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ABSTRACT
In the present paper, G′/G2 expansionmethod is applied to the space-time fractional third order
Korteweg-De Vries (KdV) equation, space-time fractional Caudrey-Dodd-Gibbon (CDG) equation,
space-time fractional (2+1)-dimensional Calogero-Bogoyavlenskii-Schiff (CBS) equation and
space-time fractional (2+1)-dimensional Ablowitz-Kaup-Newell-Segur (AKNS) equation. Here,
the fractional derivatives are described in conformable sense. The obtained traveling wave
solutions are expressed by the hyperbolic, trigonometric, exponential and rational functions.
The graphs for some of these solutions have been presented by choosing suitable values of
parameters to visualize the mechanism of the given nonlinear fractional evolution equations.

ARTICLE HISTORY
Received 16 May 2018
Revised 31 July 2018
Accepted 10 August 2018

KEYWORDS
Space-time fractional third
order KdV equation;
space-time fractional CDG
equation; space-time
fractional (2+1)-dimensional
CBS equation; space-time
fractional (2+1)-dimensional
AKNS equation; conformable
derivative; G′/G2 expansion
method

PACS NO
2.70.c; 02.60.Cb; 02.30.Jr.

1. Introduction

The nonlinear evolution equations are widely used as
models to describe complex physical phenomena in
various field of science, particularly in fluid mechan-
ics, solid state physics, plasma waves and chemical
physics (see, for example, [1–4]). In this paper, we
apply G′/G2 expansion method (see, for example, [5])
to four space-time fractional nonlinear evolution equa-
tions: space-time fractional third-order KdV equation,
space-time fractional CDG equation, space-time frac-
tional (2+1)-dimensional CBS equation and space-time
fractional (2+1)-dimensional AKNS equation. Here, frac-
tional derivatives are defined in conformable sense. In
the literature, the solutions of these equations have
been investigated bymany authors using variousmeth-
ods (see, for example, [6–29]).

KdV equation was first introduced by Boussinesq
in 1877 and rediscovered by Diederik Korteweg and
Gustav de Vries in 1895. It describes surface waves of
longwavelength and small amplitude on shallowwater
and internal waves in a shallow density-stratified fluid.
Natural transform and Homotopy perturbation meth-
ods, Homotopy Perturbation Transform Method, Ric-
cati Equation Approach, extended hyperbolic function
method, projective Riccati equation method and the
Exp-function method have been applied to the third

order KDV equation in [6–10]. Jacobi elliptic function
expansion method has been applied to conformable
space-fractional KdV equation in [11].

Physical understanding of the CDG equation has
been investigated in [30] and its solutions have been
studied in [12–15]. The sin-cosine method, the rational
Exp-Function, sinh method, G′/G-expansion method,
Hirota’s bilinearmethod andexp-functionmethodhave
been used to obtain solutions of the fifth order CDG
equation in [12–14]. G′/G-expansion method has been
applied to conformable time fractional CDG equation
in [15].

The CBS equation was first constructed by Bogoy-
avlenskii and Schiff in different ways [31]. The modified
simple equation method, the exp-function methods,
Sine-Gordon expansion method, the simplest equation
method, G′/G-expansion method, a modified version
of the Fan sub-equation method, improved G′/G-
expansion and extended tanh-function method, sym-
metrymethod,Cole-Hopf transformationand theHirota
bilinear method have been implemented to com-
pute solutions of the nonlinear (2+1)-dimensional CBS
equation in [16–23], respectively.

The AKNS equation is one of the most important
physical models (see, for example, [32]). In 1997, Lou
and Hu have obtained the (2+1)-dimensional AKNS
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equation from the inner parameter dependent sym-
metry constraints of the KP equation [33]. Solutions
of the AKNS equation have been investigated by
many researchers. Hirota’s bilinearmethod, TANF(ξ/2)-
expansion method, the ansatz method, the improved
tanhmethod, the simplified formof thebilinearmethod
to obtain some new exact solutions for high nonlinear
form of (2+1)-dimensional AKNS equation have been
presented in [24–28]. Bilinear Backlund transformation
has been presented to obtain periodic wave solutions
of (2+1)-dimensional AKNS equation in [29].

