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Abstract
Cytochromes P450s (CYPs) are terminal enzymes in CYP dependent
monooxygenases, which constitute a superfamily of enzymes catalysing the
metabolism of both endogenous and exogenous substances. One of their main
tasks is to facilitate the excretion of these substances and eliminate their toxicities
in most phase 1 reactions. Endogenous substrates of CYPs include steroids, bile
acids, eicosanoids, cholesterol, vitamin D and neurotransmitters. About 80% of
currently used drugs and environmental chemicals comprise exogenous
substrates for CYPs. Genetic polymorphisms of CYPs may affect the enzyme
functions and have been reported to be associated with various diseases and
adverse drug reactions among different populations. In this review, we discuss
the role of some critical CYP isoforms (CYP1A1, CYP2D6, CYP2J2, CYP2R1,
CYP3A5, CYP3A7, CYP4F3, CYP24A1, CYP26B1 and CYP27B1) in the
pathogenesis or aetiology of ulcerative colitis concerning gene polymorphisms. In
addition, their significance in metabolism concerning ulcerative colitis in patients
is also discussed showing a clear underestimation in genetic studies performed so
far.
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E-Editor: Ma YJ colitis (UC). Extrahepatic and extrarenal CYPs (e.g., macrophages and dendritic cells of
colonic mucosa) have a critical role in UC development. Polymorphisms discussed can
result in dysregulation of these enzymes in favour of alternative pathways producing
more reactive metabolites. Production of reactive metabolites is favouring more severe
disease states. Pharmacogenetics might facilitate individualized medicine for UC in the
future although actually available data is limited.
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INTRODUCTION
Cytochrome P450s (CYPs) are a superfamily of the integral membrane, heme-thiolate
proteins entailed in the synthesis and breakdown of various molecules and chemicals
within cells[1-3]. CYPs play a role in the metabolism of many endogenous substances
including  steroids,  bile  acids,  eicosanoids,  cholesterol,  vitamin  D  and  neuro-
transmitters, steroid hormones, cholesterol, fatty acids, bile acids[4-6]. Additional CYPs
metabolise xenobiotics, such as drugs and endogenous molecules such as toxins that
are shaped inside cells[7-11]. The human CYP isoenzymes superfamily is composed of
57 CYP genes and 58 pseudogenes arranged into 18 families and 43 subfamilies[12].
They are located either at endoplasmic reticulum or mitochondria of liver cells, but
are also situated in other cells throughout the body[13-16].  Mitochondrial CYPs are
commonly engaged in phase I reactions with anabolic and catabolic transformations
of  endogenous  substances,  while  CYPs  in  the  endoplasmic  reticulum generally
process xenobiotics. CYPs are gathered into families and subfamilies as indicated by
the similarity index of the amino sequence. Every CYP is given a number relating a
particular family inside the gene group, a letter exemplifying the subfamily, and a
number allocated to the distinct gene inside the subgroup, e.g., the CYP gene that is in
family 1, subgroup A, gene 1, is written as CYP1A1[12,17-20].

CYPs show intra- or interethnic and intra- or interindividual genetic variations.
These variations or polymorphisms in CYP genes can largely alter the function of the
enzymes. We continue to learn about the properties of these enzymes in humans and
their roles in different diseases. As with many other genes and proteins associated
with a critical life function, specific polymorphisms or variability in these CYPs and,
hence,  the gene product will  result  in pathology and lead to a severe human di-
sease[21-24].

Ulcerative  colitis  (UC)  is  an  idiopathic  chronic  inflammation  condition  with
multifactorial determinants[25]. Populace-based careful surveys have shown that the
frequency of UC worldwide has expanded in recent years. As opposed to the de-
veloped communities of North America and Western Europe, where the prevalence of
UC has levelled or even lessened, publications demonstrate that incidences have
elevated in developing countries,  for example,  those in Latin America,  Asia and
Eastern Europe leaving an urgent medical need[26-28]. The progression of UC requires a
hereditary predilection, dysregulated immune reactions and an environmental incites.
Candidate  genes  comprise  those  that  govern  innate  immunity  and  epithelial
boundary function[29-32]. Consequently, the interplay among hereditary and environ-
mental components will cast the gut epithelial-inborn immunity interface and lead to
unique phenotypes in patients with Inflammatory Bowel Disease.

Several studies have demonstrated that the CYP gene polymorphisms have been
associated with the susceptibility to UC, but this is, to the best of our knowledge the
first systematic review on the role of the CYPs polymorphism and function in the
vulnerability and the development of UC. Each CYP will be described and discussed
in alphabetical order, rather than in its importance to UC.

