# T.C. PAMUKKALE ÜN VERS TES FEN B L MLER ENST TÜSÜ N AAT MÜHEND SL ANAB L M DALI

# BETONARME B R B NANIN DO RUSAL OLMAYAN D NAM K ANAL Z LE ELDE ED LEN ÖTELENME TALEPLER N N STAT ST KSEL DE ERLEND R LMES

YÜKSEK L SANS TEZ

MEL KE TEZEL

DEN ZL, HAZ RAN - 2019

T.C. PAMUKKALE ÜN VERS TES FEN B L MLER ENST TÜSÜ N AAT MÜHEND SL ANAB L M DALI



# BETONARME B R B NANIN DO RUSAL OLMAYAN D NAM K ANAL Z LE ELDE ED LEN ÖTELENME TALEPLER N N STAT ST KSEL DE ERLEND R LMES

YÜKSEK L SANS TEZ

MEL KE TEZEL

DEN ZL, HAZ RAN - 2019

### **KABUL VE ONAY SAYFASI**

Melike TEZEL tarafından hazırlanan "Betonarme Bir Binanın Doğrusal Olmayan Dinamik Analiz İle Elde Edilen Ötelenme Taleplerinin İstatistiksel Değerlendirilmesi" adlı tez çalışmasının savunma sınavı 11.06.2019 tarihinde yapılmış olup aşağıda verilen jüri tarafından oy birliği ile Pamukkale Üniversitesi Fen Bilimleri Enstitüsü İnşaat Mühendisliği Anabilim Dalı Yüksek Lisans Tezi olarak kabul edilmiştir.

Jüri Üyeleri

İmza

Danışman Prof. Dr. Ali Haydar KAYHAN Pamukkale Üniversitesi

Üve Doç. Dr. Ramazan ÖZÇELİK Akdeniz Üniversitesi

Üye Dr. Öğr. Üyesi Bayram Tanık ÇAYCI Pamukkale Üniversitesi

Pamukkale Üniversitesi Fen Bilimleri Enstitüsü Yönetim Kurulu'nun **26/06/2019** tarih ve **26/08**.... sayılı kararıyla onaylanmıştır.

Prof. Dr. Uğur YÜCEL

Fen Bilimleri Enstitüsü Müdürü

Bu tezin tasarımı, hazırlanması, yürütülmesi, araştırmalarının yapılması ve bulgularının analizlerinde bilimsel etiğe ve akademik kurallara özenle riayet edildiğini; bu çalışmanın doğrudan birincil ürünü olmayan bulguların, verilerin ve materyallerin bilimsel etiğe uygun olarak kaynak gösterildiğini ve alıntı yapılan çalışmalara atfedildiğine beyan ederim.

**Melike TEZEL** 

Shik

### ÖZET

### BETONARME B R B NANIN DO RUSAL OLMAYAN D NAM K ANAL Z LE ELDE ED LEN ÖTELENME TALEPLER N N STAT ST KSEL DE ERLEND R LMES YÜKSEK L SANS TEZ MEL KE TEZEL PAMUKKALE ÜN VERS TES FEN B L MLER ENST TÜSÜ N AAT MÜHEND SL ANAB L M DALI (TEZ DANI MANI: PROF. DR. AL HAYDAR KAYHAN) DEN ZL , HAZ RAN - 2019

Global ötelenme oranı ve göreli kat ötelenmesi oranı talepleri, yeni yapıların tasarımı ve/veya mevcut yapıların deprem performansının belirlenmesi amacı ile kullanılan önemli parametrelerdendir. Global ve göreli kat ötelenmesi oranı taleplerinin belirlenmesi amacı ile kullanılan en do ru yöntem zaman tanım alanında do rusal olmayan analizdir. Zaman tanım alanında analizlerden elde edilen global ötelenme oranı ve göreli kat ötelenmesi oranı talebi, analiz için kullanılan ivme kaydına ba lı olarak de i mektedir. Dolayısıyla uygun ivme kayıtlarının seçilmesi, yapının deprem davranı ının do ru olarak tahmin edilebilmesi icin büyük önem ta ımaktadır. Türkiye Bina Deprem Yönetmeli i'nin de (TBDY) aralarında bulundu u modern deprem yönetmeliklerinde, zaman tanım alanında analizde kullanılacak ivme kayıtlarının özellikleri ve kayıtların seçimi ile ilgili tanımlamalar yerini almı tır.

Bu çalı mada, üç boyutlu, 5 katlı bir betonarme binanın zaman tanım alanında do rusal olmayan analizi için TBDY ile uyumlu olarak olu turulan 11 ivme kaydı takımına sahip ivme setleri kullanılmı tır. TBDY'de tanımlanan ZB, ZC ve ZD sınıfı zeminleri için tanımlanan tasarım ivme spektrumları ile uyumlu olacak ekilde ivme kaydı takımları elde edilmi tir. Her bir zemin sınıfı için 30 ivme seti, toplamda 90 ivme seti, zaman tanım alanında analizler için kullanılmı tır. vme kayıtları için kullanılacak ölçeklendirme katsayısı 0.5-2.0 arasında alınmı tır.

Zaman tanım alanında do rusal olmayan analizler ile global ötelenme oranı ve göreli kat ötelenmesi oranı de erleri, her bir ivme kaydı takımı için elde edilmi tir. Daha sonra, herhangi bir sette yer alan ivme kaydı takımları için elde edilen ötelenme oranı de erlerinin set içerisindeki e ilimi ve saçılımı hesaplanarak, ötelenme oranı taleplerinin da ılımları istatistiksel olarak de erlendirilmi tir.

Aynı hedef spektrum ile uyumlu olarak elde edilen farklı ivme kaydı takımı setleri kullanılarak yapılan analiz sonuçlarına göre, bu setlere ait global ve göreli kat ötelenmesi oranı talepleri arasındaki fark, varyans analizi kullanılarak de erlendirilmi tir. Ayrıca global ve göreli kat ötelenmesi taleplerine ait güven aralıkları tahmin edilmi tir.

ANAHTAR KEL MELER: Betonarme Bina, Global Ötelenme Oranı, Göreli Kat Ötelenmesi Oranı, Zaman Tanım Alanında Analiz

### ABSTRACT

### STATISTICAL EVALUATION OF DISPLACEMENT DEMANDS OBTAINED BY NONLINEAR DYNAMIC ANALYSIS OF A REINFORCED CONCRETE BUILDING MSC THESIS MEL KE TEZEL PAMUKKALE UNIVERSITY INSTITUTE OF SCIENCE CIVIL ENGINEERING (SUPERVISOR: PROF. DR. AL HAYDAR KAYHAN) DEN ZL , JUNE 2019

Global drift ratio and interstory drift ratio demands are important parameters for seismic performance assessment of existing buildings or designing of new buildings. The most accurate method for determining global and interstory drift ratio demands is nonlinear time history analysis. Global drift ratio and interstory drift ratio demands obtained via time history analysis change depending on the ground motion record used for analysis. Therefore, choosing proper ground motion records is essential to estimate the correct earthquake response of the building. Properties of the ground motion records to be used for time history analysis has been involved in the modern earthquake regulations including Turkish Building Earthquake Code (TBDY).

In this study, TBDY compatible ground motion record sets which have 11 ground motion record pairs were used for nonlinear time history analysis of three dimensional 5-storey reinforced concrete building. Design acceleration spectra defined in TBDY for local soil classes ZB, ZC and ZD are considered for obtaining ground motion record sets. 30 ground motion record sets for each local soil class and totally 90 ground motion record sets were used for time history analysis. Scaling factor to be used for the record pairs was kept between 0.5 and 2.0.

Global and interstory drift ratio demands were calculated by nonlinear time history analysis using ground motion record sets. Afterwards, distributions of drift ratio demands were evaluated statistically by calculating mean and dispersion of the drift ratio demands for each of the record sets.

The difference of the mean of drift ratio demands calculated for different record sets compatible with the same target spectrum are evaluated using analysis of variance. In addition, confidence intervals for global and interstory drift ratio demands are estimated.

**KEYWORDS:** Reinforced concrete building, global drift ratio, interstory drift ratio, time history analysis

# Ç NDEK LER

| ÖZET                                                                               | i        |
|------------------------------------------------------------------------------------|----------|
| ABSTRACT                                                                           | ii       |
| Ç NDEK LER                                                                         | iii      |
| EK L L STES                                                                        | v        |
| TABLO L STES                                                                       | vi       |
| KISALTMALAR                                                                        | vii      |
| SEMBOL L STES                                                                      | .viii    |
| ONSOZ                                                                              | xii      |
| 1. G R                                                                             | 1        |
| 1.1 Problemin Tanımı                                                               | 2        |
| 1.2 Tezin Amacı                                                                    | 4        |
| 1.3 Literatür Çalı maları                                                          | 5        |
| 1.3.1 Otelenme Taleplerinin De erlendirildi i Çalı malar                           | 5        |
| 1.3.2 vme Kaydı Seçimi ile İgili Çalı malar                                        |          |
| 1.4 Kapsam ve Yontem                                                               | 14       |
| 1.5 Tezin Organizasyonu                                                            | 15       |
| 2. YAPISAL ANAL Z YONTEMLER                                                        |          |
| 2.1 Gifi                                                                           | I /      |
| 2.2 Analiz Yontemieri                                                              | 18       |
| 2.2.1 Do rusal Statik Analiz                                                       | . 19     |
| 2.2.2 Do rusal Dinamik Analiz                                                      | 20       |
| 2.2.3 Do rusal Olmayan Statik Analiz                                               | 21       |
| 2.2.4 Do rusal Olmayan Dinamik Analiz                                              | 22       |
| 2.5 Do Tusal Ollilayali Davralli                                                   | 24<br>25 |
| 2.5.1 IBDT ye gole Saight ve Saightz Detoit Modelien                               | 23<br>77 |
| 2.5.2 Gen unnin Kent-Park Modeli                                                   | 27       |
| 2.5.5 Donau Çen Twoden<br>2.4 Do rusal Olmayan Davranı in Plastik Mafsal le fadesi | 50<br>31 |
| 2.4 Do fusal Official Daviani in Fiastik Marsar le fadesi                          | 22       |
| 2.4.1 F ilme Mafsal                                                                | 32       |
| 2.4.2 E fille Volumba mass                                                         | 33       |
| 2.4.5 E Time Mafsalı Kriterleri                                                    |          |
| 2.5 Do rusal Olmayan Modelleme                                                     |          |
| 2.5 1 Yapı Elemanlarında Keşit Haşar Bölgeleri ve Haşar Sınırları                  | 36       |
| 2.5.2 Do rusal Elastik Olmayan Dayranı in dealle tirilmesi                         |          |
| 2.6 Zaman Tanım Alanında Do rusal Olmayan Analiz                                   |          |
| 2.6.1 Tek Serbestlik Dereceli (TSD) Sistemler                                      |          |
| 2.6.2 Cok Serbestlik Dereceli Sistemler                                            | 40       |
| 2.6.2.1 Düzlem Cerceveler                                                          | 40       |
| 2.6.2.2 Üc Boyutlu Cerceveler                                                      | 42       |
| 3. BETONARME B NA VE ANAL Z MODEL                                                  | 44       |
| 3.1 Giri                                                                           | 44       |
| 3.2 Bina Bilgileri                                                                 | 44       |
| 3.3 Binanın Do rusal Olmayan Model Bilgileri                                       | 47       |
| 4. TBDY LE UYUMLU GERÇEK VME KAYDI SETLER                                          | 51       |

| 4.1     | Giri                                                    | 51   |
|---------|---------------------------------------------------------|------|
| 4.2     | TBDY'de Tanımlanan Zaman Tanım Alanında Analiz Ko ullar | 1 52 |
| 4.3     | TBDY Tasarım vme Spektrumları                           | 53   |
| 4.4     | Kuvvetli Yer Hareketi Veri Tabanı                       | 57   |
| 4.5     | TBDY ile Uyumlu vme Kaydı Takımı Setleri                | 58   |
| 5. ANA  | L Z SONUCLARI                                           | 62   |
| 5.1     | Giri                                                    | 62   |
| 5.2     | Maksimum Çatı Ötelenmesi Talepleri                      | 65   |
| 5.3     | Maksimum Göreli Kat Ötelenmesi Talepleri                | 69   |
| 6. VAR  | YANS ANAL Z ve ORTALAMANIN GÜVEN ARALI I                | 75   |
| 6.1     | Giri                                                    | 75   |
| 6.2     | Varyans Analizi                                         | 75   |
| 6.3     | Varyans Analiz Sonuçları                                | 79   |
| 6.4     | Örnekleme Da 111mi ve Ortalamanın Güven Aralı 1         | 80   |
| 7. SON  | UÇ VE ÖNER LER                                          | 84   |
| 8. KAY  | ŇÅKLAR                                                  | 89   |
| 9. EKL  | ER                                                      | 97   |
| EK A    | . Analiz Modeli cin Kiri Boyuna Donatıları              | 97   |
| EK B    | . vme Kaydı Setlerine ve Kayıtlara Ait Bilgiler         | 102  |
| EK C    | . F Tablosu                                             | 127  |
| 10. ÖZ( | GEÇM                                                    | 128  |

# EK L L STES

## <u>Sayfa</u>

| ekil 2.1: Yapısal analiz yöntemleri                                          | .18 |
|------------------------------------------------------------------------------|-----|
| ekil 2.2: Tipik yatay yük deseni ve kapasite e risi                          | .22 |
| ekil 2.3: deal malzeme davranı modelleri                                     | .24 |
| ekil 2.4: TBDY'ye göre beton gerilme- ekil de i tirme ili kisi               | .26 |
| ekil 2.5: Geli tirilmi Kent-Park Modeli gerilme- ekil de i tirme ili kisi    | .27 |
| ekil 2.6: TBDY'ye göre donatı çeli ine ait gerilme- ekil de i tirme ili kisi | 30  |
| ekil 1.7: Betonarme bir konsolda moment ve e rilik diyagramları              | .33 |
| ekil 2.8: Betonarme bir konsolda idealle tirilmi e rilik diyagramları        | .34 |
| ekil 2.9: Plastik mafsal için moment-dönme de erleri                         | .35 |
| ekil 2.10: Kesit hasar sınırları ve hasar bölgeleri                          | .37 |
| ekil 2.11: TSD sistemin matematiksel modeli                                  | .38 |
| ekil 2.12: Yer hareketi etkisindeki kayma çerçevesi                          | .41 |
| ekil 2.13: Yer hareketi etkisindeki tek katlı uzay çerçeve                   | .42 |
| ekil 3.1: Betonarme binaya ait kalıp planı                                   | .44 |
| ekil 3.2: Dolgu duvarların kiri üzerinde yerle imi                           | .45 |
| ekil 3.3: Betonarme yapının üç boyutlu ta 1yıcı sistem modeli                | .46 |
| ekil 3.4: Ornek betonarme binada kolon boyuna donatı düzenleri               | .47 |
| ekil 3.5: Ornek bir kolon plastik mafsalı tanımı                             | .49 |
| ekil 3.6: Ornek bir kiri plastik mafsal tanımı                               | .49 |
| ekil 3.7: Binanin birbirine dik iki do rultuda kapasite e risi               | .50 |
| ekil 4.1: TBDY'ye göre yatay elastik tasarım spektral ivmeleri               | .56 |
| ekil 4.2: Zemin siniflari için yatay elastik tasarım spektral ivmeleri       | .57 |
| ekil 4.3: ZB sınıfı zemin, birinci sete ait ölçeklenmi spektrumlar           | .60 |
| ekil 4.4: ZC sınıfı zemin, birinci sete ait ölçeklenmi spektrumlar           | .61 |
| <b>ekil 4.5:</b> ZD sinifi zemin, birinci sete ait ölçeklenmi spektrumlar    | .61 |
| <b>ekil 5.1:</b> vme kaydi takimi setlerine ait $m_{/H}$ de erleri           | .68 |
| <b>ekil 5.2:</b> vme kaydi takimi setlerine ait $CoV_{/H}$ de erleri         | .68 |
| ekil 5.3: ZB ile uyumlu setlere ait $m_{u/h}$ de erleri                      | .72 |
| <b>ekil 5.4:</b> ZC ile uyumlu setlere ait $m_{u/h}$ de erleri               | .72 |
| <b>ekil 5.5:</b> ZD ile uyumlu setlere ait $m_{u/h}$ de erleri               | .73 |
| <b>ekil 5.6:</b> vme setleri için birinci kata ait $CoV_{u/h}$ de erleri     | .73 |
| <b>ekil 5.7:</b> vme setleri için ikinci kata ait $CoV_{u/h}$ de erleri      | .74 |
| ekil 6.1: Ortalamanın güven aralı ına ait ematik gösterim                    | .81 |

## TABLO L STES

| Tablo 3.1: Kolonlar ve boyuna donatı tipleri                                       | 47  |
|------------------------------------------------------------------------------------|-----|
| Tablo 3.2: Betonarme binaya ait kolonların etkin e ilme rijitlikleri               | 48  |
| Tablo 4.1: Kısa periyot bölgesi için yerel zemin etki katsayıları                  | 55  |
| Tablo 4.2: 1.0 saniye periyot bölgesi için yerel zemin etki katsayıları            | 55  |
| Tablo 4.3: TBDY'de tanımlanan yerel zemin sınıfları ve özellikleri                 | 57  |
| Tablo 4.4: ZB sınıfı zemin için elde edilen ivme kaydı seti örnekleri              | 59  |
| Tablo 4.5: ZC sınıfı zemin için elde edilen ivme kaydı seti örnekleri              | 59  |
| Tablo 4.6: ZD sınıfı zemin için elde edilen ivme kaydı seti örnekleri              | 60  |
| Tablo 5.1: 140 nolu kayıt takımı için analiz tanımlaması örne i                    | 62  |
| Tablo 5.2: vme kaydı takımı seti için ötelenme de erleri (cm)                      | 63  |
| Tablo 5.3: ZB sınıfı zemin, birinci sete ait maksimum ötelenme                     |     |
| talepleri (cm)                                                                     | 64  |
| <b>Tablo 5.4:</b> vme kaydı takımı setlerine ait $m$ ve $s$ de erleri (cm)         | 66  |
| <b>Tablo 5.5:</b> vme kaydı takımı setlerine ait $m_{/H}$ ve $s_{/H}$ de erleri    | 67  |
| <b>Tablo 5.6:</b> ZB zemin sınıfı ile uyumlu setler için hesaplanan $m_u$ ve $s_u$ |     |
| de erleri (cm)                                                                     | 69  |
| <b>Tablo 5.7:</b> ZC zemin sınıfı ile uyumlu setler için hesaplanan $m_u$ ve $s_u$ |     |
| de erleri (cm)                                                                     | 70  |
| <b>Tablo 5.8:</b> ZD zemin sınıfı ile uyumlu setler için hesaplanan $m_u$ ve $s_u$ |     |
| de erleri (cm)                                                                     | 71  |
| Tablo 6.1: Tek yönlü varyans analizinde k tane ba ımsız kitlenin gözlen            | 1   |
| de erleri                                                                          | 76  |
| Tablo 6.2: Örnek tek yönlü varyans analiz verileri                                 | 78  |
| Tablo 6.3: Örnek tek yönlü varyans analizi için hesaplanan de erler                | 78  |
| Tablo 6.4: Maksimum çatı ötelenmesi oranı için varyans analizi                     |     |
| sonuçları                                                                          | 79  |
| <b>Tablo 6.5:</b> Maksimum göreli kat ötelenmesi oranı için varyans analizi        |     |
| sonuçları                                                                          | 79  |
| <b>Tablo 6.6:</b> $\sim_{U/H}$ için güven aralı 1                                  | 82  |
| <b>Tablo 6.7:</b> $\sim_{U/h}$ için güven aralı 1                                  | 83  |
| Tablo A.1: Analiz modeli 1.kat kiri boyuna donatıları                              | 97  |
| Tablo A.2: Analiz modeli 2.kat kiri boyuna donatıları                              | 98  |
| Tablo A.3: Analiz modeli 3.kat kiri boyuna donatıları                              | 99  |
| Tablo A.4: Analiz modeli 4.kat kiri boyuna donatıları                              | 100 |
| Tablo A.5: Analiz modeli 5.kat kiri boyuna donatıları                              | 101 |
| <b>Tablo B.1:</b> ZB sınıfı zemin için elde edilen ivme kaydı setleri              | 102 |
| <b>Tablo B.2:</b> ZC sınıfı zemin için elde edilen ivme kaydı setleri              | 104 |
| <b>Tablo B.3:</b> ZD sınıfı zemin için elde edilen ivme kaydı setleri              | 106 |
| Tablo B.4: ZB sınıfı zeminlerde kaydedilen kayıtlara ait bilgiler                  | 108 |
| Tablo B.5: ZC sınıfı zeminlerde kaydedilen kayıtlara ait bilgiler                  | 113 |
| <b>Tablo B.6:</b> ZD sınıfı zeminlerde kaydedilen kayıtlara ait bilgiler           | 121 |
| <b>Tablo C.1:</b> Varyans analizi F tablosu.                                       | 127 |

## KISALTMALAR

| ASCE American Society of Civil Engineering                             |     |
|------------------------------------------------------------------------|-----|
| ANOVA : Varyans Analizi                                                |     |
| <b>DBYBHY</b> : Deprem Bölgelerinde Yapılacak Binalar Hakkında Yönetme | lik |
| EUROCODE : European Standards                                          |     |
| <b>FEMA</b> : Federal Emergency Management Agency                      |     |
| GAKT : Gruplar Arası Kareler Toplamı                                   |     |
| <b>GB</b> : Code for Seismic Design of Buildings, China                |     |
| <b>G KT</b> : Grup çi Kareler Toplamı                                  |     |
| GÇ : Göçme Sınırı                                                      |     |
| GV : Güvenlik Sınırı                                                   |     |
| MN : Minimum Hasar Sınırı                                              |     |
| <b>SEAOC</b> : The Structural Engineers Association of California      |     |
| <b>TBDY</b> : Türkiye Bina Deprem Yönetmeli i                          |     |
| TKT : Toplam Kareler Toplamı                                           |     |
| TSD : Tek Serbestlik Dereceli Sistem                                   |     |
| USGS : United States Geological Survey                                 |     |