2. Description of the conformable fractional
derivative and its properties

For a function f : (0,∞) → R, the conformable frac-
tional derivative of f of order 0 < α < 1 is defined as
(see, for example, [34])

Tα
t f (t) = lim

ε→0

f (t + εt1−α) − f (t)

ε
. (1)

Some important properties of the the conformable frac-
tional derivative are as follows:

Tα
t (af + bg)(t) = aTα

t f (t) + bTα
t g(t), ∀ a, b ∈ R, (2)

Tα
t (tμ) = μtμ−α , (3)

Tα
t (f (g(t)) = t1−αg′(t)f ′(g(t)). (4)

3. Analytic solutions to the conformable
space-time fractional KdV equation

Conformable space-time fractional KdV equation is
given as follows (see, for example, [8])

Tα
t u + auTβ

x u + bTβ
x T

β
x T

β
x u = 0, 0 < α ≤ 1, 0 < β ≤1,

(5)
where a �= 0 and b are constants. Let us consider the
following transformation

u(x, t) = U(ξ), ξ = k
tα

α
+ m

xβ

β
, (6)

where k, m are constants. Substituting (6) into
Equation (5) we obtain the following ordinary differen-
tial equation (ODE)

kU′ + amUU′ + bm3U′′′ = 0. (7)

Integrating of Equation (7) with zero constant of inte-
gration, we have

kU + am
U2

2
+ bm3U′′ = 0. (8)

Let us suppose that the solution of Equation (8) can be
expressed in the following form:

U(ξ) = a0 +
N∑
i=1

ai

(
G(ξ)′

G(ξ)2

)i

+
N∑
i=1

bi

(
G(ξ)′

G(ξ)2

)−i

,

(9)

where G(ξ) satisfies the following ODE

(
G′

G2

)′
= μ + λ

(
G′

G2

)2

, λ �= 0,μ �= 0, (10)

where a0, ai, bi(i = 1, 2, . . . ,N), λ andμ are constants to
be determined. Equation (10) has different solutions as
follows (see, for example, [5]):

When μλ > 0,

G′

G2 =
√

μ

λ

C cos(
√

μλξ) + D sin(
√

μλξ)

D cos(
√

μλξ) − C sin(
√

μλξ)
. (11)

When μλ < 0,

G′

G2 =−
√

|μλ|
λ

C sinh(2
√|μλ|ξ)+C cosh(2

√|μλ|ξ)+D

C sinh(2
√|μλ|ξ)+C cosh(2

√|μλ|ξ)−D
.

(12)
When μ = 0, λ �= 0,

G′

G2 = − C

λ(Cξ + D)
. (13)

Here C and D are nonzero constants. Substituting
Equation (9) into Equation (8) and then by balancing
the highest order derivative term and nonlinear term in
result equation, the value of N can be determined as 2.
The solution can be expressed as follows

U(ξ) = a0 + a1

(
G′

G2

)
+ a2

(
G′

G2

)2

+ b1

(
G′

G2

)−1

+ b2

(
G′

G2

)−2

. (14)

Substituting Equation (14) into Equation (8), collecting
all the coefficientswith the samepowerofG′/G2,we can
obtain a set of algebraic equations for the unknowns a0,
a1, b1, a2, b2, λ, μ, k,m:

aa22m + 12ba2λ2m3 = 0,

4a1bλ2m3 + 2aa1a2m = 0,

aa21m + 16a2bλμm3 + 2aa0a2m + 2a2k = 0,

2a1k + 2aa0a1m + 2aa2b1m + 4a1bλm3μ = 0,

2a0k + aa20m + 4bb2λ2m3 + 4a2bm3μ2

+ 2aa1b1m + 2aa2b2m = 0,

2b1k + 2aa0b1m + 2aa1b2m + 4bb1λm3μ = 0,

ab21m + 16bb2λμm3 + 2aa0b2m + 2b2k = 0,

4bb1m3μ2 + 2ab1b2m = 0,

ab22m + 12bb2m3μ2 = 0.

