,𝑔𝑒𝑛)
Γ𝑖,𝑔𝑒𝑛 otherwise

(18)

The DE process is repeated until the maximum number
of generations,maxgen, is reached.

3.2. DelayMinimizationModel. Following the representation
of the reserve capacity maximization model, flowchart of the
delay minimizationmodel for the solution of (2) is illustrated
in Figure 2.

Step 1. At this step, the objective function given in (2) subject
to (3) and (5)-(6) representing the minimization of network,𝑃𝐼, and the possible bounds for signal timing variables are
primarily initialized. Note that, unlike the reserve capacity
maximization model, O-Dmultiplier is set to 1, which means
that the base travel demand is loaded into the network. The
remaining of this step is the same as the first step of the reserve
capacity maximization model.

Step 2. Initial signal timings are generated between preset
bounds based on (13)-(15). Moreover, the offset variables are
randomly generated as shown in

𝜃𝑖 = int [𝑟𝑎𝑛𝑑 [0, 1) ∗ 𝑐] (19)

As can be seen in (2) the equilibrium link flows are
required to calculate network 𝑃𝐼 value.Thus, the SUE assign-
ment problem, which was given in (5), is solved by the PFE
for each solution vector in the population pool. Subsequently,
TRANSYT-7F is employed to calculate the related 𝑃𝐼 values
and the target vectors, namely, the initial solutions, are stored
in the memory as given in

[[[[[[[[[[[[[[[[[[[
[

Cycle Green

times times Offsets⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞𝑐1
𝑐2
...

𝑐𝑁𝑝−1
𝑐𝑁𝑝

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞𝜑11,1 𝜑11,2 ⋅ ⋅ ⋅ 𝜑1𝑁,𝑧𝑛𝜑21,1 𝜑21,2 ⋅ ⋅ ⋅ 𝜑2𝑁,𝑧𝑛... ... ... ...
𝜑𝑁𝑝−11,1 𝜑𝑁𝑝−11,2 ⋅ ⋅ ⋅ 𝜑𝑁𝑝−1𝑁,𝑧𝑛𝜑𝑁𝑝1,1 𝜑𝑁𝑝1,2 ⋅ ⋅ ⋅ 𝜑𝑁𝑝𝑁,𝑧𝑛

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞𝜃11 𝜃12 ⋅ ⋅ ⋅ 𝜃1𝑁
𝜃21 𝜃22 ⋅ ⋅ ⋅ 𝜃2𝑁... ... ... ...

𝜃𝑁𝑝−11 𝜃𝑁𝑝−12 ⋅ ⋅ ⋅ 𝜃𝑁𝑝−1𝑁
𝜃𝑁𝑝1 𝜃𝑁𝑝2 ⋅ ⋅ ⋅ 𝜃𝑁𝑝𝑁⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Solution vectors,Ψ

]]]]]]]]]]]]]]]]]]]
]

󳨐⇒

[[[[[[[[[[[[[[[[
[

Objective

functions⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞𝑃𝐼 (x∗ (Ψ) ,Ψ)1
𝑃𝐼 (x∗ (Ψ) ,Ψ)2

⋅ ⋅ ⋅
𝑃𝐼 (x∗ (Ψ) ,Ψ)𝑁𝑝−1
𝑃𝐼 (x∗ (Ψ) ,Ψ)𝑁𝑝

]]]]]]]]]]]]]]]]
]

(20)
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Define dispersion parameter 𝛽𝑥𝑎 ←󳨀 0, ∀𝑎 ∈ 𝐴𝑡𝑎 ←󳨀 𝑡𝑎(𝑥𝑎), ∀𝑎 ∈ 𝐴𝑗 ←󳨀 0
Repeat 𝑗 ←󳨀 𝑗 + 1

Update link costs 𝑡𝑎 ←󳨀 (1/𝑗)𝑡𝑎(𝑥𝑎) + (1 − 1/𝑗)𝑡𝑎
For each path 𝑝

Calculate new path costs 𝑦𝑝 ←󳨀 ∑𝑎∈𝐴 𝛿𝑎𝑝𝑡𝑎(𝑥𝑎)
Next 𝑝
For each path 𝑝

Calculate new path flows ℎ𝑝 ←󳨀 𝑞𝑘(exp(−𝛽𝑦𝑝)/∑𝑝∈P𝑘 exp(−𝛽𝑦𝑝))
Next 𝑝
For each link 𝑎

Calculate new link flows 𝑥𝑎 ←󳨀 ∑𝑝∈P𝑘 𝛿𝑎𝑝ℎ𝑝
Next 𝑎

Until no new path and link flows converged

Algorithm 1: Pseudo code of the PFE.