CYP1A1
CYP1A1 (EC 1.14.14.1), a notable aryl hydrocarbon hydroxylase, is expressed in the
liver at exceptionally low quantities, and is mostly translated in human extrahepatic
tissues, including digestive tract[8,33-37]. In humans, since the CYP1A1 is an extrahepatic
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protein, it is considered to assume a secondary function in the removal of medications
in vivo, and consequently, the polymorphism of the CYP1A1 gene may have a minor
impact  on  their  metabolic  clearance.  CYP1A1 assume essential  tasks  in  the  bio-
activation of a collection of cancer-causing polycyclic aromatic hydrocarbons [PAHs;
e.g.,  benzo[a]pyrene  (B[a]P)],  aromatic  amines  and  amides,  and  mycotoxins
ascertained in certain grains, e.g., aflatoxin B1[10,38-41]. CYP1A1 is also committed in the
metabolism of endogenous compounds such as the pineal hormone melatonin and 17
β-estradiol  and  estrone[42-44].  It  has  been  acknowledged  as  the  principal  CYP
responsible  for  the  C2-  or  C4-hydroxylation of  17  β-estradiol  and estrone in  ex-
trahepatic tissues[45].

The CYP1A1 is positioned on chromosome 15 close to the mannose phosphate
isomerase  (MPI)  locus  at  15q22-24[46].  To  date,  there  are  2092  SNPs depicted for
CYP1A1 in NCBI dbSNP (https://www.ncbi.nlm.nih.gov/snp, access date: February
23, 2019). There are just a couple of investigations on the relationship of CYP1A1
polymorphism and function with UC.

CYP1A1  is  the  least  studied  isoform  on  the  genotyping  and  phenotyping  in
gastroenterological practice, on the assumption that it is not involved in the meta-
bolism of the intestine and inadequacy of clinical response. Klotz and colleagues[47]

have tested the hypothesis that the appearance, arrangement, and activity of drug-
metabolising enzymes in the gut may produce one or more reactive metabolites and
create UC. For this purpose, they have evaluated the terminal ileum and different
regions  of  the  colon  biopsies  from  37  patients  with  UC  by  staining  immu-
nohistochemically  for  CYP1A1  isozyme.  All  proteins  aside  from  CYP1A1  were
displayed with comparable recurrence in both control and UC patients.  CYP1A1
staining was definite substantially more frequently in patients with UC (39.4%) than
in control (irritable colon, no clinical or histological indications of inflammations;
19.2%). These results may confirm the involvement of this protein in the aetiology or
pathogenesis of inflammation in this tissue.

On the other hand, the more frequent appearance of  CYP1A1 could be due to
secondarily to the appearance of inflammation. Other recent studies have further
supported the latter suggestion by demonstrating that the CYP1A1 regulates immune
responses in the intestine and confers protection against intestinal inflammation[48-49].
On the other hand, Plewka and colleagues[50] have pointed out that the expression of
CYP1A1 in enterocytes from UC patients was lower than in control, equivalent to 80%
of the latter. Therefore, CYP1A1 needs to be further studied to resolve its role in UC.

Furthermore, our study included 161 Turkish patients with ulcerative colitis (94
males, 67 females; all Caucasian) consulting the outpatient clinic of the Department of
Gastroenterology,  Ege  University,  Turkey[51,52].  A  group  of  198  healthy  Turkish
Caucasians adjusted for age and sex (115 males and 83 females) were utilised as
controls.

DNA  preparations  from  the  Turkish  population  were  subjected  to  genotype
analysis of CYP1A1*2B (rs4646903, T>C, 3′-flanking region, linked with increased
enzyme activity). Our results showed that the CYP1A1*2A alleles correlate with an
increased predisposition  to  UC,  a  piece  of  further  supporting  evidence  that  the
increased  CYP1A1  activity  might  cause  the  abundant  accumulation  of  reactive
metabolites,  which  advances  an  irregular  intestinal  immune  response,  causing
irreversible harm to the colonic mucosa and eventually UC. Since there is limited and
conflicting literature available on CYP1A1 polymorphism and function in UC, more
studies are required to clarify the role of CYP1A1 in UC.

CYP2D6
The CYP2D6, also known as debrisoquine hydroxylase, presents a small percentage of
all hepatic cytochrome P450s[53]. It is encoded by the CYP2D6 gene that is localised on
chromosome 22q13.1 and participates in the biotransformation of about 20-25% of the
clinically used drugs[54,55].  The endogenous substrates  of  CYP2D6 include neuro-
transmitters and neurosteroids, pinoline, progesterone and lipids[55,56].  It is highly
polymorphic in the human population, and marked inter-racial variation observed.

Individuals  are  identified  as  ultra-rapid,  extensive,  intermediate  or  poor
metabolizer, according to the number of functional alleles. To date, there are 3257
SNPs described for CYP2D6 in NCBI dbSNP (https://www.ncbi.nlm.nih.gov/snp,
access date:  February 23,  2019).  CYP2D6 is  another isoform that genotyping and
phenotyping are not usually performed for gastroenterological inflammation, on the
assumption that the irrelativity of the medications to intestinal digestion or generally
little metabolic limit of CYP2D6 in the small digestive tract[57,58]. CYP2D6 is another
isoform  on  which  genotyping  and  phenotyping  are  not  usually  performed  for
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gastroenterological  inflammation,  on the belief  that there is  non-relativity of  the
medications to intestinal metabolism or the generally little metabolic limit of CYP2D6
in the small intestine[57,58].