Solving the algebraic equations in the Mathematica
10.0, we obtain the following set of solutions:

Case1:a0=((−24bλm2μ)/a), a1=0, a2 = ((−12bλ2

m2)/a), b1 = 0, b2 = ((−12bμ2m2)/a), k = 16bλm3μ :



JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 3

When μλ > 0,

u(x, t) = −24bλm2μ

a
+ −12bλ2m2

a

×
(√

μ

λ

C cos(
√

μλξ) + D sin(
√

μλξ)

D cos(
√

μλξ) − C sin(
√

μλξ)

)2

+ −12bμ2m2

a

⎛
⎜⎜⎜⎝
√

μ

λ

C cos(
√

μλξ)

+D sin(
√

μλξ)

D cos(
√

μλξ)

−C sin(
√

μλξ)

⎞
⎟⎟⎟⎠

−2

.

(15)

When μλ < 0,

u(x, t)

= −24bλm2μ

a
+ −12bλ2m2

a

×

⎛
⎜⎜⎜⎝
√

|μλ|
λ

C sinh(2
√|μλ|ξ)

+C cosh(2
√|μλ|ξ) + D

C sinh(2
√|μλ|ξ)

+C cosh(2
√|μλ|ξ) − D

⎞
⎟⎟⎟⎠

2

+ −12bμ2m2

a

⎛
⎜⎜⎜⎝
√

|μλ|
λ

C sinh(2
√|μλ|ξ)

+C cosh(2
√|μλ|ξ) + D

C sinh(2
√|μλ|ξ)

+C cosh(2
√|μλ|ξ) − D

⎞
⎟⎟⎟⎠

−2

.

(16)

When μ = 0, λ �= 0,

u(x, t) = −24bλm2μ

a
+ −12bλ2m2

a

(
C

λ(Cξ + D)

)2

+ −12bμ2m2

a

(
C

λ(Cξ + D)

)−2

. (17)

Here ξ = 16bλm3μ(tα/α) + m(xβ/β).
Case 2: a0 = ((8bλm2μ)/a), a1 = 0, a2 = ((−12bλ2

m2)/a), b1 = 0, b2=((−12bμ2m2)/a), k=−16bλm3μ :

When μλ > 0,

u(x, t) = 8bλm2μ

a
+ −12bλ2m2

a

×
(√

μ

λ

C cos(
√

μλξ) + D sin(
√

μλξ)

D cos(
√

μλξ) − C sin(
√

μλξ)

)2

+ −12bμ2m2

a

⎛
⎜⎜⎜⎝
√

μ

λ

C cos(
√

μλξ)

+D sin(
√

μλξ)

D cos(
√

μλξ)

−C sin(
√

μλξ)

⎞
⎟⎟⎟⎠

−2

.

(18)

When μλ < 0,

u(x, t) = 8bλm2μ

a
+ −12bλ2m2

a
.

(√
|μλ|
λ

C sinh(2
√|μλ|ξ) + C cosh(2

√|μλ|ξ) + D

C sinh(2
√|μλ|ξ) + C cosh(2

√|μλ|ξ) − D

)2

+ −12bμ2m2

a
.

(√
|μλ|
λ

C sinh(2
√|μλ|ξ) + C cosh(2

√|μλ|ξ)+D

C sinh(2
√|μλ|ξ) + C cosh(2

√|μλ|ξ)−D

)−2

.

(19)

When μ = 0, λ �= 0,

u(x, t) = 8bλm2μ

a
+ −12bλ2m2

a

(
C

λ(Cξ + D)

)2

+ −12bμ2m2

a

(
C

λ(Cξ + D)

)−2

. (20)

Here ξ = −16bλm3μ(tα/α) + m(xβ/β).
Figure 1 shows 3Dplot of the travelingwave solution

u(x, t) in Equation (15) for a = 6, b = 2, α = 0.5, β =
0.7, λ = 0.01, μ = 12, m = 0.05, D = 0.5, C = 1/3.

Figure 1. 3D plot of the obtained traveling wave solution u(x, t) of Equation (15) for a = 6, b = 2, α = 0.5, β = 0.7, λ = 0.01,
μ = 12, m = 0.05, D = 0.5, C = 1/3, 0 ≤ x, t ≤ 50.
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4. Analytic solutions to the conformable
space-time fractional CDG equation

Conformable space-time fractional CDG equation is
given as follows (see, for example, [15])

Tα
t u + 30uTβ

x T
β
x T

β
x u + 30Tβ

x uT
β
x T

β
x u + 180u2Tβ

x u

+ Tβ
x T

β
x T

β
x T

β
x T

β
x u = 0

0 < α ≤ 1, 0 < β ≤ 1. (21)