Generate target vectors containing signal timings

Mutation
Create a mutant vector based on Eq. (21)

Crossover
Create a trial vector based on Eq. (22)

Selection

Compare trial
and target

vectors in terms
of their PI values

Run PFE
Calculate SUE flows for the trial vector

Run TRANSYT-7F
Calculate network PI for the trial vectorRun PFE

Calculate SUE flows for the nＮＢ target vector

Run TRANSYT-7F

Calculate network PI for the nＮＢ target vector No

No

STEP 2

No Yes
Yes

Yes

STEP 4

STEP 3

STEP 5

gen=maxgen

PI∗

Initialization
G
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optimization 
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∙ Objective function given in Eq. (2)

∙ DE parameters (Np, F, CR)
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Figure 2: The delay minimization model.

Step 3. Themutation is carried out to create a mutant vector,
𝜌𝑖, which is given in

𝜌𝑖,𝑔𝑒𝑛 = Ψ𝑟0,𝑔𝑒𝑛 + 𝐹 ⋅ (Ψ𝑟1,𝑔𝑒𝑛 −Ψ𝑟2,𝑔𝑒𝑛) (21)

Step 4. At this step, crossover is applied to determine the
members of the trial vector, Ε𝑖, as given in

Ε𝑖,𝑔𝑒𝑛 = 𝜀𝑗,𝑖,𝑔𝑒𝑛

= {{{
𝜌𝑗,𝑖,𝑔𝑒𝑛 if (𝑟𝑎𝑛𝑑𝑗 (0, 1) ≤ 𝐶𝑅 or 𝑗 = 𝑗𝑟𝑎𝑛𝑑)
𝜓𝑗,𝑖,𝑔𝑒𝑛 otherwise

(22)

Step 5. Selection is carried out in terms of the objective
function values of trial vector, Ε𝑖,𝑔𝑒𝑛, and its target vector,
Ψ𝑖,𝑔𝑒𝑛, in the following way.
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Figure 3: Layout of two-junction network and representation of signal stages.

Table 1: Input data for two-junction network.

Junction number Link number 𝑡0𝑎 (s) 𝑠𝑎 (veh/hr) Junction number Link number 𝑡0𝑎 (s) 𝑠𝑎 (veh/hr)
1 1 20 1800 2 4 20 1800

2 20 1800 5 20 1800
3 20 1800 6 20 1800

where 𝑡0𝑎 is free flow travel time in seconds on link 𝑎.

Ψ𝑖,𝑔𝑒𝑛+1

= {{{
Ε𝑖,𝑔𝑒𝑛 if 𝑃𝐼 (x∗ (Ε𝑖,𝑔𝑒𝑛) ,Ε𝑖,𝑔𝑒𝑛) ≤ 𝑃𝐼 (x∗ (Ψ𝑖,𝑔𝑒𝑛) ,Ψ𝑖,𝑔𝑒𝑛)
Ψ𝑖,𝑔𝑒𝑛 otherwise

(23)

The DE process is repeated until the maximum number
of generations,maxgen, is reached.

3.3. Combined Model. Once the values of 𝜇∗ and 𝑃𝐼∗ are
obtained, the combined reserve capacity maximization and
delay minimization problem is solved using single-objective
BLPM in (9) subject to (3)-(6) by taking a particular
weighting factor 𝛼 into account. The corresponding stepwise
procedure is given below.

Step 1. Generate the initial signal timing vectors, Ψ, and O-
D multipliers, 𝜇, with given possible bounds and calculate
objective function values, which is given in (9), as many as
population size.

Step 2. Set 𝑔𝑒𝑛 = 1 and 𝑛 = 0.
Step 3. Set 𝑛 = 𝑛 + 1. Then, generate a new signal timing
vector, Ψ, and a new O-D multiplier, 𝜇, based on mutation
and crossover operations of DE.

Step 4. Calculate 𝑍1 based on the O-D multiplier, 𝜇, which
has been generated in the previous step, and 𝜇∗ as given in
(7).