Dudarewicz et al[59]  have analysed CYP2D6 genotypes *1 (wild type), *3 and *4
using the PCR-RFLP method in 258 people from central Poland; 65 patients with UC
and 50 with Crohn’s disease (CD); and 143 healthy controls. They announced that
despite the fact  that  the odds ratio (OR) was higher in carriers  of  the CYP2D6*1
/CYP2D6*3 genotype [extensive metabolizer (EM)], there was no factually significant
difference  in  the  recurrence  of  the  CYP2D6 alleles  in  patients  with  UC and CD.
Similarly, Trzcinski et al[60] have shown that the increased OR for inflammatory bowel
disease (IBD) was without statistical significance. These researches suggest that there
were no measurably significant variations in the appearance of the CYP2D6 alleles in
IBD patients (UC or CD). However, the EM genotype might be the risk factor for IBD.
Future investigations applied to a larger group of patients are needed to confirm
presumptions.

Handersson et al[61] reported a real-world clinical case portraying the drug-drug
interactions in a UC patient. The patient was on tamoxifen therapy for breast cancer
and was prescribed rifampin for worsening UC. The patient is known to be a CYP2D6
intermediate metabolizer, and rifampin significantly lowered the endoxifen level. It
constitutes a substantial risk of sub-therapeutic efficacy in tamoxifen patients, which
may be of distinct concern among high-risk patients. This study illustrates the clinical
value of CYPs genotyping in UC patients for therapeutic efficiencies of combinative
therapies; exceptional consideration must be practised when required.

Le  and  Bae[62]  carried  out  a  meta-analysis  probing  the  association  between
functional CYP2D6 polymorphisms (*3 and *4) and susceptibility to autoimmune
diseases,  including  IBD.  This  meta-analysis  demonstrated  the  association  and
susceptibility  of  the  functional  CYP2D6*3  and  *4  polymorphisms  with  the
autoimmune disease in Caucasians. Therefore, the CYP2D6 gene plays a role in the
aetiology and the development of autoimmune diseases.

More direct evidence was very recently reported relating the CYP2D6*4 allele (PM)
with susceptibility to UC[63]. The researchers studied CYP2D6*4 polymorphisms in 215
unrelated UC patients and 212 separate healthy controls by PCR-RFLP in a Kurdish
population from Iran. A significantly higher frequency of CYP2D6*4 A allele in UC
patients (12.6%) compared to healthy subjects (8.5%, P = 0.046) was reported. Also, the
presence of A allele significantly increased the risk of UC by odds ratio (OR) = 1.56-
fold (P  = 0.047).  This report is  consistent with the Dudarewicz report showing a
higher frequency of the CYP2D6*4 A allele in patients from Poland. Thus, this study
suggests that CYP2D6*4 polymorphisms may be risk factors for UC susceptibility.

Moreover, a short while ago we reported the role of CYP2D6 in the metabolism of
5-aminosalicylic  acid  (5ASA),  which  is  an  anti-inflammatory  drug used to  treat
ulcerative colitis. It is known that 5ASA is mainly metabolised to N-acetyl-5-ASA by
N-acetyltransferases (NAT). However, no information is available on the oxidation of
5ASA by CYPs. Also, scarce pharmacogenetic analysis has focused directly on 5-ASA
metabolism. Our study presented compelling evidence indicating that the 5-ASA is a
substrate  for  CYP2D6[64,65].  Therefore,  knowledge  of  CYP2D6  allelic  variants  is
required for the better response of UC patients to this specific medication.

All these studies have strongly suggested that further studies are required to clarify
the role of the CYP2D6 gene in aetiology, development and pathogenesis and the
treatment of UC.

CYP2J2
CYP2J2 is the sole member of human CYP2J subfamily and the prominent arachidonic
acid (AA) epoxygenases. It is localised on chromosome 1q32.1 and participates in the
metabolism of AA to all four cis-eicosatrienoic acid epoxides (EETs) as 5,6-EET, 8,9-
EET, 11,12-EET and 14,15-EET, some of them exhibits signalling properties in anti-
inflammatory pathways[66]. It is shown mainly in the cardiovascular system, yet is also
displayed in the intestines, stomach, and other tissues[67-70].

Bystrom et al[71]  demonstrated that CYP2J2 is an inflammation-induced enzyme
displaying anti-inflammatory activities and raises phagocytosis of both gram-positive
and  negative  bacteria.  It  was  noted  that  the  deficiency  of  CYP2J2  in  IBD  (CD)
macrophages in response to bacterial infection may participate in the pathogenesis of
the disease. Boosting the epoxygenase metabolites or the use of 11,12-EET mimetics
may present useful therapeutic approaches for the treatment of IBD[66,71]. Therefore, the
proper function of CYP2J2 is vital for bacterial clearance in IBD, and a deficit in the
CYP2J2 pathway may advance bacterial pathogenesis resulting in the development of
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IBD. Likewise, Qiu et al[72] assessed the EETs and the expression of CYP2J2 in colon
tissue biopsies collected from UC patients along with adjacent unaffected tissues to
study  the  role  of  CYP2J2  in  UC.  It  was  found  that  the  quantities  of  EETs  were
significantly higher in UC tissues matched with adjacent unaffected tissues (1.91 ±
0.98 ng/mg vs  0.96 ± 0.77 ng/mg,  mean ± SD,  P  <  0.01).  Also,  the expression of
CYP2J2 rose significantly in UC tissues (P < 0.05). Thus, the increment in EET levels
may be part of a defence mechanism in UC and CYP2J2 could be a key target for drug
therapy for UC.