Using the transformations (6), Equation (21) reduces to
the following ordinary differential equation

kU′ + 30m3UU′′′ + 30m3U′U′′

+ 180mU2U′ + m5U(5) = 0. (22)

Integrating of Equation (22) with zero constant of inte-
gration, we have

kU + 30m3UU′′ + 60mU3 + m5U(4) = 0. (23)

Let us suppose that the solution of Equation (23) can
be expressed in the form of Equation (9). Substituting
Equation (9) into Equation (23) and then by balancing
the highest order derivative term and nonlinear term in
result equation, the value of N can be determined as 2.
Therefore, Equation (9) reduces to

U(ξ) = a0 + a1

(
G′

G2

)
+ a2

(
G′

G2

)2

+ b1

(
G′

G2

)−1

+ b2

(
G′

G2

)−2

. (24)

Substituting Equation (24) into Equation (23), collect-
ing all the terms with the same power of G′/G2, we can
obtain a set of algebraic equations for the unknowns a0,
a1, b1,a2, b2, λ, μ, k,m,n:

60a32m + 180a22λ
2m3 + 120a2λ4m5 = 0,

180a1a22m + 240a1a2λ2m3 + 24a1λ4m5 = 0,

180a21a2m + 60a21λ
2m3 + 240μa22λm

3 + 180a0a22m

+ 240μa2λ3m5 + 180a0a2λ2m3 = 0,

60a31m + 300μa1a2λm3 + 360a0a1a2m + 40μa1λ3m5

+ 60a0a1λ2m3 + 180b1a22m + 180b1a2λ2m3 = 0,

180a20a2m + 180a0a21m + 240a0a2λm3μ + 60a21λm
3μ

+ 360b1a1a2m + 60b1a1λ2m3 + 60a22m
3μ2

+ 180b2a22m + 136a2λ2m5μ2 + 240b2a2λ2m3

+ ka2 = 0,

180a20a1m + 60a0a1λm3μ + 360a2b1a0m + 180b1a21m

+ 16a1λ2m5μ2 + 120b2a1λ2m3 + 60a2a1m3μ2

+ 360a2b2a1 ∗ m + ka1 + 300a2b1λm3μ = 0,

60a30m + 360a0a1b1m + 60b2a0λ2m3 + 60a2a0m3μ2

+ 360a2b2a0m + ka0 + 180b2a21m + 120a1b1λm3μ

+ 180a2b21m + 16b2λ3m5μ + 16a2λm5μ3

+ 480a2b2λm3μ = 0,

180a20b1m + 60a0b1λm3μ + 360a1b2a0m + 180a1b21m

+ 16b1λ2m5μ2 + 60b2b1λ2m3 + 120a2b1m3μ2

+ 360a2b2b1m + kb1 + 300a1b2λm3μ = 0,

180a20b2m + 180a0b21m + 240a0b2λm3μ + 60b21λm
3μ

+ 360a1b1b2m + 60a1b1m3μ2 + 60b22λ
2m3

+ 180a2b22m + 136b2λ2m5μ2

+ 240a2b2m3μ2 + kb2 = 0,

60b31m + 300λb1b2m3μ + 360a0b1b2m + 40λb1m5μ3

+ 60a0b1m3μ2 + 180a1b22m + 180a1b2m3μ2 = 0,

180b21b2m + 60b21m
3μ2 + 240λb22m

3μ + 180a0b22m

+ 240λb2m5μ3 + 180a0b2m3μ2 = 0,

180b1b22m + 240b1b2m3μ2 + 24b1m5μ4 = 0,

60b32m + 180b22m
3μ2 + 120b2m5μ4 = 0.

Solving the algebraic equations in the Mathematica
10.0, we obtain the following set of solutions:

Case1:a0 = 2
√

7
15λm

2μ, a1 = 0, a2 = −λ2m2, b1 =
0, b2 = −m2μ2, k = −32(11λ2m5μ2+√

105λ2m5μ2) :
When μλ > 0,

u(x, t) = 2

√
7
15

λm2μ − λ2m2

×
(√

μ

λ

C cos(
√

μλξ)+D sin(
√

μλξ)

D cos(
√

μλξ)−C sin(
√

μλξ)

)2
−m2μ2

×
(√

μ

λ

C cos(
√

μλξ) + D sin(
√

μλξ)

D cos(
√

μλξ) − C sin(
√

μλξ)

)−2

.

