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Abstract: In this paper we deal with congruence equations arising from suborbital graphs of the normalizer of Γ0(m) in
PSL(2,R) . We also propose a conjecture concerning the suborbital graphs of the normalizer and the related congruence
equations. In order to prove the existence of solution of an equation over prime finite field, this paper utilizes the
Fuchsian group action on the upper half plane and Farey graphs properties.
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1. Introduction
1.1. Suborbital graphs

It is known that studying the idea of a group G acting on a set Ω , we can also establish some additional
structure on Ω . One of these structures is a graph. The connection between transitive groups and graphs give
us new insight into some known results. Here we also used this connection. The suborbital graph is a graph
arisen from the transitive group action. The concept of this graph was introduced by Sims in [17]. When a
group G acts on a set Ω , a typical point α is moved by the elements of G to various other points. The set
of these images is called the orbit of α under G . We consider the usual action of G on the cartesian product
Ω×Ω . The orbits of G on this set are called the suborbitals of G on Ω . If O is a suborbital of G on Ω×Ω ,
we can form a suborbital graph as follows. Vertices are the elements of Ω and the vertices may be thought
as joined by directed or undirected line segments corresponding to the edges. In the directed case the edge
(γ, δ) will be said to go from γ to δ and denoted by γ → δ . In the indirected case {γ, δ} will be said to go
from γ to δ and from δ to γ . In either case we represent them as hyperbolic geodesics in the upper half-plane
H = {z ∈ C : Im(z) > 0} as in [9].

The least interesting suborbital graph is self-paired; it consists of a loop based at each vertex α ∈ Ω . A
circuit of length m is a sequence ν1 → ν2 → · · · → νm → ν1 such that νi ̸= νj for i ̸= j , where m ≥ 3 . The
circuit is called a triangle or a quadrilateral if m = 3 or 4 , respectively.

In this study, G and ∆ will be the normalizer of Γ0(N) in PSL(2,R) and the extended rational
Q̂ = Q ∪ {∞} , respectively.
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1.2. Motivation
Γ0(N) is the best known congruence subgroup of the classical modular group Γ = PSL(2,Z) , the set of all
2 by 2 integer matrices with the unit determinant. Its normalizer in PSL(2,R) has been studied by many
authors because of the relation in the study of moonshine [4, 5, 14].

The modular group acts transitively on Q̂ and in [9], Jones et al. investigated and described many
properties of suborbital graphs for Γ and showed that the most basic one turned out to be the well-known
Farey graph.

In a series of papers, suborbital graphs of the normalizer were also studied under various restrictions
by the same idea [3, 12, 13]. Then, nontransitive cases have been examined to reach the general statement
[7, 10, 11]. An interesting contribution of these studies was that the action of normalizer offers solutions
for some congruence equations dealing with the sizes of circuits in the suborbital graph [8]. In this paper,
we continue to examine some new cases. Verification of these congruences would be interesting because one
immediate result is that we come close to obtain the suborbital graphs of Nor(N) for arbitrary-N .

1.3. Preliminaries

Let Γ = PSL(2,Z) be the modular group acting on Q̂ as follows:

g =

(
a c
b d

)
: z =

x

y
→ az + b

cz + d
=

ax+ by

cx+ dy
,

where a, b, c, , and d are rational integers and ad−bc = 1 . The normalizer of Γ0(N) = {g ∈ Γ : c ≡ 0 (mod N)}
in PSL(2,R) consists exactly of the matrices

(
ae b/h

cN/h de

)
, ade2 − bcN/h2 = e

where e ∥ N
h2 and h is the largest divisor of 24 for which h2|N with understandings that the determinant e of

the matrix is positive, and that r ∥ s means that r|s and (r, s/r) = 1 (r is called an exact divisor of s).

2. Main results
Throughout the paper, we suppose that N is equal to 23p2 , where p is a prime and p > 3 . In this case, since

h = 2min
{
3,[α/2]

}
3min

{
1,[β/2]

}
, h is equal to 2 for N = 2α3βpα3

3 · · · pαr
r . As e ∥ N

h2 , e must be 1, 2, p2, 2p2 .
Hence, Nor(23p2) has the following four types of the element:

E1 =

(
a b/2

22p2c d

)
: ad− 2bcp2 = 1, E2 =

(
2a b/2

22p2c 2d

)
: 4ad− 2bcp2 = 2,

E3 =

(
ap2 b/2
22p2c dp2

)
: adp4 − 2bcp2 = p2 and

E4 =

(
2ap2 b/2
22p2c 2dp2

)
: 4adp4 − 2bcp2 = 2p2.
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2.1. Transitive action
Lemma 2.1 [2, Corollary 2] Let N have the prime power decomposition as 2α1 · 3α2 · pα3

3 · · · pαr
r . Then

Nor(N) acts transitively on Q̂ if and only if α1 ≤ 7 , α2 ≤ 3 and αi ≤ 1 for i = 3, . . . , r .