Step 5. Run PFE to carry out a SUE assignment for estimating
link flows based on the O-D multiplier, 𝜇, and the signal
timing vector, Ψ, which have been generated in Step 3.
Subsequently, run TRANSYT-7F to obtain the network 𝑃𝐼
value and then calculate 𝑍2 based on 𝑃𝐼 and 𝑃𝐼∗ as given in
(8).

Step 6. Calculate objective function 𝑍 as given in (9).

Step 7. Compare the 𝑛th solution vector in the population
pool and newly generated solution vector in terms of their

objective function values. Subsequently, keep the one with a
better objective function value and discard the other.

Step 8. Go to Step 3 if 𝑛 ̸= 𝑁𝑝.
Step 9. Set 𝑛 = 0 and 𝑔𝑒𝑛 = 𝑔𝑒𝑛 + 1 and then go to Step 3 if𝑔𝑒𝑛 ̸= 𝑚𝑎𝑥𝑔𝑒𝑛.
Step 10. Terminate the DE process and output the optimized
signal timing vector and O-D multiplier.

4. Numerical Applications

In this section, two signalized benchmark road networks are
chosen to investigate the performance of the proposed biob-
jective BLPM. Firstly, a two-junction network is used to show
the effect of weighting on the balance of solution of reserve
capacity maximization and delay minimization problems. In
other words, it is proposed to find the set of Pareto optimal
solutions of the biobjective problem. With this application, it
is also aimed at investigating how the network performance
is affected by applying the biobjective BLPMdepending upon
the weighting factor 𝛼. Secondly, the effectiveness of the
proposed model is investigated on a medium-sized road
network presented by Allsop and Charlesworth [60].

4.1. Two-Junction Network. In order to test the capability of
the proposed model in solving the biobjective problem, it
has been firstly applied to the two-junction network taken
from Ceylan [61]. Layout of the network and the input data
are given in Figure 3 and Table 1, respectively. Travel demand
between the single O-D pair is taken as 1500 veh/hr.

The intergreen time, 𝐼, between stages was selected as
5 sec. Constraints for signal timing variables are set as given
below:

𝜓 (𝑐, 𝜃,𝜑) ∈ Ω0;
{{{{{{{{{

30 ≤ 𝑐 ≤ 100
0 ≤ 𝜃 < 𝑐
7 ≤ 𝜑 ≤ 𝑐

(24)
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Table 2: Network 𝑃𝐼 values and corresponding standard deviations for each parameter combination.

𝐹 𝐶𝑅 Best 𝑃𝐼 (𝑃𝐼∗) Mean 𝑃𝐼 Worst 𝑃𝐼 Standard dev.
0.5 0.8 7.06 7.16 7.34 0.11
0.5 0.9 7.06 7.19 7.43 0.14
0.5 1.0 7.09 7.21 7.34 0.12
0.6 0.8 7.02 7.12 7.34 0.10
0.6 0.9 7.02 7.12 7.21 0.08
0.6 1.0 7.09 7.18 7.34 0.08
0.7 0.8 7.02 7.10 7.34 0.10
0.7 0.9 7.02 7.14 7.34 0.10
0.7 1.0 7.09 7.18 7.52 0.15
0.8 0.8 7.02 7.06 7.09 0.04
0.8 0.9 7.02 7.11 7.34 0.13
0.8 1.0 7.09 7.16 7.34 0.09
0.9 0.8 7.02 7.09 7.21 0.07
0.9 0.9 7.09 7.22 7.34 0.13
0.9 1.0 7.21 7.32 7.52 0.15
1.0 0.8 7.04 7.18 7.34 0.09
1.0 0.9 7.21 7.29 7.34 0.07
1.0 1.0 7.34 7.39 7.52 0.09

Table 3: Flow parameters for 𝑃𝐼∗ at two-junction network.

Link number Capacity (veh/hr) Flow (veh/hr) Degree of saturation (%)
1 1332 751 56
2 1332 0 0
3 288 0 0
4 1260 749 59
5 360 0 0
6 360 0 0

Table 4: Signal timings for 𝑃𝐼∗ at two-junction network.