(25)

When μλ < 0,

u(x, t) = 2

√
7
15

λm2μ − λ2m2

×

⎛
⎜⎜⎜⎝
√

|μλ|
λ

C sinh(2
√|μλ|ξ)

+C cosh(2
√|μλ|ξ) + D

C sinh(2
√|μλ|ξ)

+C cosh(2
√|μλ|ξ) − D

⎞
⎟⎟⎟⎠

2

− m2μ2

⎛
⎜⎜⎜⎝
√

|μλ|
λ

C sinh(2
√|μλ|ξ)

+C cosh(2
√|μλ|ξ) + D

C sinh(2
√|μλ|ξ)

+C cosh(2
√|μλ|ξ) − D

⎞
⎟⎟⎟⎠

−2

.

(26)
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Figure 2. 3Dplot of theobtained travelingwave solutionu(x, t)of Equation (25) forα = 0.5, β = 0.75,λ = 0.05,μ = 0.2, m = 0.5,
D = 1, C = 1, 0 ≤ x, t ≤ 50 0 ≤ x, t ≤ 20.

When μ = 0, λ �= 0,

u(x, t) = 2

√
7
15

λm2μ − λ2m2
(

C

λ(Cξ + D)

)2

− m2μ2
(

C

λ(Cξ + D)

)−2

. (27)

Here ξ = −32(11λ2m5μ2 + √
105λ2m5μ2)(tα/α)

+ m(xβ/β).
Case 2: a0 = −2λm2μ, a1 = 0, a2 = −λ2m2, b1 =

0, b2 = −m2μ2, k = −256λ2m5μ2 :
When μλ > 0,

u(x, t) = −2λm2μ − λ2m2

×
(√

μ

λ

C cos(
√

μλξ)+D sin(
√

μλξ)

D cos(
√

μλξ)−C sin(
√

μλξ)

)2
−m2μ2

×
(√

μ

λ

C cos(
√

μλξ) + D sin(
√

μλξ)

D cos(
√

μλξ) − C sin(
√

μλξ)

)−2

.

(28)

When μλ < 0,

u(x, t) = −2λm2μ − λ2m2

×

⎛
⎜⎜⎜⎝
√

|μλ|
λ

C sinh(2
√|μλ|ξ)

+C cosh(2
√|μλ|ξ) + D

C sinh(2
√|μλ|ξ)

+C cosh(2
√|μλ|ξ) − D

⎞
⎟⎟⎟⎠
2

−m2μ2

×

⎛
⎜⎜⎜⎝
√

|μλ|
λ

C sinh(2
√|μλ|ξ)

+C cosh(2
√|μλ|ξ) + D

C sinh(2
√|μλ|ξ)

+C cosh(2
√|μλ|ξ) − D

⎞
⎟⎟⎟⎠

−2

.

(29)

When μ = 0, λ �= 0,

u(x, t) = −2λm2μ − λ2m2
(

C

λ(Cξ + D)

)2

− m2μ2
(

C

λ(Cξ + D)

)−2

. (30)

Here ξ = −256λ2m5μ2(tα/α) + m(xβ/β).
Figure 2 shows 3Dplot of the travelingwave solution

u(x, t) in Equation (25) for α = 0.5, β = 0.75, λ = 0.05,
μ = 0.2, m = 0.5, D = 1, C = 1.

5. Analytic solutions to the conformable
space-time fractional (2+ 1)-dimensional CBS
Equation

Conformable space-time fractional CBS equation is
given in the following form: (see, for example, [21])

Tβ
x T

α
t u + Tβ

x T
β
x T

β
x T

θ
y u + 4Tβ

x uT
β
x T

θ
y u + 2Tβ

x T
β
x uT

θ
y u = 0,

0 < α ≤ 1, 0 < β ≤ 1, 0 < θ ≤ 1. (31)

Using the following transformation

u(x, y, t) = U(ξ), ξ = k
tα

α
+ m

xβ

β
+ n

yθ

θ
, (32)

Equation (31) can be transformed into the following
ordinary differential equation

kmU′′ + m3nU(4) + 4m2nU′U′′ + 2m2nU′′U′ = 0. (33)