## SEMBOL L STES

| $A_{	heta}$        | : Etkin yer ivmesi katsayısı                                         |
|--------------------|----------------------------------------------------------------------|
| $A_{\theta}$       | : Sargı donatısı kesit alanı                                         |
| A(T)               | : Spektral ivme katsayısı                                            |
| $A_c$              | : Brüt kesit alanı                                                   |
| $A_{ck}$           | : Sargı donatısı dı ından ölçülen ölçü içindeki çekirdek beton alanı |
| $\boldsymbol{b}_k$ | : Etriye dı ından ölçülen çekirdek beton alanın küçük boyutu         |
| С                  | : Tek serbestlik dereceli sistemin sönümü                            |
| $C_{cr}$           | : Kritik sönüm katsayısı                                             |
| $CoV_{\cup}$       | : Maksimum ötelenme taleplerinin varyasyon katsayısı                 |
| $CoV_m$            | : $m$ de erlerinin varyasyon katsayısı                               |
| $E_s$              | : Donatı çeli inin elastisite modülü                                 |
| $(EI)_{0}$         | : Çatlamamı kesite ait e ilme rijitli i                              |
| $(EI)_e$           | : Çatlamı kesite ait etkin e ilme rijitli i                          |
| F                  | : Varyans analizinde hesaplanan, örneklere ait istatistik            |
| $F_1$              | : 1.0 saniye periyot için yerel zemin etki katsayısı                 |
| $F_{s}$            | : Kısa periyot bölgesi için yerel zemin etki katsayısı               |
| $F_{kr}$           | : Varyans analizinde $F$ da ılım tablosundan okunan kritik de er     |
| $f_c$              | : Sargısız betonun basınç dayanımı                                   |
| $f_{cc}$           | : Sargılı betonun basınç dayanımı                                    |
| $f_{ck}$           | : Betonun karakteristik silindir basınç dayanımı                     |
| f <sub>cm</sub>    | : Betonun mevcut dayanımı                                            |
| $f_s$              | : Donatı çeli inde olu an gerilme                                    |
| f <sub>su</sub>    | : Donatı çeli inin kopma dayanımı                                    |
| $f_{sy}$           | : Donatı çeli inin akma dayanımı                                     |
| $f_{ywk}$          | : Sargı donatısının karakteristik akma dayanımı                      |
| G                  | : Kat kütle merkezi                                                  |
| g                  | : Yerçekim ivmesi                                                    |
| H                  | : Bina yüksekli i                                                    |
| $H_{	heta}$        | : Varyans analizinde test edilen hipotez                             |
| h                  | : Kat yüksekli i                                                     |
| h                  | : Çalı an do rultudaki kesit boyu                                    |
| $h_k$              | : Etriye dı ından ölçülen çekirdek beton alanın büyük boyutu         |
| Ι                  | : Bina önem katsayısı                                                |
| J                  | : Dü ey eksen etrafındaki atalet momenti                             |
| k                  | : Sistemin rijitli i                                                 |
| k                  | : Varyans analizi için dikkate alınan ana kitle sayısı               |
| $k_o$              | : Tek serbestlik dereceli sistemin ba langıç rijitli i               |
| L                  | : Konsol kolonun boyu                                                |
| $L_p$              | : Plastik mafsal boyu                                                |
| _                  |                                                                      |

| $L_s$                       | : Kesitteki sargı donatısı ve çirozların toplam uzunlu u     |
|-----------------------------|--------------------------------------------------------------|
| M                           | : Kesitte olu an e ilme momenti                              |
| M                           | : Kat kütlesi                                                |
| M <sub>cr</sub>             | : Çatlama momenti                                            |
| $M_y$                       | : Akma momenti                                               |
| $M_u$                       | : Nihai moment                                               |
| m                           | : Sistemin kütlesi                                           |
| N                           | : Varyans analizi için toplam gözlem sayısı                  |
| $N_D$                       | : Dü ey yükler altında kolonlarda olu an eksenel kuvvet      |
| n                           | : Varyans analizi için bir kitlede bulunan gözlem sayısı     |
| n                           | : Hareketli yük azaltma katsayısı                            |
| $PF_1$                      | : Birinci moda ait katkı çarpanı                             |
| R                           | : Ta 1y1c1 sistem davranı katsayısı                          |
| R                           | : Rijitlik merkezi                                           |
| $S_{ae}(T)$                 | : Yatay elastik tasarım spektral ivmeleri                    |
| $S_{D1}$                    | : 1.0 saniye periyot tasarım spektral ivme katsayısı         |
| $S_{DS}$                    | : Kısa periyot tasarım spektral ivme katsayısı               |
| $S_1$                       | : 1.0 saniye periyot harita spektral ivme katsayısı          |
| $S_S$                       | : Kısa periyot harita spektral ivme katsayısı                |
| <i>S</i> ( <i>T</i> ) : Spe | ktrum katsayısı                                              |
| <i>S</i>                    | : Sargi donatisi arali 1                                     |
| $s_0^2$                     | : Grup içi varyans                                           |
| $S_M^2$                     | : Gruplar arası varyans                                      |
| Τ                           | : Do al titre im periyodu                                    |
| $T_A, T_B$                  | : Yatay elastik tasarım spektrumu kö e periyotları           |
| $T_L$                       | : Sabit yerde i tirme bölgesi geçi periyodu                  |
| $T_p$                       | : Binanın hâkim do al titre im periyodu                      |
| <i>T i</i> +                | : Varyans analizi için <i>i</i> . gruptaki gözlemler toplamı |
| <i>T</i> <sub>++</sub>      | : Tüm gözlemler toplamı                                      |
| $V_t$                       | : Taban kesme kuvveti                                        |
| <b>y</b> <sub>G</sub>       | : Kat kütle merkezinin y koordinatı                          |
| $y_R$                       | : Kat rijitlik merkezinin y koordinatı                       |
| W                           | : Yapının deprem hesabına esas a ırlı 1                      |
| $X_{ij}$                    | : Varyans analizi için gözlem de erleri                      |
| x                           | : Yapının zamana ba lı göreli yer de i tirmesi               |
|                             | : Yapının zamana ba lı hızı                                  |
|                             | : Yapının zamana ba lı ivmesi                                |
| g                           | : Yapının zamana ba lı yer ivmesi                            |
| $x_G$                       | : Kat kütle merkezinin x koordinatı                          |
| $x_R$                       | : Kat rijitlik merkezinin x koordinatı                       |
| $x_g$                       | : Üç boyutlu çerçevede zamana ba lı yer hareketi             |

| $Z_c$                     | : Sargılı beton gerilme- ekil de i tirme e risi do rusal kısım e imi  |
|---------------------------|-----------------------------------------------------------------------|
| $Z_u$                     | : Sargısız beton gerilme- ekil de i tirme e risi do rusal kısım e imi |
| 1                         | : Birinci moda ait kütle katılım oranı                                |
|                           | : Yatay ötelenme                                                      |
| mak                       | : Maksimum yatay ötelenme                                             |
| р                         | : Plastik (kalıcı) yatay ötelenme                                     |
| у                         | : Elastik yatay ötelenme                                              |
| <sub>max</sub> /H         | : Maksimum yatay ötelenme oranı                                       |
| mak                       | : Maksimum göreli kat ötelenmesi                                      |
| <sub>mak</sub> / <b>h</b> | : Maksimum göreli kat ötelenmesi oranı                                |
|                           | : Sönüm oranı                                                         |
|                           | : Birim ekil de i tirme                                               |
| co                        | : Sargısız betonda maksimum gerilme altında birim ekil de i tirme     |
| coc                       | : Sargılı betonda maksimum gerilme altında birim ekil de i tirme      |
| 50u                       | : Sargısız betonda $0.5f_c$ gerilme altında birim ekil de i tirme     |
| си                        | : Sargısız beton için en büyük birim ekil de i tirme                  |
| c20                       | : Sargılı betonda $0.2 f_{cc}$ gerilme altında birim ekil de i tirme  |
| S                         | : Donatı çeli inin birim uzaması                                      |
| sh                        | : Donatı çeli inin pekle me ba ladı 1 andaki birim uzaması            |
| sy                        | : Donatı çeli inin akma birim uzaması                                 |
| su                        | : Donatı çeli inin kopma birim uzaması                                |
| sy                        | : Donatı çeli inin akma birim uzaması                                 |
|                           | : Plastik mafsal bölgesinde olu an toplam e rilik                     |
| cr                        | : Betonarme kesitin e ilme etkisinde çatladı 1 andaki e rilik         |
| у                         | : Akma anındaki e rilik                                               |
| и                         | : Nihai e rilik                                                       |
| т                         | : Maksimum ötelenme taleplerinin set için bulunan ortalaması          |
| μ                         | : Varyans analizi için kitle ortalaması                               |
| $\mu_m$                   | : $m_{U}$ de erlerinin ortalaması                                     |
| $\mu_{CoV}$               | : $CoV_{U}$ de erlerinin ortalaması                                   |
| μ                         | : Maksimum yatay ötelenmenin set için hesaplanan ortalaması           |
| $\mu$ /H                  | : Maksimum yatay ötelenme oranının set için hesaplanan ortalaması     |
| μ                         | : Maksimum göreli kat ötelenmesinin set için hesaplanan ortalaması    |
| $\mu$ /h                  | : Maksimum göreli kat ötelenmesi oranının sete ait ortalaması         |
| d                         | : Dairesel frekans                                                    |
| S                         | : Sargı donatısının hacimsel oranı                                    |
| sm                        | : Kesitte bulunması gereken enine donatının hacimsel oranı            |
| S                         | : Maksimum yatay ötelenmenin set için hesaplanan standart sapması     |
| S /H                      | : Maksimum yatay ötelenme oranının sete ait standart sapması          |
| S <sub>/h</sub>           | : Maksimum göreli kat ötelenmesi oranının sete ait standart sapması   |
| †                         | : Normal gerilme                                                      |

| † <i>c</i> | : Sargısız betona ait basınç dayanımı                   |
|------------|---------------------------------------------------------|
|            | : Plastik mafsal bölgesinde olu an toplam dönme de eri  |
| p          | : Plastik mafsal bölgesinde olu an plastik dönme de eri |
| у          | : Plastik mafsal bölgesinde olu an elastik dönme de eri |
| MN         | : Minimum hasar sınırına ait dönme de eri               |
| GV         | : Belirgin hasar sınırına ait dönme de eri              |
| GÇ         | : leri hasar sınırına ait dönme de eri                  |
|            |                                                         |

### ÖNSÖZ

Bu tez çalı masını bana öneren, lisans ve lisansüstü ö renimim boyunca desteklerini esirgemeyen, hem akademik hem de ahlaki de erleri ile bana yol gösteren de erli danı man hocam, Prof. Dr. Ali Haydar KAYHAN'a sonsuz te ekkürü bir borç bilirim.

Tez çalı mam boyunca yardımları ile yanımda olan, Ara . Gör. Ahmet DEM R hocama çok te ekkür ederim.

Hayatım boyunca maddi ve manevi her türlü deste i esirgemeyen, yoruldu umda bir öncekinden daha güçlü hissettiren, her zaman anlayı lı olan ve bana inanan en büyük anslarımdan babam Habil TEZEL'e, annem Samiye TEZEL'e, karde lerim Gökçin TEZEL R 'ye, Samed TEZEL'e, sevgi ve anlayı ı ile tez boyunca bana destek olan ni anlım Sinan KOYUNCU'ya te ekkür ederim.

Haziran 2019

Melike TEZEL ( n aat Mühendisi)

Aileme...

### 1. G R

Yerkabu unu olu turan levhaların birbirlerine göre hareketi sebebi ile ortaya çıkan sarsıntılara deprem denir. Dünyada meydana gelen depremlerin büyük ço unlu u yer kabu unu olu turan levhaların birbirine yakla tı 1, uzakla tı 1 ya da te et geçti i bölgelere denk gelmektedir. Bu bölgelerden Pasifik Deprem Ku a 1, ili'den kuzeye do ru Güney Amerika kıyıları, Orta Amerika, Meksika, Alaska'nın güneyinden Aleutian Adaları, Japonya, Filipinler, Yeni Gine, Güney Pasifik Adaları ve Yeni Zelanda'yı içine almaktadır. Alp-Himalaya Deprem Ku a 1, Türkiye'nin de içinde bulundu u, Endonezya'dan ba layıp Himalayalar ve Akdeniz üzerinden Atlantik okyanusuna ula an ku aktır. Atlantik Ku a 1 ise Atlantik Okyanusu ortasında bulunan levha sınırı boyunca uzanmaktadır (www.koeri.boun.edu.tr).

Türkiye'de nüfusun ve sanayi yapılarının yakla ık olarak %98'i çe itli derecelerde deprem tehdidi altında olan bölgelerde yer almaktadır. Bu bölgeler, yüz ölçümünün yakla ık olarak %96'sına kar ılık gelmektedir. Türkiye'de son yüzyılda önemli ölçüde can ve mal kayıplarına neden olan, 82'sinin moment büyüklü ü 6.0'nın üzerinde olmak üzere 300'e yakın deprem meydana gelmi tir. Bu depremlerde yakla ık 100,000 ki i hayatını kaybetmi , yakla ık 600,000 konut yıkılmı veya kullanılamaz hale gelmi tir. (Özmen ve di . 1997, Can ve Özmen 2010, Azak 2013).

Her yıl dünyada hasara sebep olan yüzlerce deprem meydana gelmektedir. Bu depremler özellikle kentsel bölgeleri etkilediklerinde ciddi kayıplara neden olmaktadır. Depremlerin olu masını engellemek imkansızdır. Yalnız, bilim ve teknolojiden yararlanarak deprem etkilerini de erlendirmek, alınacak önlemlerle depremlerde ortaya çıkacak hasarları azaltmak olası bir durumdur. Alınacak önlemlerle toplumsal ve ekonomik kaybın azaltılması da mümkündür. Gerekli önlemlerin alınabilmesi için ise tasarımı yapılacak yapıların veya mevcut yapıların deprem davranı larının gerçekçi biçimde ele alınması gerekmektedir.

Son yıllarda deprem mühendisli i alanında ön plana çıkmı olan performansa dayalı tasarımın temel niteliklerinden birisi, yeni yapıların tasarımı veya mevcut

yapıların de erlendirilmesi için sismik hasarın daha gerçekçi olarak tanımlanabilmesidir (Ghobarah 2001). Performansa dayalı tasarım yakla ımı ile alakalı esas dökümanlardan biri olan SEAOC Vision 2000'de (1995) ifade edilen tasarım yakla ımlarından birisi de deplasmana dayalı tasarımdır. Bu yakla ım büyük ölçüde benimsenmi ve tasarım için hedef olarak maksimum ötelenme, maksimum göreli kat ötelenmesi, maksimum süneklik talebi gibi kavramlar kullanılmaya ba lanmı tır (Miranda 1999; Gupta ve Krawinkler 2000). Benzer kavramlar mevcut yapıların performans de erlendirmesi amacıyla farklı performans seviyelerinin ve limit durumların tanımlanmasında da kullanılmaktadır (Priestley ve di . 2007).

Maksimum ötelenme veya maksimum göreli kat ötelenmesi talebinin belirlenmesi için kullanılabilecek en do ru ve kapsamlı yöntem, yapısal sistemlerin üç boyutlu ve do rusal olmayan zaman tanım alanında analizidir (Li 1996, Chopra ve Goel 2002). Zaman tanım alanında analizler, malzemenin elastik olmayan davranı 1 ve yapıdaki yüksek modların katkısının dikkate alınması ve hasar da ılımının gözlenebilirli i nedeniyle yapının deprem etkisi altındaki davranı 1 daha iyi tahmin edilebilmektedir (Fahjan ve di .2011).

### 1.1 Problemin Tanımı

Mevcut yapıların deprem performanslarının belirlenmesinde ya da yeni yapılacak olan yapıların tasarımında do rusal ve do rusal olmayan hesap yöntemleri kullanılabilmektedir. Yakın tarihte yürürlü e girmi olan Türkiye Bina Deprem Yönetmeli i'nde (TBDY 2018) binaların deprem performanslarının belirlenmesi amacıyla kullanılacak do rusal hesap yöntemleri; e de er deprem yükü yöntemi, mod birle tirme yöntemidir. Do rusal olmayan hesap yöntemleri ise; tek modlu itme yöntemleri, çok modlu itme yöntemleri ve zaman tanım alanında do rusal olmayan hesap yöntemidir.

Zaman tanım alanında do rusal olmayan analiz yöntemi, modellemenin güçlü ü ve analizin uzun sürmesi nedeni ile performansa dayalı tasarım görü ünün ortaya çıktı 1 ilk zamanlarda çok tercih edilmemi tir. Zaman tanım alanında do rusal olmayan analiz yöntemine oranla daha kolay olan do rusal olmayan statik analiz yöntemleri kullanılmı tır (ATC-40 1996). Geli en teknolojiye ba lı olarak bilgisayarların i lem kapasitelerinin artması, kuvvetli yer hareketi veri tabanlarının geli mesi ve kolay eri ilebilir hale gelmesi neticesinde zaman tanım alanında do rusal olmayan analiz yöntemi daha fazla kullanılmaya ba lanmı tır (Bommer ve Acevedo 2004, Fahjan 2008, Kayhan 2012).

TBDY'nin de içinde yer aldı 1 modern deprem yönetmeliklerinin genelinde tasarım ve performans de erlendirmesi için zaman tanım alanında analiz yönteminin de kullanılabilmesi öngörülmü ve zaman tanım alanında analiz yöntemi ile ilgili tanımlamalar yapılmı tır (DBYBHY 2007, EUROCODE-8 2004, FEMA-356 2000, ASCE 07-16 2017). Modern deprem yönetmeliklerinde, analiz için kullanılacak deprem yükleri bölgesel deprem tehlikesi ve yerel zemin ko ulları ile uyumlu tasarım spektrumları veya zaman tanım alanında analiz için seçilen ivme kayıtları ile temsil edilmektedir. Kullanılan ivme kayıtlarının spektrum ortalamasının dikkate alınan periyot aralı ında tasarım ivme spektrumu ile uyumlu olması istenmektedir.

Zaman tanım alanında analiz için kullanılacak ivme kayıtlarıyla ilgili olarak bütün yönetmeliklerde benzer ekilde tanımlanmı ayrıntılı ve özel artlar bulunmamaktadır. Bunun nedenlerinden birisi, zaman tanım alanında analizin mühendislik çalı malarında oldukça yeni olması bu konuda yeteri kadar bilgi birikiminin olu mamı olmasıdır. Bu konudaki akademik ara tırmaların da geli im sürecinde olması nedeniyle yönetmeliklerde yer alacak ortak düzenlemeler için belli bir sürece ihtiyaç oldu u söylenebilir. Sonuç olarak ivme kayıtlarının seçilmesi ile ilgili olarak kabul gören ölçütler daha ortaya konamamı tır.

Zaman tanım alanında analizler için; sentetik, yapay veya gerçek depremlerden elde edilen ivme kayıtlarının kullanılmasına izin verilmektedir. Buna ek olarak, her yönetmelik birkaç küçük ko ula yer vermektedir. Yönetmeliklerde tanımlanan bölgesel tasarım spektrumları ile seçilen ivme kayıtlarının tepki spektrumlarının, belirli bir periyot aralı ında uyumlu olması istenmektedir. Fakat, öngörülen periyot aralı 1 de i iklik göstermektedir. Herhangi bir ivme kaydının tepki spektrumunun, belirli bir periyot aralı ında, tasarım spektrumu ile uyumlu olması mümkün de ildir. Bu nedenle, genel olarak birden fazla ivme kaydı seçilmekte ve ölçeklendirilmektedir. Bu ekilde, seçilen ivme kayıtlarının spektrumlarının ortalamasıyla tasarım spektrumunun (hedef spektrum) uyumlu olması sa lanmaktadır.

Zaman tanım alanında analiz için, örnek olarak TBDY'de tanımlanan artlara ve tasarım ivme spektrumlarına uygun olarak seçilecek ve ölçeklendirilecek ivme kayıtlarından olu an ivme kaydı setleri elde etmek mümkündür. Ayrıca sayısal veri tabanlarındaki yüzlerce ivme kaydı içerisinden seçim yaparak, yönetmelik ko ullarına uygun olacak ekilde birbirinden farklı ivme kaydı setleri olu turmak da mümkündür (Iervolino ve di . 2008, Kayhan ve di . 2011, Kayhan 2012). Herhangi bir ivme seti için analiz sonucu elde edilecek yapısal tepkilerin ortalaması setteki ivme kayıtlarının her biri için elde edilecek analiz sonucuna ba lı oldu una göre, yapısal tepkilerin ortalaması da kullanılacak ivme kaydı setine göre de i iklik gösterecektir. Dolayısıyla, yapısal tepkilerin ortalaması yani tasarım veya de erlendirme amacıyla kullanaca ımız parametre, kullanılacak ivme kaydı setine göre de i en ve önceden tahmin edilemeyen bir rastgele de i ken olmaktadır (Demir 2015, Kayhan ve Demir 2016b).

Herhangi bir hedef spektrum için TBDY ile uyumlu olarak birbirinden farklı ivme kaydı setleri elde etmek mümkün oldu una ve analiz sonucu elde edilecek yapısal tepkilerin (örne in maksimum ötelenme veya göreli kat ötelenmesi) ortalaması da kullanılacak ivme setine ba lı olarak de i ti ine göre, betonarme bir bina için farklı ivme setleri kullanılarak elde edilen yapısal tepkilerdeki belirsizli in istatistiksel olarak de erlendirilmesi önem kazanmaktadır. Örne in farklı setler için elde edilen yapısal tepkiler nasıl da ılmaktadır? Bunun yanında, bir ivme setindeki ivme kayıtlarından elde edilen yapısal tepkilerin sete ait ortalaması ve bu ortalama etrafındaki saçılımı ne düzeydedir?

### 1.2 Tezin Amacı

Global ötelenme (çatı ötelenmesi) oranı ile göreli kat ötelenmesi oranı talepleri, yeni yapıların tasarımı ve/veya mevcut yapıların deprem performansının belirlenmesi amacı ile kullanılan önemli yapısal tepki parametrelerindendir. Bu tezin amaçlarından birisi, TBDY ile uyumlu olacak ekilde farklı ivme kaydı setleri olu turup bu ivme kaydı setlerini kullanılarak yapılacak zaman tanım alanında analiz sonucunda üç boyutlu betonarme bir bina için elde edilecek yapısal tepki parametrelerini istatistiksel olarak de erlendirmektir. Yapısal tepki parametreleri olarak global ötelenme ( $_{mak}$ ), global ötelenme oranı ( $_{mak}/H$ ), maksimum göreli kat ötelenmesi ( $u_{mak}$ ) ve maksimum göreli kat ötelenmesi oranı ( $u_{mak}/h$ ) seçilmi tir.

Tezin di er amacı ise, aynı hedef spektrum ile uyumlu olarak elde edilen farklı ivme kaydı setleri kullanılarak yapılan analiz sonuçlarına göre, bu setlere ait yapısal tepkiler arasındaki farkın istatistiksel anlamda anlamlı olup olmadı ını ara tırmaktır.

### 1.3 Literatür Çalı maları

Performansa dayalı tasarım yakla ımıyla ilgili olarak literatürde yer alan çalı malardan bazıları, tasarım veya performans de erlendirmesi amacı ile maksimum ötelenme ile göreli kat ötelenmesi taleplerinin elde edilmesi ve yorumlanmasıyla ilgilidir. Bu çalı malarda yapısal analiz modelleri tek serbestlik dereceli (TSD) sistemler, düzlem çerçeveler veya üç boyutlu çerçeveler olarak gözönüne alınmakta ve zaman tanım alanında analiz yöntemi kullanılarak ötelenme talepleri elde edilmektedir. Yapıların tasarım veya performans de erlendirmesi için zaman tanım alanında analiz yönteminde kullanılacak olan ivme kayıtlarının seçimi ile ilgili çalı malar da literatürde bulunmaktadır. Bu çalı malardan bazıları a a ıda özetlenmi tir.

#### 1.3.1 Ötelenme Taleplerinin De erlendirildi i Çalı malar

SEAONC (1970) (Structural Association of Northern California), ara tırma komitesi tarafından hazırlanan raporda, 1967 Venezuela depreminde kısmen göçen Charima binasının sismik davranı ı zaman tanım alanında do rusal hesap yöntemi ile analitik olarak de erlendirilmi tir. Yapılan de erlendirmelerde sismik taleplerin maksimum yer ivmesi de eri haricinde depremin birçok farklı karakteristik özelli ine ba lı olarak de i kenlik gösterdi i dile getirilmi tir. Çalı mada yüksek modların sismik davranı a olan etkilerinin de altı çizilmi tir.

Miranda (1999), çok katlı yapıların yatay ötelenme taleplerinin yakla ık olarak tahmin edilebilmesi amacıyla bir yöntem önermi tir. Önerilen yöntem,

maksimum ötelenme talebi ile maksimum göreli kat ötelenmesi talebinin hızlı bir ekilde tahmin edilmesine yöneliktir. Çalı ma amacı do rultusunda gözönüne alınan düzlem çelik çerçeveler için, önerilen yakla ık yöntem ve zaman tanım alanında do rusal olmayan analiz ile elde edilen sonuçlar kıyaslanmı tır. Önerilen metodun ötelenme talebinin tahmin edilmesinde iyi sonuçlar verdi i ve yeni yapıların ön tasarımında veya mevcut yapıların hızlı bir ekilde de erlendirilmesi amacıyla kullanılabilece i dile getirilmi tir.

Gupta ve Krawinkler (2000), çerçeve sistemlerin maksimum ötelenme ve maksimum göreli kat ötelenmesi taleplerinin birinci do al titre im periyoduna kar ılık gelen spektral deplasman talebine ba lı olarak tahmin edilebilmesi için bir yöntem önerilmi tir. Çalı ma amacı do rultusunda 9 adet çelik çerçevenin do rusal ve do rusal olmayan zaman tanım alanında analizleri yapılmı ve ötelenme de erleri elde edilmi tir. Analizler için her biri 20 ivme kaydına sahip 3 ivme seti kullanılmı tır. Analiz sonuçlarına göre, maksimum ötelenme ve maksimum göreli kat ötelenmesi arasındaki ili kinin, önemli ölçüde kat sayısına ba lı oldu u bulunmu tur.

Riddel ve di . (2002), TSD sistemlerin zaman tanım alanında do rusal olmayan analizi için 3 farklı çevrimsel davranı modeli (elastoplastik, bi-linear ve rijitlik azalması) kullanmı tır. Analizler için iki farklı ivme setinde toplam 95 ivme kaydı seçilmi tir. Çalı mada, elde edilen ötelenme taleplerinin ortalaması üzerinde kullanılan çevrimsel modelin önemli bir etkisi olmadı 1, elastoplastik model ile ötelenme talebinin güvenli tarafta kalacak ekilde tahmin edilebilece i belirtmi tir.

Korkmaz (2005), kapasite spektrumu yöntemi ile betonarme çerçeve yapılarının performans noktalarını belirlemi tir. Çalı mada 3, 5, 8 ve 15 katlı betonarme çerçeve yapılar ele alınmı, bu çerçeve yapılara üçgen ve dikdörtgen yanal yükleme tipleri ile itme analizi uygulanarak kapasite spektrumları elde edilmi tir. Daha sonra talep spektrumlarının elde edilmesi amacıyla dünya genelinden, yakın odaklı 8 de i ik deprem seçilmi tir. Belirlenen talep spektrumları ve elde edilen kapasite spektrumları ile performans noktaları elde edilmi tir.

Medina ve Krawinkler (2005), yakın fay ve ileri yönlenme etkisi olmayan yer hareketine maruz düzenli düzlem çerçevelerde ötelenme talepleri ile taleplerdeki belirsizli i ara tırmı tır. Çalı mada, yanlızca yer hareketinin frekans içeri indeki farklılıkların belirsizli e etkisi dikkate alınmı tır. Analizler için 40 ivme kaydı ile 3-18 katlı moment ta ıyan düzlem çerçeveler kullanılmı, maksimum ve ortalama ötelenme talebi ile maksimum ve ortalama ötelenme talebinin yapı yüksekli i boyunca da ılımı de erlendirilmi tir. Ayrıca, ötelenme talebinin yer hareketi iddeti, baskın titre im periyodu ve kat sayısına ba lılı 1 ara tırılmı tır.