Cycle time𝑐 (s)
Junction
number𝑗

Duration of stage green timings (s) Offsets (s)𝜃𝑗Stage 1𝜑𝑗,1 Stage 2𝜑𝑗,2
100 1 79 21 0

2 75 25 38

Setting of mutation factor 𝐹, crossover rate 𝐶𝑅, and popula-
tion size𝑁𝑝 is crucial for the performance of DE algorithm.
Storn and Price [54] recommend that the ranges of [0.5, 1.0]
and [0.8, 1.0] may be chosen for 𝐹 and 𝐶𝑅, respectively.
In this context, an analysis is performed for 18 parameter
combinations where 𝐹 and 𝐶𝑅 are varied from 0.5 to 1.0 and
from 0.8 to 1.0 in steps of 0.1, respectively. 30 independent
runs are performed for every parameter combination for
solving delay minimization problem and the corresponding
results are given in Table 2. 𝑁𝑝 is set as 20 based on the
recommendation given in Rönkkönen et al. [62] andmaxgen
is set as 100. Note that the average computational time for
complete run of the proposed model is about 28 minutes.
It means that each generation takes about 16.8 seconds of
CPU. The proposed model has been executed in MATLAB

programming and performed on PC with Intel Core i7 2.10
GHz, RAM 8GB.

It can be seen in Table 2 that 𝑃𝐼∗ value is obtained as
7.02 with 7 different parameter combinations. In addition
to that, the setting 𝐹 = 𝐶𝑅 = 0.8 resulted in the lowest
mean 𝑃𝐼 and standard deviation values which are 7.06 and
0.04, respectively. Therefore, this parameter combination is
selected for further applications. Corresponding results for𝑃𝐼∗ at two-junction network are presented in Tables 3 and
4. As can be seen in Table 3, the demand was almost equally
shared by links 1 and 4. Other links in the network do not
carry flow according to the solution for 𝑃𝐼∗.

Once the network 𝑃𝐼∗ has been calculated, the reserve
capacity maximization problem can be solved for two-
junction network assuming that the bounds for O-D
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Table 5: Flow parameters for 𝜇∗ at two-junction network.

Link number Capacity (veh/hr) Flow (veh/hr) Degree of saturation (%)
1 810 810 100
2 810 794 98
3 810 793 98
4 810 810 100
5 810 793 98
6 810 794 98

Table 6: Signal timings for 𝜇∗ at two-junction network.

Cycle Time𝑐 (s)
Junction
number𝑗

Duration of stage green timings (s)
Stage 1𝜑𝑗,1 Stage 2𝜑𝑗,2

100 1 50 50
2 50 50

Table 7: Values of 𝑍, 𝑍1 and 𝑍2 at two-junction network.

𝛼 𝑍1 𝑍2 𝑍
0.00 2.137 1.000 1.000
0.10 2.097 1.023 1.130
0.20 2.057 1.045 1.247
0.30 2.019 1.069 1.354
0.40 1.981 1.092 1.448
0.50 1.908 1.153 1.530
0.60 1.834 1.391 1.657
0.70 1.691 1.752 1.709
0.80 1.549 2.217 1.683
0.90 1.330 4.840 1.681
1.00 1.000 14.240 1.000

multiplier are (0,5). According to the analysis, 𝜇∗ was found
as 2.1370 which is the solution of the single-objective problem
given in (10). Other corresponding results obtained with the
solution are given in Tables 5 and 6, respectively.

As shown in Table 5, the values of degree of saturation
on the links indicate that none of the links is oversaturated
although the O-D demand was multiplied by 2.1370. In other
words, flows do not exceed their corresponding link capaci-
ties. In the case that O-D demand matrix was multiplied by𝜇∗, the cycle time was found as 100 which is its upper bound
for this example.This means that the common cycle time was
increased, together with the O-D multiplier to overcome the
increased demand which was more than double of the base
demand on the network.

Once the values of 𝜇∗ and 𝑃𝐼∗ are obtained, there is
no further obstacle to solve the combined reserve capacity
maximization and delay minimization problem by using (9).
Optimized values of the objective functions, 𝑍, 𝑍1, and 𝑍2,
are given for different values of weighting factors in Table 7. It
can be seen in Table 7 that, in case 𝛼 is zero, any improvement
in the network reserve capacity is not allowed.Thus, the value
of 𝑍1 becomes equal to 𝜇∗ since 𝜇 is 1.0 which represents the
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Figure 4: Variation of 𝑍1 and 𝑍2 for different 𝛼 values.

base demand. On the other hand, the value of 𝑍2 equals 1.0
indicating that the optimized value of 𝑃𝐼 is equivalent to 𝑃𝐼∗
which is the upper bound of 𝑃𝐼. In brief, the authority is fully
concerned with the delay minimization and no additional
travel demand is added to the network. On the contrary,
when 𝛼 equals 1.0, the authority is not further concerned
with the delayminimization and tries tomaximize the reserve
capacity in the network and consequently the value of 𝑍1
equals 1.0 which means that 𝜇 becomes equal to 𝜇∗.

