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ABSTRACT
In this study, a collocationmethod, one of the type of projectionmethods based on the general-
ized Bernstein polynomials, is developed for the solution of high-order linear Fredholm–Volterra
integro-differential equations containing derivatives of unknown function in the integral part.
The method is valid for the mixed conditions. The convergence analysis and error bounds of the
method are also given. Besides, six examples are presented to demonstrate the applicability and
validity of the method.
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1. Introduction

In the early 1900s, Vito Volterra has introduced new
type of equations called as integro-differential equa-
tions for his research study on population growth phe-
nomenon. It is clear that one or more derivatives of the
unknown function appear out under the integral sign
in this type of equations. Many physical andmathemat-
ical problems, such as chemical, biological, mechani-
cal, engineering, financial, industrial and so on, can be
modelled by integro-differential equations. The appli-
cations of integro-differential equations are also impor-
tant in electromagnetism physics and fluid dynamics.
Scientists and engineers come across with the integro-
differential equations in their research work including
transfers of the heat and mass, problems of the electri-
cal circuit and biological diversity. Since it is not usu-
ally possible to find an exact solution of the integro-
differential equations, new trends on the numerical
methods for solving these types of equations have
been developed with calculating techniques and pro-
gramming supports. One of the most frequently used
numerical method is collocation method. In recent
years, collocation methods such as Bessel [1], Cheby-
shev [2,3], Taylor polynomials [4] and B-spline func-
tions [5] have been given for approximating the solu-
tions of linear Fredholm–Volterra integro-differential
equations.

In this paper, by benefiting from the definition of the
generalized Bernstein polynomials and their approach

[6] we develop a collocation method for approximat-
ing the solution ofmth-order linear Fredholm–Volterra
integro-differential equation in the most general form
as

m∑
k=0

ak (x) y(k)(x) = g (x) + λ1

∫ b

a

q∑
k=0

fk (x, t) y(k)(t)dt

+ λ2

∫ x

a

r∑
k=0

vk (x, t) y(k)(t)dt (1)

under the mixed conditions
m−1∑
k=0

l∑
j=0

τ kij y
(k) (cj) = μi; i = 0, 1, . . . ,m − 1,

a ≤ cj ≤ b (2)

where ak(x), g(x), fk(x, t) and vk(x, t) are defined func-
tions respectively on the interval [a, b] and [a, b] × [a, b],
y(x) is an unknown function, τ kij , cj, μi, λ1 and λ2 are
known constants and m ≥ q, r. To solve approximately
integro-differential equation (1), we should select a
solution that satisfy the equation approximately. In
other words, the solution should be close to the exact
solution of Equation 1. There are variousmethods to get
the approximate solution. The most popular of these
is the collocation method. Moreover, this method can
be called as projection method because the colloca-
tion method makes essential use of projection (linear)
operators [7].
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Let’s give the following Theorem 1.1 (see [8]) that
is an important relation between the generalized Bern-
stein basis polynomials and their derivatives.

Theorem 1.1: The derivatives of the generalized Bern-
stein basis polynomials hold the following relation:

P(k) (x) = P (x)Nk ; k = 0, 1, . . . ,m.

Here P(x) = [pi,n(x)], Pk(x) = [p(k)
i,n (x)] are 1 × (n + 1)

matrices, N =(dij) is (n + 1) × (n + 1) matrix such that
the elements ofN are defined by

dij = 1
b − a

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
n − i; if j = i + 1

2i − n; if j = i

−i; if j = i − 1

0; otherwise

for i, j = 0, 1, . . . , n and N0 = I is identity matrix. Here
pi,n(x)aregeneralizedBernsteinbasispolynomialsdefined
on [a, b].

In the reminder of this paper, the collocationmethod
for linear integro-differential equations is presented,
and then convergence and error bounds of themethod
are analysed. After that, some numerical examples are
also given to demonstrate the efficiency of themethod.