In  addition,  it  was  reported  that  endocannabinoids  such  as  arachidonoyl
ethanolamide (AEA) are significantly increased during intestinal inflammation and
the  CYP2J2  produced  metabolites  are  related  to  pathologic  conditions  of  the
gastrointestinal tract[66,73-76]. CYP2J2 converts EAE to 20-hydroxyeicosatetraenoic acid
ethanolamide (20-HETE-EA) and some other  EET-EA metabolites  which bind to
cannabinoid-1 receptors (CB1-Rs) on neurons and cannabinoid-2 receptors (CB-2Rs)
on  immune and epithelial  cells  of  the  gut  reducing  digestion  and represses  the
liberation of inflammatory mediators[77,78]. Also, UC patients display raised histamine
levels  which  increase  pathogenic  neutrophil  invasion  into  the  colonic  mucosa,
intensifying  the  symptoms  of  colitis[79-82].  CYP2J2  has  appeared  to  assume  a
fundamental role in the intestinal metabolism of antihistamines such as astemizole
and ebastine. Thus, the knowledge of pharmacogenetics of CYP2J2 is essential and
contribute to useful therapeutic approaches for the treatment of IBD.

There  have  been  7214  SNPs  in  human  CYP2J2  gene  in  NCBI  dbSNP
(http://www.ncbi.nlm.nih.gov/snp, access date: 24 February 2019). A portion of
these SNPs has been appeared to have a potential association with certain diseases,
particularly cancer and heart diseases[83]. However, there is only a single report in the
literature  focusing  on  the  relationship  of  CYP2J2  variation  to  UC.  Otte  and
collaborators[84]  have  screened  the  polymorphism at  position  -50  (G-50T)  in  the
promoter region of CYP2J2 (CYP2J2*7) in 146 UC and 147 CD patients matched to 357
healthy German people. CYP2J2*7 has a G>T replacement in the regulatory region at -
50 position at the transcriptional start, causing diminished translation because of the
loss of the Sp1 binding site[85,86]. Thus, this creates a smaller amounts of the CYP2J2
protein causing decreased CYP2J2 epoxygenase metabolites in vivo. The -50T allele
was identified in 19.9% of subjects with UC 14.3% of subjects with CD, and 10.9% of
the control group (P  < 0.05). Additionally, a noteworthy higher recurrence of this
allele  was distinguished in  patients  with UC in contrast  to  the CD group.  Their
outcomes  unequivocally  support  the  relationship  of  UC  with  the  promoter
polymorphism in the CYP2J2 gene showing a critical function of epoxyeicosatrienoic
acids in the pathophysiology of IBD. Further examinations are expected to depict the
actions of CYP2J2 in pathology and the treatment of UC.

CYP2R1
The  CYP2R1  gene  produces  an  enzyme  called  vitamin  D-25-hydroxylase  (EC
1.14.14.24), showing a 25-hydroxylase action on both types of vitamin D, vitamin D2
and D3. It catalyses the initial reaction leading to the production of 1,25-dihydroxy
vitamin D3, also called calcitriol[87]. CYP2R1 is located on chromosome 11p15.2 and
converts  vitamin D into  25-hydroxyvitamin D (calcidiol),  which  is  the  essential
circulatory form of vitamin D.

There  have  been  4247  SNPs  in  human  CYP2R1  gene  in  NCBI  dbSNP
(http://www.ncbi.nlm.nih.gov/snp, access date: 25 February 2019). However, there
is no one study on the association of any of these SNPs with IBD, both CD and UC.
Moreover,  most  studies  focused  on  its  role  in  vitamin  D  and  related  clinically
significant  diseases  such as  vitamin D deficiency[88].  However,  few studies  have
examined its  role  in some autoimmune diseases such as  multiple  sclerosis,  T1D,
Hashimoto’s disease and Grave’s disease[89-94].

There is a convincing amount of evidence that vitamin D deficiency is one of a
designated set  of  factors proposed to intervene in the contemplated relationship
between environmental exposures and IBD, CD and UC[95-98]. It would be expected
that the enzyme responsible for the production of active vitamin D, i.e., CYP2R1, has
some role in IBD. However, since it has been proposed that there is redundancy in the
enzymes responsible for the 25-hydroxylation step,  the identification of  affected
individuals with CYP2R1 polymorphisms has been difficult.

The rs10741657, located near the CYP2R1 gene has been linked by several studies to
the increased risk of vitamin D insufficiency[99]. Moreover, an immense connection
between the CYP2R1 gene transcript and 1,25(OH)2D3 plasma levels in the helper T
cells was affirmed[99].  Ramos-Lopes et al[89]  genotyped 203 simplex type 1 German
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diabetes families for the rs10741657 polymorphism. They examined the 25(OH)D3
quantities  comparing  to  CYP2R1  polymorphisms  to  its  mRNA transcripts  from
peripheral blood mononuclear cells (PBMCs) in 133 T1D patients. The G variant of the
rs10741657 polymorphism was more regularly transmitted to influenced children and
was likewise more prevalent in cases than in the controls (46.1% vs 35.7%, P = 0.03).
Patients conveying the genotype “GG” or “GA” of the rs10741657 polymorphism had,
by and large, lower amounts of 25(OH)D3 in contrast to those with the genotype
“AA”. They showed an association of CYP2R1 polymorphisms with 25(OH)D3 levels
in  T1D  patients.  Coper  et  al[90]  and  Hussein  et  al[91]  likewise  detailed  a  similar
association. Also, the relationship between the variant CYP2R1 alleles and MS risk
suggested being dependency on the presence of the HLA-DR15 risk allele and other
factors such as gender[89,94].