In addition, the graphical representation for the values
of 𝑍1 and 𝑍2 regarding different values of 𝛼 is given in
Figure 4 which also shows the Pareto optimal solutions for
the objective functions, 𝑍1 and 𝑍2. It can be emphasized
that 𝑍1 and 𝑍2 are in conflict with each other; that is,𝑍1 shows a decreasing tendency while 𝑍2 has a tendency
to increase. Thus, regarding the dilemma between reserve
capacitymaximization and delayminimization problems, the
authority can choose one among the Pareto optimal solutions
according to its own preferences. It can be seen that there is
no significant change in the values of 𝑍1 and 𝑍2 when the
value of 𝛼 increases from 0 to 0.5. Afterwards, the value of𝑍2 tends to increase in case 𝛼 is higher than 0.5. Likewise,
it can be clearly observed that the value of 𝑍2 dramatically
increases when 𝛼 is higher than 0.8. This indicates that the
authority paysmore attention to the network reserve capacity
maximization than delay minimization.

Depending on the variation of 𝛼 values between 0 and 1,
values of 𝜇 and 𝑃𝐼, their changes, and cumulative changes are
given in Table 8. As can be seen in Table 8 𝜇 and 𝑃𝐼 increase
about 8% and 9%, respectively, while the objective weight
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Table 8: Evaluation of the changes of 𝜇 and 𝑃𝐼 for different 𝛼 values.

Objective
weighting
factor

O-D demand
multiplier

Network
Performance

index
Change (%) Cumulative change (%) Cumulative

change rate

𝛼𝑖 𝜇𝛼𝑖 𝑃𝐼𝛼𝑖 Δ𝜇 = 𝜇𝛼𝑖 − 𝜇𝛼𝑖−1𝜇𝛼𝑖−1 Δ𝑃𝐼 = 𝑃𝐼𝛼𝑖 − 𝑃𝐼𝛼𝑖−1𝑃𝐼𝛼𝑖−1 ∑Δ𝜇 ∑Δ𝑃𝐼 ∑Δ𝑃𝐼∑Δ𝜇
0.00 1.000 7.02 1.91 2.25 1.91 2.25 1.18
0.10 1.019 7.18 1.95 2.20 3.86 4.45 1.15
0.20 1.039 7.34 1.87 2.30 5.73 6.75 1.18
0.30 1.058 7.50 1.91 2.15 7.64 8.90 1.16
0.40 1.079 7.67 3.86 5.59 11.50 14.48 1.26
0.50 1.120 8.09 4.01 20.64 15.51 35.13 2.26
0.60 1.165 9.76 8.46 25.95 23.97 61.08 2.55
0.70 1.264 12.30 9.17 26.54 33.14 87.62 2.64
0.80 1.380 15.56 16.47 118.31 49.60 205.93 4.15
0.90 1.607 33.98 33.00 194.21 82.60 400.15 4.84
1.00 2.137 99.96
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Figure 5: Change of 𝑃𝐼 values with O-D multiplier 𝜇.

increases from 0 to 0.4. That is, approximately 2% change is
observed for both𝜇 and𝑃𝐼 for every 0.1 change in𝛼. However,
when 𝛼 = 0.5 is selected as the solution point, change in𝜇 and 𝑃𝐼 is realized to be about 4% and 6%, respectively.
Thismeans that the users’ benefit is badly affected by growing
travel demand. Examining the rest of Table 8, it can be seen
that there are two significant breaking points in terms of the
changes in 𝜇 and 𝑃𝐼. The first one is 𝛼 = 0.6; that is, the
increases in 𝜇 and 𝑃𝐼 are about 4% and 21%, respectively.
The second point is 𝛼 = 0.9; that is, 𝜇 and 𝑃𝐼 increases are
about 16% and 118%, respectively. This result can be clearly
seen in Figure 5 which represents the change of 𝑃𝐼 with the
O-D multiplier 𝜇.