Hence, the following theorem holds.

Theorem 2.1 (Nor(23p2), Q̂) is not a transitive permutation group.

Therefore, we try to find a maximal subset of Q̂ on which Nor(23p2) acts transitively. For this,

Lemma 2.2 [7, Corollary 2.4] Let d|N . Then the orbit
(
a
d

)
of a/d with (a, d) = 1 under Γ0(N) is the

set
{
x/y ∈ Q̂ : (N, y) = d, a ≡ xy

d (mod (d,N/d))
}

. Furthermore the number of orbits
(
a
d

)
with d|N under

Γ0(N) is just φ(d,N/d) where φ(n) is Euler’s totient function which is the number of positive integers less
than or equal to n that are coprime to n .

By the above theorem, we can give the following

Theorem 2.2 The orbits of Γ0(2
3p2) on Q̂ are as follows;(

1
1

)
;

(
1
2

)
;

(
1
22

)
;

(
1
23

)
;

(
1
p2

)
;

(
1
2p2

)
;

(
1

22p2

)
;

(
1

23p2

)
;(

1
p

)
,

(
2
p

)
. . .

(
p− 1
p

)
;

(
1
2p

)
,

(
p+ 2
2p

)
,

(
3
2p

)
,

(
p+ 4
2p

)
. . .

(
2p− 1
2p

)
;(

1
22p

)
,

(
p+ 2
22p

)
,

(
3
22p

)
,

(
p+ 4
22p

)
. . .

(
2p− 1
22p

)
;(

1
23p

)
,

(
p+ 2
23p

)
,

(
3
23p

)
,

(
p+ 4
23p

)
. . .

(
2p− 1
23p

)
.

Proof Taking into account Lemma 2.2 that d are 1, 2, 22, 23, p, 2p, 22p, 23p, p2, 2p2, 22p2, 23p2 . Hence, the num-
ber of non-conjugate classes of these orbits with Euler formula are 1 and p−1 for 1, 2, 22, 23, p2, 2p2, 22p2, 23p2

and p, 2p, 22p, 23p respectively. Consequently, the number of orbits of Γ0(2
3p2) on Q̂ is 4p+ 4 . 2

Theorem 2.3 The set Q̂(23p2) :=

(
1
1

)
∪
(
1
2

)
∪
(
1
22

)
∪
(
1
23

)
∪
(
1
p2

)
∪
(

1
2p2

)
∪
(

1
22p2

)
∪
(

1
23p2

)
, is a

maximal orbit of Nor(23p2) on Q̂ .

Proof Let us consider the orbit
(
1
1

)
under the action of the elements of Nor(23p2) . For the above element

E1 , it is clear that a and d must be odd by det(E1) . Hence,

(i) E1

(
1
1

)
=

(
2a+ b

2(2p2c+ d)

)
∼=

(
1
2

)
As for E2 , we see that b must be odd by det(E2) .
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(ii) E2

(
1
1

)
=

(
2a+ b

22(2p2c+ d)

)
∼=

(
1
22

)
for b -odd and d -odd.

(iii) E2

(
1
1

)
=

(
2a+ b

23(p2c+ d0)

)
∼=

(
1
23

)
for b -odd and d -even.

For the element E3 , it is clear that a and d must be odd by det(E3) . Hence,

(iv) E3

(
1
1

)
=

(
2ap2 + b

2p2(22c+ d)

)
∼=

(
1
2p2

)
for d -odd and b-odd.

(v) E3

(
1
1

)
=

(
ap2 + b0

p2(22c+ d)

)
∼=

(
1
p2

)
for d -odd and b -even.

As for E4 , we see that b must be odd by det(E4) .

(vi) E4

(
1
1

)
=

(
2ap2 + b

22p2(2c+ d)

)
∼=

(
1

22p2

)
for b -odd and d -odd.

(vii) E4

(
1
1

)
=

(
2ap2 + b

23p2(c+ d0)

)
∼=

(
1

23p2

)
for b -odd and d -even.

2

Consequently, (Nor(23p2), Q̂(23p2)) is a transitive permutation group.