In conclusion, taking all of these studies into account, we have to remain sceptical
regarding any association between CYP2R1 and IBD, both CD and UC, and em-
phasise that research efforts must be accelerated in oder to generate the answers. It
would be not unexpected that CYP2R1 had a role on which we can only speculate
with given data so far.

CYP3A4/3A5/3A7*
CYP3A4 (EC 1.14.13.97) is one of the most widely studied enzymes among CYPs since
it metabolises approximately 60% of prescribed drugs, is localised mainly in the liver
and in the intestine and is induced by glucocorticoids and some pharmacological
agents[53,100]. In grown-ups, they are the main CYP3A subfamily members expressed in
the  liver  and the  intestine.  CYP3A4 is  the  portion  of  a  cluster  of  CYP genes  on
chromosome 7q22.1. It is called niphedipine oxidase but has many other aliases for its
activity  such  as  cholesterol  25-hydroxylase,  taurochenodeoxycholate  6-alpha-
hydroxylase and 1,8-cineole 2-exo-monooxygenase[101-103]. CYP3A4 also metabolises
arachidonic  acid  to  EETs  or  20-HETE,  expressing  both  epoxygenase  and mono-
oxygenase activities[104,105].

On the other hand, CYP3A5, a highly polymorphic enzyme, has been reported to
range from undetectable amounts to amounts comparable to those of CYP3A4 in the
human liver[106]. It is also part of a cluster of CYP genes on chromosome 7q21.1 and
exhibits similar enzymatic activities[54,107].

5521  and 6608  SNPs have  been found in  human CYP3A4 and CYP3A5 genes,
respectively in NCBI dbSNP (http://www.ncbi.nlm.nih.gov/snp, access date:  26
February 2019). However, there is no study on the association of any of these SNPs
with IBD, both CD and UC. Yet, the role of variants in the transformation of the drugs
used for the treatment of UC was studied in detail, particularly tacrolimus[108-110].

Tacrolimus is an immunosuppressive drug, utilised in the treatment of UC patients
who have no response to 5-ASA or corticosteroids[111]. Tacrolimus is a substrate of
CYP3A4 and CYP3A5, and they are in charge of the metabolism of tacrolimus[112].
CYP3A5’s ancestral polymorphisms influence tacrolimus metabolism, for the most
part. An SNP in the CYP3A5 gene including an A>G change at position 6986 inside
intron 3 (rs776746) was determined to be strongly associated with CYP3A5 protein
synthesis.  CYP3A5*3/*3 genotypes are viewed as CYP3A5 non-expressers,  while
CYP3A5 expressers convey at least one CYP3A5*1 allele[113,114].

Many studies have shown that tacrolimus dose requirements are influenced by
CYP3A4/5 genetic polymorphisms and the adverse events especially nephrotoxicity
were frequently observed in CYP3A4/5 expressers. In addition, CYP3A4/5 expressers
require that particular attention should be paid to the onset of nephrotoxicity. Thus,
genotyping for CYP3A5 variants allows individualised care to be practised[57,108,110,115,116].

Plewka  et  al[50]  reported  that  the  CYP3A4  level  was  slightly  higher  in  UC  as
compared to the control level. Additionally, in this case, the expression of CYP3A4
was  restrained  particularly  in  epithelial  cells  of  the  mucosa  in  the  colon.  The
expression level of the fetal form of CYP3A, i.e., CYP3A7, was increased 3-fold in the
colonic tissues of UC patients[117].  In addition, it  was reported that CYP3A4 were
induced by mesalazine (5-ASA),  a  drug used to  treat  colitis,  in  a  concentration-
dependent  manner,  both  in  cultured  hepatocytes  and  human  cryopreserved
hepatocyte  from UC[118].  Similarly,  we  have  also  determined that  5-ASA is  both
inducer and substrates for CYP3A4[64,65]. Accordingly, alteration in CYP3A4 activity in
disease states may be an underappreciated determinant of difference in the aetiology
of UC.

CYP4F3
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CYP4F3 known as leukotriene-B4 omega-hydroxylase encodes two distinct enzymes
and is part of a cluster of CYP genes on chromosome 19. CYP4F3 encodes two splice-
variants,  CYP4F3A  and  CYP4F3B,  and  their  expression  is  tissue-specific  with
CYP3F3A being expressed mostly in leukocytes and CYP4F3B chiefly in the liver[119,120].
They metabolise leukotriene B4 and very likely 5-hydroxyeicosatetraenoic acid by an
omega oxidation reaction, leading to the inactivation and degradation of well-known
mediators of  inflammation[121].  Thus,  CYP4F has underlain the proposed roles of
cytochromes in depressing inflammatory responses, and CYP4F3 is associated with
IBD[122,123]. CYP4F3A/B also omega oxidise arachidonic acid to 20-HETE as well as
EETs[124].