2. Method of solution

Theorem 2.1: Let xs be collocation points and y ∈
C[a, b]. By means of the generalized Bernstein polyno-
mials, the linear Fredholm–Volterra integro-differential
equation (1) can be reduced to the following matrix
equation:[

m∑
k=0

AkPN
k−λ1

q∑
k=0

FkN
k−λ2

r∑
k=0

VkN
k

]
Y = G. (3)

Here Ak = diag[ak(xs)], Fj=[Fk,s,i], V =[Vk,s,i], P = [pi,n
(xs)] are (n + 1) × (n + 1) matrices, and Y =[y(a +
(b − a)i/n)], G =[g(xs)] are (n + 1) × 1 matrices for
i, s = 0, 1, . . . , n. Besides, the elements of F andVmatrices
are defined as

Fk,s,i =
∫ b

a
fk (xs, t) pi,n (t) dt,

Vk,s,i =
∫ xs

a
vk (xs, t) pi,n (t) dt.

Proof: Since y(x) ∈ C[a, b], Equation 1 has the gen-
eralized Bernstein polynomial solution, therefore the
following is satisfied:

y (x) ∼= Bn(y; x) =
n∑
i=0

y

(
a + (b − a)i

n

)
pi,n (x) ,

y (x) ∼= P (x)Y (4)

such that

Y =
[
y (a) y

(
a + b − a

n

)
. . .

y

(
a + (b − a) (n − 1)

n

)
y(b)

]T
.

Using Theorem 1.1, expression (4) can be rewritten as

y(k)(x) � P(k)(x)Y = P(x)NkY; k = 0, 1, . . . ,m. (5)

By substituting relation (5) and the collocation points
into integro-differential equation (1), linear algebraic
equation system is obtained in the form:

m∑
k=0

ak (xs)P(xs)NkY

= g (xs) + λ1

∫ b

a

q∑
k=0

fk (xs, t)P(t)NkYdt

+ λ2

∫ xs

a

r∑
k=0

vk (xs, t)P(t)NkYdt. (6)

Here, it is obvious that y(k)(xs) = B(k)
n (y; xs) (s = 0, 1,

. . . , n) from the definition of the collocation method.
This system can also be written in the compact form as[

m∑
k=0

ak (xs)P(xs)Nk − λ1

q∑
k=0

Fk (xs)Nk

− λ2

r∑
k=0

Vk (xs)Nk

]
Y = g (xs) (7)

such that

Fk (xs) =
∫ b

a
fk (xs, t)P (t) dt,

Vk (xs) =
∫ xs

a
vk (xs, t)P (t) dt.

Therefore, Equation 7 for s = 0, 1, . . . , n can be writ-
ten in the desired matrix form (3) and the proof is
completed. �

The matrices in Equation 3 are obviously denoted by

Ak =

⎡⎢⎢⎢⎣
ak (x0) 0 . . . 0

0 ak (x1) . . . 0
...

...
. . .

...
0 0 . . . ak (xn)

⎤⎥⎥⎥⎦ , G =

⎡⎢⎢⎢⎣
g (x0)
g (x1)

...
g (xn)

⎤⎥⎥⎥⎦ ,

P =

⎡⎢⎢⎢⎣
P (x0)
P (x1)

...
P (xn)

⎤⎥⎥⎥⎦ , Fk =

⎡⎢⎢⎢⎣
Fk (x0)
Fk (x1)

...
Fk (xn)

⎤⎥⎥⎥⎦ , Vk =

⎡⎢⎢⎢⎣
Vk (x0)
Vk (x1)

...
Vk (xn)

⎤⎥⎥⎥⎦ .

General linear integro-differential equation (1) under
mixed conditions (2) can be solved by the following
steps:
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Step 1. Equation 3 can be written simply as follows:

WY= G or [W;G] (8)

so that W =∑m
k=0 AkPNk−λ1

∑q
k=0 FkN

k−λ2
∑r

k=0
VkNk . Here Y is n+1-dimensional unknown matrix. The
matrix equation corresponds to a linear algebraic sys-
tem. First,W and G are calculated.

Step 2. From expression (5), the matrix form of mixed
conditions (2) can be written as

UiY = μi or [Ui;μi] ; i = 0, . . . ,m − 1. (9)

Here U is evaluated by Ui =
∑m−1

k=0

∑l
j=0 τ kij P(cj)Nk .