2.2. Imprimitive action

Lemma 2.3 [6, Theorem 1.5.A] Let G be a group acting transitively on a set ∆ . G is primitive if and only
if each point stabilizer of Gα is a maximal subgroup of G.

Hence, we find a subgroup H of G as follows: Gα ⪇ H ⪇ G , then we can give some G-invariant
equivalence relation other than the trivial cases. We know that every element of ∆ has the form g(α) for some
g ∈ G by the transitivity. Thus, the desired nontrivial G-invariant equivalence relation on ∆ can be given as
follows:

g(α) ≈ g′(α) if and only if g−1g′ ∈ H.

The number of blocks ( equivalence classes ) is the index |G : H| .

Now, we consider the case where G is the Nor(23p2) and ∆ is Q̂(23p2) , Gα is the stabilizer of ∞ in

Q̂(23p2) ; that is, Nor(23p2)∞ =

⟨(
1 1/2
0 1

)⟩
, and H is H0 :=

⟨
Γ0(2

3p2), E1, E2

⟩
where

E1 =

(
a b/2

2p2c d

)
and E2 :=

(
2a b/2

22p2c −2(a± 1)

)
.

Clearly, the relation Nor(23p2)∞ < H0 < Nor(23p2) produce an imprimitive action as desired.
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2.3. Block design

Lemma 2.4 [1, Proposition 2] The index |Nor(N) : Γ0(N)| = 2ρh2τ ,
where ρ is the number of prime factors of N/h2 , τ = ( 32 )

ε1( 43 )
ε2 ,

ε1 =

{
1 if 22, 24, 26 ∥ N
0 otherwise , ε2 =

{
1 if 9 ∥ N
0 otherwise

By the Lemma 2.4, we obtain:

Theorem 2.4 There are only two blocks which are [∞] and [0] . These are

[0] :=

(
1
1

)
∪
(
1
2

)
∪
(
1
22

)
∪
(
1
23

)
and [∞] :=

(
1
p2

)
∪
(

1
2p2

)
∪
(

1
22p2

)
∪
(

1
23p2

)
.

Proof First, let us calculate the index |Nor(23p2) : Γ0(2
3p2)| by using Lemma 2.4. Since h = 2 , we have

ρ = 2 . As 22 ∦ 23p2 , then ε1 = ε2 = 0 . Hence, |Nor(23p2) : Γ0(2
3p2)| = 22.22 = 16 .

Second, we calculate the index |H0 : Γ0(2
3p2)| by using [1]. For E1 , a and d must be odd by

ad−2bcp2 = 1 . Since a+d is even, then (E1)
2 = I . It is also known that for any element A =

(
ae b/h

cN/h de

)
of Nor(N) , A4 = I if trace(A) = ±1 and det(A) = e = 2 . Clearly, E2 holds them. Hence, we have that

{I, E1} × {I, E2, E
2
2 , E

3
2} = {I, E1, E2, E1E

2
2 , E1E

3
2 , E

2
2 , E

3
2}

as cosets. Thus, we obtain that |H0 : Γ0(2
3p2)| = 8 . Using the equation

|Nor(23p2) : Γ0(2
3p2)| = |Nor(23p2) : H0|.|H0 : Γ0(2

3p2)|,

we have |Nor(23p2) : H0| = 2 . As in Theorem 2.3, the orbit Q̂(23p2) will be split into two blocks as the

statement of the theorem taking into account the orbit
(
1
1

)
under the action of elements of H0 . 2

2.4. Edge condition

Since Nor(23p2) acts transitively on Q̂(23p2) , every suborbital O(α, β) contains a pair (∞, u/p2) for u/p2 ∈

Q̂(23p2) . As Nor(23p2) permutes the blocks transitively, all subgraphs corresponding to blocks are isomorphic.
Therefore, we will only consider the subgraph F (∞, u/p2) of G(∞, u/p2) whose vertices form the block [∞] .

Theorem 2.5 Vertices r/s and x/y be in the block [∞] . Then the edge r/s → x/y is in F (∞, u/p2) iff

(i) x ≡ ±ur (mod p2), y ≡ ±us (mod p2), ry − sx = ±p2 for 23p2 ∥ s ,

(ii) x ≡ ±2ur (mod p2), y ≡ ±2us (mod 2p2), ry − sx = ±2p2 for 22p2 ∥ s ,

(iii) x ≡ ±4ur (mod p2), y ≡ ±4us (mod 4p2), ry − sx = ±2p2 for 2p2 ∥ s ,

(iv) x ≡ ±8ur (mod p2), y ≡ ±8us (mod 4p2), ry − sx = ±p2 for p2 ∥ s .