Five thousand five hundred and seventy-five SNPs have been found in human
CYP4F3  in  NCBI  dbSNP  (http://www.ncbi.nlm.nih.gov/snp,  access  date:  27
February 2019). Ananthakrishnan and colleagues[125] have genotyped CYP4F3 in 101
CD and 139  UC patients  matched  to  495  controls.  They  revealed  that  that  high
consumption  of  a  high  amount  of  n3:n6  PUFA  (above  median)  exhibited  a  re-
lationship  to  a  decreased  risk  of  UC (OR =  0.71,  95%CI:  0.47-1.09,  P  =  0.11).  In
addition, high n3:n6 PUFA intake was related with a decreased risk of UC in people
with the GG/AG genotype (rs4646904)  in  CYP4F3 (OR = 0.57,  95%CI:  0.32-0.99)
compared to those with the AA genotype (OR = 0.95, 95%CI: 0.47-1.93) (P-connection
= 0.049).  Despite  the  fact  that  the  rs4646904 (converged into  rs1805042)  CYP4F3
variant is synonymous, it is proposed that it changes the splicing efficiency and gene
expression level[126]. Hence, CYP4F3 variations are determinant of the relationship
between dietary n3:n6 PUFA intake and the risk of UC. It is the only study present in
the literature involving the CYP4F3 variants and an association between the UC.
There  is  a  definite  need  for  additional  studies  examining  the  impact  of  other
polymorphisms in exploring the association of specific CYP4F3 variants with UC as
well as defining the diet-UC associations in patients.

CYP24A1
CYP24A1 is a mitochondrial monooxygenase which assumes a crucial function in
calcium homeostasis through controlling the level of vitamin D3[127]. It is characterised
as vitamin D3 24-hydroxylase (EC 1.14.15.16; Entrez Gene: CYP24A1 cytochrome P450
family 24 subfamily A part 1 [Homo sapiens (human)] accessed 28 February 2019). It
facilitates  hydroxylation reactions  leading to  the  degradation of  1,25-dihydroxy
vitamin D3, the physiologically active class of vitamin D. Hydroxylation of the side
chain of  vitamin D3 produces  calcitroic  acid  and various  metabolites  which are
discharged in bile. Inactivation of vitamin D is achieved by the mitochondrial catalyst,
25-hydroxyvitamin D3-24-hydroxylase, first portrayed in the mid-1970s and at first
accepted to be included exclusively in the renal 24-hydroxylation of 25-OH-D3. Work
performed over the ensuing 35 years has demonstrated that 24-hydroxylase is the
aftereffect of CYP24A1[128,129]. CYP24A1 catalyses the transformation of both 25-OH-D3
and 1,25-(OH)2D3 into a series of 24- and 23-hydroxylated compounds directed to
well-known pathways ending in the water-soluble biliary metabolite such as calcitroic
acid and 26,23-lactone[130].

Besides being a self-induction of CYP24A1 by the 1,25-(OH)2D3 itself, the enzyme
is controlled by crucial determinants such as the parathyroid hormone (PTH) and the
fibroblast growth factor (FGF). 1,25-(OH)2D3-mediated PTH significantly reduces
induction  of  the  CYP24A1  expression  because  of  destabilisation  and  enhanced
degradation of CYP24A1 mRNA[130-132]. The translation of CYP24A1 is enhanced via
PI3K-Akt-facilitated  IRES  within  5'UTR-dependent  manner  in  response  to  the
inflammatory  condition  by  shifting  from monosomal  to  polysomal  fractions[133].
CYP24A1 is located on chromosome 20q13.2,  and 6746 SNPs have been found in
human CYP24A1 in NCBI dbSNP (http://www.ncbi.nlm.nih.gov/snp, access date: 28
February 2019).

CYP24A1 is correlated with idiopathic infantile hypercalcemia and is associated
with  the  risk  of  cell-mediated  immune  mechanisms  in  MS and  IBD[98,134,135].  The
increased expression of  CYP24A1 accompanied by CYP27B1 in inflamed colonic
tissues in IBD patients results in the loss of 25(OH)D thereby exerting downward
pressure  on  the  vitamin  D  status.  Therefore,  it  is  essential  in  the  regulation  of
inflammations.