Integrating of Equation (33) with zero constant of inte-
gration, we have

kmU′ + m3nU′′′ + 3m2n(U′)2 = 0. (34)

Let us suppose that the solution of Equation (34) can
be expressed in the form of Equation (9). Substituting
Equation (9) into Equation (34) and then by balancing
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Figure 3. 3Dplot of theobtained travelingwave solutionu(1, y, t)of Equation (37) fora0 = 1, α = 0.5, β = 0.5, θ = 0.75,λ = −5,
μ = 1, m = 0.01, n = 0.5, D = 10, C = −10, 0 ≤ x, t ≤ 50.

the highest order derivative term and nonlinear term in
result equation, the value of N can be determined as 1.
Therefore, Equation (9) reduces to

U(ξ) = a0 + a1

(
G′

G2

)
+ b1

(
G′

G2

)−1

. (35)

Substituting Equation (35) into Equation (34), collecting
all the terms with the same power of G′

G2 , we can obtain
a set of algebraic equations for the unknowns a0, a1, b1,
λ, μ, k,m, n:

3na21λ
2m2 + 6na1λ3m3 = 0,

6μna21λm
2 + 8μna1λ2m3 − 6b1na1λ2m2 + ka1λm=0,

3na21m
2μ2 − 12na1b1λm2μ + 2na1λm3μ2 + ka1mμ

+ 3nb21λ
2m2 − 2nb1λ2m3μ − kb1λm = 0,

6λnb21m
2μ − 8λnb1m3μ2 − 6a1nb1m2μ2−kb1mμ=0,

3nb21m
2μ2 − 6nb1m3μ3 = 0.

Solving these algebraic equations in the Mathematica
10.0, we obtain the following set of solutions: a1 =
−2λm, b1 = 2mμ, k = 16λm2μn :

When μλ > 0,

u(x, y, t) = a0 − 2λm

√
μ

λ

C cos(
√

μλξ) + D sin(
√

μλξ)

D cos(
√

μλξ) − C sin(
√

μλξ)

+ 2mμ

⎛
⎜⎜⎜⎝
√

μ

λ

C cos(
√

μλξ)

+D sin(
√

μλξ)

D cos(
√

μλξ)

−C sin(
√

μλξ)

⎞
⎟⎟⎟⎠

−1

. (36)

When μλ < 0,

u(x, y, t) = a0 − 2λm

√
|μλ|
λ

C sinh(2
√|μλ|ξ)

+C cosh(2
√|μλ|ξ) + D

C sinh(2
√|μλ|ξ)

+C cosh(2
√|μλ|ξ) − D

+ 2mμ

⎛
⎜⎜⎜⎝
√

|μλ|
λ

C sinh(2
√|μλ|ξ)

+C cosh(2
√|μλ|ξ)+D

C sinh(2
√|μλ|ξ)

+C cosh(2
√|μλ|ξ)−D

⎞
⎟⎟⎟⎠

−1

.

(37)

When μ = 0, λ �= 0,

u(x, y, t) = a0 + 2λm
(

C

λ(Cξ + D)

)

− 2mμ

(
C

λ(Cξ + D)

)−1

. (38)

Here ξ = 16λm2μn(tα/α) + m(xβ/β) + n(yθ /θ).
Figure 3 shows 3D plot of the traveling wave solu-

tion u(x, 1, t) in Equation (37) for a0 = 1, α = 0.5, β =
0.5, θ = 0.75, λ = −5, μ = 1, m = 0.01, n = 0.5, D =
10, C = −10.

6. Analytic solutions to the conformable
space-time fractional (2+ 1)-dimensional
AKNS equation

Finally, we consider conformable space-time fractional
AKNS equation as follows (see, for example, [25])

4Tβ
x T

α
t u + Tβ

x T
β
x T

β
x T

θ
y u + 8Tβ

x T
θ
y uT

β
x u

+ 4Tθ
y uT

β
x T

β
x u − aTβ

x T
β
x u = 0,

0 < α ≤ 1, 0 < β ≤ 1, 0 < θ ≤ 1, (39)
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Figure 4. 3D plot of the obtained traveling wave solution u(x, 1, t) of Equation (45) for a0 = 10, α = 0.25, β = 0.75, θ = 0.5,
λ = 2,μ = 0, m = 0.5, n = 5, D = 5, C = −6, 0 ≤ x, t ≤ 35.

