Matrix operators involving the space $b v_{k}^{\theta}$

Cite as: AIP Conference Proceedings 2183, 05001 (2019); https://doi.org/10.1063/1.5136149 Published Online: 06 December 2019
G. Canan Hazar Güleç, and M. Ali Sarıgöl

ARTICLES YOU MAY BE INTERESTED IN

Characterization of the compact operators on the class ($\mathrm{bv}, \mathrm{bv} v_{k}^{\theta}$)
AIP Conference Proceedings 2183, 050010 (2019); https://doi.org/10.1063/1.5136148
Necessary and sufficient Tauberian conditions under which convergence of double sequences r, δ
follows from A summability
AIP Conference Proceedings 2183, 050012 (2019); https://doi.org/10.1063/1.5136150
A new generalization on absolute Riesz summability
AIP Conference Proceedings 2183, 050017 (2019); https://doi.org/10.1063/1.5136155

Matrix operators involving the space $b v_{k}^{\theta}$

G. Canan Hazar Güleç ${ }^{1, a)}$ and M. Ali Sarıgöl ${ }^{1, b)}$
${ }^{1}$ Pamukkale University, Department of Mathematics, 20070, Denizli, Turkey.
${ }^{\text {a) }}$ Corresponding author: gchazar@ pau.edu.tr
${ }^{\text {b) }}$ msarigol@ pau.edu.tr

Abstract

In this study, determining the β dual of the space of $b v_{k}^{\theta}$ we characterize the matrix class $\left(b v_{k}^{\theta}, b v\right)$, where θ is a sequence of positive numbers and $b v_{k}^{\theta}=\left\{x \in w:\left(\theta_{v}^{1 / k^{*}} \Delta x_{v}\right) \in \ell_{k}\right\}$ for $1 / k+1 / k^{*}=1(1<k<\infty)$.

Keywords: Sequence spaces, matrix transformations, $b v_{k}^{\theta}$ space.
PACS: 02.30.Lt, 02.30.Sa

INTRODUCTION

Let ω be the set of all complex sequences, ℓ_{k} and c be the sets of k-absolutely convergent series and convergent sequences, respectively. By $b v$ we denote the space of all sequences of bounded variation, i.e.,

$$
b v=\left\{x \in w: \sum_{v=0}^{\infty}\left|x_{v}-x_{v-1}\right|<\infty, \quad x_{-1}=0\right\} .
$$

Let U and V be subspaces of w and $\left(\theta_{n}\right)$ be positive sequence, and $A=\left(a_{n v}\right)$ be an arbitrary infinite matrix of complex numbers. By $A(x)=\left(A_{n}(x)\right)$, we denote the A-transform of the sequence $x=\left(x_{v}\right)$, i.e.,

$$
A_{n}(x)=\sum_{v=0}^{\infty} a_{n v} x_{v}
$$

provided that the series is convergent for $n \geq 0$. Then, we say that A defines a matrix transformation from U into V, and denote it by $A \in(U, V)$ if the sequence $A x=\left(A_{n}(x)\right) \in V$ for all sequence $x \in U$, and the set

$$
U^{\beta}=\left\{\varepsilon \in \omega: \Sigma \varepsilon_{v} x_{v} \text { converges for all } x \in U\right\}
$$

is called the β dual of U.
An infinite matrix $A=\left(a_{n v}\right)$ is called a triangle if $a_{n n} \neq 0$ and $a_{n v}=0$ for all $v>n$ for all n, v [10]. Throughout k^{*} denotes the conjugate of $k>1$, i.e., $1 / k+1 / k^{*}=1$.

We define the notations Γ_{c} and $\Gamma_{s}, v=1,2, \ldots$, as follows:

$$
\begin{gathered}
\Gamma_{c}=\left\{\varepsilon=\left(\varepsilon_{v}\right): \lim _{m} \sum_{v=r}^{m} \varepsilon_{v} \text { exists for } r=1,2, \ldots\right\}, \\
\Gamma_{s}=\left\{\varepsilon=\left(\varepsilon_{v}\right): \sup _{m} \sum_{r=1}^{m}\left|\theta_{r}^{-1 / k^{*}} \sum_{v=r}^{m} \varepsilon_{v}\right|^{k^{*}}<\infty\right\} .
\end{gathered}
$$

Sequence spaces and matrix operators are very important topics in the summability, which have been studied by several authors in many research papers (for example, see [1-7]). In this study, by determining the β dual of $b v_{k}^{\theta}$ we characterize some matrix operators involving the space $b v_{k}^{\theta}$.