Recently  Chen  et  al[136]  have  genotyped  rs4809957,  rs6068816,  rs6091822  and
rs8124792 SNPs in 44 ulcerative colitis patients along with a control group composed
of 504 East Asians enrolled in the 1000 Genomes Project. CYP24A1 polymorphisms
rs4809957  A/G  and  rs6068816  C/T  demonstrated  a  statistically  noteworthy
association  with  the  UC  when  both  the  genotypes  and  allele  frequencies  were
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considered together. Regarding rs6091822 G/T, UC was identified with risk allele
bearers (GT + TT) vs wild-type (GG). However, the relationship between the allele
frequencies and the disease were not significant.  These alleles were additionally
observed to be related to the risk of colonic polyps and colon cancer, and low-dose
aspirin-related  small  intestine  bleedings [137,138].  Rs4809957  situated  in  the  3′
untranslated vicinity neighbouring the polyA microsatellite repeat influences the
stability of CYP24A1 mRNA and is proposed to be a coupling site for the retinoic
acid-responsive element. Contrarily, rs4809957 may influence methylation of 3'UTR. It
was accounted for that the 3'UTR of mRNA was the objective of miRNA to hasten
degradation[139,140]. Rs6068816 likewise demonstrated a factually strong relationship
with the risk of UC. Then OR for rs6068816 C vs  T was again high (OR = 18.260,
95%CI: 8.350-39.932). Consequently, these discoveries demonstrate that rs6068816 T is
a strong risk factor for UC as well. Changes in rs6068816 would not influence the
amino acid residue of the CYP24A1 protein yet may influence intron splicing[141].

Interestingly, several SNPs in CYP24A1 and the other genes involved in vitamin D
metabolism and signalling seem to exhibit susceptibility to UC in Asians, yet do not
have a statistically significant effect on IBD risk in Europeans[136,142-145]. It is proposed
that SNPs in CYP24A1 take part in the initiation or development of UC, and are not
merely the result of ulcerative colitis-related malfunctions[136]. Despite the fact that the
mechanisms are indistinct, it might be identified with vitamin D metabolism and
signalling since both in vivo and in vitro investigations have shown the function of
vitamin  D  in  immune  intervened  diseases[98,145,146].  It  is  realised  that  vitamin  D
insufficiency cause diminished colonic bacterial clearance, decreased expression of
tight junctions in the intestinal epithelium, and raised Th1 cell-driven inflammation at
the gut level[97,127,145]. Therefore, CYPs in vitamin D metabolism are associated with the
UC and deserve further detailed examinations.

CYP26B1
CYP26B1 is defined on chromosome 2p13.2, and the protein product is localised on
the endoplasmic reticulum. It works as a crucial switch of all-trans retinoic acid (RA)
levels. It inactivates all-trans retinoic acid to hydroxylated forms, including 4-OH-RA,
4-oxo-RA, and 18-OH-RA[147].  Mutations in this gene are related to radiohumeral
fusions and other skeletal and craniofacial abnormalities, and an increased level of the
protein  is  associated with  atherosclerotic  lesions.  Alternative  splicing results  in
multiple transcripts.

Kang et al[148] demonstrated that both high and low vitamin A levels brought about
ameliorated intestinal inflammation and differentially activated subsets of FoxP3+
cells  in  SAMP1/YP  mice.  Likewise,  Takeuchi  et  al[149]  concluded  that  CYP26B1
expression was stimulated by all trans-RA in T-cells of the mesenteric lymph nodes
(MLN) and Peyer's patches (PP) and changed the expression of CYP26B1 altering T
cell dealing and separation in the gut. As of lately, Chenery et al[150] have demonstrated
that  CYP26B1  can  restrict  the  differentiation  of  iTreg  and  Th17  cells  and  is  di-
fferentially expressed by these cells to tweak RA responsiveness.  In this manner,
CYP26B1 in T cells is associated with the pathogenesis of T cell-mediated chronic
inflammation in  the  colon,  possibly  by  controlling  T  cell  effector  activity  in  the
intestinal tissue.

Five thousand three hundred and thirty-nine SNPs have been found in human
CYP26B1  in  NCBI  dbSNP  (http://www.ncbi.nlm.nih.gov/snp,  access  date:  28
February 2019). There is only one study reporting the SNPs in CYP26B1 and the risk
of  IBD  (UC  and  CD).  Fransen  et  al[151]  investigated  the  association  of  rs2241057
polymorphism with the threat of CD and UC, knowing that rs2241057 has an elevated
catabolic function of retinoic acid. DNA from 1378 IBD patients (871 CD and 507 UC)
and 1205 healthy controls gathered at Orebro University Hospital, and Karolinska
University Hospital was genotyped for the CYP26B1 rs2241057 polymorphism. They
detailed that a higher recurrence of patients homozygous for the dominant (T) allele
was associated with the CD though not UC compared to the recurrence found in
healthy controls. Hence, CYP26B1 polymorphism rs2241057 may have an increased
risk for the progression of CD, which conceivably might be because of raised levels of
RA. It was criticised that the lower number of enrolled patients with UC and the lack
of  standardisation  in  terms  of  ethnicity  might  be  the  reason  for  the  absence  of
significant associations in UC. Therefore,  their study requires further replication
efforts and mechanistic studies to confirm the reported associations. In conclusion,
further studies exploring vitamin A and CYP26B1 in the pathogenesis of both CD and
UC are needed.
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CYP27B1
The CYP27B1 gene supplies information to produce a mitochondrial protein called 25-
dihydroxy vitamin D3 1-α-hydroxylase (EC 1.14.13.13). This catalyst performs the
second of two consecutive reactions to transform vitamin D to its active structure,
1,25-dihydroxy vitamin D3 [1,25-(OH)2-D3], also called calcitriol. Vitamin D can be
obtained from the diet or can be made on the body surface with the assistance of
sunlight exposure. Whenever active, this vitamin is associated with retaining up the
best possible balance of a few minerals in the body, including calcium and phosphate,
which are fundamental for the regular composition of bones and teeth. Vitamin D is
likewise  engaged  with  a  few  other  processes  unrelated  to  bone  and  tooth  or-
ganisation. It is currently kown that the protein exists in non-renal tissues to help
increase the production of cellular 1,25-(OH)2-D3, a paracrine/autocrine system[129,152].
It affects immunomodulatory activities by repressing human leukocyte antigen (HLA)
class  II  expression  on  endocrine  cells,  T  cell  proliferation  and  secretion  of  in-
flammatory  cytokines  that  are  thought  to  function  in  autoimmune  tissue  dis-
ruption[153-159].  In this way, the expression of CYP27B1 in cells of the colon, breast,
prostate and monocyte/macrophage are so fundamental to the ordinary functioning
of these tissues.

