# Matrix operators involving the space $bv_k^{\theta}$

Cite as: AIP Conference Proceedings **2183**, 050011 (2019); https://doi.org/10.1063/1.5136149 Published Online: 06 December 2019

G. Canan Hazar Güleç, and M. Ali Sarıgöl



## ARTICLES YOU MAY BE INTERESTED IN

Characterization of the compact operators on the class (bv,  $bv_k^{\theta}$ ) AIP Conference Proceedings **2183**, 050010 (2019); https://doi.org/10.1063/1.5136148

Necessary and sufficient Tauberian conditions under which convergence of double sequences follows from A summability AIP Conference Proceedings **2183**, 050012 (2019); https://doi.org/10.1063/1.5136150

A new generalization on absolute Riesz summability AIP Conference Proceedings **2183**, 050017 (2019); https://doi.org/10.1063/1.5136155





AIP Conference Proceedings **2183**, 050011 (2019); https://doi.org/10.1063/1.5136149 © 2019 Author(s).

# Matrix operators involving the space $bv_k^{\theta}$

G. Canan Hazar Güleç<sup>1,a)</sup> and M. Ali Sarıgöl<sup>1,b)</sup>

<sup>1</sup>Pamukkale University, Department of Mathematics, 20070, Denizli, Turkey.

<sup>a)</sup>Corresponding author: gchazar@pau.edu.tr <sup>b)</sup>msarigol@pau.edu.tr

**Abstract.** In this study, determining the  $\beta$  dual of the space of  $bv_k^{\theta}$  we characterize the matrix class  $(bv_k^{\theta}, bv)$ , where  $\theta$  is a sequence of positive numbers and  $bv_k^{\theta} = \{x \in w : (\theta_v^{1/k^*} \Delta x_v) \in \ell_k\}$  for  $1/k + 1/k^* = 1$   $(1 < k < \infty)$ .

**Keywords:** Sequence spaces, matrix transformations,  $bv_k^{\theta}$  space. **PACS:** 02.30.Lt, 02.30.Sa

#### **INTRODUCTION**

Let  $\omega$  be the set of all complex sequences,  $\ell_k$  and c be the sets of k-absolutely convergent series and convergent sequences, respectively. By bv we denote the space of all sequences of bounded variation, i.e.,

$$bv = \left\{ x \in w : \Sigma_{v=0}^{\infty} |x_v - x_{v-1}| < \infty, \ x_{-1} = 0 \right\}.$$

Let U and V be subspaces of w and  $(\theta_n)$  be positive sequence, and  $A = (a_{nv})$  be an arbitrary infinite matrix of complex numbers. By  $A(x) = (A_n(x))$ , we denote the A-transform of the sequence  $x = (x_v)$ , i.e.,

$$A_n(x) = \sum_{\nu=0}^{\infty} a_{n\nu} x_{\nu}$$

provided that the series is convergent for  $n \ge 0$ . Then, we say that A defines a matrix transformation from U into V, and denote it by  $A \in (U, V)$  if the sequence  $Ax = (A_n(x)) \in V$  for all sequence  $x \in U$ , and the set

 $U^{\beta} = \{ \varepsilon \in \omega : \Sigma \varepsilon_{v} x_{v} \text{ converges for all } x \in U \}$ 

is called the  $\beta$  dual of U.

An infinite matrix  $A = (a_{nv})$  is called a triangle if  $a_{nn} \neq 0$  and  $a_{nv} = 0$  for all v > n for all n, v [10]. Throughout  $k^*$  denotes the conjugate of k > 1, i.e.,  $1/k + 1/k^* = 1$ .

We define the notations  $\Gamma_c$  and  $\Gamma_s$ , v = 1, 2, ..., as follows:

$$\Gamma_{c} = \left\{ \varepsilon = (\varepsilon_{v}) : \lim_{m} \sum_{v=r}^{m} \varepsilon_{v} \text{ exists for } r = 1, 2, ... \right\},$$
  
$$\Gamma_{s} = \left\{ \varepsilon = (\varepsilon_{v}) : \sup_{m} \sum_{r=1}^{m} \left| \theta_{r}^{-1/k^{*}} \sum_{v=r}^{m} \varepsilon_{v} \right|^{k^{*}} < \infty \right\}.$$

Sequence spaces and matrix operators are very important topics in the summability, which have been studied by several authors in many research papers (for example, see [1 - 7]). In this study, by determining the  $\beta$  dual of  $bv_k^{\theta}$  we characterize some matrix operators involving the space  $bv_k^{\theta}$ .