Garcia ve Miranda (2007), performansa dayalı tasarım için TSD sistemlerin maksimum ötelenme talebinin tahmini için kullanılacak olasılıksal bir yakla ımın önerildi i bir çalı ma yapmı tır. Çalı mada, do rusal olmayan davranı elastoplastik çevrimsel davranı modeli ile temsil edilmi , analizlerde kaya veya katı zeminlerde kaydedilen 240 ivme kaydı kullanılmı tır. Analiz sonuçları kullanılarak, do rusal olmayan ötelenme oranının merkezi e ilimi ile de erlerin saçılımı de erlendirilmi tir. Ek olarak merkezi e ilim ve saçılımın tahmin edilebilmesi amacıyla basit ba ıntılar önerilmi tir.

Mollaioli ve Bruno (2008), tek ve çok serbestlik dereceli düzlem sistemlerin do rusal olmayan zaman tanım alanında analizleri yapılmı tır. Analizler için, bo sahada veya yüksekli i iki katı geçmeyen binalarda yer alan kayıt istasyonlarında kaydedilen, 43 depreme ait toplam 868 gerçek ivme kaydı kullanılmı tır. Analiz sonuçları üzerinde deprem büyüklü ü, kayıt istasyonu-deprem kayna 1 mesafesi, yerel zemin durumu, süneklik, çevrimsel davranı parametrelerinin etkisi de erlendirilmi tir. Ek olarak maksimum elastik ötesi ötelenme talebinin maksimum elastik ötelenme talebine oranı için basit bir denklem önerilmi tir.

Lin ve Miranda (2009), maksimum ötelenme talebinin tahmini amacıyla kullanılan e de er do rusal yöntemlerin performansının de erlendirilmesi için, elastoplastik davranı a sahip ve periyodu 0.1s-3.0s arasında de i en TSD sistemlerin zaman tanım alanında do rusal olmayan analizlerini gerçekle tirmi tir. Analizlerde 9 farklı depremden elde edilen 72 gerçek ivme kaydı kullanılmı tır. Zaman tanım alanında analiz ile elde edilen maksimum taleplerin, e de er do rusal yöntem ile elde edilen taleplere oranının ortalaması ve saçılımı, periyot ve yatay dayanım oranının fonksiyonu olarak hesaplanmı tır.

Meral (2010), yüksek lisans tez çalı masında, betonarme yapı sto unu temsil eden dü ük ve orta yükseklikteki betonarme binaların daha önceki depremlere ait ivme kayıtlarında olu an yer de i tirme talepleri ile binaların mevcut kapasitelerini kar ıla tırarak mevcut binaların performanslarını de erlendirmi tir. Çalı mada, dü ük ve orta yükseklikteki binalar 2, 4 ve 7 katlı üç boyutlu betonarme binalar ile temsil edilmi tir.

Tekin (2010), yüksek lisans tez çalı masında, TSD sistemlerin deprem tepkilerini olasılıksal olarak tahmin etmeyi hedeflemi tir. Çalı mada, titre im periyodu 0.1s-5.0s arasında de i en TSD sistemler için hesaplanan maksimum tepkiye ait olasılık da ılımları önerilmi tir. Analizler için 51 depremden elde edilen toplam 317 ivme kaydına ait yatay bile enler kullanılmı tır.

Fahjan ve di . (2011), 12 katlı bir betonarme yapının do rusal ve do rusal olmayan dinamik analizini yaparak çatı ötelenmesi ve göreli kat ötelenmesi taleplerini incelemi tir. Bunun için, DBYBHY ile uyumlu 10 adet ölçeklendirilmi gerçek deprem kaydı kullanılmı tır. 7 depremden elde edilen sonuçların ortalaması, rastgele seçilen üçünün en büyü ü ve en dü ük üç sonuç içinden en büyü ü alınarak kıyaslanmı tır. Sonuçta, zaman tanım alanında do rusal ve do rusal olmayan dinamik analizler için en az 7 deprem kaydı kullanılmasının ve elde edilen sonuçlarının ortalamasının göz önüne alınmasının daha do ru olaca 1 belirtilmi tir.

Önür (2011), yüksek lisans tez çalı masında, betonarme bina sto unu temsil eden dü ük ve orta yükseklikteki binalarda olası depremlerde olu an ötelenme taleplerini zaman tanım alanında do rusal elastik analiz kullanarak de erlendirmi tir. Çalı mada mevcut binalar 2, 4 ve 7 katlı olarak dikkate alınmı ve 41 adet gerçek ivme kaydı kullanarak 984 adet zaman tanım alanında do rusal elastik analiz yapılmı tır.

Özmen (2011), doktora tez çalı masında, Türkiye'deki mevcut betonarme yapıların genel dayanım ve deformasyon özelliklerinin belirlenmesi ve binalarda bulunan yapısal eksiklerin deprem performansı üzerindeki etkisinin de erlendirilmesini amaçlamı tır. Çalı mada, mevcut yapı sto unu temsil eden üç boyutlu betonarme yapı modellerine ait e de er TSD sistemlerin zaman tanım alanında do rusal olmayan analizleri gerçekle tirilmi tir. Analizler için birbirinden farklı zeminlerde kaydedilen toplam 264 gerçek ivme kaydı kullanılmı tır. De erlendirme için maksimum ötelenme talebi kullanılmı tır. nel ve di . (2013), Türkiye'deki mevcut bina sto unun bir bölümünü olu turan 2, 4 ve 7 katlı betonarme binaları temsil eden üç boyutlu analiz modelleri ve bu binaların e de er TSD modelleri için do rusal elastik olmayan dinamik analiz ile elde edilen çatı seviyesi ötelenme taleplerini kar ıla tırılmı tır. 19 gerçek ivme kaydı ve 24 üç boyutlu bina kullanılarak yapılan bu çalı ma neticesinde, üç boyutlu modeller için elde edilenlere kıyasla e de er TSD modeller için elde edilen ötelenme taleplerinin %20-40 oranında daha fazla oldu u belirtilmi tir.

Kayhan ve Demir (2016a), DBYBHY ile uyumlu ivme setleri kullanarak TSD sistemlerin zaman tanım alanında do rusal olmayan analizini yapmı ve elde edilen maksimum ötelenme taleplerini istatistiksel olarak de erlendirmi tir. Bunun için, farklı do al titre im periyodu, yatay dayanım oranı ve çevrimsel davranı modeline sahip 36 adet TSD sistem göz önüne alınmı tır. Do rusal olmayan analizler için, Z1, Z2, Z3 sınıfı zeminlerin her biri ile uyumlu olacak biçimde yedi adet gerçek ivme kaydına sahip ivme kaydı setleri kullanılmı tır. vme seti içerisindeki kayıtlardan elde edilen maksimum ötelenme taleplerinin, tüm TSD sistemler için önemli derecede bir saçılıma sahip oldu u görülmü tür. Ek olarak, farklı çevrimsel modeller için elde edilen taleplerin aynı ortalamaya sahip ana kitleden rastgele seçilmi örnekler oldu u hipotezinin %95 güven düzeyi ile kabul edilebilir oldu u ifade edilmi tir.

Kayhan ve Demir (2016b) ba ka bir çalı mada, DBYBHY ile uyumlu farklı ivme kaydı setleri kullanarak düzlem çerçeveler için elde edilen maksimum ve göreli ötelenme taleplerini istatistiksel olarak incelemi tir. Çalı ma kapsamında 3, 5 ve 7 katlı iki boyutlu betonarme çerçeveler göz önüne alınmı tır. Çalı ma sonuçlarına göre, DBYBHY ile uyumlu farklı ivme kayıtları kullanıldı ında farklı ötelenme talepleri elde edilebilece i gözlemlenmi tir. Bu sonucun dikkate alınan tüm zemin sınıfı ve betonarme çerçeve sistemler için kabul edilir oldu u dile getirilmi tir. vme kayıtlarından elde edilen yapısal taleplerdeki saçılımın yüksek oldu u da çalı madan çıkarılan sonuçlardan biridir.

Samanta ve Huang (2017), farklı ölçeklendirme metotlarının yüksek yapılardaki tepkilerin da ılımına etkisini incelemi lerdir. Çalı mada 34 katlı betonarme-çelik kompozit çerçeve sistemi kullanılmı tır. Be farklı ölçeklendirme yöntemi göz önüne alınmı tır. Çalı mada, maksimum kat ivmeleri, ortalama kat spektral ivme de erleri ve maksimum göreli kat ötelenmelerinin medyan de erleri dikkate alınmı tır.

Kayhan ve di . (2018), DBYBHY ile uyumlu zaman tanım alanında analizlerden elde edilen maksimum ötelenme taleplerinin istatistiksel olarak de erlendirildi i bir di er çalı mada, göz önüne alınan her bir zemin sınıfı ile uyumlu olmak üzere 30 farklı ivme kaydı seti kullanmı tır. Bu çalı mada da, ötelenme taleplerine ait saçılımın yüksek oldu u dile getirilmi tir. Do rusal olmayan statik ve dinamik analiz sonuçları kıyaslanmı , sert zeminler üzerinde bulunan uzun periyoda sahip binaların deprem davranı ının do rusal olmayan statik analiz ile tahmininde özel bir dikkatin gerekli oldu u ifade edilmi tir. Çalı mada ek olarak, yatay dayanım oranı ve periyot de erlerine ba lı olarak maksimum ötelenme talebinin tahmin edilmesi amacıyla do rusal regresyon modelleri önerilmi tir.

Palancı ve di . (2018), orta yükseklikteki betonarme binaları temsil eden be katlı üç adet betonarme binanın zaman tanım alanında do rusal olmayan analizlerini yapmı ve maksimum global ötelenme oranı taleplerini istatistiksel olarak de erlendirmi tir. Çalı mada, DBYBHY ile uyumlu olmak üzere, 7, 11 ve 15 ivme kaydına sahip farklı ivme kaydı setleri kullanılmı tır. vme setinde yer alan kayıtlar için elde edilen ötelenme taleplerinin set içerisindeki saçılımının yüksek oldu u ve zemin sınıfının saçılım üzerinde bir etkisinin bulunmadı 1 dile getirilmi tir. Ek olarak, belirli bir sayıda gerçek ivme kaydına sahip bir katalogdan seçim yaparak elde edilecek ivme kaydı setleri için, sette bulunan ivme kaydı sayısının artması ile ötelenme taleplerinin saçılımının da arttı 1, ama set için hesaplanan ortalama ötelenme talebi üzerinde ivme kaydı sayısının herhangi bir etkisinin olmadı 1 vurgulanmı tır.

#### 1.3.2 vme Kaydı Seçimi ile lgili Çalı malar

Naeim ve di . (2004), belirli bir hedef spektrumla uyumlu ortalama ivme spektrumuna sahip ivme kaydı seti meydana getirmek amacıyla, bir optimizasyon problemi olarak ele aldı ı ivme kaydı seçimi problemini genetik algoritma kullanarak çözmü ve ivme kaydı setlerini elde etmi tir. Çalı ma kapsamında 1496 adet ivme kaydı takımı kullanılmı ve 7 ivme kaydından meydana gelen ivme kaydı setleri olu turulmu tur. Çalı mada ivme kaydı ölçekleme katsayıları 0.5-1.5 ve 0.2-2.5 arasında alınmı tır.

Fahjan (2008), deprem kayıtlarının seçilmesi ile ilgili genel yöntemleri ve ölçütleri detaylı bir ekilde de erlendirmi tir. Çalı mada, DBYBHY'de bulunan her bir sismik bölge ve zemin sınıfı için belirlenen tasarım ivme spektrumuna uygun kayıtlar seçilirken depremin büyüklü ü, faylanma tipi ve zemin ko ulları göz önüne alınarak yapılan ön seçimin ardından, ele alınan yerel zemin sınıflarının her biri için 10 ivme kaydından olu an ivme kaydı setleri elde edilmi tir.

Iervolino ve di . (2008), ivme setleri olu turmak amacıyla, Avrupa Kuvvetli Yer Hareketi Veritabanı'nda (Ambraseys ve di . 2004) yer alan kayıtlar arasından seçim yapmı tır. EUROCODE-8'de ifade edilen 5 zemin sınıfının her biri için, herhangi bir ivme kaydının iki yatay bile eninden yanlızca birinin seçildi i ve toplam 7 kayıttan meydana gelen ivme seti ile her kaydın iki bile eninin de seçildi i ve toplam 14 kayıttan meydana gelen ivme takımı setleri elde edilmi tir.

Iervolino ve di . (2010), EUROCODE-8 ile uyumlu ivme kaydı setleri olu turan REXEL isimli bilgisayar programı geli tirmi tir. Programda kayıtların seçilece i depremin maksimum ve minimum büyüklükleri ve faya olan uzaklık ön seçim kriteri olarak kullanılabilmektedir. Program, iki boyutlu analiz için 7 adet ivme kaydından meydana gelen, 3 boyutlu analiz için 7 adet ivme kaydı takımından meydana gelen, setler olu turabilmektedir.

Katsanos ve di . (2010) ivme kaydı seçimi için 2010 yılına kadar yapılmı olan akademik çalı malar ile ilgili olarak ayrıntılı bir literatür taraması yapılmı tır. Çalı mada literatürde bulunan; spektrum ile uyumlu ivme kaydı seçimi, ivme kaydı özelliklerine ba lı ivme kaydı seçimi, yönetmelik kriterlerine ba lı ivme kaydı seçimi gibi konulardan olu an çalı malar ile ilgili olarak kapsamlı bilgi verilmi tir.

Jayaram ve di . (2011), ivme kaydı seçiminde hedef spektrum olarak ko ullu spektrum önermi tir. Çalı mada, ko ullu ortalama spektrumun hem ortalaması hem de ortalama ile varyansı göz önüne alınarak, bu iki farklı yöntem kıyaslanmı tır. Çalı mada 40 adet benze tirilmi ivme kaydı kullanılmı tır. Çalı manın sonuçlarını de erlendirmek amacıyla tek serbestlik dereceli sistemler ve 4 ve 20 katlı betonarme çerçeve sistemler göz önüne alınmı tır. Çalı ma sonuçlarına göre, tek serbestlik dereceli sistemlerde ve betonarme çerçevelerde medyan tepkiler her iki metot için benzer çıkarken, ortalama ve saçılım ise, ortalamanın yanında varyans da göz önüne alındı ında daha büyük çıkmı tır.

Kayhan ve di . (2011), EUROCODE-8 ile uyumlu ivme kaydı setleri elde edilen çalı mada 7 ivme kaydından meydana gelen ivme setleri için toplam 352 ivme kaydı içerisinden seçim yapmı tır. Zaman tanım alanında ölçekleme için ölçek katsayısı 0.5-2.0 arasında seçilmi tir. Ortalama spektrum ile hedef spektrum arasındaki oran ilgili periyot aralı ında en çok 1.1, en az 0.9 olacak ekilde ivme kayıtları seçilmi tir. EUROCODE-8'de tanımlanan zemin sınıflarının her biri için ölçeklendirilmi ivme kayıtlarından meydana gelen 5 ayrı ivme kaydı seti elde edilmi tir.

Kayhan (2012), DBYBHY'de farklı zemin sınıfları için tanımlanmı elastik tasarım ivme spektrumları ile uyumlu olacak ekilde seçilen ve zaman tanım alanında ölçeklendirilen gerçek ivme kayıtlarından olu an ivme kaydı setleri elde etmi tir. vme setlerinde bulunan kayıt sayısı 10 ve 15 olarak ayrı ayrı dikkate alınmı tır. Böyle, ele alınan her bir zemin sınıfı için ayrı ayrı ivme kaydı setleri meydana getirilmi tir.

Katsanos ve Sextos (2013), analiz edilen yapıya özgü ivme kaydı seçimi yapan bir yazılım geli tirme amacı ta ıyan çalı malarında EUROCODE-8'de bulunan ivme kaydı seçim artlarını da göz önünde bulunduran ISSARS isimli bir program geli tirmi tir. Programda, ivme kaydı seçimi 4 a amada yapılmaktadır. Bunlar; ba langıç ivme kaydı seçimi, optimizasyon kullanılarak ortalamanın spektrum ile uygun hale getirilmesi, ele alınan yapının performans analizi ve istenilen ölçütlere uygun olarak bazı kayıtların setten çıkarılmasıdır.

Zengin ve Akkar (2015), do rusal olmayan yapısal tepkinin tahmininde kullanılacak yer hareketi kayıtlarının seçimi amacıyla yeni bir yöntem geli tirmi tir. Önerilen yöntemde ivme kaydı setleri hedef spektral talepteki saçılım de erine göre olu turulmu tur. Çalı ma da önerilen yöntemin uygunlu unu incelemek amacıyla TSD sistemler kullanılmı tır. Çalı ma sonuçları ko ullu ortalama spektrum ile kıyaslanmı tır. Sonuçlara göre önerilen ivme kaydı seçimine göre olu turulacak setlerden elde edilecek medyan elastik deplasman %10 hata payı için en az 25 adet deprem kaydı ile ko ullu ortalama spektrumu kullanılırsa en az 15 adet ivme kaydı ile tahmin edilebilecektir.

Kayhan (2016), EUROCODE-8 ile uyumlu bir ekide ölçeklendirilmi ya da ölçeklendirilmemi ivme kaydı setlerinin elde edilebilmesi için hibrit HS-Solver (Ayvaz ve di . 2009) algoritmasına dayanan bir yöntem önermi tir. Yöntemin uygulanmasına örnek olarak farklı zemin sınıfları ele alınarak hem tek yönlü, hem de iki yönlü analizler için kullanılacak ivme kaydı setleri elde edilmi tir. Önerilen yöntemin, EUROCODE-8 ile uyumlu ivme kaydı setlerinin elde edilmesinde etkin bir araç olarak kullanılabilece i dile getirilmi tir.

Macedo ve Castro (2017), ivme kaydı seçimi ve ivme kaydının ölçeklendirmesi amacıyla SelEQ isimli bilgisayar programı geli tirmi tir. Çalı mada, ivme kaydı seçimi ve ölçeklendirmesi amacıyla yaygın olarak kullanılan yönetmeliklerle uyumlu ivme kaydı seçimi ve son senelerde önerilen ve kullanılan ko ullu ivme spektrumları ile uyumlu ivme kaydı seçimi gerçekle tirilmi tir. Programda sırasıyla sismolojik karakteristik, ön seçim ve ivme kaydı setlerinin olu turulması basamakları i letilmektedir. Program ayrıca Avrupa'nın bütün bölgeleri için ko ullu ivme spektrumunu meydana getirmek amacıyla olasılıksal sismik tehlike analizi de yapmaktadır.

Reyes ve di . (2018), üç boyutlu binaların do rusal olmayan zaman tanım alanında analizleri için ASCE 07-10 (2010) yönetmeli inde bulunan ivme kaydı ölçeklendirme yakla ımının geli tirilmesi için bir yöntem önermi tir. Yöntemin etkinli inin de erlendirilmesi için dokuz adet planda düzensiz betonarme binanın analizleri gerçekle tirilmi tir. Önerilen yöntemin, özellikle planda düzensiz binaların deprem davranı ının daha gerçekçi tahmin edilebilmesi için kullanılabilece i gösterilmi tir.

Shakeri ve di . (2018), yapının daha yüksek modlarının zaman tanım alanında analiz için seçilen ivme kayıtlarını ölçeklendirmedeki etkisinin göz önüne alınması için, do rusal olmayan statik analiz sonuçlarını göz önünde bulunduran yeni bir ölçeklendirme yöntemi önermi tir. Yöntem, e de er TSD sistemin herhangi bir kayıttan elde edilecek maksimum yerde i tirmesinin, hedef yerde i tirmeye e it olması artına göre kaydın ölçeklendirilmesi esasına dayanmaktadır. Önerilen yöntemin uygulanmasına örnek olması amacıyla, üçü düzenli ve biri düzensiz, dört yüksek yapının analizleri gerçekle tirilmi tir. Analiz sonuçları, önerilen yöntemin önemli yüksek mod etkilerine sahip yapılar için sismik talep parametrelerinin tahmininde epey etkili oldu unu göstermi tir.

#### 1.4 Kapsam ve Yöntem

Bu çalı mada, üç boyutlu bir betonarme binanın zaman tanım alanında do rusal olmayan analizi ile elde edilen ötelenme talepleri istatistiksel olarak de erlendirilmi tir. Bunun için, global (çatı) ötelenmesi oranı (U/*H*) ve göreli kat ötelenmesi oranı (U/*h*) talepleri göz önüne alınmı tır. Zaman tanım alanında analiz için kullanılan ivme setlerinde bulunan her bir ivme kaydı için maksimum ötelenme talepleri (U<sub>mak</sub>) ve maksimum göreli kat ötelenmesi talepleri (u<sub>mak</sub>) elde edilmi tir. Daha sonra U<sub>mak</sub> ve u<sub>mak</sub> de erlerinin sırası ile bina yüksekli i ve ilgili kat yüksekli ine bölünmesi ile maksimum çatı ötelenme oranı (U<sub>mak</sub>/*H*) ve maksimum göreli kat ötelenmesi oranı (u<sub>mak</sub>/*h*) talepleri hesaplanmı tır.

Her bir ivme seti ve sette bulunan her bir kayıt için farklı olarak elde edilen bu talepler istatistiksel olarak de erlendirilmi tir. De erlendirme amacı ile öncelikle ivme seti içinde bulunan kayıtlardan elde edilen taleplerin ( $U_{mak}/H$  ve  $u_{mak}/h$ ) set içerisindeki e ilimi (ortalaması) ve saçılımı (standart sapması veya varyasyon katsayısı) incelenmi tir. Daha sonra, aynı hedef spektrumla uyumlu farklı ivme setlerinden elde edilen ortalama talepler arasındaki farklılı ın istatistiksel olarak anlamlı olup olmadı 1, tek yönlü varyans analizi kullanılarak incelenmi tir. Ayrıca, ötelenme talepleri için güven aralı 1 tahminleri yapılmı tır.

Zaman tanım alanında do rusal olmayan analizler için TBDY ile uyumlu olarak olu turulan 11 ivme kaydı takımına sahip ivme setleri kullanılmı tır. TBDY'de tanımlanan ZB, ZC ve ZD sınıfı zeminlerin her biri için, bu zeminlere ait tasarım ivme spektrumları ile uyumlu olacak ekilde 30 ivme seti ve toplamda 90 ivme seti analizler için kullanılmı tır. vme kayıtları için kullanılacak ölçeklendirme katsayısı 0.5-2.0 arasında seçilmi tir.

### 1.5 Tezin Organizasyonu

Tezin birinci bölümünde, tez çalı masında dikkate alınan problem tanımlanmı ve tez konusu ile ilgili olarak literatürde bulunan çalı malardan örnekler verilmi tir. Ek olarak tezin amacı, kapsamı ve çalı ma amacı do rultusunda kullanılan yöntem açıklanmı tır.

kinci bölümde, yapısal analiz için kullanılan yöntemler, do rusal olmayan modelleme ve zaman tanım alanında analiz ile ilgili olarak bilgiler verilmi tir. Ayrıca bu bölümde, TSB sistemler ve çok serbestlik dereceli sistemler ile ilgili bilgiler verilmi tir.

Üçüncü bölümde, tez kapsamında kullanılacak olan betonarme binaya ait bilgiler ile do rusal olmayan analiz modeline ait bilgiler verilmi tir.

Dördüncü bölümde, TBDY'de bulunan, zaman tanım alanında analiz ve analizde kullanılacak ivme kayıtlarının özellikleri ile ilgili tanımlamalar verilmi tir. Ek olarak, tez çalı masında kullanmak için TBDY ile uyumlu olacak biçimde elde edilen ivme kaydı setlerine ait bilgiler sunulmu tur.

Be inci bölümde, betonarme bina için zaman tanım alanında do rusal olmayan analiz sonuçları verilmi tir. Maksimum çatı ötelenmesi oranı ile maksimum göreli kat ötelenmesi oranı taleplerinin e ilimi ile saçılımı, zemin sınıfına ba lı olarak de erlendirilmi tir. Altıncı bölümde, be inci bölümde verilen zaman tanım alanında do rusal olmayan analiz sonuçları göz önüne alınarak gerçekle tirilen tek yönlü varyans analizi ile ilgili bilgiler ve varyans analizi sonuçları sunulmu tur. Bu bölümde, maksimum ötelenme taleplerine ait güven aralı 1 tahmini ile ilgili sonuçlar da verilmi tir.

Yedinci bölümde, tez çalı masında elde edilen sonuçlar ifade edilmi tir.

### 2. YAPISAL ANAL Z YÖNTEMLER

#### 2.1 Giri

Bu bölümde, yapıların tasarım ve/veya performans analizlerinde kullanılan yapısal analiz yöntemleri hakkında bilgi verilmi tir.

nsano lu, tarih boyunca kar ısına çıkan problemlere çözümler üretmeye çalı mı, halen bu u ra ı devam etmekte ve gelecekte de üphesiz devam edecektir. Zamanı önceden kestirilemeyen, aniden meydana gelen, iddetli ve yıkıcı etkileri çok fazla olan depremler de bu ba lamda çözüm aranan temel problemler arasındadır. Depremlerde can ve mal kaybını en aza indirmek için, depreme dayanıklı yapı tasarımı insano lunun tarih boyunca geli tirdi i en etkili silahtır (Canbay ve di . 2008).