The cytogenetic location of the CYP27B1 is  the long arm of chromosome 12 at
position 14.1 (12q14.1).  1929 SNPs have been found in human CYP27B1 in NCBI
dbSNP (http://www.ncbi.nlm.nih.gov/snp, access date: 5 March 2019).  Diseases
associated with CYP27B1 include Type 1A and hypocalcemic vitamin D-dependent
rickets and autoimmune diseases such as Addison, Hashimoto, Grave’s, T1D and
MS[158,160-164].

Du et  al[159]  surveyed the expressions of colonic CYP27B1 in UC patients.  They
gathered colon mucosal  biopsies  from the inflamed lesions and adjacent  normal
tissues  from  a  cohort  of  patients  with  active  UC.  They  revealed  that  CYP27B1
originating from colon epithelium, were notably induced in the lesions contrasting to
the adjacent normal tissues in these patients. It was additionally bolstered by the
observation that colon mucosal CYP27B1 was likewise induced significantly in an
experimental colitis mouse model, and this nearby CYP27B1 induction and colonic
inflammation  required  the  community  of  commensal  microscopic  organisms.
Therefore, in this context, it is vital to keep a regular vitamin D status with the goal
that  adequate  substrate  can  be  provided  to  CYP27B1,  which  produces  local
1,25(OH)2D3 to protect the mucosal barrier and decrease colonic inflammation.

CONCLUSION
It  is  a  widely  accepted  hypothesis  that  UC  is  caused  by  a  reactive  xenobiotic
metabolite, which is conjugated before excretion. As was pointed out throughout this
review, the function and the polymorphism of CYP1A1, 2D6, 2J2, 2R1, 3A4/5, 4F3,
24A1,  26B1 and 27B1 genes  are  undoubtedly important  in  the  pathogenesis  and
clinical interest of UC, possibly producing reactive metabolites (Figure 1). These CYPs
are somewhat involved in the metabolism of endogenous substrates, most notably
vitamin D. It is evident that more of these polymorphisms are either loss-of-function
mutations changing the amount of reactive metabolite produced and inhibiting or
inducing the enzymes catalysing alternative pathways with the possibility of more
severe conditions leading to disease states. However, some polymorphisms result in
dysregulation of these enzymes leading to disease state. Most importantly, the exact
role of the extrahepatic and extrarenal CYPs such as macrophages and dendritic cells
of colonic mucosa is more critical to the development of UC and should require more
thorough examinations to clarify their exact roles. The release of these metabolites
resulted from polymorphic CYPs functions damage the colonic epithelial barrier and
expose  the  mucosal  immune  system  to  luminal  contents,  thereby  initiating  an
inflammatory response. It is undoubtedly an exciting moment to be involved in the
study role of CYPs in autoimmune diseases like UC. An additional benefit  is  for
rationalising the use of current therapeutics, i.e., administering the right drug at the
right time and place to the right person. In addition to the polymorphism of CYPs,
epigenetic regulation of UC cannot be excluded[165,166].

Early determination of disease-specific genes at the phase when their tolerance is
still  preserved  would  be  the  most  critical  since  the  essential  treatment  can  be
appropriately begun before auto-animosity happens. The candidate genes for genetic
variant analysis was usually chosen from the genes associated with the pathogenesis
of UC. Albeit  a  few SNPs have been identified to be related to drug response in
patients with UC, most of these discoveries are as yet uncertain. Since not a single
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Figure 1

Figure 1  Overview the role of cytochromes P450s in ulcerative colitis. M: Metabolites; CYP: Cytochromes P450.

gene but rather different genes are engaged with the pathogenesis of UC just as drug
responses are, a genome-wide association studies (GWAS) could be a progressively
powerful methodology for distinguishing candidate genes to incorporate into these
pharmacogenomic  models.  However,  since  the  GWAS  do  not  characterise  the
association between a gene and phenotype of the disease, discoveries from GWAS as
well as the biological and clinical associations between the particular loci and diseases
ought to be additionally investigated by conventional candidate gene examinations,
for example, allelic separation by real-time PCR.

In future, more thorough investigations are necessary to elucidate the act of CYPs
in the pathogenesis of UC. Furthermore, better learning of the role of genetic po-
lymorphisms and haplotypes in CYPs expression and function will add to an excellent
comprehension  of  inter-individual,  ethnic  and  inter-ethnic  variations  in  drug
metabolism and impacts.
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