Step 3. Let [W̃; G̃] be denoted as new augmented
matrix that is acquired by adding the elements of aug-
mented row matrices (9) to the end of augmented
matrix (8). If the number of collocationpoints is S=n+1,
then

[
W̃; G̃

] =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

w0,0 w0,1 . . . w0,n ; g (x0)
. . . . . . . . . . . . ; . . .

wn,0 wn,1 . . . wn,n ; g (xn)
t0,0 t0,1 . . . t0,n ; μ0

. . . . . . . . . . . . ; . . .

tm−1,0 tm−1,1 . . . tm−1,n ; μm−1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

such that W̃ is (n + m + 1)×(n + 1) and G̃ is (n + m +
1)×1 dimensional matrices. Besides the augmented
matrix can be defined as [W∗;G∗] that is obtained by
replacing them rows of augmented matrix (8) with the
rows of augmented matrix (9) as follows:[
W∗;G∗]

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

w0,0 w0,1 . . . w0,n ; g(x0)
. . . . . . . . . . . . ; . . .

t0,0 t0,1 . . . t0,n ; μ0

. . . . . . . . . . . . ; . . .

tm−1,0 tm−1,1 . . . tm−1,n ; μm−1

. . . . . . . . . . . . . . . . . .

wn−m,0 wn−m,1 . . . wn−m,0 ; g(xn)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

In this case,W∗ is (n + 1)×(n + 1) and G∗ is (n + 1)×1
dimensional matrices.

Step 4. When rank(W∗) = rank[W∗;G∗] = n + 1 or
rank(W̃) = rank[W̃; G̃] = n + 1, the unknown coeffi-
cient matrix Y is uniquely determined [9]. Then, this
system can be solved by the Gauss Elimination, Gener-
alized Inverse, LU and QR factorization methods.

3. Convergence and error analysis

Definition 3.1: The maximum error can be defined as

‖en‖∞ = max
a≤x≤b

|y(x) − yn (x)|

where y(x) and yn(x) are exact and approximate solu-
tions, respectively. Impending f ∈ C [a, b] × C[a, b], the

maximum norm can be denoted by

‖f‖∞ = max
x,t∈[a,b]

|f (x, t)| .

Besides maximum, mean and root of the mean square
errors at the collocation points can be calculated
respectively by the following formulas:

Emax = max
xs∈[a,b]

|en (xs)| , Emean = 1
n + 1

n∑
s=0

|en (xs)| ,

Eroot =
√√√√ 1

n + 1

n∑
s=0

(en (xs))2.

In addition, residual error for the confessed Bernstein
collocation method can be expressed as

Rn (x) =
m∑
k=0

ak (x) B(k)
n (y; x)

− λ1

∫ b

a

q∑
k=0

fk (x, t) B(k)
n (y; t)dt

− λ2

∫ x

a

r∑
k=0

vk (x, t) B(k)
n (y; t)dt − g (x) . (10)

Theorem 3.1: If y ∈ C
k+2[a, b], then the following

inequality is hold for some k ≥ 0 :∣∣∣B(k)
n (y; x) − y(k) (x)

∣∣∣ ≤ 1
2n

(
k (k − 1)

∥∥∥y(k)
∥∥∥∞

+ k |b

+ a − 2x|
∥∥∥y(k+1)

∥∥∥∞
+ (x − a) (b − x)

∥∥∥y(k+2)
∥∥∥∞

)
.

Proof: The above theoremcanbeeasily provedby con-
sidering the induction technique and transformation
t = (x − a)/(b − a) like the theorem presented on the
interval [0, 1] by DeVore and Lorentz [10]. �

Considering k=0 and the definition of the maximum
norm in the Theorem 3.1, the following corollary can be
noted:

Corollary 3.1: If y ∈ C
2[a, b], then the following inequal-

ity is hold:

|Bn (y; x) − y (x)| ≤ (b − a)2

8n

∥∥y′′∥∥∞ .