Third International Conference of Mathematical Sciences (ICMS 2019) AIP Conf. Proc. 2183, 050011-1–050011-3; https://doi.org/10.1063/1.5136149 Published by AIP Publishing. 978-0-7354-1930-8/\$30.00 The following lemmas are needed in proving our theorems.

**Lemma 1** Let  $1 < k < \infty$ . Then,  $A \in (\ell_k, \ell)$  if and only if

$$\sum_{\nu=0}^{\infty} \left( \sum_{n=0}^{\infty} |a_{n\nu}| \right)^{k^*} < \infty \quad [8].$$

**Lemma 2** Let  $1 < k < \infty$ . Then  $A \in (\ell_k, c) \Leftrightarrow$ 

*a*-) 
$$\lim_{n} a_{nv}$$
 exists for each  $v$ ,  $b$ -)  $\sup_{n} \sum_{v=0}^{\infty} |a_{nv}|^{k^*} < \infty$  [9].

### **RELATED MATRIX OPERATORS**

In [2], the space  $bv_k^{\theta}$  has been defined by

$$bv_k^{\theta} = \left\{ x = (x_k) \in w : \sum_{n=0}^{\infty} \theta_n^{k-1} \left| \Delta x_n \right|^k < \infty, \ x_{-1} = 0 \right\}$$

which is a complete normed space where  $(\theta_n)$  is a sequence of nonnegative terms,  $1 \le k < \infty$  and  $\Delta x_n = x_n - x_{n-1}$  for all *n*. Also, it is reduced to  $bv^k$  for  $\theta_n = 1$  for all *n* and  $bv_1^{\theta} = bv$ , which have been studied by Malkowsky et all [6] and Jarrah and Malkowsky [5]. Moreover, recently, Başar et all [1] have defined the sequence space bv(u, p) and proved that this space is linearly isomorphic to the space  $\ell(p)$  of Maddox as generalized to paranormed space.

Now we begin with  $\beta$  dual of  $bv_k^{\theta}$ , which also can be deduced from [1].

**Lemma 3** Let  $1 < k < \infty$  and  $(\theta_n)$  be a sequence of nonnegative numbers. Then,  $(bv_k^{\theta})^{\beta} = \Gamma_c \cap \Gamma_s$ .

**Proof** Let  $1 < k < \infty$ . Now,  $\varepsilon = (\varepsilon_n) \in (bv_k^{\theta})^{\beta}$  iff  $\Sigma \varepsilon_n x_n$  is convergent for all  $x \in bv_k^{\theta}$ . Also, it can be written that

$$\sum_{n=0}^{m} \varepsilon_n x_n = \sum_{\nu=0}^{m} \left( \sum_{n=\nu}^{m} \varepsilon_n \right) \theta_{\nu}^{-1/k^*} y_{\nu} = \sum_{j=0}^{m} a_{m\nu} y_{\nu}$$

where

$$a_{mv} = \begin{cases} \theta_v^{-1/k^*} \sum_{\substack{n=v\\ 0, v > m}}^m \varepsilon_n, \ 0 \le v \le m \\ 0, v > m. \end{cases}$$

So it follows that  $\varepsilon \in (bv_k^{\theta})^{\beta}$  iff  $A \in (\ell_k, c)$ , which completes the proof together with Lemma 2.

The following theorem is the main result of our study which characterize the matrix class  $(bv_k^{\theta}, bv)$ , where  $\theta$  is a sequence of positive numbers.

**Theorem 1** Let  $A = (a_{nv})$  be an infinite matrix of complex numbers for all  $n, v \ge 0$  and  $1 < k < \infty$ . Then,  $A \in (bv_k^{\theta}, bv)$  if and only if

$$\lim_{n \to \infty} \sum_{j=\nu}^{\infty} a_{nj} \text{ exists for each } \nu, \tag{1}$$

$$\sup_{m} \sum_{\nu=0}^{m} \left| \theta_{\nu}^{-1/k^*} \sum_{j=\nu}^{m} a_{nj} \right|^{k^*} < \infty \text{ for each } n$$

$$\tag{2}$$

and

$$\sum_{\nu=0}^{\infty} \left( \sum_{n=0}^{\infty} \left| \theta_{\nu}^{1/k^*} \sum_{j=\nu}^{\infty} \left( a_{nj} - a_{n-1,j} \right) \right| \right)^{k^*} < \infty.$$
(3)