Depremler ani olu an ve yıkıcı etkisi fazla olan olaylar oldu u için, deprem etkisi ile olu an hasara deprem anında müdahale imkansız oldu undan, tasarım a amasında dikkate alınan kriterler olu abilecek hasarları en aza indirmek için çok önemlidir. Mühendisli in temel felsefesinde yer alan ekonomi ve güvenlik ilkeleri dikkate alındı ında, tamamen hasarsız yapı tasarımı ekonomik olmayan bir yakla ımdır. Güvenlikten ödün vermeden yapılan ekonomik tasarımlarda, olu abilecek hasarın kabul edilebilir düzeyde olması gerekir. Genel olarak iddetli depremlerin meydana gelebilece i bölgelerde kabul gören tasarım hedefi; can kaybı olmaması, yapılarda olu abilecek hasarların sınırlı ve deprem sonrası giderilebilir düzeyde olmasıdır. Ço u modern deprem yönetmeli i gibi DBYBHY ve TBDY de, bu felsefeyi dikkate almaktadır. DBYBHY'ye göre yeni yapılacak binaların depreme dayanıklı tasarımının ana ilkesi, hafif iddetli depremlerde binalardaki yapısal ve yapısal olmayan sistem elemanlarının herhangi bir hasar görmemesi, orta iddetli depremlerde yapısal ve yapısal olmayan elemanlarda meydana gelebilecek hasarın sınırlı ve onarılabilir seviyede kalması, iddetli depremlerde ise can güvenli inin sa lanması amacı ile kalıcı hasar meydana geli inin sınırlandırılması, olarak belirtilmi tir. TBDY'de ise, yeni binaların da tasarımında dikkate alınmak üzere kesintisiz kullanım, sınırlı hasar, kontrollü hasar ve göçmenin önlenmesi performans düzeyleri tarif edilmi tir. Bu performans düzeylerinin hangi deprem düzeyi için sa lanması gerekti i, analiz yöntemi olarak hangi yöntemin kullanılması gerekti i de TBDY'de ifade edilmi tir.

Yapıya etkiyecek yükler altında ta ıyıcı sistem elemanlarının, ön boyutlandırmasının ardından yapılan analizlerinde, elde edilen iç kuvvetler ile deformasyonlar göz önüne alınarak, yeniden boyutlandırma ile tasarım ve kapasite kontrolleri yapılmaktadır. ç kuvvetlerin ve deformasyonların elde edilmesi için kullanılan analiz yöntemleriyse, öngörülen yüklerin yapıya yükleme ekli ve malzeme davranı ında göz önüne alınan kabullere göre de i mektedir. Yapısal analiz yöntemleri ekil 2.1'de ema halinde gösterilmi tir.



ekil 2.1: Yapısal analiz yöntemleri

### 2.2 Analiz Yöntemleri

Yapısal analizlerde özellikle modellemenin basitli i, i lem süresinin kısalı ı gibi kolaylıklar sebebiyle do rusal yöntemler daha çok tercih edilmektedir. Yürürlükteki ço u yönetmelikte de bulunan do rusal yöntemler kuvvet tabanlı tasarım ve de erlendirme amacıyla kullanılmaktadır. Do rusal olmayan analiz yöntemleri ise; son zamanlarda özellikle teknolojinin geli mesine ba lı olarak, bilgisayarların i lem kapasitelerinin artması ile daha çok kullanılmaya ba lanmı tır. Do rusal olmayan analiz yöntemlerinin en büyük avantajı, hem ta ıyıcı sistem elemanlarının do rusal ötesi davranı larının göz önüne alınabilmesi, hem de artan yükler altında ta ıyıcı sistem elemanları kapasitelerine eri tikçe bu elemanlar tarafından ta ınamayan yüklerin di er elemanlara nasıl da ıldı ının de erlendirilebilmesidir. Do rusal ötesi yöntemlerde malzemenin elastik ötesi davranı ı göz önüne alındı ı için, ön boyutlama haricinde, yapı elemanlarındaki donatı düzeninin de bilinmesine gerek vardır. lem yükü do rusal yöntemlere göre fazla olmasına ra men, do rusal ötesi yöntemlerde yapının hasar mekanizması da gözlenebilmektedir.

#### 2.2.1 Do rusal Statik Analiz

Kuvvet tabanlı yakla ımlara esas olan bu yöntem, di er yöntemlere göre en yaygın analiz yöntemidir. Deprem yüklerinin e de er statik yüke dönü türülerek yapıya kat dö emeleri seviyesinde uygulandı ı yöntemdir. Kesit tesirleri ve yer de i tirmeler, dü ey yüklerin deprem yükleri ile birlikte, yönetmeliklerde verilen farklı yük kombinasyonları kullanılarak etkitilmesi ile elde edilmektedir. Hesaplanan bu de erler, yönetmeliklerde verilen sınır de erlere göre kontrol edilmekte ve tasarım sonlandırılmaktadır.

TBDY'de ifade edilen E de er Deprem Yükü Yöntemi, do rusal statik analiz yöntemlerine bir örnektir. Yöntem, bazı kısıtlamalarla belirli tür ta 1yıcı sistemlere uygulanabilmektedir. Yöntem binanın birbirine dik iki deprem do rultusunda binaya etkiyen depremler için ayrı ayrı uygulanmaktadır. Binanın dikkate alınan deprem do rultusunda, binaya etkiyen toplam e de er deprem yükünün hesabı için ilgili do rultudaki hâkim titre im modu dikkate alınarak hesaplanan azaltılmı tasarım spektral ivmesi ve binanın deprem hesabına esas toplam kütlesi göz önüne alınmaktadır. Sonra katlara etkiyen e de er deprem yükleri belirlenmektedir. Azaltılmı tasarım spektral ivmesi, yatay elastik tasarım spektral ivmesinin deprem yükü azaltma katsayısına bölümü ile elde edilmektedir. Do rusal elastik deprem yüklerinin azaltılmasında dikkate alınacak deprem yükü azaltma katsayısı ise, yapının deprem etkisi altında ortaya çıkacak do rusal olmayan davranı 1 dikkate alınarak, ta 1yıcı sistem niteli ine ba lı olarak (TBDY'de ta 1yıcı sistem davranı katsayısı, dayanım fazlalı 1 katsayısı ve bina önem katsayısı ile tanımlanmaktadır) belirlenmektedir.
#### 2.2.2 Do rusal Dinamik Analiz

Yapılarımıza etkiyen, hasar almasına, yıkılmasına neden olan deprem, rüzgar gibi yatay yükler zamanla de i mektedir. Bu nedenle yapıların tasarım ve performans de erlendirmelerinde, gerçe e daha yakın sonuçlar elde etmek için statik yöntemler dı ında dinamik analiz yöntemlerine ihtiyaç vardır. TBDY'de tanımlanan Mod Birle tirme Yöntemi ve Zaman Tanım Alanında Mod Toplama Yöntemi do rusal dinamik analiz yöntemlerine örnektir. Bu yöntemlerin hesap tekni i tamamen elastik davranı a dayanır. TBDY'de, bu hesap yöntemlerinde hesaba katılması gereken yeterli titre im modu sayısı, birbirine dik deprem do rultusunda her bir mod için hesaplanan taban kesme kuvveti modal etkin büyüklüklerinin toplamının bina toplam kütlesinin %95'inden daha az olmaması ko uluna göre belirlenmektedir. Ek olarak, katkısı %3'ten büyük olan tüm modlar da dikkate alınacaktır.

Mod birle tirme yöntemi, yapının birbirine dik iki do rultusunda yeterli sayıda titre im moduna ait periyot ve mod ekli dikkate alınarak yapılan analizlerle deprem kuvvetinin hesaplandı 1 ve katlara da ıtılmasında mod ekillerinin dikkate alındı 1 analiz yöntemidir. Bu yöntem çok serbestlik dereceli sistemlerin davranı ını veren ifadelerin her mod ekli için ayrı ayrı de erlendirilmesi olarak da görülebilir (Celep ve Kumbasar 2004). Bu yöntemde, dikkate alınan her mod için hesaplanan deprem yükü, kat kesme kuvvetleri, yer de i tirmeler ve iç kuvvetler, istatistiksel olarak süperpoze edilmektedir.

Zaman Tanım Alanında Mod Toplama Yöntemi'nde, depremin e zamanlı olarak birbirine dik iki yatay do rultuda etkidi inin dikkate alınması halinde, her bir titre im moduna ait modal davranı büyüklükleri (yerde i tirme, göreli kat ötelenmesi, iç kuvvet bile enleri) zaman tanım alanında modal hesap yöntemi ile hesaplanır. Yeterli sayıda titre im modu için hesaplanan e zamanlı modal davranı büyüklükleri daha sonra zaman tanım alanında do rudan toplanarak davranı büyüklüklerinin zamana göre de i imi ve tasarımda esas alınmak üzere en büyük de erleri elde edilir. Bu yöntemde, mod katkıları do rudan zaman tanım alanında toplandı ından istatistiksel mod birle tirme kurallarının uygulanmasına gerek kalmamaktadır. Ayrıca, aynı anda birbirine dik yatay yer hareketi bile enlerinin dikkate alınabilmesi ile yakla ık do rultu birle tirmesi kurallarının uygulanmasına da gerek kalmamaktadır. Bu yöntem ile yapılacak hesaplarda en az 11 deprem yer hareketi takımı kullanılacaktır. Birbirine dik yatay iki do rultudaki ivme kayıtları ta ıyıcı sistemin birbirine dik asal eksenleri do rultusunda aynı anda birlikte etki ettirilecektir. Daha sonra ivme kayıtlarının eksenleri 90° döndürülerek hesap tekrar edilecektir. Davranı büyüklükleri, yapılan en az  $2 \times 11 = 22$  hesabın her birinden elde edilecek sonuçların en büyük mutlak de erlerinin ortalaması olarak elde edilecektir.

#### 2.2.3 Do rusal Olmayan Statik Analiz

Yapı elemanlarının olası depremlerde elastik sınırlar içerisinde kalaca ını dü ünerek tasarım yapmak ekonomik bir yakla ım de ildir. Öyle ki yönetmeliklerde de yapı elemanlarının belirli sınırlar içerisinde hasar görmesine yani do rusal elastik olmayan davranı göstermesine izin verilmektedir. Ek olarak betonarme eleman davranı ının zaman içerisinde daha iyi anla ılması ve daha gerçekçi temsil edilmesi ile birlikte, do rusal olmayan analiz yöntemleri geli mi ve kullanımları artmı tır.

Do rusal olmayan analiz yöntemlerinde amaç olası bir depremde yapı elemanlarında olu acak do rusal elastik ötesi deformasyonların ve yapı davranı ının daha gerçekçi tahmin edilmesidir. Yapıların deprem etkisi altındaki do rusal elastik olmayan yatay yük kapasitesi ile yerde i tirme kapasitesini, deprem yer hareketinden ba ımsız olarak hesaplayabilmek amacıyla statik itme analizi olarak isimlendirilen bir yöntem geli tirilmi tir (ATC-40 1996). Bu yöntemde ilk olarak yapıya, deprem hesabına esas dü ey yükler uygulanır. Sonra ilgili deprem do rultusunda uygun bir yatay yük da ılımı seçilir. Genellikle birinci mod ekli ile uyumlu da ılım ya da yönetmeliklerde öngörülen yük da ılımları kullanılmaktadır. Seçilen yük da ılım ekli korunarak yatay yükler adım adım arttırılır. Her bir adımda, yapının dü üm yer de i tirmeleri, elemanların iç kuvvetleri ve ekil de i tirmeleri hesaplanır. Bu yöntem kullanılarak, her bir adımda uygulanan toplam yatay yük ile yapının en üst katının yatay ötelenmesi arasındaki ili kiyi gösteren e riye kapasite e risi adı verilir. Kapasite e risi, artan yatay yük etkisi altında yapının gösterece i davranı 1 ifade eder. ekil 2.2'de tipik ters üçgen yatay yük da ılımı ve bir yapı için elde edilmi tipik bir kapasite e risi görülmektedir.



ekil 2.2: Tipik yatay yük deseni ve kapasite e risi

ekil 2.2'de görüldü ü üzere yapı, nispeten dü ük deprem yükleri etkisinde yani analizin ilk adımlarında do rusal davranı göstermektedir. Deprem yükleri arttıkça ta ıyıcı sistem elemanlarının do rusal olmayan davranı ına ba lı olarak kapasite e risi de i mektedir. E rinin son noktası yapının yük ta ıma kapasitesini korudu u son yerde i tirme de erine kar ılık gelmektedir. Kapasite e risi, yapının farklı deprem yüklemeleri altındaki davranı ını da temsil etmektedir.

TBDY'de tanımlanan Tek Modlu tme Yöntemleri ve Çok Modlu tme Yöntemi, do rusal olmayan statik analiz yöntemlerine örnek olarak verilebilir. Bu yöntemlerde, öncelikle deprem dı 1 yüklemeler altında do rusal olmayan artımsal statik hesap yapılır. Bu hesaptan elde edilen iç kuvvetler ve ekil de i tirmeler ise, deprem hesabında ba langıç de erleri olarak dikkate alınır. Bu yöntemler ile yapılan hesap sonucunda elde edilen sünek davranı a kar 1 gelen de erlendirmeye esas plastik ekil de i tirmeler (örne in plastik dönmeler) ile sünek olmayan (gevrek) davranı a kar 1 gelen iç kuvvetler, seçilen performans düzeyi için müsade edilen sınır de erlerle kıyaslanarak ekil de i tirmeye göre de erlendirme ya da tasarım yapılır.

### 2.2.4 Do rusal Olmayan Dinamik Analiz

Yapının do rusal ötesi davranı ını en gerçekçi biçimde yansıtan, en geli mi analiz yöntemi do rusal olmayan dinamik analiz yöntemi yani zaman tanım alanında do rusal olmayan analiz yöntemidir. Do rusal olmayan dinamik analiz yönteminde, yapıya etki eden zamana ba lı yükler altında, ta ıyıcı sistem elemanlarının do rusal olmayan davranı ı dikkate alınarak meydana getirilen sistem hareket denklemini temsil eden diferansiyel denklem takımı adım adım çözülmektedir. Yani diferansiyel denklem takımı zaman artımları ile adım adım do rudan integre edilmektedir. Bu i lem esnasında, do rusal olmayan davranı sebebiyle sistem rijitlik matrisinin zamanla de i imi dikkate alınmaktadır. Analiz esnasında her bir adımda sistemde olu an yerde i tirme, plastik ekil de i tirme ve iç kuvvetler hesaplanmaktadır. Bu ekilde, bu büyüklüklerin deprem taleplerine kar ılık gelen maksimum de erleri elde edilmektedir. Yapının yer hareketi etkisinde analizi için hem yapısal modelin uygun olarak meydana getirilmesi hem de yer hareketinin ifade edilmesine ihtiyaç vardır.

Yapısal sistemin hareket sırasındaki konumu tek bir parametreyle ifade edilebiliyorsa, sistem tek serbestlik derecelidir. Genellikle yapı sistemlerinin yer hareketi etkisindeki davranı 1 ise çok serbestlik dereceli sistemler ile ifade edilecek analiz modelleri kullanılarak bulunmaktadır. Çok serbestlik dereceli sistemler ise gerekti i zaman iki boyutlu gerekti i zamansa üç boyutlu olarak modellenmektedir (Celep ve Kumbasar 2004).

TBDY'ye göre, zaman tanım alanında yapılacak do rusal olmayan hesaplarda en az on bir deprem yer hareketi takımı kullanılacaktır. Yer hareketi takımı, bir ivme kaydının iki yatay bile eninden olu maktadır. Birbirine dik yatay iki do rultudaki ivme kayıtları ta ıyıcı sisteme birbirine dik asal eksenleri do rultusunda aynı anda etkitilecektir. Sonra ivme kayıtlarının eksenleri 90° döndürülerek hesap tekrar yapılacaktır. Bu yöntemde de öncelikle deprem dı ı yüklemeler altında do rusal olmayan artımsal statik hesap yapılır. Bu hesaptan bulunan iç kuvvetler ve do rusal olmayan ekil de i tirmeler, deprem hesabında ba langıç de erleri olarak göz önüne alınır. Sünek davranı a sahip elemanlarda de erlendirmeye esas ekil de i tirme talepleri ile sünek davranı a sahip olmayan elemanlarda de erlendirmeye esas iç kuvvet talepleri, yapılan analizlerin (en az  $2 \times 11 = 22$  analiz) her birinden elde edilen maksimum yapısal tepkilerin ortalaması olarak hesaplanır.

# 2.3 Do rusal Olmayan Davranı

Yapıları meydana getiren ta ıyıcı sistem elemanları, kullanım süreleri boyunca kar ı kar ıya kaldıkları dü ey yükler altında genellikle do rusal davranı göstermektedir. Deprem gibi ani ve büyük yüklemeler altında ise do rusal davranı sınırları geçilmekte ve do rusal olmayan (elastik ötesi) davranı meydana gelmektedir. Yapıların deprem etkisi göz önüne alınarak güvenli bir biçimde tasarımı amacıyla, do rusal olmayan davranı ın da hesaplara do ru bir ekilde aktarılması gerekir.

Tabiatta yer alan malzemelerin gerçek gerilme- ekil de i tirme ili kisi genellikle do rusal de ildir ve malzeme özelli ine ba lı olarak karma ık bir de i im gösterir. Malzemelerin tüm özelliklerini dikkate alan bir teori kurup hesap yapmak pratik olarak oldukça güçtür. Bu yüzden, malzemelerin etkin özellikleri dikkate alınarak farklı yakla ıklık seviyelerinde sonuçlar elde edebilmek için basit malzeme idealle tirmeleri yapılır. ekil 2.3'te tek eksenli gerilme halinde yapılan idealle tirilmeden bazıları gösterilmi tir (Bakio lu, 2001).



ekil 2.3: deal malzeme davranı modelleri (Bakio lu, 2001)

ekil 2.3 (a)'da verilen rijit malzemede gerilme arttı ında ya da azaldı ında ekil de i tirme izlenmezken (b)'de ifade edilen gerilme- ekil de i tirme ili kisi do rusaldır ve yük arttıkça artan elastik deformasyon izlenir. Yük ortadan kaldırıldı ındaysa elastik deformasyon geri döner. (c)'de elasto-plastik davranı söz konusudur. Cisim akma sınırına kadar elastik davranı gösterir, akma sınırından sonraysa plastik davranı gösterir. Uygulanan yük kaldırıldı ında, elastik deformasyon geri dönerken plastik deformasyonlar kalır. Akma sınırından sonra pekle me izlenen elasto- plastik davranı ta (d) ise akma sınırından sonra gerilmeler sabit kalmamakta, artmaktadır. Rijit plastik davranı ile (e), pekle en plastik davranı (f) özellikleri birbirine benzemektedir. Her iki davranı ta da akma anına kadar elastik deformasyon izlenmemektedir. kisinin farkı plastik bölgede deformasyon artarken gerilmenin artıp artmayaca 1 ile ilgilidir.

Betonarme ta ıyıcı sistem elemanlarının do rusal olmayan davranı ı da kullanılan malzemelerin yani betonun ve donatı çeli inin gerilme- ekil de i tirme ili kilerine ba lıdır.

Betonun gerilme- ekil de i tirme e risi, betonun sargılı olup olmadı ı yani yanal basınç etkisinin bulunup bulunmadı ı, betonun basınç dayanımı, enine donatının hacimsel oranı, yükleme hızı ve ekli gibi birçok parametreden etkilenmektedir. Bu yüzden her durumu ifade eden tek bir gerilme- ekil de i tirme e risinin tanımlanması mümkün de ildir. Fakat do rusal olmayan davranı ın bulunabilmesi amacıyla da betonun gerilme- ekil de i tirme e rilerine gerek duyulur. Literatürde betonun gerilme- ekil de i tirme ili kisi için çok sayıda model önerilmi tir (Kent ve Park 1969, Mander ve di . 1988, Sheikh ve Uzumeri 1982).

TBDY'de do rusal olmayan davranı ın göz önüne alınması için beton ve donatı çeli inin gerilme- ekil de i tirme ili kisi ile ilgili gerekli tanımlamamalar yer almakla birlikte, literatürde bulunan beton modellerinin herhangi birisi kesin olarak önerilmemi tir.

# 2.3.1 TBDY'ye göre Sargılı ve Sargısız Beton Modelleri

TBDY'de, do rusal olmayan yöntemler ile ekilde i tirmeye göre de erlendirmede, ba ka bir modelin seçilmedi i durumlarda kullanılmak üzere, sargılı ve sargısız beton için ekil 2.4'te gösterildi i gibi iki ayrı gerilme- ekil de i tirme e risi tanımlanmı tır.



ekil 2.4: TBDY'ye göre beton gerilme- ekil de i tirme ili kisi

ekil 2.4'te görüldü ü gibi sargı etkisi ile hem dayanımda hem de süneklikte artı meydana gelmektedir. Sargılı betonda beton basınç gerilmesi  $f_c$ , basınç birim ekilde i tirmesi  $v_c$ 'nin fonksiyonu olarak Denklem 2.1'de verilmi tir.

$$f_c = \frac{f_{cc} xr}{r - 1 + x^x} \tag{2.1}$$

Denklem 2.1'deki sargılı beton dayanımı  $f_{cc}$  ile sargısız beton dayanımı  $f_{co}$  arasındaki ili ki Denklem 2.2'de verilmi tir.

$$f_{cc} = \left\{ {}_{c}f_{co} : \right\}_{c} = 2.254 \sqrt{1 + 7.94 \frac{f_{e}}{f_{co}}} - 2 \frac{f_{e}}{f_{co}} - 1.254$$
 (2.2)

Denklem 2.2'deki  $f_e$  etkili sargılama basıncı, dikdörtgen kesitlerde birbirine dik iki do rultu için Denklem 2.3'te verilen de erlerin ortalaması olarak alınır.

$$f_{ex} = k_{e} \dots_{x} f_{yw}$$
;  $f_{ey} = k_{e} \dots_{y} f_{yw}$  (2.3)

Denklem 2.3'teki  $f_{yw}$  enine donatının akma dayanımını, ..., ve ..., ilgili do rultulardaki enine donatıların hacimsel oranlarını,  $k_e$  ise sargılama etkinlik katsayısı oranını temsil etmektedir (Denklem 2.4).

$$k_{e} = \left(1 - \frac{\sum a_{i}^{2}}{6b_{0}h_{0}}\right) \left(1 - \frac{s}{2b_{0}}\right) \left(1 - \frac{s}{2h_{0}}\right) \left(1 - \frac{A_{s}}{b_{0}h_{0}}\right)^{-1}$$
(2.4)

Denklem 2.4'te,  $\Gamma_i$  kesit çevresindeki boyuna donatıların eksenleri arasındaki uzaklı 1,  $b_o$  ve  $h_o$  göbek betonunu sargılayan etriyelerin eksenleri arasında kalan kesit boyutlarını, *s* boyuna do rultuda etriyelerin eksenleri arasındaki aralı 1,  $A_s$  ise boyuna donatı alanını göstermektedir.

Denklem 2.1'deki normalize edilmi beton birim ekilde i tirmesi x ile r de i kenine ili kin ba ıntılar ise Denklem 2.5 ve Denklem 2.6'da verilmi tir.

$$x = \frac{V_c}{V_{cc}}$$
;  $V_{cc} = V_{co} [1 + 5(\}_c - 1)]$ ;  $V_{co} \cong 0.002$  (2.5)

$$r = \frac{E_c}{E_c - E_{sec}} \quad ; \qquad E_c \cong 5000\sqrt{f_{co}} \quad [MPa] \qquad ; \qquad E_{sec} = \frac{f_{cc}}{V_{cc}} \quad (2.6)$$

### 2.3.2 Geli tirilmi Kent-Park Modeli

Geli tirilmi Kent-Park Modeli, Roy ve Sozen (1964) tarafından sargılı beton için önerilen gerilme- ekil de i tirme ili kisinden esinlenerek geli tirilmi tir. ekil 2.5'de gösterildi i gibi sargılı ve sargısız beton için iki ayrı gerilme- ekil de i tirme e risi önerilmi tir.



ekil 2.5: Geli tirilmi Kent-Park Modeli gerilme- ekil de i tirme ili kisi

ekil 2.5'te görüldü ü gibi, bu modelde de sargı etkisi ile hem dayanımda hem de süneklikte artı meydana gelece i varsayılmaktadır. E rilerin ilk bölümleri için parabol ikinci bölümleri için do rusal ili ki tanımlanmı tır. E rilerin do rusal kısmında, sargılı betonun e imi, sargısız betonun e imine göre daha dü üktür. Sargısız betonda maksimum birim ekil de i tirme  $v_{cu}$  iken, sargılı betonda böyle bir sınır yoktur.

Geli tirilmi Kent-Park Modeli'ndeki gerilme ba lantıları parabol kısım ve do rusal kısım olmak üzere iki grupta incelenebilir (Denklem 2.7-Denklem 2.17).