Theorem 3.2: Let xs ∈ [a, b] be collocation points. If
f, v ∈ C[a, b] × C[a, b] and ak , y(k) ∈ C[a, b] for k =
0, 1, . . . ,m + 2, then the residual errors hold the following
inequality at the collocation points:

|Rn (xs)| ≤ 1
2n

[|λ1| (b − a) σ (xs) + |λ2| (xs − a) τ (xs)
]

and limn→∞ |Rn(xs)| = 0. Here σ and τ are constants
which depend on the collocation points.
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Proof: By taking g(x) from Equation 1 and substituting
it in residual error (10), the absolute residual error can
be written as follows:

|Rn (x)| ≤
m∑
k=0

|ak (x)|
∣∣∣B(k)

n (y; x) − y(k)(x)
∣∣∣

+ |λ1|
∫ b

a

q∑
k=0

|fk (x, t)|
∣∣∣B(k)

n (y; t) − y(k)(t)
∣∣∣ dt

+ |λ2|
∫ x

a

r∑
k=0

|vk(x, t)|
∣∣∣B(k)

n (y; t) − y(k)(t)
∣∣∣ dt.
(11)

Since y(k) ∈ C[a, b] and B(k)
n (y; xs) = y(k)(xs) for s =

0, 1, . . . , n and k = 0, 1, . . . ,m + 2, the residual errors
provide the following inequality:

|Rn(xs)| ≤ |λ1|
∫ b

a

q∑
k=0

|fk (xs, t)|
∣∣∣B(k)

n (y; t) − y(k)(t)
∣∣∣dt

+ |λ2|
∫ xs

a

r∑
k=0

|vk(xs, t)|
∣∣∣B(k)

n (y; t) − y(k)(t)
∣∣∣dt.

If Theorem 3.1 is applied to the right side of the inequal-
ity, then we have

|Rn (xs)| ≤ 1
2n

[
|λ1|

∫ b

a

q∑
k=0

|fk (xs, t)|
(
k (k − 1)

∥∥∥y(k)
∥∥∥

+ k |b + a − 2t|
∥∥∥y(k+1)

∥∥∥
+ (t − a) (b − t)

∥∥∥y(k+2)
∥∥∥) dt

+ |λ2|
∫ xs

a

r∑
k=0

|vk (xs, t)|
(
k (k − 1)

∥∥∥y(k)
∥∥∥

+ k |b + a − 2t|
∥∥∥y(k+1)

∥∥∥
+ (t − a) (b − t)

∥∥∥y(k+2)
∥∥∥) dt

]
.

If we take themaximumof the right side of this inequal-
ity with regard to t, then we can rewrite the residual
error bound as

|Rn (xs)| ≤ 1
2n

[
|λ1| (b − a)

q∑
k=0

εk (xs) Sk

+ |λ2| (xs − a)
r∑

k=0

ρk (xs) Sk

]

such that

max
t∈[a,b]

|fk (xs, t)| = εk (xs) , max
t∈[a,b]

|vk (xs, t)| = ρk (xs)

and

Sk = k (k − 1)
∥∥∥y(k)

∥∥∥ + k (b − a)
∥∥∥y(k+1)

∥∥∥
+ (b − a)2

4

∥∥∥y(k+2)
∥∥∥ .

Denoting

σ (xs) =
q∑

k=0

εk (xs) Sk and τ (xs) =
r∑

k=0

ρk (xs) Sk ,

we obtain the desired result. Since σ and τ are con-
stants, |Rn(xs)| → 0 as n → ∞. This completes the
proof. �

Theorem 3.3: If f, v ∈ C[a, b] × C[a, b] and y(k) ∈ C

[a, b] (k = 0, 1, . . . ,m + 2), then residual error bound has
the following inequality:

‖Rn‖∞ ≤ 1
2n

[
θ + (b − a) (|λ1| φ + |λ2| ϕ)

]
and convergency:

lim
n→∞ ‖Rn‖∞ = 0

such that θ , φ and ϕ are positive constants:

θ =
m∑
k=0

‖ak‖∞ Sk , φ =
q∑

k=0

‖fk‖∞ Sk and

ϕ =
r∑

k=0

‖vk‖∞ Sk

where Sk is denoted as in Theorem 3.2.