The following lemmas are needed in proving our theorems.
Lemma 1 Let $1<k<\infty$. Then, $A \in\left(\ell_{k}, \ell\right)$ if and only if

$$
\sum_{v=0}^{\infty}\left(\sum_{n=0}^{\infty}\left|a_{n v}\right|\right)^{k^{*}}<\infty \quad[8]
$$

Lemma 2 Let $1<k<\infty$. Then $A \in\left(\ell_{k}, c\right) \Leftrightarrow$

$$
\left.a-) \lim _{n} a_{n v} \text { exists for each } v, \quad b-\right) \sup _{n} \sum_{v=0}^{\infty}\left|a_{n v}\right|^{k^{*}}<\infty[9] .
$$

RELATED MATRIX OPERATORS

In [2] , the space $b v_{k}^{\theta}$ has been defined by

$$
b v_{k}^{\theta}=\left\{x=\left(x_{k}\right) \in w: \sum_{n=0}^{\infty} \theta_{n}^{k-1}\left|\Delta x_{n}\right|^{k}<\infty, x_{-1}=0\right\}
$$

which is a complete normed space where $\left(\theta_{n}\right)$ is a sequence of nonnegative terms, $1 \leq k<\infty$ and $\Delta x_{n}=x_{n}-x_{n-1}$ for all n. Also, it is reduced to $b v^{k}$ for $\theta_{n}=1$ for all n and $b v_{1}^{\theta}=b v$, which have been studied by Malkowsky et all [6] and Jarrah and Malkowsky [5]. Moreover, recently, Başar et all [1] have defined the sequence space $b v(u, p)$ and proved that this space is linearly isomorphic to the space $\ell(p)$ of Maddox as generalized to paranormed space.

Now we begin with β dual of $b v_{k}^{\theta}$, which also can be deduced from [1].
Lemma 3 Let $1<k<\infty$ and $\left(\theta_{n}\right)$ be a sequence of nonnegative numbers. Then, $\left(b v_{k}^{\theta}\right)^{\beta}=\Gamma_{c} \cap \Gamma_{s}$.
Proof Let $1<k<\infty$. Now, $\varepsilon=\left(\varepsilon_{n}\right) \in\left(b v_{k}^{\theta}\right)^{\beta}$ iff $\Sigma \varepsilon_{n} x_{n}$ is convergent for all $x \in b v_{k}^{\theta}$. Also, it can be written that

$$
\sum_{n=0}^{m} \varepsilon_{n} x_{n}=\sum_{v=0}^{m}\left(\sum_{n=v}^{m} \varepsilon_{n}\right) \theta_{v}^{-1 / k^{*}} y_{v}=\sum_{j=0}^{m} a_{m v} y_{v}
$$

where

$$
a_{m v}=\left\{\begin{array}{c}
\theta_{v}^{-1 / k^{*}} \sum_{n=v}^{m} \varepsilon_{n}, 0 \leq v \leq m \\
0, \quad v>m
\end{array}\right.
$$

So it follows that $\varepsilon \in\left(b v_{k}^{\theta}\right)^{\beta}$ iff $A \in\left(\ell_{k}, c\right)$, which completes the proof together with Lemma 2.
The following theorem is the main result of our study which characterize the matrix class $\left(b v_{k}^{\theta}, b v\right)$, where θ is a sequence of positive numbers.
Theorem 1 Let $A=\left(a_{n v}\right)$ be an infinite matrix of complex numbers for all $n, v \geq 0$ and $1<k<\infty$. Then, $A \in\left(b v_{k}^{\theta}, b v\right)$ if and only if

$$
\begin{gather*}
\lim _{n \rightarrow \infty} \sum_{j=v}^{\infty} a_{n j} \text { exists for each } v, \tag{1}\\
\sup _{m} \sum_{v=0}^{m}\left|\theta_{v}^{-1 / k^{*}} \sum_{j=v}^{m} a_{n j}\right|^{k^{*}}<\infty \text { for each } n \tag{2}
\end{gather*}
$$

and

$$
\begin{equation*}
\sum_{v=0}^{\infty}\left(\sum_{n=0}^{\infty}\left|\theta_{v}^{1 / k^{*}} \sum_{j=v}^{\infty}\left(a_{n j}-a_{n-1, j}\right)\right|\right)^{k^{*}}<\infty \tag{3}
\end{equation*}
$$