# Parabol ba intilari:

Sargısız beton için:

$$\dagger_{c} = f_{c} \left[ \frac{2\mathsf{V}_{c}}{\mathsf{V}_{co}} - \left( \frac{\mathsf{V}_{c}}{\mathsf{V}_{co}} \right)^{2} \right]$$
(2.7)

Sargılı beton için:

$$\dagger_{c} = f_{cc} \left[ \frac{2\mathsf{V}_{c}}{\mathsf{V}_{coc}} - \left( \frac{\mathsf{V}_{c}}{\mathsf{V}_{coc}} \right)^{2} \right]$$
(2.8)

$$\mathsf{V}_{coc} = K \mathsf{V}_{co} \tag{2.9}$$

Do rusal kısım ba ıntıları:

Sargısız beton için:

$$\dagger_{c} = f_{c} \Big[ 1 - Z_{u} \left( \mathsf{V}_{c} - \mathsf{V}_{co} \right) \Big]$$
(2.10)

$$Z_{u} = \frac{0.5}{\mathsf{V}_{50u} - \mathsf{V}_{co}}$$
(2.11)

$$\mathsf{V}_{50u} = \frac{3 + 0.285 f_c}{142 f_c - 1000} \ge \mathsf{V}_{co} \tag{2.12}$$

Sargılı beton için:

$$K = 1 + \frac{\cdots_s f_{ywk}}{f_c} \tag{2.13}$$

$$\dagger_{c} = f_{cc} \left[ 1 - Z_{c} \left( \mathsf{v}_{c} - \mathsf{v}_{co} \right) \right] \ge 0.2 f_{cc}$$
(2.14)

$$Z_{c} = \frac{0.5}{\mathsf{V}_{50u} + \mathsf{V}_{50h} - \mathsf{V}_{coc}}$$
(2.15)

$$V_{50h} = 0.75 \dots_s \left(\frac{b_k}{s}\right)^{0.5}$$
(2.16)

$$\dots_s = \frac{A_0 l_s}{s b_k h_k} \tag{2.17}$$

Denklem 2.7 ile Denklem 2.17 arasındaki ifadelerde bulunan parametreler a a ıda belirtilmi tir:

*c*, *cc* : Sargisiz ve sargili betona ait basınç dayanımı ( $_{c}=F_{ck}$ , *cc*= $K_{c}$ )

*coc* : Sargılı betonda maksimum gerilme altındaki birim ekil de i tirme

*co* : Sargısız betonda maksimum gerilme altındaki birim ekil de i tirme

 $Z_{u}$ ,  $Z_c$ : Sargısız ve sargılı beton gerilme-birim ekil de i tirme e risinin do rusal bölümünün boyutsuz e imi

 $b_k$ ,  $h_k$  : Etriye dı ından ölçülen çekirdek beton alanının boyutları

- s : Sargi donatisinin hacimsel orani
- *c* : Beton basınç gerilmesi

*c* : Betonun birim ekil de i tirmesi

*cu* : Sargısız beton için en büyük birim ekil de i tirme

 $_{c20}$  : Sargılı betonda 0.2  $_{cc}$  gerilme de erine kar ılık gelen birim ekil de i tirme

- $A_0$  : Sargi donatisinin kesit alani
- $l_s$  : Kesitteki sargı donatısı ve çirozların toplam uzunlu u
- $f_{ywk}$  : Sargi donatisinin minimum akma dayanimi
- *s* : Sargi donatisinin arali 1

#### 2.3.3 Donatı Çeli i Modeli

TBDY'de do rusal olmayan analiz modelleri için kullanılmak üzere donatı çeli i için de gerilme- ekil de i tirme ili kisini tanımlayan ba ıntılar verilmi tir. ekil 2.6'da gerilme- ekil de i tirme ili kisi görülmektedir.

TBDY'de, S420 donatı çeli i elastisite modülü  $E_s$ =200,000 MPa, akma birim uzaması  $v_{sy}$ =0.0021, pekle menin ba ladı ı andaki birim uzama  $v_{sh}$ =0.008 ve kopma birim uzaması  $v_{su}$ =0.080 olarak verilmi tir. Akma dayanımı  $f_{sy}$ =420 MPa ve kopma dayanımının akma dayanımına oranı  $f_{su}/f_{sy}$ =1.15–1.35 alınmaktadır.



ekil 2.6: TBDY'ye göre donatı çeli ine ait gerilme- ekil de i tirme ili kisi

TBDY'de, do rusal olmayan yöntemler ile performans de erlendirilmesinde kullanmak üzere, donatı çeli i için a a ıdaki gerilme- ekil de i tirme ba ıntıları tanımlanmı tır (Denklem 2.18-Denklem 2.20).

$$f_s = E_s \mathsf{V}_s \qquad \qquad \left(\mathsf{V}_s \le \mathsf{V}_{sy}\right) \tag{2.18}$$

$$f_s = f_{sy} \qquad \left( \mathsf{V}_{sy} \le \mathsf{V}_s \le \mathsf{V}_{sh} \right) \tag{2.19}$$

$$f_{s} = f_{su} - \left(f_{su} - f_{sy}\right) \frac{\left(\mathsf{V}_{su} - \mathsf{V}_{s}\right)^{2}}{\left(\mathsf{V}_{su} - \mathsf{V}_{sh}\right)^{2}} \qquad \left(\mathsf{V}_{sh} \le \mathsf{V}_{s} \le \mathsf{V}_{su}\right)$$
(2.20)

DBYBHY'de bulunan donatı çeli i için gerilme- ekil de i tirme ili kisini tanımlayan ba ıntılar TBDY'de tanımlanan ve Denklem 2.18-Denklem 2.20 ile verilen ba lantılar ile aynıdır.

DBYBHY'ye göre S420 donatı çeli i elastisite modülü  $E_s$ =200,000 MPa, akma birim uzaması  $v_{sy}$ =0.0021, pekle menin ba ladı ı andaki birim uzama  $v_{sh}$ =0.008 ve kopma birim uzaması  $v_{su}$ =0.10 olarak önerilmi tir. Akma dayanımı  $f_{sy}$ =420 MPa ve kopma dayanımı  $f_{su}$ =550 MPa alınmaktadır.

#### 2.4 Do rusal Olmayan Davranı ın Plastik Mafsal le fadesi

Daha önce de bahsedildi i gibi yapılar, deprem gibi ani ve iddetli etkiler altında do rusal olmayan davranı sergilemektedirler. Do rusal olmayan analizlerde artan yükler altında yapı elemanlarının rijitliklerinde azalma olur ve kritik bölgelerde eleman sabit sayılabilecek bir yük de eri altında deformasyon yaparak enerji sönümlendirmeyi, kapasitesini kaybedene kadar sürdürür (Özmen ve di . 2007). Do rusal olmayan analizlerde deprem etkisi altındaki hasar mekanizması, bu kritik bölgelerde meydana gelen hasar durumuna göre belirlenmektedir. Analiz sonucunda do ru çözümlere ula mabilmek amacıyla do rusal olmayan davranı ı do ru ekilde analiz modeline ilave etmek, hesaba katılacak yükleme durumu kadar önem ta ır.

Yapı elemanlarında hasarların meydana gelebilece i öngörülen kritik bölgelere atanan plastik mafsallar ile do rusal olmayan davranı ifade edilebilmektedir. Yapı elemanlarında olu ması beklenen hasar durumuna göre farklı özellikte (e ilme mafsalı, kesme mafsalı ve eksenel yük mafsalı) plastik mafsallar tanımlanabilir. Plastik mafsallar ta 191cı sistem elemanlarında olu abilecek iç kuvvetler ve deformasyonlara göre belirlenmektedir. Bunun için do rusal olmayan analizlerde, yapı geometrisi, dı yükler, sınır artlar vb. bilgilere ilave olarak eleman boyuna ve enine donatı miktarları da bilinmelidir.

#### 2.4.1 Plastik Mafsal

Bir kesitin sabit moment altında dönmesi, o kesitte plastik mafsal olu ması olarak adlandırılır. Plastik mafsalın klasik mafsaldan farkı, mafsaldaki momentin sıfır yerine, belirli bir büyüklü e e it olmasıdır. Literatürde plastik kelimesinden esinlenerek, bu moment  $M_p$  olarak da gösterilmektedir (Canbay ve di . 2008).

Plastik mafsallar, örnek olarak sünek davranı gösteren bir elemanda; yapılan yükleme altında yapı elemanındaki kritik kesitte betonun çatlaması ve donatının akma dayanımına ula ması ile sabit yük altında deformasyon yaparak enerji tüketmesi ile meydana gelir. Bu mafsallar, elemanda deprem etkisi altında maksimum e ilme momentlerinin meydana geldi i uç bölgelerde olu maktadır. Mafsal olu ması beklenen bölgeye plastik mafsal bölgesi ve bu bölgenin eleman boyunca uzunlu una ise plastik mafsal boyu ( $L_p$ ) denilmektedir.

Plastik mafsalın boyu, moment-e rilik ba ıntısına, eleman boyunca e ilme momentinin de i imine, kesit yüksekli ine ve kesitteki normal kuvvete ba lıdır. TBDY ve DBYBHY'de basit olarak  $L_p=0.5h$  kabulü benimsenmi tir (Celep 2008).

#### 2.4.2 E ilme Mafsalı

Betonarme yapılar genellikle eksenel yük altında elemanların ezilmesi, kesme kuvveti etkisi ile kesme kırılması ve e ilme etkisi ile e ilme hasarı olmak üzere üç farklı göçme durumuna ula maktadır. Bu göçme durumlarından sadece e ilme hasarının sünek olarak gerçekle mesi mümkündür. Di erlerinde ise gevrek hasar gerçekle ir. Bu sebeple betonarme elemanların tasarımında gevrek hasar durumlarının ortaya çıkmaması için gerekli tasarım ko ulları tanımlanmakta ve olası eleman hasarlarının e ilme davranı ı altında ortaya çıkması sa lanmaktadır. Dolayısıyla deprem gibi büyük yükler altında yapı elemanlarında olu acak hasarların e ilme hasarların olması amaçlanıp, tasarımlar bu do rultuda yapılmaktadır.

#### 2.4.3 E rilik Yo unla ması

ekil 2.7'de verilen betonarme konsol elemana etkiyen P yatay yükü sıfırdan ba layıp arttırıldı ında e ilme momenti ara noktalarda do rusal olarak artar. Kesitlerde çatlama momenti de erine  $(M_{cr})$  ula ıldı ında betonarme kesit çatlamaya ba lar. Kesitin çatladı 1 andaki e rilik de eri  $W_{cr}$  ile gösterilmi tir. Çatlama ile kesit yüksekli i azaldı ından kesit eylemsizlik momenti de azalır. Eylemsizlik momentinin azalması ise e rilikte sıçramalar meydana getirir. Bu durum mesnette akma momentine  $(M_y)$  ula ılıncaya kadar sürer. Nihai moment  $(M_u)$  de erine ula ıldı ında kesitte büyük çatlamalar ve e rilikler olu ur. ekil 2.7'de  $W_y$  akma e rili ini,  $W_u$  nihai e rili i göstermektedir.



ekil 2.7: Betonarme bir konsolda moment ve e rilik diyagramları

TBDY ve DBYBHY'de e rilik yo unla masının kolonun alt ucunda belirli bir bölge boyunca ( $L_p$ ) olu tu u varsayılmaktadır. ekil 2.7'deki gibi, bu yo unla maya ba lı olarak, kolon alt ucunda, bir mafsaldaki dönmeye benzer ekilde " açısı kadar dönme olu tu u kabul edilmektedir. Bu dönme, elastik ve plastik dönmelerin toplamıdır. Plastik dönmelerin de gözlendi i bu olaya plastik mafsal olu umu denilmektedir.

Betonarme konsolun alt ucundaki e rilik yo unla ması hesaplamalarda kolaylık olması için ekil 2.8'deki gibi idealle tirilebilir. Buna göre, plastik mafsal bölgesine kadar do rusal olarak, plastik mafsal bölgesinde ise ani olarak artan e rilik de erleri kullanılarak dönme ve yatay ötelenme de erleri hesaplanmaktadır. Hem dönme hem de yatay ötelenmenin elastik ve plastik de erlerini, örne in moment-alan teoremini kullanarak hesaplamak mümkündür.



ekil 2.8: Betonarme bir konsolda idealle tirilmi e rilik diyagramları

Denklem 2.22-2.25'te sırası ile elastik dönme, plastik dönme, elastik ötelenme ve plastik ötelenme denklemleri verilmi tir. Denklemler ekil 2.8 dikkate alınarak belirtilmi tir.

$$_{''y} = \frac{W_y L}{2}$$
(2.22)

$$_{"p} = \left(\mathsf{W}_{u} - \mathsf{W}_{y}\right)L_{p} \tag{2.23}$$

$$\Delta_{y} = _{\# y} \left( \frac{2L}{3} \right) \tag{2.24}$$

$$\Delta_p = \prod_p \left( L - \frac{L_p}{2} \right) \tag{2.25}$$

# 2.4.4 E ilme Mafsalı Kriterleri

Analizlerde, ta ıyıcı sistem elemanlarının do rusal olmayan davranı ının temsil edildi i plastik mafsal bilgilerinin belirlenebilmesi için, elemanların uç bölgelerindeki kritik kesitlerinde moment-dönme de erleri kullanılmaktadır. Genel olarak plastik mafsalın tanımı, kesitin akma noktasına ait moment ve dönme de eri ile plastik davranı bölgesinde moment ve dönme de erlerinin belirlenmesini gerektirir.

ekil 2.9'da verilen tipik bir moment-dönme ili kisi kullanılarak plastik mafsala ait tanımlama bilgileri verilmi tir. Eleman kesitinde momentin deprem esnasında yön de i tirmesi durumu dikkate alınarak, plastik mafsal tanımının pozitif ve negatif moment ve dönme de erlerini de içerecek ekilde yapılması gerekir.



ekil 2.9: Plastik mafsal için moment-dönme de erleri

ekil 2.9'da görülen A noktası orijin (0,0) noktasıdır. B noktası ise elemanın do rusal elastik davranı sınırı olan akma konumuna ula tı 1 nokta olup bu noktadan sonra do rusal olmayan davranı ba lamaktadır. B noktası akma momenti ( $M_y$ ) ve akma noktasına ait dönme de eri ( $_y$ ) ile gösterilir. A-B arasında elemanda plastik bir davranı görülmez ancak artan dönme ile orantılı olarak moment de erinde artı gözlenir. Bu artı oranı kesit özelliklerine ba lı olarak yapılan moment-e rilik analizleri sonucunda belirlenebilmektedir. B-C noktaları arasında plastik dönme davranı 1 gözlenmektedir ve moment kapasitesinde de artı olmaktadır. B-C arasında moment kapasitesinde gözlenen artı da yine kesit özelliklerine ba lı olarak belirlenmektedir. C noktası, kesitin moment kapasitesinin korunabildi i sınır dönme de eridir ve bu noktada C noktasındaki moment kapasitesi D noktası ile ifade edilen de ere dü mektedir. Dönme E noktasında ifade edilen de ere ula tı ında ise D ile ifade edilen kapasite de korunamamaktadır.

Do rusal olmayan analizlerde her bir elemanın kritik kesitlerinde tanımlanacak plastik mafsallar için ekil 2.9'da verilen B, C, D ve E de erleri, tersinir yükleme durumuna ba lı olarak momentin yön de i tirmesi de dü ünülerek hesaplanmalıdır. Kolonların donatı düzeni simetrik oldu undan pozitif ve negatif de erler e it alınmalıdır. Kiri kesitlerinin alt ve üst bölgelerinde farklı boyuna donatılar bulundu unda e ilme momentinin yönüne ba lı olarak farklı de erler elde edilir.

# 2.5 Do rusal Olmayan Modelleme

Tez çalı masında, analizler için seçilen örnek betonarme bina, DBYBHY hükümleri dikkate alınarak tasarlanmı bir binadır. Bu sebeple bu kısımda, DBYBHY'de ifade edilen do rusal olmayan analiz artları ile ilgili bazı tanımlamalar, idealle tirmeler ve kapasite sınırları açıklanmı tır.

#### 2.5.1 Yapı Elemanlarında Kesit Hasar Bölgeleri ve Hasar Sınırları

DBYBHY'ye göre sünek elemanlarda moment-dönme davranı ını temsil eden plastik mafsalların hasar durumu için üç sınır tanımlanmı tır. Bunlar; Minimum Hasar Sınırı (MN), Güvenlik Sınırı (GV) ve Göçme Sınırı (GÇ). Minimum Hasar Sınırı kesitte elastik ötesi davranı ının ba langıcını, Güvenlik Sınırı kesitin dayanımının güvenli olarak sa lanabilece i elastik ötesi davranı ın sınırını, Göçme Sınırı ise kesitin göçme öncesi davranı ının sınırını tanımlamaktadır ( ekil 2.10). Bu sınıflandırma gevrek olarak hasar gören elemanlarda geçerli de ildir.



ekil 2.10: Kesit hasar sınırları ve hasar bölgeleri

Kritik kesitlerinin hasarı MN'ye ula mayan elemanlar Minimum Hasar Bölgesi'nde, MN ile GV arasında kalan elemanlar Belirgin Hasar Bölgesi'nde, GV ile GÇ arasında kalan elemanlar leri Hasar Bölgesi'nde ve GÇ'yi a an elemanlar Göçme Bölgesi'nde olarak tanımlanırlar.

Do rusal olmayan analizler ile bulunan iç kuvvetlerin ve ekil de i tirmelerin hasar bölgelerine ait sınır de erlerle kar ıla tırılması sonucunda, kesitlerin hangi hasar bölgelerinde oldu una karar verilmektedir. Eleman hasarı ise, elemanın en fazla hasar gören kesitine göre belirlenmektedir.

#### 2.5.2 Do rusal Elastik Olmayan Davranı ın dealle tirilmesi

Do rusal olmayan davranı ın dikkate alınabilmesi için kullanılan yı ılı plastik davranı modeli'nde iç kuvvetlerin plastik kapasitelerine eri ti i sonlu uzunluktaki bölgeler boyunca, plastik ekil de i tirmelerin düzgün yayılı biçimde olu tu u varsayılmaktadır. Plastik mafsal boyu olarak adlandırılan plastik ekil de i tirme bölgesinin uzunlu u  $(L_p)$ , ta ıyıcı sistem elemanının çalı an do rultudaki kesit boyutunun (h) yarısına e it alınmaktadır. Yı ılı plastik ekil de i tirmeyi temsil eden plastik mafsal, plastik mafsal bölgesinin tam ortasına atanmaktadır.

#### 2.6 Zaman Tanım Alanında Do rusal Olmayan Analiz

Zaman tanım alanında do rusal olmayan analizde, yapıya etki eden zamana ba lı yükler altında, ta ıyıcı sistem elemanlarının do rusal olmayan davranı ı dikkate alınarak sistemin hareket denklemi adım adım çözülmektedir. Analiz sırasında her bir adımda sistemde meydana gelen yer de i tirme, plastik ekil de i tirme ve iç kuvvetler hesaplanmaktadır. Böylelikle, bu büyüklüklerin deprem taleplerine kar ılık gelen maksimum de erleri elde edilmektedir. Yapının yer hareketi etkisinde analizi için hem yapısal modelin hem de yer hareketinin temsil edilmesi gerekmektedir (Celep ve Kumbasar 2004).

#### 2.6.1 Tek Serbestlik Dereceli (TSD) Sistemler

Sistemin düzlemde durumunu tayin eden ba 1ms1z geometrik parametrelerin sayısına serbestlik derecesi denir. Sistemin hareket halinde yer aldı 1 konum sadece bir parametrenin verilmesi ile bulunabiliyorsa böyle sistemler tek serbestlik dereceli (TSD) sistemler olarak isimlendirilmektedir. TSD sistemlerin davranı ını mesnet ko ulları ve hareket denkleminin ba langıç ko ulları göz önüne alınarak elde edilen çözümü belirler (Celep ve Kumbasar 2004). ekil 2.11'de TSD sistemin titre iminin matematiksel modeli verilmi tir. ekilde, *x* yapının zamana ba lı deplasmanını ifade etmektedir.



ekil 2.11: TSD sistemin matematiksel modeli

TSD sistemlerin titre iminde ana parametreler rijitlik (k), kütle (m), sönüm katsayısı (c) ve titre ime neden olan zorlayıcı dı kuvvettir (örne in deprem yer hareketi). TSD sistemin dinamik davranı ının belirlenebilmesi için, sistemin hareket denklemine ihtiyaç vardır. Yer hareketi etkisindeki do rusal elastik TSD sistemin dinamik davranı ı Denklem 2.26 ile verilmi tir. Denklemde  $-m\ddot{x}_g(t)$  terimi, yapının kütlesine etkiyerek titre ime neden olan dı kuvveti ifade etmektedir ve yer hareketinin ivmesi ile kütlenin çarpımıyla elde edilmektedir. Denklem 2.26'nın do rusal olmayan davranı a sahip sistemlere de uygulanabilmesi için, denklemde do rusal elastik sistem için rijitlik ile ilgili yay kuvveti yerine, do rusal olmayan davranı ı da içeren yay kuvveti fonksiyonunun yazılması gerekir.

$$m\ddot{x}(t) + c\dot{x}(t) + kx(t) = -m\ddot{x}_{e}(t)$$
 (2.26)

Sönüm, titre imi etkileyen temel parametre olarak tanımlanmaktadır. Denklem 2.27 ile hesaplanan kritik sönüm katsayısından daha yüksek sönüme sahip sistemler titre im hareketi gösteremezler. Daha dü ük sönüme sahip sistemlerde ise sistemin titre im periyodu Denklem 2.28 ile hesaplanmaktadır. Denklem 2.28'de  $_d$ sönümlü titre im yapan sistemin dairesel frekansını temsil etmektedir.

$$C_{cr} = 2\sqrt{mk} \tag{2.27}$$

$$T = 2f / \check{S}_d \tag{2.28}$$

TSD sistemlerde, analizde kullanılacak sönüm oranı Denklem 2.29 ile ifade edilmektedir.

$$\epsilon = c / C_{cr} \tag{2.29}$$

Denklem 2.26'da verilen diferansiyel hareket denkleminin çözümü için farklı yöntemler kullanılabilir. Klasik çözüm için, hareket denkleminin ba langıç artları da göz önüne alınarak iki kere integrasyonu gerekmektedir. Di er bir yöntem olarak uygulanan kuvvet bir dizi sonsuz kısa süreli etki olarak temsil edilebilir. Böylece, sistemin belirli bir *t* anında, zamana ba lı kuvvete tepkisi, sisteme o zamana kadar etkiyen tüm itkilere tepkilerin toplamı olarak bulunabilir. Bu yakla ım, Duhamel ntegrali olarak bilinen denklemin çözümüdür. Fakat söylemek gerekir ki burada ifade edilen iki yöntem de yanlızca elastik davranan TSD sistemlere ait hareket denklemlerinin çözümünde kullanılabilmektedir. Dolayısıyla, deprem etkisi altında do rusal olmayan davranı gösterece i öngörülen sistemlere ait hareket denklemlerinin çözümünde kullanılamazlar (Chopra 1995).

#### 2.6.2 Çok Serbestlik Dereceli Sistemler

Titre im hareketi yapan bir sistemin konumunu belirlemek için birden çok parametreye ihtiyaç duyuluyorsa böyle sistemler çok serbestlik dereceli sistemler olarak isimlendirilmektedir. Sistemin serbestlik derecesi, hareket altında konumunun bulunabilmesi için ihtiyaç duyulan parametre sayısı kadardır. Sistemin hareketini serbestlik derecesi kadar yazılacak diferansiyel hareket denklemi belirler (Celep ve Kumbasar 2004).

#### 2.6.2.1 Düzlem Çerçeveler

Betonarme düzlem çerçeveler, kolon ve/veya perdeler ile bunları birbirine ba layan kiri lerden meydana gelen ve kat kütlelerinin dö eme seviyelerinde toplandı ı varsayılan sistemlerdir. Düzlem çerçevelerde genel olarak dü ey ta ıyıcı elemanların yatay ötelenme yaptıkları, dü ey eksenleri boyunca herhangi bir deformasyon olu madı ı kabul edilir. Genellikle simetrik aksların oldu u, burulma düzensizli inin olmadı ı, düzenli yapıların analizlerinde çerçeve idealle tirmeleri zaman ve hesap yükünü azaltmak amacıyla tercih edilir.

Çerçevelerin kat deplasmanları dü ey ta 1yıcı sistem elemanlarının ötelenme rijitliklerine ba lıdır. Dü ey ta 1yıcı sistem elemanlarının yatay ötelenme rijitli i, sistemdeki bütün elemanlarla ili kili olsa bile daha fazla ba lı oldukları kiri lerin rijitliklerine ba lıdır. Dü ük rijitlikteki kiri lere ba lı elemanlarda mafsal bölgelerinde dönmeler kolayca görülürken, yüksek rijitlikli kiri lere ba lı elemanlarda ankastre mesnetlenmeye yakın davranı görülür. Dü ey ta 1yıcı elemanlarda dönmeye sebep olan e ilme momenti, kesme kuvveti ile do rudan ili kili oldu u için, elemanlardaki deplasmanlar kesme kuvveti ve yatay ötelenme rijitli ine ba lanabilir. Bu durumda dü ey ta 1yıcı elemanlarda meydana gelen deplasmanın kesme kuvvetine ba lı oldu u söylenebilir ve bu tür çerçeveler kayma çerçevesi olarak isimlendirilir (Celep ve Kumbasar 2004).