Proof: Applying Theorem 3.1 to the right-hand side of
inequality (11), we get

|Rn(x)|

≤ 1
2n

[
m∑
k=0

|ak(x)|(k(k − 1)‖y(k)‖ + k|b + a − 2x|

× ‖y(k+1)‖ + (x − a)(b − x)‖y(k+2)‖)

+ |λ1|
∫ b

a

q∑
k=0

|fk(x, t)|(k(k − 1)‖y(k)‖ + k|b + a

− 2t|‖y(k+1)‖ + (t − a)(b − t)‖y(k+2)‖)dt

+ |λ2|
∫ x

a

r∑
k=0

|vk(x, t)|(k(k − 1)‖y(k)‖ + k|b + a

− 2t| ‖y(k+1)‖ + (t − a)(b − t)‖y(k+2)‖)dt
]
.

From the definition of themaximumerror and the prop-
erties of the norm, the error bound can be written as

‖Rn‖∞ ≤ 1
2n

[
m∑
k=0

‖ak‖∞ Sk + |λ1|
∫ b

a

q∑
k=0

‖fk‖∞ Sk dt

+ |λ2|
∫ x

a

r∑
k=0

‖vk‖∞ Sk dt

]

≤ 1
2n

[
m∑
k=0

‖ak‖∞ Sk + |λ1| (b − a)
q∑

k=0

‖fk‖∞ Sk

+ |λ2| (b − a)
r∑

k=0

‖vk‖∞ Sk

]
.
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If we consider the θ , φ and ϕ as noted above, then the
residual error bound is obtained. Since θ , φ and ϕ are
constants, ‖Rn‖∞ → 0 as n → ∞. This completes the
proof. �

4. Numerical results

The proposed method is tested on six numerical exam-
ples. Numerical results of this method are computed in
Matlab 7.1 by considering the adding anddeleting tech-
niques mentioned in Step 3. Besides, these results and
their comparisons with the other methods are demon-
strated by the tables and figures.

Example 4.1: Consider the linear Fredholm integro-
differential equation with initial conditions as
follows:

y(8) (x) = −8ex + x2 + y (x) +
∫ 1

0
x2y′ (t) dt,

y (0) = 1, y′ (0) = 0, y′′ (0) = −1,

y′′′(0) = −2, y(4) (0) = −3,

y(5) (0) = −4, y(6) (0) = −5, y(7) (0) = −6

Exact solutionof the aboveequation is y(x) = (1 − x)ex .
The mean errors that calculated on the collocation

points xs = s/n; s = 0, 1, . . . , n by the proposedmethod
are indicatedwith the increasingn values in Table 1. The
table exhibited that the numerical solutions attained
by deleting the last eight row matrix are better than
the numerical solutions attained by adding for increas-
ing n values. However, the absolute errors obtained by
adding technique converge faster than the results of the
Variational Iteration method [11] given as the iteration
k in Table 2. It exhibited that the presentedmethod has
more effective numerical results without using iteration
than the other method.

Table 1. Mean errors Emean for Example 4.1.

n Adding technique Deleting technique

10 1.6e − 004 9.9e − 009
11 2.2e − 007 3.5e − 010
12 2.1e − 009 1.7e − 011
13 2.4e − 011 2.7e − 012
14 1.4e − 012 2.5e − 012

Table 2. Comparison of the |en(x)| for Example 4.1.

Presented method Variational iteration method

x n = 15,k = 1 k = 10 k = 15

0.2 1.6e−012 2.9e−014 1.1e−016
0.4 1.7e−012 3.1e−011 1.2e−014
0.6 1.4e−012 1.9e−009 6.6e−013
0.8 6.3e−013 3.4e−008 1.2e−011
1.0 8.0e−012 3.3e−007 1.1e−010

Figure 1. |e2(x)| for Example 4.2.

Figure 2. |e12(x)| for Example 4.2.