Proof Now, $A \in\left(b v_{k}^{\theta}, b v\right)$ iff $\left(a_{n v}\right)_{v=0}^{\infty} \in\left(b v_{k}^{\theta}\right)^{\beta}$ and $A(x) \in b v$ for every $x \in b v_{k}^{\theta}$. Also, by Lemma $3,\left(a_{n v}\right)_{v=0}^{\infty} \in$ $\left(b v_{k}^{\theta}\right)^{\beta}$ iff the conditions (1) and (2) hold. On the other hand, consider the operators $T: b v_{k}^{\theta} \rightarrow \ell_{k}$ and $B: b v \rightarrow \ell$ defined by $T(x)=\left(\theta_{n}^{1 / k^{*}} \Delta x_{n}\right)$ and $B(x)=\left(\Delta x_{n}\right)$ and also denote inverse of T by G. Then, it is easily seen that the matrix G is given by

$$
g_{n v}=\left\{\begin{array}{c}
\theta_{v}^{-1 / k^{*}}, 0 \leq v \leq n, \\
0, \quad v>n,
\end{array}\right.
$$

and if we say that $\widetilde{D}=B o \widetilde{A}$, where $\widetilde{A}=A o G$, then, $A: b v_{k}^{\theta} \rightarrow b v$ if and only if $\widetilde{D}: \ell_{k} \rightarrow \ell$. So, it can be deduced that

$$
\widetilde{a}_{n v}=\theta_{v}^{-1 / k^{*}} \sum_{j=v}^{\infty} a_{n j}
$$

which implies

$$
\widetilde{d}_{n v}=\theta_{v}^{1 / k^{*}} \sum_{j=v}^{\infty}\left(a_{n j}-a_{n-1, j}\right)
$$

Therefore, by applying Lemma 1 with the matrix \widetilde{D}, it can be achieved that $\widetilde{D}: \ell_{k} \rightarrow \ell$ iff the condition (3) holds. This completes the proof.

If we take $\theta_{v}=1$ for all $v \geq 0$, we get the well known result in [6].
Corollary 1 Let $A=\left(a_{n v}\right)$ be an infinite matrix of complex numbers for all $n, v \geq 0$ and $1<k<\infty$. Then, $A \in\left(b v_{k}, b v\right)$ if and only if (1) holds,

$$
\begin{aligned}
& \sup _{m} \sum_{v=0}^{m}\left|\sum_{j=v}^{m} a_{n j}\right|^{k^{*}}<\infty \text { for each } n, \\
& \sum_{v=0}^{\infty}\left(\sum_{n=0}^{\infty}\left|\sum_{j=v}^{\infty}\left(a_{n j}-a_{n-1, j}\right)\right|\right)^{k^{*}}<\infty .
\end{aligned}
$$

REFERENCES

[1] F. Başar, B. Altay and M. Mursaleen, Some generalizations of the space bvp of p-bounded variation sequences, Nonlinear Analysis, 68 (2), (2008), 273-287.
[2] G.C. Hazar Güleç and M.A. Sarıgöl, The space $b v_{k}^{\theta}$ and matrix transformations, In: 8th International Eurasian Conference on Mathematical Sciences and Applications (IECMSA-2019), Baku, August 27-30, 2019.
[3] G.C. Hazar Güleç, Compact Matrix Operators on Absolute Cesàro Spaces, Numer. Funct. Anal. Optim., 2019. DOI: 10.1080/01630563.2019.1633665
[4] G.C. Hazar, and M.A. Sarıgöl, On absolute Nörlund spaces and matrix operators, Acta Math. Sin. (Engl. Ser.), 34 (5), (2018), 812-826.
[5] A.M. Jarrah, E.Malkowsky, BK spaces, bases and linear operators, Rend. Circ. Mat. Palermo II, 52, (1998), 177-191.
[6] E. Malkowsky, V.Rakočević and S. Živković, Matrix transformations between the sequence space $b v^{k}$ and certain $B K$ spaces, Bull. Cl. Sci. Math. Nat. Sci. Math. 123 (27), (2002), 33-46.
[7] L.J. Oh, On the Summability of Infinite Series and Hüseyin Bor, Journal for History of Mathematics, 30(6), (2017), 353-365.
[8] M.A. Sarıgöl, Extension of Mazhar's theorem on summability factors, Kuwait J. Sci., 42(2), (2015), 28-35.
[9] M. Stieglitz and H. Tietz, Matrixtransformationen von Folgenraumen Eine Ergebnisüberischt, Math Z., 154 (1977), 1-16.
[10] A. Wilansky, Summability Through Functional Analysis, North-Holland Mathematical Studies, vol. 85, Amsterdam, Elsevier Science Publisher, 1984.