**Proof** Now,  $A \in (bv_k^{\theta}, bv)$  iff  $(a_{nv})_{v=0}^{\infty} \in (bv_k^{\theta})^{\beta}$  and  $A(x) \in bv$  for every  $x \in bv_k^{\theta}$ . Also, by Lemma 3,  $(a_{nv})_{v=0}^{\infty} \in (bv_k^{\theta})^{\beta}$  iff the conditions (1) and (2) hold. On the other hand, consider the operators  $T : bv_k^{\theta} \to \ell_k$  and  $B : bv \to \ell$  defined by  $T(x) = (\theta_n^{1/k^*} \Delta x_n)$  and  $B(x) = (\Delta x_n)$  and also denote inverse of T by G. Then, it is easily seen that the matrix G is given by

$$g_{nv} = \begin{cases} \theta_v^{-1/k^*}, 0 \le v \le n, \\ 0, \quad v > n, \end{cases}$$

and if we say that  $\widetilde{D} = Bo\widetilde{A}$ , where  $\widetilde{A} = AoG$ , then,  $A : bv_k^{\theta} \to bv$  if and only if  $\widetilde{D} : \ell_k \to \ell$ . So, it can be deduced that

$$\widetilde{a}_{nv} = \theta_v^{-1/k^*} \sum_{j=v}^{\infty} a_{nj}$$

which implies

$$\widetilde{d}_{n\nu} = \theta_{\nu}^{1/k^*} \sum_{j=\nu}^{\infty} \left( a_{nj} - a_{n-1,j} \right).$$

Therefore, by applying Lemma 1 with the matrix  $\widetilde{D}$ , it can be achieved that  $\widetilde{D} : \ell_k \to \ell$  iff the condition (3) holds. This completes the proof.

If we take  $\theta_v = 1$  for all  $v \ge 0$ , we get the well known result in [6].

**Corollary 1** Let  $A = (a_{nv})$  be an infinite matrix of complex numbers for all  $n, v \ge 0$  and  $1 < k < \infty$ . Then,  $A \in (bv_k, bv)$  if and only if (1) holds,

$$\sup_{m} \sum_{\nu=0}^{m} \left| \sum_{j=\nu}^{m} a_{nj} \right|^{k^*} < \infty \text{ for each } n,$$
$$\sum_{\nu=0}^{\infty} \left( \sum_{n=0}^{\infty} \left| \sum_{j=\nu}^{\infty} \left( a_{nj} - a_{n-1,j} \right) \right| \right)^{k^*} < \infty.$$

#### REFERENCES

- [1] F. Başar, B. Altay and M. Mursaleen, Some generalizations of the space byp of p-bounded variation sequences, Nonlinear Analysis, 68 (2), (2008), 273-287.
- [2] G.C. Hazar Güleç and M.A. Sarıgöl, The space  $bv_k^{\theta}$  and matrix transformations, In: 8th International Eurasian Conference on Mathematical Sciences and Applications (IECMSA-2019), Baku, August 27-30, 2019.
- [3] G.C. Hazar Güleç, Compact Matrix Operators on Absolute Cesàro Spaces, Numer. Funct. Anal. Optim., 2019. DOI: 10.1080/01630563.2019.1633665
- [4] G.C. Hazar, and M.A. Sarıgöl, On absolute Nörlund spaces and matrix operators, Acta Math. Sin. (Engl. Ser.), 34 (5), (2018), 812-826.
- [5] A.M. Jarrah, E.Malkowsky, BK spaces, bases and linear operators, Rend. Circ. Mat. Palermo II, 52, (1998), 177-191.
- [6] E. Malkowsky, V.Rakočević and S. Živković, Matrix transformations between the sequence space *bv<sup>k</sup>* and certain *BK* spaces, Bull. Cl. Sci. Math. Nat. Sci. Math. 123 (27), (2002), 33–46.
- [7] L.J. Oh, On the Summability of Infinite Series and Hüseyin Bor, Journal for History of Mathematics, 30(6), (2017), 353-365.
- [8] M.A. Sarıgöl, Extension of Mazhar's theorem on summability factors, Kuwait J. Sci., 42(2), (2015), 28-35.
- M. Stieglitz and H. Tietz, Matrixtransformationen von Folgenraumen Eine Ergebnisüberischt, Math Z., 154 (1977), 1-16.
- [10] A. Wilansky, Summability Through Functional Analysis, North-Holland Mathematical Studies, vol. 85, Amsterdam, Elsevier Science Publisher, 1984.