Example 4.2: Consider the linear Fredholm–Volterra
integro-differential equation

exy
′′
(x) + x3y′ (x) + y (x)

= − 2
π
sin (πx) + 2ex + x2 − 2x − 1

3

+
∫ 1

−1

[(
x4 − t

)
y(t) + t2y′(t)

]
dt

+
∫ x

−1

[
cos (π t) y′′(t) + 3txy′(t)

]
dt

under the mixed conditions y(−1) + 2y(0) = 0,
y′(1/2) = 1, y(1) = 2/3. Here the exact solution is
y(x) = x2 − 1/3.

The absolute errors of the method attained by
adding and deleting the first and last two row matrices
at the collocation points xs = cos(sπ/n); s = 0, 1, . . . , n
aregiven for differentn values in Figures 1 and2.Wecan
see from Figure 1, the best result for n=2 is attained,
and note that the exact solution to the problem is a
second-degree polynomial.

The mean errors at the Chebyshev collocation
points xs = cos(sπ/n); s = 0, 1, . . . , n by the presented
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Table 3. Comparison of the mean errors for Example 4.2.

Proposed method Chebyshev collocation

n Adding technique Deleting technique method

2 5.6e − 017 5.6e − 017 –
3 8.8e − 017 8.8e − 017 2.0e − 002
6 2.1e − 016 1.5e − 016 1.2e − 004
9 1.8e − 016 1.2e − 016 1.8e − 006
12 2.0e − 016 2.1e − 016 9.1e − 011
15 2.4e − 016 3.0e − 015 4.2e − 012

method are compared with the results by the Cheby-
shev collocationmethod [12] in Table 3. The table exhib-
ited that the numerical results attained by adding and
deleting both the first and last two row matrices are
more effective than the numerical results of the other
method.

Example 4.3: Let us consider the linear Fredholm–
Volterra integro-differential equation

y′(x) = 27
5

− 1
5
x6 − 3

4
x5 − x4 − 1

2
x3 + 3x2

+ 41
20

x +
∫ 1

−1
(x − t) y(t)dt +

∫ x

−1
xty (t) dt

under the initial condition y(0) = 1. Exact solution of
the above equation is y(x) = (x + 1)3.

We find the exact solution as similar to the Cheby-
shev collocationmethod [13] for n=3. If you pay atten-
tion, the exact solution of the problem is a third-degree
polynomial.

Example 4.4: Consider the Volterra integral equation
of the first kind∫ x

0
cos (x − t) y′′ (t) dt = 2 sin (x)

under the initial conditions y(0) = y′(0) = 0. Here the
exact solution is y(x) = x2.

The root of mean square errors is obtained on the
collocation points xs = s/n; s = 0, 1, . . . , n by applying
the adding technique in the proposed method. The
attained results are compared with the Chebyshev col-
location method [12], spectral method [14] which is
basedon theChebyshevpolynomials and Lagrange col-
location interpolation method [15] in Table 4. The table
is exhibited that the numerical results of the presented
method are much better than the others. Besides, the
best result is obtained for n=2, since the exact solution
of problem is a second-degree polynomial.

Example 4.5: Consider the following Volterra integro-
differential equation [16] that represents the charged
particle motion for certain configurations of oscillating

Table 4. Comparison of Eroot errors for Example 4.4.

n
Presented
method

Chebyshev
collocation
method

Spectral
method

Lagrange
collocation
interpolation
method

2 0 2.6e − 004 1.2e − 004 8.4e − 005
3 5.9e − 017 1.8e − 005 2.3e − 005 1.7e − 005
4 1.8e − 016 2.6e − 007 1.3e − 007 2.4e − 008
5 1.2e − 016 4.7e − 008 1.7e − 008 2.6e − 009
6 1.2e − 016 1.8e − 010 7.6e − 011 2.9e − 012
7 2.2e − 016 1.8e − 011 1.0e − 011 6.7e − 013
8 2.4e − 016 5.6e − 014 3.9e − 014 7.8e − 016
9 2.4e − 016 6.7e − 015 4.3e − 015 4.4e − 016

Table 5. Comparison of the Emax errors for Example 4.5.