For further explanation of the changes of 𝜇 and 𝑃𝐼,
we present Figure 6 in which their cumulative changes and
corresponding change rates are considered with the objective
weight of 𝛼. Bars with three different colours in Figure 6,
which represent the cumulative change rates ∑Δ𝑃𝐼/∑Δ𝜇,
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Figure 6: Cumulative changes of 𝜇 and 𝑃𝐼with the objective weight
of 𝛼.

reveal three different zones where each one has specific values
of cumulative change rates. Therefore, the local authority can
make decision about 𝛼 by considering the first points of those
zones. Two breaking points, which are 𝛼 = 0.6 and 𝛼 = 0.9
as explained based on Table 8, are clearly seen in the figure.
When 𝛼 equals 0.9, a more significant increase in cumulative𝑃𝐼 value is observed than that for 𝛼 = 0.6. Therefore, 𝛼 = 0.8
may be considered as the best objective weight that provides
an O-D multiplier and signal timing configuration since all
other Pareto optimal solutions proportionally reduce users’
benefit more than the gain in network reserve capacity.

4.2. Allsop & Charlesworth’s Network. Allsop & Charles-
worth’s test network is chosen as second numerical example
since it has widely been used in the studies concerning
transportation network design [35, 36, 41, 42, 45]. Thus, we
aim to give readers a chance to compare some results drawn
by some previous studies. The representation of the test road
network and its stage plans are given in Figure 7.The example
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Figure 7: Layout and stage plans of Allsop & Charlesworth’s network.

network consists of 23 links and 21 signal setting variables
at six junctions. The input data and relevant O-D demand
matrix are given in Tables 9 and 10, respectively.

Constraints for each signal timing variable are set as given
below:

𝜓 (𝑐, 𝜃,𝜑) ∈ Ω0;
{{{{{{{{{

30 ≤ 𝑐 ≤ 150
0 ≤ 𝜃 < 𝑐
7 ≤ 𝜑 ≤ 𝑐

(25)

The intergreen time, 𝐼, between stages was selected as 5 sec.
In addition, bounds for O-D multiplier were assumed to be
(0,3). It should be pointed out that the reason for selecting
these upper and lower bounds for O-D multiplier on this
example is to reduce the feasible search space and thus to
decrease the computational burden of proposed solution
algorithm. Considering the number of decision variables
for Allsop & Charlesworth’s network, 𝑁𝑝 and maxgen are
selected as 40 and 500, respectively. Firstly, the RCMP
was solved by using BLPM given in Figure 1, and 𝜇∗ was
found as 1.29 for Allsop & Charlesworth’s network which is
the solution of the single-objective problem given in (10).

Subsequently, 𝑃𝐼∗ was determined as 341.10 by solving the
delay minimization problem by using the proposed model
given in Figure 2. Similarly to the Pareto efficiency analysis
performed for two-junction network, the best values of 𝜇
and 𝑃𝐼 with their changes and cumulative changes after 10
independent runs are given in Table 11 for 𝛼 values between 0
and 1.The average computational time for complete run of the
proposedmodel is about 4.7 hours. As can be seen in Table 11,𝜇 and 𝑃𝐼 increased on average by 1.0% and 4.8%, respectively,
for every 0.1 change in 𝛼 while it increases from 0 to 0.8. On
the other hand, while 𝛼 equals 0.9, the changes of 𝜇 and𝑃𝐼 are
about 6 and 8 times higher than their values in the case for𝛼 = 0.8. This means that the users’ benefit is badly affected
by significant increase in network 𝑃𝐼. Therefore, 𝛼 = 0.8
may be considered as the best objective weight that provides a
balance between solutions of reserve capacity maximization
and delay minimization problems. This result can be seen
in Figure 8 which represents the change of 𝑃𝐼 with the O-D
multiplier 𝜇.

Resulting SUE link flows, degrees of saturations, and
signal timings for 𝛼 values of 0.0, 0.8, and 1.0 are given in
Tables 12 and 13, respectively.
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Table 9: Input data for Allsop & Charlesworth’s network.