40

Kayma çerçevesi yakla ımına göre; e er rijit diyafram kabulü yapılır ve kolon uçlarında dönme olmadı ı kabul edilirse sistemin serbestlik derecesi kat sayısı kadar olmaktadır. Daha gerçekçi yakla ım için; kolon uçlarındaki dönmeler de hesaba dahil edilir ve yeni serbestlik dereceleri belirlenerek çözüm yapılır. Sistemin hareket denklemleri katlarda dinamik denge denklemleri yazılarak elde edilir. ekil 2.12'de örnek üç katlı kayma çerçevesi görülmektedir. Bu üç katlı kayma çerçevesinde, dö emelerin rijit oldu u ve kolon uçlarında dönme olmadı ı kabul edilmi tir. Denklem 2.30'da bu çerçeve için zamana ba lı genel hareket denklemi görülmektedir. Denklem 2.31- 2.33'te ise ekil 2.12'de verilen örnek çerçeve için sırasıyla kütle, sönüm ve rijitlik matrisleri verilmi tir.



ekil 2.12: Yer hareketi etkisindeki kayma çerçevesi

$$[m]\{\ddot{x}(t)\}+[c]\{\dot{x}(t)\}+[k]\{x(t)\}=-[m]\{\ddot{x}_{g}(t)\}$$
(2.30)

$$\begin{bmatrix} m \end{bmatrix} = \begin{bmatrix} m_1 & 0 & 0 \\ 0 & m_2 & 0 \\ 0 & 0 & m_3 \end{bmatrix}$$
(2.31)

$$\begin{bmatrix} c \end{bmatrix} = \begin{bmatrix} c_1 + c_2 & -c_2 & 0 \\ -c_2 & c_2 + c_3 & -c_3 \\ 0 & -c_3 & c_3 \end{bmatrix}$$
(2.32)

$$\begin{bmatrix} k \end{bmatrix} = \begin{bmatrix} k_1 + k_2 & -k_2 & 0 \\ -k_2 & k_2 + k_3 & -k_3 \\ 0 & -k_3 & k_3 \end{bmatrix}$$
(2.33)

# 2.6.2.2 Üç Boyutlu Çerçeveler

Gerçekte yapılar üç boyutludur. Deprem gibi yıkıcı hasara sebep olan büyük yüklemelerde daha gerçekçi sonuçlar elde etmek için analizler üç boyutlu yapılmaktadır. Özellikle burulma düzensizli inin oldu u yapılarda, burulma etkisinin göz önüne alınabilmesi önemlidir. Bu do rultuda yapılacak en kolay çözüm, dü ey ta ıyıcı elemanlar için yatay ötelenme rijitli i tanımlamasıyla kayma çerçevesi kabulüdür. Kat kütlelerinin kat seviyelerinde toplandı 1 kabul edilip, her kat için iki do rultuda birer yer de i tirme ve dü ey eksen üzerinde dönme olmak üzere üç tane serbestlik derecesi dikkate alınır (Celep ve Kumbasar 2004). ekil 2.13'te örnek tek katlı sönümsüz uzay çerçeve görülmektedir.



ekil 2.13: Yer hareketi etkisindeki tek katlı uzay çerçeve

ekil 2.13'te verilen örnekte R kat rijitlik merkezini, G ise kat kütle merkezini göstermektedir. Gerçekte hareketli yükün yeri tam olarak bilinemedi inden G kütle

merkezi kesin olarak de il ama düzgün yayılı yük kabulü ile yakla ık olarak belirlenebilir. Bu çerçeve için dinamik hareket denklemi Denklem 2.34'teki gibi yazılır. Kütle, rijitlik ve yer hareketinin olu turdu u yük vektörü matris formunda sırası ile Denklem 2.35- 2.37'de verilmi tir. Denklemlerde gösterilen M kat kütlesini ve J katın dü ey eksen etrafındaki kütlesel atalet momentini ifade etmektedir.

$$[m]\{\ddot{x}(t) + [k]\{x(t)\}\} = -p(t)$$
(2.34)

$$[m] = \begin{bmatrix} M & 0 & -M(y_G - y_R) \\ 0 & M & M(x_G - x_R) \\ -M(y_G - y_R) & M(x_G - x_R) & J + M(x_G - x_R)^2 + M(y_G - y_R)^2 \end{bmatrix} (2.35)$$

$$[k] = \begin{bmatrix} k_{xj} & 0 & -k_{xj} (y_j - y_R) \\ 0 & k_{xj} & k_{xj} (x_j - x_R) \\ -k_{xj} (y_j - y_R) & k_{xj} (x_j - x_R) & k_{xj} (x_j - x_R)^2 + k_{xj} (y_j - y_R)^2 \end{bmatrix}$$
(2.36)

$$\begin{bmatrix} p \end{bmatrix} = \begin{bmatrix} -M\ddot{x}_{gx} \\ -M\ddot{x}_{gy} \\ -M(x_G - x_R)\ddot{x}_{gy} + M(y_G - y_R)\ddot{x}_{gx} \end{bmatrix}$$
(2.37)

# **3. BETONARME B NA VE ANAL Z MODEL**

### 3.1 Giri

Demir'in (Demir, 2015) yüksek lisans tezinde kullanılan be katlı bina modeli, örnek betonarme bina olarak seçilmi tir. Bu bölümde, tez çalı ması kapsamında seçilen örnek betonarme bina ile ilgili bilgiler verilmi tir.

# 3.2 Bina Bilgileri

ekil 3.1'de betonarme binanın kat planı verilmi tir. Kolon ve kiri lerden olu an çerçeveler e it mesafeye sahip dört açıklıktan olu maktadır. En alt kat yüksekli i 3.50m ve di er katların yüksekli i 3.00m olup, toplam bina yüksekli i 15.50m'dir. Kolonlar ve kiri lerin enkesit boyutları 30x60cm'dir.



ekil 3.1: Betonarme binaya ait kalıp planı (Demir, 2015)

ekil 3.1'de görüldü ü gibi kolon isimleri "S" kiri isimleri "K" ile simgelenmi tir. Her katta, kat numarası simge arkasına eklenerek analiz etiketleri olu turulmu tur. Örne in; ikinci kattaki 01 nolu kolon, S201 olarak etiketlenmi tir.

Kolonlar, dı akslara (A, E, 1 ve 5 aksları) 15 cm dı kaçıklık ile di er akslara ise ortalanacak ekilde yerle tirilmi tir. Kiri ler tüm aksları ortalayacak ekilde yerle tirilmi tir. Dö eme kalınlıkları tüm binalarda 12 cm'dir. Dö emelerde; en üst katta 0.150 ton/m<sup>2</sup> kaplama ve 0.150 ton/m<sup>2</sup> hareketli yük, di er katlarda 0.212 ton/m<sup>2</sup> kaplama ve 0.200 ton/m<sup>2</sup> hareketli yük bulunmaktadır.

Binanın; en üst kat hariç di er katlarda, dı akslarda bulunan K01, K02, K03, K04, K17, K18, K19, K20, K22, K23, K38 ve K39 nolu kiri lerde 0.78 ton/m dolgu duvar yükü dikkate alınmı tır. Ayrıca iç akslarda bulunan K05, K08, K09, K12, K13, K16, K25, K28, K29, K30, K31, K32, K33 ve K36 nolu kiri lerde 0.60 ton/m dolgu duvar yükü bulunmaktadır. En üst katta, K01, K02, K03, K04, K17, K18, K19, K20, K21, K22, K23, K24, K37, K38, K39 ve K40 nolu kiri lerde 0.32 ton/m dolgu duvar yükü dikkate alınmı tır.

ekil 3.2'de ilk dört katta kiri ler üzerinde dikkate alınan dolgu duvarların kat planında yerle imi gösterilmi tir.



ekil 3.3'te ise, binanın üç boyutlu ta 1yıcı sistem modeli verilmi tir.

ekil 3.2: Dolgu duvarların kiri üzerinde yerle imi (Demir, 2015)

Deprem yükünün hesabı için, betonarme binaların birinci derece deprem bölgesinde ve Z3 sınıfı zemin üzerinde oldu u varsayılmı tır. Binanın kullanım amacı konut olarak seçilmi ve ta ıyıcı sistem süneklik düzeyinin yüksek oldu u kabul edilmi tir. Bu bilgilere göre hareketli yük azaltma katsayısı n=0.3, etkin yer ivmesi katsayısı  $A_0=0.4$ , bina önem katsayısı I=1.0 ve ta ıyıcı sistem davranı katsayısı R=8 alınmı tır.



ekil 3.3: Betonarme binanın üç boyutlu ta 1yıcı sistem modeli (Demir, 2015)

Betonarme yapı, dü ey yükler ve deprem etkisi dikkate alınarak analiz edilmi ve analiz sonuçlarına göre tasarlanmı tır. Tasarım, DBYBHY ve TS-500 hükümleri dikkate alınarak gerçekle tirilmi tir. Tasarımda beton sınıfı C25 ve donatı sınıfı S420 alınmı tır. Sonuç olarak üç boyutlu yapıyı olu turan kolon ve kiri lerin hem boyuna hem de enine donatı düzenleri belirlenmi tir.

Kolonların boyuna donatı düzeni ekil 3.4'te verilen ekilde 6 farklı tipte elde edilmi tir. Tüm kolonlar, yanal donatılar w8/10/15 olacak ekilde tasarlanmı tır. Kiri yanal donatıları w8/10/20 olarak belirlenmi tir. Kiri lerin boyuna donatı bilgileri Ek-A'da tablo halinde verilmi tir.

| TİP 1 (60X30) | TİP 2 (30X60)        | TİP 3 (60X30)                                 |
|---------------|----------------------|-----------------------------------------------|
| 12¢14         | 12¢14                | 4¢14<br>9<br>9<br>9<br>9<br>9                 |
| TİP 4 (30X60) | TİP 5 (60X30)        | TİP 6 (30X60)                                 |
| 14¢14         | 5¢16<br>5¢16<br>5¢16 | 5¢16<br>• • • • • • • • • • • • • • • • • • • |

ekil 3.4: Örnek betonarme binada kolon boyuna donatı düzenleri

Tablo 3.1'de, betonarme binada yer alan kolonların hangi tip boyuna donatı düzenine sahip oldu u verilmi tir. Herhangi bir kolonun tüm katlar boyunca donatı düzeni aynıdır.

Tablo 3.1: Kolonlar ve boyuna donatı tipleri

| Kolon Adı                         | Tip |
|-----------------------------------|-----|
| S07, S09, S11, S13, S15, S17, S19 | 1   |
| S08, S12, S14, S18                | 2   |
| S01, S05, S21, S25                | 3   |
| S02, S04, S22, S24                | 4   |
| S03, S23                          | 5   |
| S06, S10, S16, S20                | 6   |

# 3.3 Binanın Do rusal Olmayan Model Bilgileri

Binanın, zaman tanım alanında analiz için do rusal olmayan analiz modeli, Demir'in (Demir 2015) yüksek lisans tezinde kullandı 1 modelleme bilgileri dikkate alınarak olu turulmu tur. Do rusal olmayan analiz modelinin olu turulmasında SAP2000 V.14.2.2 (2010) yapısal analiz programı kullanılmı tır.

Kolonlara ait etkin e ilme rijitli i katsayıları Tablo 3.2'te verilmi tir.

| Kolon | 1. Kat | 2. Kat | 3. Kat | 4. Kat | 5. Kat |
|-------|--------|--------|--------|--------|--------|
| S01   | 0.40   | 0.40   | 0.40   | 0.40   | 0.40   |
| S02   | 0.45   | 0.41   | 0.40   | 0.40   | 0.40   |
| S03   | 0.46   | 0.42   | 0.40   | 0.40   | 0.40   |
| S04   | 0.45   | 0.41   | 0.40   | 0.40   | 0.40   |
| S05   | 0.40   | 0.40   | 0.40   | 0.40   | 0.40   |
| S06   | 0.46   | 0.42   | 0.40   | 0.40   | 0.40   |
| S07   | 0.52   | 0.46   | 0.41   | 0.40   | 0.40   |
| S08   | 0.53   | 0.47   | 0.42   | 0.40   | 0.40   |
| S09   | 0.52   | 0.46   | 0.41   | 0.40   | 0.40   |
| S10   | 0.46   | 0.42   | 0.40   | 0.40   | 0.40   |
| S11   | 0.47   | 0.42   | 0.40   | 0.40   | 0.40   |
| S12   | 0.51   | 0.46   | 0.41   | 0.40   | 0.40   |
| S13   | 0.53   | 0.47   | 0.42   | 0.40   | 0.40   |
| S14   | 0.51   | 0.46   | 0.41   | 0.40   | 0.40   |
| S15   | 0.47   | 0.42   | 0.40   | 0.40   | 0.40   |
| S16   | 0.46   | 0.42   | 0.40   | 0.40   | 0.40   |
| S17   | 0.52   | 0.46   | 0.41   | 0.40   | 0.40   |
| S18   | 0.53   | 0.47   | 0.42   | 0.40   | 0.40   |
| S19   | 0.52   | 0.46   | 0.41   | 0.40   | 0.40   |
| S20   | 0.46   | 0.42   | 0.40   | 0.40   | 0.40   |
| S21   | 0.40   | 0.40   | 0.40   | 0.40   | 0.40   |
| S22   | 0.45   | 0.41   | 0.40   | 0.40   | 0.40   |
| S23   | 0.46   | 0.42   | 0.40   | 0.40   | 0.40   |
| S24   | 0.45   | 0.41   | 0.40   | 0.40   | 0.40   |
| S25   | 0.40   | 0.40   | 0.40   | 0.40   | 0.40   |

Tablo 3.2: Betonarme binaya ait kolonların etkin e ilme rijitlikleri

Ta ıyıcı sistem elemanlarına çatlamı kesitlere ait etkin e ilme rijitlikleri atandıktan sonra, kritik kesitlerde plastik mafsal tanımlamaları yapılmı tır. Plastik mafsal tanımı ile ilgili bilgileri elde etmek için öncelikle betonarme elemanların ilgili kesitleri için moment-e rilik analizleri yapılmı tır. Moment-e rilik analizleri; kiri lerde enine ve boyuna donatı düzeni dikkate alınarak, kolonlarda ise kiri lerdeki parametrelere ek olarak kolon eksenel yük dikkate alınarak yapılmaktadır.

Moment-e rilik analizi sonuçları kullanılarak ilgili hasar sınırlarına ait moment-dönme ili kisini tanımlamak için akma momenti  $(M_y)$  ve hasar bölgelerine ait sınır plastik dönme de erleri  $(M_N, GV, G\zeta)$  elde edilmi tir. Kiri lerde her iki uçta, altta ve üstte çekme durumuna göre plastik mafsallar tanımlanmı tır. Kolonlarda ise alt ve üst uçta kolon a ırlı ından kaynaklı eksenel yük farkı ihmal edilmi ve her iki uçta da alt uçtaki eksenel kuvvet de eri dikkate alınmı tır.

| Point                                                                                                   | oment/SF                                                                                                                                                                    | Rotation/ F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                        | Moment · Rotation                                                                                                                                           |
|---------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| E                                                                                                       | -0.2                                                                                                                                                                        | -2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                        | C Manual Countries                                                                                                                                          |
| D-                                                                                                      | -0.2                                                                                                                                                                        | -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                        | ( Moment - Curvature                                                                                                                                        |
| C.                                                                                                      | -1.1                                                                                                                                                                        | -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                        | Hinge Length                                                                                                                                                |
| 8-                                                                                                      | -1                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        | F Relative Length                                                                                                                                           |
| A                                                                                                       | 0                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        |                                                                                                                                                             |
| B                                                                                                       | 1.                                                                                                                                                                          | 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                        | Hysteresis Type And Parameters                                                                                                                              |
| C                                                                                                       | 1.1                                                                                                                                                                         | 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                        | Husterezis Turce Lectropic                                                                                                                                  |
| D                                                                                                       | 0.2                                                                                                                                                                         | 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Symmetric              | Trysteress Type Trootope                                                                                                                                    |
| E                                                                                                       | 0.2                                                                                                                                                                         | 2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                        | No Parameters Are Required For Th                                                                                                                           |
| ad Carrying<br>Drops T<br>Is Extra<br>aling for M                                                       | g Capital Beyond<br>o Zero<br>polated<br>oment and Rotation                                                                                                                 | Point E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        | Simetrik Donat Düzeni                                                                                                                                       |
| ad Carrying<br>Drops T<br>Is Extrap<br>aling for M                                                      | g Capitority Beyond<br>o Zero<br>polated<br>ioment and Rotation                                                                                                             | Point E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ve Negati              | Simetrik Donat Düzeni                                                                                                                                       |
| ad Carrying<br>Drops T<br>Is Extraj<br>aling for M                                                      | g Capitority Beyond<br>o Zero<br>polated<br>ioment and Rotation<br>Id Moment Mom                                                                                            | Point E<br>Position<br>nent 5 [570.4701                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ze Negati              | Simetrik Donat Düzeni                                                                                                                                       |
| ad Carrying<br>Drops T<br>Is Extra<br>aling for M<br>Use Yie<br>Use Yie<br>(Steel D                     | g Cap city Beyond<br>o Zero<br>polated<br>imment and Rotation<br>Id Moment Morr<br>dd Rotation Rota<br>bjects Only)                                                         | Point E<br>Position<br>tent \$ 1570.4701<br>stion \$F 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | /e Negati              | Simetrik Donat Düzeni                                                                                                                                       |
| ad Carrying<br>Drops T<br>Is Extraj<br>aling for M<br>Use Yie<br>(Steel D<br>ceptance                   | g Cap, city Beyond<br>o Zero<br>polated<br>forment and Rotation<br>Id Moment Morr<br>Id Rotation Rota<br>bjects Only)<br>Criteria (Plastic Rot                              | Point E<br>Position<br>etion SF [1.<br>ation/SF]<br>Position                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | re Negati              | Simetrik Donat Düzeni<br><i>M</i> <sub>y</sub> Akma Momenti De eri<br><i>M</i> <sub>N</sub> , <i>G</i> <sub>V</sub> , <i>G</i> <sub>C</sub> Dönme De erleri |
| ad Carrying<br>Drops T<br>Is Extraj<br>aling for M<br>Use Yie<br>(Steel D<br>ceptance<br>Immed          | g Cap city Beyond<br>o Zero<br>polated<br>ioment and Rotation<br>Id Moment Mom<br>Id Rotation Rota<br>bjects Only)<br>Criteria (Plastic Rot.<br>diate Occupancy             | Point E<br>Point E<br>Point E<br>For A701<br>SF 1.<br>Point<br>F 1.<br>Atory SF<br>Point<br>F 1.<br>Atory SF<br>Point E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | re Negati<br>re Negati | Simetrik Donat Düzeni<br><i>M</i> <sub>y</sub> Akma Momenti De eri<br><i>M</i> <sub>N</sub> , <i>G</i> <sub>V</sub> , <i>G</i> <sub>C</sub> Dönme De erleri |
| ad Carrying<br>Drops T<br>Is Extra<br>aling for M<br>Use Yie<br>(Steel D<br>ceptance<br>Immed<br>Life S | a Cap city Beyond i<br>o Zero<br>polated<br>ioment and Rotation<br>Id Moment Morr<br>Id Rotation Rota<br>bjects Only)<br>Criteria (Plastic Rot.<br>diate Occupancy<br>afety | Point E<br>Point E<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Point F<br>Poi | re Negati              | Simetrik Donat Düzeni<br>My Akma Momenti De eri<br>MN GV GC Dönme De erleri<br>OK Cancel                                                                    |

ekil 3.5: Örnek bir kolon plastik mafsalı tanımı

ekil 3.5'te bir kolonda tanımlanan örnek plastik mafsal bilgileri görülmektedir. Kesit hasar sınırlarına ait plastik dönme de erleri ( $_{MN}$ ,  $_{GV}$ ,  $_{GÇ}$ ) ve  $M_y$  akma momenti de erleri ilgili kutucuklara girilmi tir.



ekil 3.6: Örnek bir kiri plastik mafsal tanımı

ekil 3.6'da ise bir kiri in bir ucuna ait plastik mafsal bilgilerinin tanımlanması ile ilgili bilgiler verilmi tir.

Bina, DBYBHY ve TS500 hükümleri gere ince süneklik düzeyi yüksek moment çerçevesi olarak tasarlandı 1 için, yapı elemanları yeterli kesme güvenli ine ve eksenel yük kapasitesine sahiptir. Dolayısıyla, deprem etkisi ile sadece e ilme hasarları beklendi i için, ta ıyıcı sistem elemanlarına sadece e ilme momenti ile ilgili plastik mafsallar atanmı tır.

Plastik mafsal tanımlamalarından ve atamalarından sonra binanın birbirine dik iki yönde statik itme analizi yapılmı tır. Statik analizler için, G+0.3Q dü ey yük kombinasyonu ba langıç ko ulu olarak tanımlanmı ve yatay yükleme için birinci mod ekli ile uyumlu yük deseni kullanılmı tır. Deprem hesabına esas a ırlık (*W*) 16855.19kN'dur. Etkin rijitlik dikkate alınarak yapılan analiz sonucunda, hesaplanan etkin titre im periyodu her iki yönde de T=0.79s, birinci moda ait kütle katılım oranı her iki yönde de  $\Gamma_1=0.88$  ve modal katkı çarpanı her iki yönde de  $PF_1=1.27$  olarak bulunmu tur.

Binanın birbirine dik iki yöndeki statik itme analizleri sonucunda taban kesme kuvveti-tepe deplasmanı (kapasite e risi) ili kisi belirlenmi tir ( ekil 3.7). Yapı elemanlarının planda yerle im özelliklerine ba lı olarak, her iki yönde hemen hemen aynı kapasite e risi elde edilmi tir. Binanın yatay yük ta ıma kapasitesi, her iki yönde de 3500 kN civarındadır. Yatay yük kapasitesi, deprem hesabına esas a ırlı a bölündü ünde, yatay dayanım oranı yakla ık olarak %18 olarak bulunur. ekil 3.7'de görüldü ü gibi; plastik mafsallarda moment kapasitesi kaybı dikkate alınmadı ı için bina yatay yük ta ıma kapasitelerinde de dayanım kaybı yoktur.



ekil 3.7: Binanın birbirine dik iki do rultuda kapasite e risi

# 4. TBDY LE UYUMLU GERÇEK VME KAYDI SETLER

Bu bölümde; zaman tanım alanında do rusal olmayan analiz için TBDY'de tanımlanan kriterler, ivme setlerinin olu turulması için gerçek ivme kayıtlarının seçildi i veri tabanı ve kullanılan ivme kaydı setleri ile ilgili bilgi verilmi tir.

#### 4.1 Giri

Yapısal modellerin zaman tanım alanında analizi, deprem etkisi altındaki yapıların tepkisinin tahmin edilebilmesi için kullanılan analiz yöntemlerinden birisidir. Malzemenin davranı ı ile ilgili olarak yapılan kabule göre bu analiz do rusal elastik ya da do rusal elastik olmayan ekilde yapılabilmektedir. Kuvvetli yer hareketi kayıtlarının bulundu u sayısal veri tabanlarının kolay ula ılabilir hale gelmesi zaman tanım alanında analiz için gerçek yer hareketi kayıtlarının daha fazla tercih edilmesine olanak sa lamı tır.

TBDY'nin de içinde bulundu u modern deprem yönetmeliklerinin ço unda tasarım ve performans de erlendirmesi için zaman tanım alanında analiz yönteminin de kullanılması öngörülmü ve gerekli tanımlamalar yapılmı tır (TBDY 2018, EUROCODE-8 2004, ASCE 2003, GB 2001). Analiz için kullanılacak deprem yükleri bölgesel deprem tehlikesi ve yerel zemin ko ulları ile uyumlu tasarım spektrumları ya da zaman tanım alanında analiz için seçilen ivme kayıtları ile temsil edilmektedir.

Modern deprem yönetmeliklerinde, yönetmeliklerde tanımlanan tasarım spektrumları ile uyumlu olmak ko ulu ile sentetik, yapay ya da gerçek ivme kayıtlarının kullanılabilece i konusunda bir fikir birli i bulunmaktadır. Yönetmeliklerde tanımlanan bölgesel tasarım spektrumları ile seçilen ivme kayıtlarının tepki spektrumlarının, belirli bir periyot aralı ında uyumlu olması istenmektedir. Herhangi bir ivme kaydının tepki spektrumunun, tasarım spektrumu ile tam olarak uyumlu olması mümkün de ildir. Bu sebeple, genellikle birden fazla ivme kaydı seçilmekte ve gerekti inde ölçeklendirilmektedir. Bu ekilde, seçilen ivme kayıtlarının spektrumlarının ortalaması ile tasarım spektrumunun uyumlu olması sa lanmaktadır. Yapı modellerinin zaman tanım alanında analizleri için genel olarak en az üç ivme kaydının kullanılması önerilmektedir. E er en az yedi ivme kaydı kullanılırsa, analizler sonucu elde edilecek yapısal tepkilerin ortalaması sismik tasarım veya performans de erlendirmesi amacı ile kullanılabilmektedir. Daha az ivme kaydı kullanıldı ında ise yapısal tepkilerin maksimumunun tasarım ve/veya performans de erlendirmesi için dikkate alınması öngörülmektedir (Bommer ve Ruggeri 2002, Beyer ve Bommer 2007). TBDY'de analizler için kullanılması gereken minimum ivme kaydı sayısı 11'e çıkarılmı tır.