(Plus and minus sign correspond to r/s > x/y and r/s < x/y , respectively)
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Proof We suppose that r/s
>−→ x/y is an edge in F (∞, u/p2) . It means that there exists some T in the

normalizer Nor(23p2) such that T sends the pair (∞, u/p2) to the pair (r/s, x/y) , that is T (∞) = r/s and
T (u/p2) = x/y .

Case 1 . If T =

(
a b

23p2c d

)
, a must be odd by the equation ad− bc(23p2) = 1 . Since T (∞) =

a

23p2c
=

r

s
, then r = a and s = 23p2c . Since T (u/p2) =

au+ bp2

23p2cu+ dp2
=

x

y
, then x ≡ ur (mod p2), y ≡ us (mod p2) .

In addition, we obtain ry − sx = p2 from the equation

(
a b

23p2c d

)(
1 u
0 p2

)
=

(
r s
x y

)
.

Case 2 . If T =

(
a b/2

22p2c d

)
, a must be odd by the equation ad − bc(2p2) = 1 . Since T (∞) =

a

22p2c
=

r

s
, then r = a and s = 22p2c . Since T (u/p2) =

au+ bp2/2

22p2cu+ dp2
=

2au+ bp2

23p2cu+ 2dp2
=

x

y
, then x ≡ 2ur

(mod p2), y ≡ 2us (mod 2p2) . In addition, we obtain ry − sx = 2p2 from the equation

(
2a b

22p2c d

)(
1 u
0 p2

)
=

(
2r s
x y/2

)
.

If T =

(
2a b/2

22p2c 2d

)
, a could be odd or even by the equation 2ad− bc(p2) = 1 .

Case 3 . Suppose that T =

(
2a b/2

22p2c 2d

)
and a is odd. Since T (∞) =

2a

22p2c
=

a

2p2c
=

r

s
, then

r = a and s = 2p2c . Since T (u/p2) =
2au+ bp2/2

22p2cu+ dp2
=

4au+ bp2

23p2cu+ 4dp2
=

x

y
then x ≡ 4ur (mod p2), y ≡ 4us

(mod 4p2) . In addition, we obtain ry − sx = 2p2 from the equation

(
2a b/2

22p2c d

)(
1 u
0 p2

)
=

(
r s
x y

)
.

Case 4 . Suppose that T =

(
2a b/2

22p2c 2d

)
and a is even. Since T (∞) =

2a

22p2c
=

a

2p2c
=

a0
p2c

=
r

s
, then

r = a0 and s = 2p2c . Since T (u/p2) =
2au+ bp2/2

22p2cu+ dp2
=

4au+ bp2

23p2cu+ 4dp2
=

8a0u+ bp2

23p2cu+ 4dp2
=

x

y
then x ≡ 8ur

(mod p2), y ≡ 8us (mod 4p2) . In addition, we obtain ry − sx = p2 from the equation

(
4a b

23p2c 4d

)(
1 u
0 p2

)
=

(
8r x
8s y

)
.

To prove opposite direction, we assume that 23p2 ∥ s and x ≡ ur (mod p2), y ≡ us (mod p2), ry − sx =

p2 . In this case, there exist b, d ∈ Z such that x = ur + bp2 and y = us+ dp2 . If we write these equivalences
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in ry − sx = p2 , we get rd − bs = 1 . Thus, the element T0 =

(
r b
s d

)
is clearly in H0 . For minus sign and

another conditions, similar calculations are done. 2

2.5. Circuit condition
In the introduction part, we mentioned that the trivial suborbital graphs are self-paired ones. In this section,
we will be mainly interested in the remaining nontrivial suborbital graphs.

Theorem 2.6 F (∞, u/p2) contains a quadrilateral iff 8u2 ± 4u+ 1 ≡ 0 (mod p2) .