Junction Link
Free-flow
travel time

(𝑡0𝑎)
Saturation
flow (𝑠𝑎) Junction Link Free-flow travel time (𝑡0𝑎) Saturation flow (𝑠𝑎)

1 4

5 20 1800
1 1 2000 6 20 1850
2 1 1600 10 10 2200
16 10 2900 11 1 2000
19 10 1500 12 1 1800

13 1 2200

2
3
15
23

10
15
15

3200
2600
3200

5

8 15 1850
9 15 1700
17 10 1700
21 15 3200

3
4 15 3200

6
7 10 1800

14 20 3200 18 15 1700
20 1 2800 22 1 3600

Table 10: O-D demandmatrix for Allsop & Charlesworth’s network
in veh/hr.

O/D A B D E F
A -- 250 700 30 200
C 40 20 200 130 900
D 400 250 -- 0 100
E 300 130 0 -- 20
G 550 450 170 60 20

=0.8

 = 0.0 ~ 0.8
 = 0.8~ 1.0

1.05 1.10 1.15 1.20 1.25 1.301.00
O-D multiplier 

300
400
500
600
700
800
900

1000
1100

N
et

w
or

k 
pe

rfo
rm

an
ce

 in
de

x 
PI

Figure 8: Change of 𝑃𝐼 values with O-Dmultiplier 𝜇 for Allsop and
Charlesworth’s network.

When the value of 𝛼 is 0, that is, only the delay mini-
mization is taken into account by the authority, the degrees
of saturation of SUE links converge to the lowest values as
shown in Table 12. On the contrary, in case of 𝛼 = 1.0, which
represents that the authority is totally concerned with the
maximizing of reserve capacity,𝑃𝐼has substantially increased
about 3.2 times, namely, 1084 for the maximum O-D multi-
plier of 1.29 in comparison with the case of 𝛼 = 0 as shown

in Table 13. Moreover, although the O-D demand matrix is
increased about 30%, none of the links is oversaturated which
means that their degrees of saturation are less than 1.0. For𝛼 = 0.8, 𝜇 and 𝑃𝐼 are found as 1.08 and 495.40, respectively.
It means that when 𝛼 equals 0.8, the road network can
accommodate about 8% more travel demand with ensuring
links do not exceed their capacities while 𝑃𝐼 increases about
45%. This is because 𝛼 equals 0.8 and the authority does
not pay attention to the delay minimization as much as
the maximization of reserve capacity problem. On the other
side, the common cycle time for Allsop & Charlesworth’s
network was found as 150, 138, and 150 sec for 𝛼 values of
0, 0.8, and 1.0, respectively.

5. Conclusions and Future Studies

This study deals with the simultaneous solution of reserve
capacity maximization and delay minimization problems
by optimizing traffic signal timings. For this purpose, a
biobjective BLPM is developed and solved by implementing
a DE based heuristic solution algorithm. We introduce the
weighted-sum method to solve the proposed biobjective
model and present an approach to make the objective
functions of the biobjective model dimensionless. In the
upper level, it is aimed to maximize reserve capacity and
to minimize delay in a road network, whereas at the lower
level the user’s reactions are determined by solving stochastic
traffic assignment problem.

Two numerical applications are performed in order to
show the applicability of the proposed model. Firstly, the
proposed model is applied to a two-junction network. In this
application, the cumulative change of 𝑃𝐼 value is extremely
high when 𝛼 is set to 1.0. It means that the authority is
totally concerned with the reserve capacity maximization
without taking delay minimization into account.Thus, the 𝑃𝐼
value spikes up to about 100. For the two-junction network,𝛼 = 0.8 is selected as a suitable objective weight that
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Table 11: Evaluation of the changes of 𝜇 and 𝑃𝐼 for different 𝛼 values for Allsop and Charlesworth’s network.