### 4.2 TBDY'de Tanımlanan Zaman Tanım Alanında Analiz Ko ulları

TBDY Madde 2.5.1.2'de belirtildi i gibi zaman tanım alanında yapılacak deprem hesabı için kaydedilmi depremler veya kaynak ve dalga yayılımı özellikleri fiziksel olarak benze tirilmi yer hareketleri kullanılabilir. Bina ta ıyıcı sistemlerinin zaman tanım alanında bir veya iki ve üç boyutlu deprem hesabı için gerekli deprem yer hareketlerinin seçimi ve ölçeklendirilmesi için gerekli kurallar a a ıda tanımlanmı tır:

- Deprem kayıtlarının seçimi, tasarıma esas deprem yer hareketi düzeyi ile uyumlu deprem büyüklükleri, fay uzaklıkları, kaynak mekanizmaları, yerel zemin ko ulları dikkate alınarak yapılacaktır.
- Binanın bulundu u bölgede tasarıma esas deprem yer hareketi düzeyi ile uyumlu geçmi deprem kayıtlarının mevcut olması durumunda öncelikle bu kayıtlar kullanılacaktır. Sahaya özel deprem tehlikesine en fazla katkıda bulunan depremlere ait büyüklük ve fay uzaklı 1 bilgilerinin belirlenmesi için deprem tehlikesi ayrı tırma i leminden yararlanılabilir.
- Bir veya iki boyutlu hesap için seçilecek deprem kayıtlarının ve üç boyutlu hesap için seçilecek deprem kaydı takımlarının sayısı en az on bir olacaktır. Aynı depremden seçilecek kayıt veya kayıt takımı sayısı üçü geçmeyecektir.

- Bir veya iki boyutlu hesap için seçilen tüm kayıtlara ait spektrumların ortalamasının  $0.2T_p$  ve  $1.5T_p$  ( $T_p$ , binanın hâkim do al titre im periyodu) arasındaki genliklerinin, yatay elastik tasarım spektrumu veya sahaya özel elastik ivme spektrumu ile tanımlanan tasarım spektrumunun aynı periyot aralı ındaki genliklerinden daha küçük olmaması kuralına göre, deprem yer hareketlerinin genlikleri ölçeklendirilecektir.
- Üç boyutlu hesap için seçilen her bir deprem kaydı takımının iki yatay bile enine ait spektrumların kareleri toplamının karekökü alınarak bile ke yatay spektrum elde edilecektir. Seçilen tüm kayıtlara ait bile ke spektrumların ortalamasının 0.2*T<sub>p</sub>* ve 1.5*T<sub>p</sub>* arasındaki genliklerinin, tasarım spektrumunun aynı periyod aralı ındaki genliklerine oranının 1.3'ten daha küçük olmaması kuralına göre, deprem yer hareketi bile enlerinin genlikleri ölçeklendirilecektir. Bu periyot aralı ı yalıtımlı binalar için de i ebilir. Her iki yatay bile enin ölçeklendirilmesi aynı ölçek katsayıları ile yapılacaktır.
- Serbest zemin analizinde kullanılacak deprem kayıtlarının veya kayıt takımlarının ölçeklendirilmesinde, bina hâkim do al titre im periyodunun üst sınırı  $2T_p$  olarak alınacaktır.
- Mevcut deprem verileri ile bina özelliklerinin gerekli kılması ve sahaya özel deprem yer hareketi spektrumu belirlenmesi durumunda, binanın belirli sayıda titre im periyodu ile ili kilendirilen ko ullandırılmı ortalama spektrumlardan yararlanılarak, deprem kayıtlarının analiz sonuçlarında daha az saçılma sa layacak ekilde seçilerek ölçeklendirilmesi yoluna gidilebilir.

### 4.3 TBDY Tasarım vme Spektrumları

TBDY'de tasarım ve/veya performans de erlendirmesinde dikkate alınmak üzere dört farklı deprem düzeyi tanımlanmı tır DD-1, DD-2, DD-3, DD-4. Bu deprem düzeyleri sırası ile çok seyrek, seyrek, sık ve servis depremleri olarak ifade edilmi tir ve spektral büyüklüklerin belirli bir zaman içerisinde a ılma olasılıkları ile tanımlanmı tır. Tanımlanan deprem düzeylerini temsil eden veriler ise Türkiye Deprem Tehlike Haritası'nda yer almaktadır (*https://tdth.afad.gov.tr*). DD-2 deprem düzeyi, standart tasarım yer hareketi olarak belirlenmi tir ve bu depreme ait spektral büyüklüklerin 50 yılda a ılma olasılı 1 %10'dur.

Deprem yer hareketini temsil eden spektrumlar, göz önüne alınan belirli bir deprem düzeyi için referans zemin ko ulları esas alınarak %5 sönüm oranı için, harita spektral ivme katsayılarına ve yerel zemin etki katsayılarına ba lı olarak standart biçimde veya sahaya özel deprem tehlikesi analizleri ile özel olarak tanımlanmı tır.

Harita spektral ivme katsayıları, birbirine dik iki yatay do rultudaki deprem etkilerinin geometrik ortalamasına kar ı gelir. Belirli bir deprem yer hareketi düzeyi için referans zemin ko ulu esas alınarak %5 sönüm oranı için Türkiye Deprem Tehlike Haritaları'nda verilen harita spektral ivmelerinin yerçekimi ivmesine bölünmesi ile boyutsuz olarak tanımlanmı tır. Bu katsayılar kısa periyot bölgesi için  $S_S$  ve 1.0 saniye periyot için  $S_I$  olarak ifade edilmi tir. Dolayısıyla,  $S_S$  ve  $S_I$  de erleri, Türkiye'de herhangi bir enlem ve boylamda bulunan bir bölge için göz önüne alınan deprem düzeyine ba lı olarak belirlenmektedir.

Harita spektral ivme katsayıları, Denklem 4.1 ve Denklem 4.2'de gösterildi i gibi tasarım spektral ivme katsayıları  $S_{DS}$  ve  $S_{DI}$ 'e dönü türülmektedir.

$$S_{DS} = S_S F_S \tag{4.1}$$

$$S_{D1} = S_1 F_1$$
 (4.2)

Denklem 4.1 ve Denklem 4.2'de yer alan  $F_S$  ve  $F_1$  yerel zemin katsayılarını ifade etmektedir ve yerel zemin sınıfı ve harita spektral ivme katsayılarına ba lı olarak sırası ile Tablo 4.1 ve Tablo 4.2'de verilmi tir. Harita spektral ivme katsayılarının ara de erleri için do rusal entegrasyon yapılabilir.

| Yerel Zemin | Kısa Periyot Bölgesi için Yerel Zemin Etki Katsayısı F <sub>s</sub> |              |              |              |              |                |
|-------------|---------------------------------------------------------------------|--------------|--------------|--------------|--------------|----------------|
| Sınıfı      | $S_S \leq 0.25$                                                     | $S_{S}=0.50$ | $S_{S}=0.75$ | $S_{S}=1.00$ | $S_{S}=1.25$ | $S_S \ge 1.50$ |
| ZA          | 0.8                                                                 | 0.8          | 0.8          | 0.8          | 0.8          | 0.8            |
| ZB          | 0.9                                                                 | 0.9          | 0.9          | 0.9          | 0.9          | 0.9            |
| ZC          | 1.3                                                                 | 1.3          | 1.2          | 1.2          | 1.2          | 1.2            |
| ZD          | 1.6                                                                 | 1.4          | 1.2          | 1.1          | 1.0          | 1.0            |
| ZE          | 2.4                                                                 | 1.7          | 1.3          | 1.1          | 0.9          | 0.8            |
| ZF          | Sahaya özel zemin davranı analizi yapılacaktır.                     |              |              |              |              |                |

Tablo 4.1: Kısa periyot bölgesi için yerel zemin etki katsayıları

Tablo 4.2: 1.0 saniye periyot bölgesi için yerel zemin etki katsayıları

| Yerel Zemin | 1.0 Saniye Periyot için Yerel Zemin Etki Katsayısı F1 |              |              |              |              |                |
|-------------|-------------------------------------------------------|--------------|--------------|--------------|--------------|----------------|
| Sınıfı      | $S_1 \le 0.10$                                        | $S_1 = 0.20$ | $S_1 = 0.30$ | $S_1 = 0.40$ | $S_1 = 0.50$ | $S_1 \ge 0.60$ |
| ZA          | 0.8                                                   | 0.8          | 0.8          | 0.8          | 0.8          | 0.8            |
| ZB          | 0.8                                                   | 0.8          | 0.8          | 0.8          | 0.8          | 0.8            |
| ZC          | 1.5                                                   | 1.5          | 1.5          | 1.5          | 1.5          | 1.4            |
| ZD          | 2.4                                                   | 2.2          | 2.0          | 1.9          | 1.8          | 1.7            |
| ZE          | 4.2                                                   | 3.3          | 2.8          | 2.4          | 2.2          | 2              |
| ZF          | Sahaya özel zemin davranı analizi yapılacaktır.       |              |              |              |              |                |

Gözönüne alınan herhangi bir deprem yer hareketi düzeyi için yatay elastik tasarım ivme spektrumunun ordinatları olan yatay elastik tasarım spektral ivmeleri  $S_{ae}(T)$ , do al titre im periyoduna ba lı olarak yerçekimi ivmesi cinsinden Denklem 4.3 ile tanımlanmı tır (ekil 4.1).

| $S_{ae}\left(T\right) = \left(0.4 + 0.6\frac{T}{T_A}\right)S_{DS}$ | $0 \le T \le T_A$     |       |
|--------------------------------------------------------------------|-----------------------|-------|
| $S_{ae}(T) = S_{DS}$                                               | $T_A \leq T \leq T_B$ | (4.3) |
| $S_{ae}\left(T\right) = \frac{S_{D1}}{T}$                          | $T_B \leq T \leq T_L$ |       |
| $S_{ae}\left(T\right) = \frac{S_{D1}T_{L}}{T^{2}}$                 | $T_B \leq T \leq T_L$ |       |
Denklem 4.3'te yer alan, yatay elastik tasarım spektrumunun kö e periyotları  $T_A$  ve  $T_B$ , sırasıyla Denklem 4.4 ve Denklem 4.5 ile tanımlanmı tır. Sabit yerde i tirme bölgesine geçi periyodu  $T_L$ =6s alınacaktır.

$$T_A = 0.2 \frac{S_{D1}}{S_{DS}}$$
(4.4)

$$T_B = \frac{S_{D1}}{S_{DS}} \tag{4.5}$$



ekil 4.1: TBDY'ye göre yatay elastik tasarım spektral ivmeleri

TBDY ile uyumlu ivme kaydı takımlarının olu turulması amacıyla dikkate alınacak yatay elastik tasarım spektrumunun belirlenmesi için DD-2 deprem düzeyi dikkate alınmı tır. Bu deprem düzeyi için, Türkiye Deprem Tehlike Haritası'ndan seçilen bir konuma ait harita spektral ivme katsayıları  $S_S$ =1.129 ve  $S_I$ =0.260 olarak okunmu tur. Bu de erlere ba lı olarak zemin sınıflarına ait yatay elastik tasarım spektral ivmelerinin çizilmesi amacıyla gerekli de erler (tasarım spektral ivme katsayıları, yerel zemin etki katsayıları) hesaplanmı tır. Daha sonra Denklem 4.3, Denklem 4.4 ve Denklem 4.5 ile spektral ivme de erleri elde edilmi tir. TBDY'de ZA, ZB, ZC, ZD ve ZE olarak tanımlanan yerel zemin sınıflarına ili kin özellikler Tablo 4.3'te verilmi tir.

| Yerel<br>Zemin<br>Sınıfı | Zemin Cinsi                                                                                                                                                                                               | (V <sub>S</sub> ) <sub>30</sub><br>(m/s) | (N <sub>60</sub> ) <sub>30</sub><br>(darbe/<br>30 cm) | (c <sub>u</sub> ) <sub>30</sub><br>(kpa) |
|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-------------------------------------------------------|------------------------------------------|
| ZA                       | Sa lam, sert kayalar                                                                                                                                                                                      | >1500                                    | -                                                     | -                                        |
| ZB                       | Az ayrı mı, orta sa lam kayalar                                                                                                                                                                           | 760-1500                                 | -                                                     | I                                        |
| ZC                       | Çok sıkı kum, çakıl ve sert kil tabakaları veya ayrı mı, çok çatlaklı zayıf kayalar                                                                                                                       | 360-760                                  | >50                                                   | >250                                     |
| ZD                       | Orta sıkı-sıkı kum, çakıl veya çok katı kil<br>tabakaları                                                                                                                                                 | 180-360                                  | 15-50                                                 | 70-<br>250                               |
| ZE                       | Gev ek kum, çakıl veya yumu ak – katı kil<br>tabakaları veya $20 > PI$ ve % $40 > w$<br>ko ullarını sa layan toplamda 3 metreden<br>daha kalın yumu ak kil tabakası ( $c_u < 25$ kpa)<br>içeren profiller | <180                                     | <15                                                   | <70                                      |
| ZF                       | Sahaya özel ara tırma ve de erlendirme                                                                                                                                                                    | gerektiren                               | zeminler                                              |                                          |

Tablo 4.3: TBDY'de tanımlanan yerel zemin sınıfları ve özellikleri

Çalı mada ele alınan konum ve deprem düzeyi için, yine bu çalı mada dikkate alınan ZB, ZC ve ZD yerel zemin sınıflarına ait yatay elastik tasarım spektral ivmeleri elde edilmi ve ekil 4.2'de verilmi tir. ekil 4.2'de her bir zemin için verilen yatay elastik tasarım spektrumu, ilgili zemin sınıfı ile uyumlu ivme kaydı setlerinin elde edilmesi amacıyla hedef spektrum olarak ayrı ayrı ele alınmı tır.



ekil 4.2: Zemin sınıfları için yatay elastik tasarım spektral ivmeleri

## 4.4 Kuvvetli Yer Hareketi Veri Tabanı

Gerçek depremlere ait kayıtların bulundu u sayısal veri tabanlarında elde edilen gerçek ivme kayıtlarının özelliklerinden, deprem büyüklü ü, fay tipi, deprem

kayna ına olan mesafeleri gibi özellikler de i kenlik göstermektedir. Bu tez çalı masında ivme kayıtlarının tasarım ivme spektrumuna uygun olarak seçilmesi amacıyla öncelikle, kayıt istasyonlarının faya olan mesafeleri ve deprem büyüklü ü ile ilgili kriterleri dikkate alan ivme kaydı kataloglarından yararlanılmı tır.

Tez çalı masında kullanılan ivme kayıtları Avrupa Kuvvetli Yer Hareketi Veri Tabanı (Ambraseys ve di . 2004), Resorce (Akkar ve di . 2014) ve PEER kuvvetli yer hareketi veri tabanından (Ancheta ve di . 2014) indirilmi tir. Her bir zemin sınıfı için yukarıda bahsedilen veri tabanlarında yer alan ivme kayıtlarından ayrı ayrı katalog olu turulmu tur. Örne in ZB ile ilgili katalogda sadece bu zemin sınıfı ile uyumlu zeminlerde kaydedilen kayıtlar yer almı tır. vme kaydı kataloglarının olu turulması için yukarıda bahsedilen veri tabanlarından kayıtların elde edildi i depremin büyüklü ü en az 5.0 ve kayıtların kaydedildi i istasyonların faya olan uzaklıkları 10-60 km arasında olan kayıtlar kullanılmı tır. ZB zemin sınıfı için olu turulan kataloglar için sadece PEER kuvvetli yer hareketi veri tabanında yer alan kayıtlar kullanılmı tır. ZB zemin sınıfı atalo unda 243 ivme kaydına ait 486 yatay bile en, ZC zemin sınıfı katalo unda 1056 ivme kaydına ait 2112 yatay bile en ve ZD zemin sınıfı katalo unda 783 ivme kaydına ait 1566 yatay bile en bulunmaktadır.

Yerel zemin sınıfları ile uyumlu ivme kaydı setlerini elde etmek için, katalogda yer alan ve ZB, ZC ve ZD sınıfı zeminlerde kaydedilen ivme kayıtları, ilgili zemin sınıfları için olu turulacak ivme kaydı setlerinde kullanılmı tır. Örne in, ZB ile uyumlu ivme setleri için sadece ZB sınıfı ivme kaydı katalo u içerisinden seçim yapılmı tır.

#### 4.5 TBDY ile Uyumlu vme Kaydı Takımı Setleri

Bu çalı mada, Kayhan (2012) tarafından önerilen yöntem dikkate alınarak seçilen ve ölçeklendirilen ivme kaydı takımlarından olu an ivme kaydı takımı setleri kullanılmı tır. Bu ivme kaydı takımı setleri, TBDY'de tanımlanan ZB, ZC ve ZD sınıfı zeminleri için tanımlanan tasarım ivme spektrumları ile uyumlu olacak ekildedir. Her bir zemin sınıfı için 30 ivme kaydı takımı seti, toplam 90 ivme kaydı

takımı seti, zaman tanım alanında analizler için kullanılmı tır. vme kayıtlarının ölçeklendirilmesi için kullanılacak ölçeklendirme katsayısı 0.5-2.0 arasında olması sa lanmı tır.

| SE    | T 1   | SE    | Т2    | SET 3 |       |  |
|-------|-------|-------|-------|-------|-------|--|
| Kayıt | Ölçek | Kayıt | Ölçek | Kayıt | Ölçek |  |
| 140   | 0.687 | 1091  | 1.218 | 350   | 0.828 |  |
| 621   | 0.856 | 6265  | 1.069 | 6348  | 0.749 |  |
| 5038  | 1.413 | 362   | 1.887 | 1795  | 0.710 |  |
| 6269  | 1.671 | 1893  | 1.576 | 140   | 1.796 |  |
| 193   | 1.788 | 5090  | 0.649 | 604   | 1.252 |  |
| 383   | 0.613 | 5789  | 0.801 | 2023  | 0.969 |  |
| 1901  | 1.881 | 292   | 1.397 | 5086  | 1.808 |  |
| 3925  | 0.711 | 1902  | 1.167 | 364   | 1.806 |  |
| 6124  | 0.710 | 647   | 1.945 | 1994  | 1.451 |  |
| 5789  | 0.931 | 5615  | 1.628 | 128   | 1.353 |  |
| 6262  | 1.168 | 1852  | 1.177 | 616   | 1.981 |  |

Tablo 4.4: ZB sınıfı zemin için elde edilen ivme kaydı takımı seti örnekleri

Kullanılan ivme kaydı takımlarına örnek olması için, Tablo 4.4, Tablo 4.5 ve Tablo 4.6'da, sırası ile ZB, ZC ve ZD sınıfı zemin ile uyumlu ilk üç sete ait bilgiler (kayıt takımı numarası ve kayıt bile enlerine uygulanan ölçeklendirme katsayısı) verilmi tir. Bu tablolarda verilen her bir kayıt takımı, bu kaydın iki yatay bile enini temsil etmektedir. Tablolar incelendi inde, aynı set içerisinde aynı kayıt takımının sadece bir kez kullanıldı 1 ve ölçeklendirme katsayılarının 0.5-2.0 arasında oldu u görülebilir.

| SE    | T 1   | SE    | Т2    | SE    | Т 3   |
|-------|-------|-------|-------|-------|-------|
| Kayıt | Ölçek | Kayıt | Ölçek | Kayıt | Ölçek |
| 4874  | 0.908 | 825   | 1.840 | 825   | 0.678 |
| 901   | 1.947 | 5818  | 1.917 | 5482  | 1.225 |
| 139   | 1.989 | 4228  | 1.926 | 1086  | 0.948 |
| 5664  | 1.982 | 6971  | 1.277 | 2717  | 1.461 |
| 811   | 1.182 | 5664  | 1.332 | 811   | 1.192 |
| 864   | 1.525 | 247   | 1.764 | 5819  | 1.300 |
| 3907  | 1.370 | 2626  | 0.550 | 6875  | 1.805 |
| 4857  | 1.143 | 3760  | 1.995 | 5656  | 1.910 |
| 265   | 1.842 | 864   | 1.608 | 787   | 0.503 |
| 4858  | 1.733 | 4169  | 1.588 | 1505  | 1.549 |
| 4510  | 1.742 | 1787  | 0.718 | 4149  | 1.353 |

Tablo 4.5: ZC sınıfı zemin için elde edilen ivme kaydı takımı seti örnekleri

Tez kapsamında kullanılan 90 ivme kaydı takımı setinde yer alan kayıt takımlarının numarası ve ölçeklendirme katsayısı Ek-A'da verilmi tir. Ek-A'da ayrıca, 90 ivme kaydı setinde yer alan tüm ivme kayıtlarına ait deprem, depremin büyüklü ü, depremin tarihi, kaydedildi i istasyon bilgileri verilmi tir.

| SE    | T 1   | SE    | Т2    | SE    | Т 3   |
|-------|-------|-------|-------|-------|-------|
| Kayıt | Ölçek | Kayıt | Ölçek | Kayıt | Ölçek |
| 558   | 1.544 | 6911  | 1.621 | 209   | 0.902 |
| 1646  | 1.495 | 5774  | 1.599 | 725   | 1.763 |
| 169   | 1.715 | 5832  | 1.502 | 4104  | 1.908 |
| 960   | 1.300 | 634   | 1.120 | 5969  | 1.845 |
| 6927  | 1.688 | 8625  | 0.908 | 1084  | 1.540 |
| 1084  | 1.501 | 5780  | 1.943 | 778   | 1.195 |
| 668   | 1.637 | 1076  | 1.706 | 1491  | 1.908 |
| 767   | 1.247 | 958   | 0.637 | 126   | 1.694 |
| 3830  | 1.126 | 183   | 1.605 | 3754  | 1.952 |
| 6966  | 1.130 | 126   | 1.806 | 711   | 1.284 |
| 183   | 1.570 | 4894  | 1.412 | 4895  | 0.899 |

Tablo 4.6: ZD sınıfı zemin için elde edilen ivme kaydı takımı seti örnekleri

Tablo 4.4 – Tablo 4.6'da örnek olarak bilgileri verilen ivme kaydı takımı setlerinde yer alan ilk ivme kaydı takımlarına ait bile ke spektrumlar, hedef spektrum ve sete ait ortalama bile ke spektrum ekil 4.3 – ekil 4.5'te verilmi tir.



ekil 4.3: ZB sınıfı zemin, birinci sete ait ölçeklenmi spektrumlar



ekil 4.4: ZC sınıfı zemin, birinci sete ait ölçeklenmi spektrumlar



ekil 4.5: ZD sınıfı zemin, birinci sete ait ölçeklenmi spektrumlar

## 5. ANAL Z SONUÇLARI

#### 5.1 Giri

TBDY ile uyumlu olacak ekilde elde edilen ivme kaydı takımı setleri kullanılarak, be katlı betonarme binanın zaman tanım alanında do rusal olmayan analizleri gerçekle tirilmi ve maksimum çatı ötelenmesi talepleri  $(U_{mak})$  ve maksimum göreli kat ötelenmesi talepleri  $(u_{mak})$  elde edilmi tir. Ötelenme talepleri, ivme kaydı takımına ait yatay bile enlerin birbirine dik yatay iki do rultuda (X ve Y) aynı anda birlikte etki ettirilmesi ile bulunmu tur.

vme kaydı takımlarına ait analizler tanımlanırken, ivme kaydı isimlerinin yanına analiz do rultusuna göre x ya da y ifadeleri eklenmi tir. 140 numaralı ivme kaydı takımına ait analizler için isimlendirme örne i Tablo 5.1'de verilmi tir. Analiz adındaki 0 ve 90 ifadeleri kayıtların uygulama yönlerinin de i tirilmesini ifade etmektedir. 140\_0 isimli analizde 140x bile eni x ve 140y bile eni y yönünde ve aynı anda etkitilirken, 140\_90 isimli analizde 140x bile eni y ve 140y bile eni x yönünde ve aynı anda etkitilmektedir.