Proof We suppose that there is a quadrilateral such as m

n
→ r

s
→ x

y
→ k

l
→ m

n
in F (∞, u/p2) . Since H0

permutes the vertices transitively, we may suppose that the quadrilateral has the form 1

0
→ r0

s0p2
→ x0

y0p2
→

k0
l0p2

→ 1

0
. Furthermore, without loss of generality, suppose r0

s0p2
<

x0

y0p2
<

k0
l0p2

. From Theorem 2.5(i), we

have that r0 ≡ u (mod p2) and s0 = 1 from the first edge. Hence, we get the second vertex as u

p2
. Applying

to Theorem 2.5(iv) to second edge, we obtain that x0 ≡ −8u2 (mod p2) , y0 = 4 and uy0 − x0 = −1 . Using

these values, we get that x0 = 4u + 1 and the third vertex as 4u+ 1

4p2
. Hence, we have 8u2 + 4u + 1 ≡ 0

(mod p2) by x ≡ −8u2 (mod p2) . By third condition in Theorem 2.5(ii), there are two possibilities for the rest
of configuration as follows:

Case 1 . If 4u+ 1

4p2
→ k0

p2
→ 1

0
, we have that 4up2 + p2 − 4p2k0 = −2p2 from third edge. Simplifying

4u+ 1− 4k = −2 , then 4(u− k0) = −3 gives a contradiction for u, k0 ∈ Z .

Case 2 . If 4u+ 1

4p2
→ k0

2p2
→ 1

0
, we have that 8up2 + 2p2 − 4p2k0 = −2p2 from third edge. Simplifying

4(2u− k0) = −4 , then 2u− k0 = −1 gives k0 = 2u+ 1 .

If the inequalities r0
s0p2

>
x0

y0p2
>

k0
l0p2

hold then we conclude that 8u2 − 4u+ 1 ≡ 0 (mod p2) .

To prove opposite direction, we assume that 8u2 ± 4u+ 1 ≡ 0 (mod p2) . Using Theorem 2.5, it is clear

that 1

0
→ u

p2
→ 4u± 1

4p2
→ 2u± 1

2p2
→ 1

0
is a quadrilateral in F (∞, u/p2) . 2

Example 2.1 As a simple example, suppose that p is equal to 5 which is a first prime greater than 3 . We
calculate which suborbital graphs contains a quadrilateral. Since 8u2+4u+1 ≡ 0 (mod 52) , then 8u2+4u+1 ≡ 0

(mod 5) , giving u = 3 + 5k such that k ∈ Z . Hence, we have 8(3 + 5k)2 + 4(3 + 5k) + 1 ≡ 0 (mod 52) , then
200k2 + 260k + 85 ≡ 0 (mod 52) . As 40k2 + 52k + 17 ≡ 0 (mod 5) , we obtain k = 4 and u = 23 . Since
8(23)2 + 4(23) + 1 ≡ 0 (mod 25) , F (∞, 23/25) contains a quadrilateral.

3. Conclusion
Theorem 3.1 The prime divisors p of 8u2 ± 4u+ 1 , for any u ∈ Z , are of the form p ≡ 1 (mod 4) .
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Proof Let u be any integer and p a prime divisor of 8u2 ± 4u + 1 . Then, without any difficulty, it can be
easily seen that the normalizer Nor(23p) , like Nor(23p2) , has the elliptic element

φ :=

(
−23u (8u2 ± 4u+ 1)/p
−23p 23u+ 4

)
of order 4 . From [2, Theorem 2], we get that p ≡ 1 (mod 4) . 2

Remark 3.1 Following the sketch of this paper, similar solutions can be given for other congruences in
the following conjecture. We note that the technique we used relies on the choice of group for imprimitive
action. By carefully choosing these groups, the proofs of the main results can be obtained by similar algebraic
considerations. We also think that our attempts on suborbitals might help to find unknown invariants of the
signature of Nor(N) for arbitrary-N taking into account the fact that the graph of a group provides a method
by which a group can be visualized (see also [15]). In suggestion of a next step to advance the literature, we
also give a conjecture below.

Conjecture 3.1 For α ≤ 7 and β ≤ 3 , solutions to possible congruence equations arising from the circuit
conditions in suborbital graphs of Nor(2α3βpα3

3 · · · pαr
r ) are as follows:

(i) The prime divisors p of 2α3βu2 ± 2
α
2 3

β
2 u+ 1 (mod p) in which α-even, β -even, and any u ∈ Z are of

the form p ≡ 1 (mod 3) .

(ii) The prime divisors p of 2α3βu2 ± 2
α+1
2 3

β
2 u+ 1 (mod p) in which α-odd, β -even, and any u ∈ Z are of

the form p ≡ 1 (mod 4) .

(iii) The prime divisors p of 2α3βu2 ± 2
α
2 3

β+1
2 u+ 1 (mod p) in which α-even, β -odd, and any u ∈ Z are of

the form p ≡ 1 (mod 3) .
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