where a is constant. Using the transformation (32) for
Equation (39) we have the following ordinary differen-
tial equation

4kmU′′ + m3nU(4) + 8m2nU′′U′

+ 4m2nU′U′′ − am2U′′ = 0. (40)

Integrating of Equation (40) with zero constant of inte-
gration, we have

(4k − am)U′ + m2nU′′′ + 6mn(U′)2 = 0. (41)

Let us suppose that the solution of Equation (41) can
be expressed in the form of Equation (9). Substituting
Equation (9) into Equation (41) and then by balancing
the highest order derivative term and nonlinear term in
result equation, the value of N can be determined as 1.
Therefore, Equation (9) reduces to

U(ξ) = a0 + a1

(
G′

G2

)
+ b1

(
G′

G2

)−1

. (42)

Substituting Equation (42) into Equation (41), collecting
all the terms with the same power of G′

G2 , we can obtain
a set of algebraic equations for the unknowns a0, a1, b1,
λ, μ, k,m,n:

6na21λ
2m + 6na1λ3m2 = 0,

12μna21λm + 8μna1λ2m2 − 12b1na1λ2m

− aa1λm + 4ka1λ = 0,

6na21mμ2 − 24na1b1λmμ + 2na1λm2μ2

− aa1mμ + 4ka1μ + 6nb21λ
2m − 2nb1λ2m2μ

+ ab1λm − 4kb1λ = 0,

12λnb21mμ − 8λnb1m2μ2 − 12a1nb1mμ2

+ ab1mμ − 4kb1μ = 0,

6nb21mμ2 − 6nb1m2μ3 = 0.

Solving these algebraic equations in the Mathematica
10.0, we obtain the following set of solutions: a1 =
−λm, b1 = mμ, k = ((m(a + 16λmμn))/4) :

When μλ > 0,

u(x, y, t) = a0 − λm

×
(√

μ

λ

C cos(
√

μλξ)+D sin(
√

μλξ)

D cos(
√

μλξ)−C sin(
√

μλξ)

)
+mμ

×
(√

μ

λ

C cos(
√

μλξ) + D sin(
√

μλξ)

D cos(
√

μλξ) − C sin(
√

μλξ)

)−1

.

(43)

When μλ < 0,

u(x, y, t) = a0 + λm

×

⎛
⎜⎜⎜⎝
√

|μλ|
λ

C sinh(2
√|μλ|ξ)

+C cosh(2
√|μλ|ξ) + D

C sinh(2
√|μλ|ξ)

+C cosh(2
√|μλ|ξ) − D

⎞
⎟⎟⎟⎠

−mμ

⎛
⎜⎜⎜⎝
√

|μλ|
λ

C sinh(2
√|μλ|ξ)

+C cosh(2
√|μλ|ξ) + D

C sinh(2
√|μλ|ξ)

+C cosh(2
√|μλ|ξ) − D

⎞
⎟⎟⎟⎠

−1

.

(44)

When μ = 0, λ �= 0,

u(x, y, t) = a0 + m

(
C

(Cξ + D)

)

− mμ

(
C

λ(Cξ + D)

)−1

. (45)

Here ξ = ((m(a + 16λmμn))/4)(tα/α) + m(xβ/β)

+ n(yθ /θ).
Figure 4 shows 3Dplot of the travelingwave solution

u(x, 1, t) in Equation (45) for a0 = 10, α = 0.25, β =
0.75, θ = 0.5, λ = 2, μ = 0, m = 0.5, n = 5, D = 5,
C = −6.
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7. Conclusion

In this article, G′/G2 expansion method has been
applied to obtain new exact solutions of the con-
formable space-time fractional third-order KdV, CDG,
(2+1)-dimensional CBS and (2+1)-dimensional AKNS
equations. The exact solutions include hyperbolic,
trigonometric, exponential and rational functions. Note
that the obtained solutions are new form of the solu-
tions and are not available in the literature. In this
work, we have solved only four conformable nonlin-
ear fractional differential equations. This method is use-
ful in solving wide classes of conformable nonlinear
fractional differential equations such as Sharma-Tasso-
Olever, Zakharov Kuznetsov, Benjamin Bona Mahony,
Boussinesq, Jimbo-Miwa, Burger equations.
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