Objective
weighting
factor

O-D demand
multiplier

Network
performance

index
Change (%) Cumulative change (%) Cumulative

change rate

𝛼𝑖 𝜇𝛼𝑖 𝑃𝐼𝛼𝑖 Δ𝜇 = 𝜇𝛼𝑖 − 𝜇𝛼𝑖−1𝜇𝛼𝑖−1 Δ𝑃𝐼 = 𝑃𝐼𝛼𝑖 − 𝑃𝐼𝛼𝑖−1𝑃𝐼𝛼𝑖−1 ∑Δ𝜇 ∑Δ𝑃𝐼 ∑Δ𝑃𝐼∑Δ𝜇
0.00 1.000 341.10 1.20 5.53 1.20 5.53 4.61
0.10 1.012 359.97 1.09 5.13 2.29 10.66 4.64
0.20 1.023 378.43 0.78 3.88 3.07 14.54 4.74
0.30 1.031 393.13 0.87 4.17 3.94 18.71 4.75
0.40 1.040 409.51 1.06 5.16 5.00 23.87 4.77
0.50 1.051 430.63 0.76 3.58 5.76 27.45 4.76
0.60 1.059 446.04 1.13 5.54 6.89 32.98 4.78
0.70 1.071 470.73 1.21 5.24 8.11 38.22 4.71
0.80 1.084 495.40 7.66 40.80 15.76 79.02 5.01
0.90 1.167 697.52 10.54 55.41 26.30 134.43 5.11
1.00 1.290 1084.00

Table 12: SUE link flows and degrees of saturations for 𝛼 values 0.0, 0.8 and 1.0.

𝛼 = 0.0 𝛼 = 0.8 𝛼 = 1.0
Link Number SUE flows

(veh/h)

Degree of
Saturation

(%)
Link Number SUE flows

(veh/h)

Degree of
Saturation

(%)
Link Number SUE flows

(veh/h)

Degree of
Saturation

(%)
1 722 39 1 780 42 1 927 50
2 458 36 2 500 55 2 595 61
3 722 36 3 780 45 3 927 64
4 596 47 4 643 52 4 765 72
5 641 53 5 692 63 5 822 76
6 175 32 6 190 35 6 226 45
7 458 91 7 500 78 7 595 76
8 474 64 8 517 70 8 616 72
9 109 74 9 119 54 9 142 89
10 474 92 10 517 83 10 616 93
11 497 68 11 542 87 11 639 98
12 253 23 12 271 25 12 329 29
13 450 68 13 488 75 13 581 97
14 785 62 14 858 70 14 1011 95
15 786 48 15 859 61 15 1013 86
16 386 95 16 719 68 16 847 91
17 415 78 17 443 97 17 537 86
18 354 74 18 377 63 18 457 62
19 904 76 19 679 80 19 817 89
20 1290 85 20 1399 92 20 1664 99
21 1070 67 21 1160 74 21 1379 98
22 1250 53 22 1355 66 22 1613 90
23 574 59 23 917 75 23 1091 71
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Table 13: Values of signal timings, 𝜇 and 𝑃𝐼 for 𝛼 values 0.0, 0.8 and 1.0.

Duration of stages (s)
O-D multiplier Performance index Cycle Time Junction Number Stage 1 Stage 2 Stage 3 Offsets (s)

𝜇 𝑃𝐼 𝑐 (s) 𝑗 𝜑𝑖,1 𝜑𝑖,1 𝜑𝑖,1 𝜃𝑖

𝛼 = 0.0 1.00 341.10 150

1 26 124 --- 0
2 99 51 --- 0
3 86 64 --- 79
4 60 40 50 120
5 18 52 80 0
6 47 103 --- 149

𝛼 = 0.8 1.08 495.40 138

1 55 83 --- 0
2 80 58 --- 50
3 80 58 --- 74
4 48 44 46 62
5 23 42 73 89
6 54 84 --- 61

𝛼 = 1.0 1.29 1084.00 150

1 53 97 --- 0
2 73 77 --- 2
3 95 55 --- 100
4 54 50 46 0
5 19 60 71 16
6 70 80 --- 72

provides a balance between conflicting issues, namely, reserve
capacitymaximization and delayminimization. Secondly, the
proposed model is applied to Allsop & Charlesworth’s road
network in order to show its effectiveness on a medium-sized
signalized road network. According to the Pareto efficiency
analysis for this network, it is found that the case where 𝛼
equals 0.8 is also suitable since all other Pareto solutions
proportionally reduce users’ benefit more than the gain in
network reserve capacity.Moreover, results indicate that there
are no oversaturated links in the network even in the case
where 𝛼 equals 1.0, which means that the O-D multiplier is
maximized.

In conclusion, results show that the use of different 𝛼
values gives an opportunity to responsible authorities to
make a suitable choice for the benefit of road users between
two conflicting issues. For future studies, dynamic traffic
assignment rather than static assignment may be considered
in order to reflect the effect of time-varying flows on the
solution of the proposed model.
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