n Presented method
Homotopy

perturbation method

3 1.1e − 016 3.1e − 005
4 0 3.8e − 007
5 4.4e − 016 3.1e − 009
6 6.7e − 016 1.8e − 011

magnetic fields:

y
′′
(x) + a (x) y (x) = g (x) + b (x)

∫ x

0
cos

(
ωpt

)
dt,

under the initial conditions

y (0) = α, y′ (0) = β ,

where a(x), b(x) and g(x) are given periodic functions
of time. Let the above problem be given with

α = 2, β = −5, ωp = 3,

a (x) = 1, b (x) = sin x + cos x,

g (x) = −x3 + x2 − 11x + 4 − (sin x + cos x)

×
(

−x3

3
sin 3x − x2

3
cos 3x

− 13
27

cos 3x − 13
9
x sin 3x + x2

3
sin 3x

+ 16
27

sin 3x + 2
9
x cos 3x + 13

27

)
.

The exact solution of this problem is y(x) = −x3 + x2 −
5x + 2.

The maximum errors of the proposed method and
the He’s homotopy perturbation method [17] are com-
pared in Table 5. The numerical results of this method
are computed with the collocation points xs = s/n;
s = 0, 1, . . . , n and deleting technique. As can be seen
from Table 5, the presented method converges more
rapidly and demonstrates more effective results than
the Homotopy perturbation method.

Example 4.6: Consider the third-order integro-
differential equation

y
′′′

(x) = sin x − x −
∫ π/2

0
xty′ (t) dt,

under the initial conditions y(0) = 1, y′(0) = 0 and
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Table 6. Comparison of the |en(x)| errors for Example 4.6.

Presented method Variational iteration method

x n = 6,k = 1 n = 12,k = 1 k = 5 k = 10

0.2 6.6e − 008 8.2e − 015 2.1e − 005 6.3e − 007
0.4 6.6e − 007 5.6e − 014 3.4e − 004 1.0e − 005
0.6 2.2e − 006 1.9e − 013 1.7e − 003 5.1e − 005
0.8 5.7e − 006 4.7e − 013 5.4e − 002 1.6e − 004
1.0 1.2e − 005 1.0e − 012 1.3e − 002 3.9e − 004

y′′(0) = −1. The exact solution for this problem is
y(x) = cos x.

In Table 6, the absolute errors attained by apply-
ing the adding technique to the proposed method are
compared with the Variational iteration method [11].
The numerical results also calculated on the collocation
points xs = a + (b − a)s/n; s = 0, 1, . . . , n and interval
[0,π/2]. Although the exact solution is a trigonometric
function, it canbeobserved fromTable 6 that the results
of presentedmethodaremuchbetter than the results of
the other method.

5. Conclusion

In this paper, a collocation method based on the
generalized Bernstein polynomials has been improved
for the solutions of linear Fredholm–Volterra integro-
differential equations in the general form. This method
is valid on the spaces of Cm[a, b]. Unlike the previous
studies to be about the collocation method of nonlin-
ear equations, the error bounds and convergence of the
proposedmethod have been researched. Some numer-
ical examples have been scrutinized to view the suit-
ability and practicability of this method. The numerical
results that are computedwith the both the adding and
deleting techniques have been considered and com-
pared. We can say that deleting the last row matri-
ces for initial conditions and deleting the middle row
matrices for boundary conditions lead to more effec-
tive results than the other deleting techniques. Besides
we demonstrate that the numerical results attained by
deleting are better than the numerical results obtained
by adding the smallestn values. However, thenumerical
results obtained by adding are more easily calculated,
and convergence is faster than the numerical results
obtained by deleting for increasing n values. In general,
the method is much better and more impressive than
the other methods mentioned in Examples 4.1–4.6. In
particular, the equation that contains derivative within
the integral has the most notable numerical results for
smaller n values than the others. If the exact solution
of the mth-order equation is a nth-degree polynomial,
then the best numerical result is obtained for n=m. The
numerical results demonstrate usefulness of the pro-
posed method. This method will pave the way for the
numerical solutions of the other linear equations.
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