Tablodaki U1 de eri global X aksını, U2 de eri ise global Y aksını ifade etmektedir. Her bir analiz için dü üm noktalarında U1 ve U2 yönünde ötelenmeler  $(U_{U1} \text{ ve } U_{U2})$  zamana ba lı olarak elde edilmi tir.

| Analiz Adı | Kayıt Adı | Uygulama<br>Yönü | Herhangi Bir Dü ümde<br>Okunan Ötelenme<br>De erleri |
|------------|-----------|------------------|------------------------------------------------------|
| 140.0      | 140x      | U1               |                                                      |
| 140_0      | 140y      | U2               | $U_{U1}$ ve $U_{U2}$                                 |
| 140_90     | 140x      | U2               |                                                      |
|            | 140y      | U1               | $U_{U1}$ ve $U_{U2}$                                 |

Tablo 5.1: 140 nolu ivme kaydı takımı için analiz tanımlaması örne i

Her bir zemin sınıfı için, her biri 11 ivme kaydı takımından olu an 30 ivme kaydı takımı seti zaman tanım alanında do rusal olmayan analizler için

kullanılmı tır. Bir sette yer alan 11 ivme kaydı takımının her biri için Tablo 1'de görüldü ü gibi iki analiz tanımlanmı tır. Her bir analiz için zamana ba lı olarak elde edilen  $U_{U1}$  ve  $U_{U2}$  de erleri kullanılarak, yine zaman ba lı zamana U de erleri Denklem 5.1 ile hesaplanmı tır.

$$\Delta = \sqrt{\Delta_{U1}^2 + \Delta_{U2}^2} \tag{5.1}$$

Tablo 5.2'de, ZB sınıfı zemine ait ilk ivme kaydı takımı seti için tanımlanan 22 analiz ve bu analizler için elde edilen ötelenmeler örnek olarak verilmi tir. Görüldü ü gibi her bir analiz için zamana ba lı olarak U de erleri hesaplanmaktadır. Her bir analiz için zamana ba lı U de erlerinin en büyü ü, o analize ait maksimum çatı ötelenmesi ( $U_{mak}$ ) olarak belirlenmi olur. Tüm ivme kaydı takımı setleri için, sette yer alan ivme kaydı takımlarına ait  $U_{mak}$  de erleri, bu ekilde elde edilmi tir. Benzer ekilde, binanın her bir katı için maksimum göreli kat ötelenmesi talepleri de ( $U_{mak}$ ) elde edilmi tir.

| Analiz No | Analiz smi | Süre  | $U_{U1}$         | U <sub><i>U</i>2</sub> | U        |
|-----------|------------|-------|------------------|------------------------|----------|
|           | 140_0      | 0.00  | -4.62E-06        | -3.78E-06              | 5.97E-06 |
| 1         | 140_0      | 0.01  | 2.42E-04         | 5.33E-05               | 2.48E-04 |
| 1         | •          | •     | •                | •                      | •        |
|           | 140_0      | 29.30 | 2.03E-01         | -1.42E-01              | 2.48E-01 |
|           | 140_90     | 0.00  | -4.62E-06        | -3.78E-06              | 5.97E-06 |
| 2         | 140_90     | 0.01  | 5.25E-05 2.43E-0 |                        | 2.49E-04 |
|           | •          | •     | •                | •                      | •        |
|           | 140_90     | 29.30 | -1.40E-01        | 1.95E-01               | 2.40E-01 |
|           | •          | •     | •                | •                      | •        |
|           | •          | •     | •                | •                      | •        |
| •••       | •          | •     | •                | •                      | •        |
|           | •          | •     | •                | •                      | •        |
|           | 6269_90    | 0.00  | -4.62E-06        | -3.78E-06              | 5.97E-06 |
| 22        | 6269_90    | 0.01  | -1.40E-04        | -2.92E-05              | 1.43E-04 |
|           | •          | •     | •                | •                      | •        |
|           | 6269_90    | 80.00 | 4.73E+00         | 5.36E+00               | 7.15E+00 |

Tablo 5.2: vme kaydı takımı seti için ötelenme de erleri (cm)

ZB sınıfı zemine ait ilk ivme kaydı takımı seti için maksimum çatı ötelenmesi  $(U_{mak})$  ve be kata ait maksimum göreli kat ötelenmesi  $(u_{mak})$  talepleri Tablo 5.3'te

örnek olarak verilmi tir. Elde edilen maksimum çatı ötelenmesi taleplerinin bina yüksekli ine bölünmesi ile maksimum çatı ötelenmesi oranı talebi  $(U_{mak}/H)$  ve maksimum göreli kat ötelenmesi talebinin ilgili kat yüksekli ine bölünmesi ile maksimum göreli kat ötelenmesi oranı  $(u_{mak}/h)$  talepleri hesaplanmı tır. Hesaplar her bir zemin sınıfı için 30, toplam 90 ivme kaydı takımı seti için yapılmı tır.

| Analiz smi | Ölçek | U <sub>mak</sub> | U <sub>F=mak</sub> | U <sub>E=mak</sub> | U <sub>D=mak</sub> | U <sub>C=mak</sub> | U <sub>B=mak</sub> |
|------------|-------|------------------|--------------------|--------------------|--------------------|--------------------|--------------------|
| 140_0      | 0.69  | 3.85             | 0.60               | 0.83               | 0.96               | 0.94               | 1.18               |
| 621_0      | 0.86  | 2.11             | 0.57               | 0.74               | 0.63               | 0.63               | 0.76               |
| 5038_0     | 1.41  | 10.41            | 1.01               | 2.22               | 2.94               | 2.62               | 2.22               |
| 6269_0     | 1.67  | 17.06            | 1.02               | 2.59               | 4.26               | 4.79               | 4.57               |
| 193_0      | 1.79  | 10.45            | 1.11               | 2.17               | 2.70               | 3.25               | 3.98               |
| 383_0      | 0.61  | 2.09             | 0.24               | 0.42               | 0.48               | 0.53               | 0.59               |
| 1901_0     | 1.88  | 4.27             | 0.44               | 0.73               | 1.00               | 1.18               | 1.28               |
| 3925_0     | 0.71  | 1.18             | 0.12               | 0.22               | 0.28               | 0.29               | 0.31               |
| 6124_0     | 0.71  | 2.47             | 0.38               | 0.57               | 0.61               | 0.59               | 0.69               |
| 5789_0     | 0.93  | 6.22             | 0.62               | 1.24               | 1.61               | 1.52               | 1.46               |
| 6262_0     | 1.17  | 18.13            | 1.25               | 2.91               | 4.05               | 5.48               | 6.68               |
| 140_90     | 0.69  | 3.87             | 0.60               | 0.84               | 0.97               | 0.95               | 1.18               |
| 621_90     | 0.86  | 2.12             | 0.57               | 0.75               | 0.63               | 0.63               | 0.77               |
| 5038_90    | 1.41  | 10.53            | 1.06               | 2.24               | 2.94               | 2.64               | 2.27               |
| 6269_90    | 1.67  | 17.06            | 1.02               | 2.59               | 4.21               | 4.77               | 4.64               |
| 193_90     | 1.79  | 10.46            | 1.11               | 2.15               | 2.70               | 3.24               | 3.96               |
| 383_90     | 0.61  | 2.09             | 0.24               | 0.41               | 0.48               | 0.53               | 0.60               |
| 1901_90    | 1.88  | 4.19             | 0.43               | 0.72               | 0.99               | 1.15               | 1.27               |
| 3925_90    | 0.71  | 1.18             | 0.11               | 0.22               | 0.28               | 0.29               | 0.31               |
| 6124_90    | 0.71  | 2.46             | 0.37               | 0.57               | 0.61               | 0.59               | 0.70               |
| 5789_90    | 0.93  | 6.20             | 0.60               | 1.22               | 1.63               | 1.53               | 1.47               |
| 6262_90    | 1.17  | 18.45            | 1.27               | 2.90               | 4.02               | 5.52               | 6.75               |

Tablo 5.3: ZB sınıfı zemin, birinci sete ait maksimum ötelenme talepleri (cm)

Her ivme kaydı takımı seti için, analizlere ait maksimum ötelenme taleplerinin veya maksimum ötelenme oranı taleplerinin ortalaması ve standart sapması hesaplanmı tır. Bu ekilde ötelenme taleplerinin set içerisindeki e ilimi ve saçılımı sayısal olarak de erlendirilmi tir. Standart sapmanın ortalamaya bölünmesi ile varyasyon katsayısı hesaplanmı ve ötelenme taleplerinin set içerisindeki saçılımı birimsiz bir parametre ile temsil edilmi tir. Bir ivme kaydı takımı seti için maksimum çatı ötelenmesi taleplerinin ortalaması (*m*) ve standart sapması (*s*), sırası ile Denklem 5.1 ve Denklem 5.2 ile hesaplanmı tır. Denklemlerde *n* her bir set için toplam analiz sayısını ifade etmektedir ve 22'ye e ittir. Bir ivme kaydı takımı seti için varyasyon katsayısı ise (*CoV*) Denklem 5.3 kullanılarak hesaplanmı tır. Benzer denklemler maksimum göreli kat ötelenmesi ( $u_{mak}$ ), maksimum çatı ötelenmesi oranı ( $U_{mak}/H$ ), maksimum göreli kat ötelenmesi oranı ( $u_{mak}/h$ ) talepleri ile ilgili de erlerin hesaplanması için de kullanılmı tır.

$$m_{\Delta} = \frac{1}{n} \sum_{i=1}^{n} \Delta_{mak,i}$$
(5.1)

$$s_{\Delta} = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} \left( \Delta_{mak,i} - m_{\Delta} \right)^2}$$
 (5.2)

$$CoV_{\Delta} = \frac{s_{\Delta}}{m_{\Delta}}$$
(5.3)

## 5.2 Maksimum Çatı Ötelenmesi Talepleri

Bu kısımda, maksimum çatı ötelenmesi taleplerinin, ivme kaydı takımı setleri için hesaplanan ortalaması (m) ve standart sapması (s) ile maksimum çatı ötelenmesi oranı taleplerinin ivme kaydı setleri için hesaplanan ortalaması ( $m_{/H}$ ) ve standart sapması ( $s_{/H}$ ) ile ilgili bilgiler verilmi tir. Ayrıca her bir set için ötelenme oranı taleplerine ait varyasyon katsayıları da ( $CoV_{U/H}$ ) verilmi tir.

Tablo 5.4'te ivme kaydı takımı setlerinden elde edilen maksimum ötelenme taleplerinin ortalaması (m) ve standart sapması (s), her bir zemin sınıfı için ayrı ayrı verilmi tir. Görüldü ü gibi, aynı zemin sınıfı ile uyumlu 30 farklı ivme kaydı takımı setinden elde edilen m ve s de erleri farklılık göstermektedir. Örne in m de erleri, ZB zemin sınıfı için 5.82cm-10.90cm arasında, ZC zemin sınıfı için 13.72cm-25.14cm arasında ve ZD zemin sınıfı 17.45cm-26.79cm arasında de i mektedir. Zemin sınıfı ZB'den ZD'ye de i tikçe, ötelenme taleplerinin arttı 1 görülmektedir.

| vme     | Z                       | В                       | Z             | С           | Z             | D                       |
|---------|-------------------------|-------------------------|---------------|-------------|---------------|-------------------------|
| Setleri | <i>m</i> <sub>U</sub> 1 | <i>s</i> <sub>U</sub> 1 | $m_{\rm U}$ 1 | <i>s</i> u1 | $m_{\rm U}$ 1 | <i>s</i> <sub>U</sub> 1 |
| Set 01  | 7.13                    | 5.96                    | 15.43         | 13.04       | 19.82         | 16.17                   |
| Set 02  | 6.59                    | 4.55                    | 17.94         | 16.77       | 26.75         | 32.78                   |
| Set 03  | 6.75                    | 3.02                    | 18.79         | 27.38       | 19.58         | 17.08                   |
| Set 04  | 6.31                    | 3.31                    | 14.84         | 13.36       | 18.68         | 19.16                   |
| Set 05  | 5.82                    | 4.31                    | 16.67         | 14.48       | 19.42         | 14.02                   |
| Set 06  | 6.95                    | 7.49                    | 25.14         | 44.70       | 22.92         | 32.27                   |
| Set 07  | 6.39                    | 2.11                    | 18.18         | 18.59       | 17.45         | 9.59                    |
| Set 08  | 7.43                    | 9.02                    | 15.31         | 13.16       | 20.03         | 17.92                   |
| Set 09  | 7.97                    | 8.28                    | 14.66         | 11.67       | 21.33         | 11.20                   |
| Set 10  | 7.04                    | 4.58                    | 18.05         | 23.83       | 21.52         | 19.89                   |
| Set 11  | 6.34                    | 3.37                    | 13.98         | 12.51       | 24.96         | 31.91                   |
| Set 12  | 8.43                    | 8.10                    | 13.80         | 8.94        | 17.92         | 16.97                   |
| Set 13  | 8.40                    | 9.52                    | 16.97         | 17.25       | 23.25         | 16.67                   |
| Set 14  | 6.77                    | 6.55                    | 17.39         | 10.19       | 25.89         | 35.28                   |
| Set 15  | 10.46                   | 14.70                   | 17.68         | 19.67       | 20.44         | 14.73                   |
| Set 16  | 7.01                    | 5.33                    | 16.41         | 16.70       | 19.65         | 13.73                   |
| Set 17  | 7.28                    | 5.43                    | 16.14         | 15.66       | 25.85         | 28.68                   |
| Set 18  | 7.25                    | 5.14                    | 14.71         | 12.14       | 26.79         | 34.78                   |
| Set 19  | 7.57                    | 7.37                    | 18.40         | 16.92       | 20.18         | 20.25                   |
| Set 20  | 7.53                    | 6.23                    | 17.36         | 19.31       | 24.79         | 23.27                   |
| Set 21  | 7.46                    | 3.33                    | 15.78         | 12.93       | 26.25         | 38.01                   |
| Set 22  | 7.27                    | 4.06                    | 17.20         | 19.02       | 20.06         | 18.04                   |
| Set 23  | 9.67                    | 14.08                   | 13.72         | 15.05       | 23.78         | 24.72                   |
| Set 24  | 6.43                    | 4.42                    | 20.25         | 34.08       | 20.07         | 15.02                   |
| Set 25  | 9.75                    | 14.29                   | 24.20         | 44.31       | 25.74         | 29.61                   |
| Set 26  | 7.14                    | 5.37                    | 16.68         | 16.15       | 19.27         | 19.29                   |
| Set 27  | 10.90                   | 15.58                   | 17.57         | 19.06       | 18.29         | 8.57                    |
| Set 28  | 6.99                    | 3.08                    | 20.05         | 23.96       | 21.32         | 14.28                   |
| Set 29  | 6.89                    | 4.20                    | 24.03         | 40.11       | 22.74         | 21.82                   |
| Set 30  | 6.84                    | 3.36                    | 14.46         | 19.47       | 20.19         | 19.91                   |

**Tablo 5.4:** vme kaydı takımı setlerine ait m ve s de erleri (cm)

Tablo 5.5'te ivme kaydı takımı setlerinden elde edilen maksimum çatı ötelenmesi oranı taleplerinin ortalaması ( $m_{/H}$ ) ve standart sapması ( $s_{/H}$ ) verilmi tir. vme kaydı takımı setlerine ait  $m_{/H}$  de erleri, ekil 5.1'de grafik olarak verilmi tir. Böylece, aynı hedef spektrum ile uyumlu farklı setlerden elde edilen ötelenme oranı taleplerinin görsel olarak da incelenebilmesi amaçlanmı tır.

| vme     | ZB               |                    | Z                | С                  | ZD               |                    |  |
|---------|------------------|--------------------|------------------|--------------------|------------------|--------------------|--|
| Setleri | $m_{\cup e_Y}$ 1 | s <sub>U@Y</sub> 1 | $m_{\cup e_Y}$ 1 | s <sub>U@Y</sub> 1 | $m_{\cup e_Y}$ 1 | s <sub>U@Y</sub> 1 |  |
| Set 01  | 0.46             | 0.38               | 1.00             | 0.84               | 1.28             | 1.04               |  |
| Set 02  | 0.42             | 0.29               | 1.16             | 1.08               | 1.73             | 2.12               |  |
| Set 03  | 0.44             | 0.19               | 1.21             | 1.77               | 1.26             | 1.10               |  |
| Set 04  | 0.41             | 0.21               | 0.96             | 0.86               | 1.21             | 1.24               |  |
| Set 05  | 0.38             | 0.28               | 1.08             | 0.93               | 1.25             | 0.90               |  |
| Set 06  | 0.45             | 0.48               | 1.62             | 2.88               | 1.48             | 2.08               |  |
| Set 07  | 0.41             | 0.14               | 1.17             | 1.20               | 1.13             | 0.62               |  |
| Set 08  | 0.48             | 0.58               | 0.99             | 0.85               | 1.29             | 1.16               |  |
| Set 09  | 0.51             | 0.53               | 0.95             | 0.75               | 1.38             | 0.72               |  |
| Set 10  | 0.45             | 0.30               | 1.16             | 1.54               | 1.39             | 1.28               |  |
| Set 11  | 0.41             | 0.22               | 0.90             | 0.81               | 1.61             | 2.06               |  |
| Set 12  | 0.54             | 0.52               | 0.89             | 0.58               | 1.16             | 1.09               |  |
| Set 13  | 0.54             | 0.61               | 1.09             | 1.11               | 1.50             | 1.08               |  |
| Set 14  | 0.44             | 0.42               | 1.12             | 0.66               | 1.67             | 2.28               |  |
| Set 15  | 0.67             | 0.95               | 1.14             | 1.27               | 1.32             | 0.95               |  |
| Set 16  | 0.45             | 0.34               | 1.06             | 1.08               | 1.27             | 0.89               |  |
| Set 17  | 0.47             | 0.35               | 1.04             | 1.01               | 1.67             | 1.85               |  |
| Set 18  | 0.47             | 0.33               | 0.95             | 0.78               | 1.73             | 2.24               |  |
| Set 19  | 0.49             | 0.48               | 1.19             | 1.09               | 1.30             | 1.31               |  |
| Set 20  | 0.49             | 0.40               | 1.12             | 1.25               | 1.60             | 1.50               |  |
| Set 21  | 0.48             | 0.21               | 1.02             | 0.83               | 1.69             | 2.45               |  |
| Set 22  | 0.47             | 0.26               | 1.11             | 1.23               | 1.29             | 1.16               |  |
| Set 23  | 0.62             | 0.91               | 0.89             | 0.97               | 1.53             | 1.59               |  |
| Set 24  | 0.41             | 0.29               | 1.31             | 2.20               | 1.29             | 0.97               |  |
| Set 25  | 0.63             | 0.92               | 1.56             | 2.86               | 1.66             | 1.91               |  |
| Set 26  | 0.46             | 0.35               | 1.08             | 1.04               | 1.24             | 1.24               |  |
| Set 27  | 0.70             | 1.01               | 1.13             | 1.23               | 1.18             | 0.55               |  |
| Set 28  | 0.45             | 0.20               | 1.29             | 1.55               | 1.38             | 0.92               |  |
| Set 29  | 0.44             | 0.27               | 1.55             | 2.59               | 1.47             | 1.41               |  |
| Set 30  | 0.44             | 0.22               | 0.93             | 1.26               | 1.30             | 1.28               |  |

**Tablo 5.5:** vme kaydı takımı setlerine ait  $m_{/H}$  ve  $s_{/H}$  de erleri (%)

ekil 5.1'de verilen  $m_{/H}$  de erleri, ZB zemin sınıfı ile uyumlu ivme setleri için %0.38-0.70 arasında, ZC zemin sınıfı ile uyumlu ivme setleri için %0.89-1.62 arasında ve ZD zemin sınıfı ile uyumlu ivme setleri için %1.13-1.73 arasında de i mektedir. vme kaydı setlerinden elde edilecek  $m_{/H}$  de erlerinin ortalaması (beklenen de eri) ise ZB, ZC ve ZD zemin sınıfı için sırası ile %0.48, %1.12 ve %1.41 olarak hesaplanmı tır.



ekil 5.1: vme kaydı takımı setlerine ait  $m_{/H}$  de erleri

vme kaydı takımı setlerine ait  $CoV_{/H}$  de erleri, ekil 5.2'de grafik olarak verilmi tir. Görüldü ü gibi, bir setteki kayıt takımları için elde edilen çatı ötelenmesi oranı taleplerinin saçılımı oldukça yüksektir. Bu durum üç zemin sınıfı için de geçerlidir.  $CoV_{/H}$  de erleri, ZB zemin sınıfı ile uyumlu ivme setleri için 0.33-1.47 arasında, ZC zemin sınıfı ile uyumlu ivme setleri için 0.59-1.83 arasında ve ZD zemin sınıfı ile uyumlu ivme setleri için 0.47-1.45 arasında de i mektedir. Herhangi bir zemin sınıfı için daha dü ük veya daha yüksek saçılım elde edildi ini söylemek mümkün de ildir. vme kaydı setlerinden elde edilecek  $CoV_{/H}$  de erlerinin ortalaması (beklenen de eri) ise ZB, ZC ve ZD zemin sınıfı için sırası ile 0.83, 1.09 ve 0.95 olarak hesaplanmı tır.



ekil 5.2: vme kaydı takımı setlerine ait  $CoV_{/H1}$ de erleri

# 5.3 Maksimum Göreli Kat Ötelenmesi Talepleri

Bu kısımda, maksimum göreli kat ötelenmesi taleplerinin, ivme kaydı takımı setleri için hesaplanan ortalaması ( $m_u$ ) ve standart sapması ( $s_u$ ) ile maksimum göreli kat ötelenmesi oranı taleplerinin ivme kaydı setleri için hesaplanan ortalaması ( $m_{u/h}$ ) ve standart sapması ( $s_{u/h}$ ) ile ilgili bilgiler verilmi tir. Ayrıca her bir set için ötelenme oranı taleplerine ait varyasyon katsayıları ( $CoV_{u/h}$ ) verilmi tir.

Tablo 5.6-5.8'de sırası ile ZB, ZC ve ZD zemin sınıfı ile uyumlu 30 ivme seti için her kata ait  $m_u$  ve  $s_u$  de erleri verilmi tir.

| vme     | 1.          | Kat            | 2. Kat      |                | 3. Kat     |                | 4. Kat      |                | 5. Kat     |                |
|---------|-------------|----------------|-------------|----------------|------------|----------------|-------------|----------------|------------|----------------|
| Setleri | $m_{\sf u}$ | s <sub>u</sub> | $m_{\sf u}$ | s <sub>u</sub> | $m_{ m u}$ | s <sub>u</sub> | $m_{\sf u}$ | s <sub>u</sub> | $m_{ m u}$ | s <sub>u</sub> |
| Set 01  | 2.17        | 2.00           | 1.98        | 1.77           | 1.77       | 1.42           | 1.33        | 0.93           | 0.67       | 0.37           |
| Set 02  | 1.93        | 1.59           | 1.78        | 1.33           | 1.63       | 1.04           | 1.35        | 0.89           | 0.72       | 0.42           |
| Set 03  | 2.02        | 1.03           | 1.93        | 0.93           | 1.65       | 0.73           | 1.19        | 0.52           | 0.69       | 0.35           |
| Set 04  | 1.88        | 1.11           | 1.77        | 1.01           | 1.57       | 0.87           | 1.29        | 0.59           | 0.72       | 0.27           |
| Set 05  | 1.79        | 1.36           | 2.17        | 2.64           | 1.45       | 1.18           | 1.17        | 0.83           | 0.67       | 0.41           |
| Set 06  | 2.21        | 2.44           | 1.97        | 2.12           | 1.64       | 1.63           | 1.18        | 0.95           | 0.68       | 0.46           |
| Set 07  | 1.77        | 0.57           | 1.73        | 0.67           | 1.63       | 0.59           | 1.33        | 0.48           | 0.73       | 0.30           |
| Set 08  | 2.39        | 3.27           | 2.12        | 2.75           | 1.74       | 2.03           | 1.26        | 1.18           | 0.70       | 0.58           |
| Set 09  | 2.48        | 3.08           | 3.11        | 4.56           | 1.94       | 1.84           | 1.39        | 1.00           | 0.73       | 0.41           |
| Set 10  | 2.19        | 1.37           | 2.07        | 1.21           | 1.84       | 0.98           | 1.36        | 0.60           | 0.74       | 0.32           |
| Set 11  | 1.84        | 1.03           | 1.78        | 1.01           | 1.57       | 0.86           | 1.14        | 0.63           | 0.68       | 0.40           |
| Set 12  | 2.52        | 2.71           | 2.27        | 2.31           | 2.04       | 1.79           | 1.52        | 1.19           | 0.83       | 0.61           |
| Set 13  | 2.62        | 3.18           | 2.35        | 2.70           | 1.95       | 2.06           | 1.39        | 1.34           | 0.77       | 0.69           |
| Set 14  | 2.03        | 2.27           | 1.90        | 1.99           | 1.66       | 1.45           | 1.22        | 0.85           | 0.68       | 0.46           |
| Set 15  | 3.29        | 5.31           | 3.00        | 4.36           | 2.48       | 3.13           | 1.65        | 1.67           | 0.85       | 0.80           |
| Set 16  | 2.17        | 1.81           | 1.96        | 1.58           | 1.67       | 1.26           | 1.29        | 1.01           | 0.68       | 0.48           |
| Set 17  | 2.24        | 1.91           | 2.01        | 1.66           | 1.76       | 1.23           | 1.30        | 0.83           | 0.72       | 0.48           |
| Set 18  | 2.23        | 1.85           | 2.06        | 1.57           | 1.76       | 1.14           | 1.27        | 0.69           | 0.69       | 0.37           |
| Set 19  | 2.46        | 2.64           | 2.24        | 2.23           | 1.79       | 1.66           | 1.28        | 0.96           | 0.69       | 0.44           |
| Set 20  | 2.25        | 2.10           | 2.08        | 1.82           | 1.84       | 1.40           | 1.41        | 0.89           | 0.74       | 0.43           |
| Set 21  | 2.12        | 1.07           | 2.01        | 0.94           | 1.84       | 0.81           | 1.47        | 0.69           | 0.77       | 0.35           |
| Set 22  | 2.20        | 1.51           | 2.05        | 1.26           | 1.80       | 0.97           | 1.37        | 0.74           | 0.74       | 0.39           |
| Set 23  | 3.14        | 5.06           | 2.76        | 4.17           | 2.23       | 2.98           | 1.54        | 1.53           | 0.84       | 0.72           |
| Set 24  | 1.92        | 1.35           | 1.77        | 1.25           | 1.64       | 1.21           | 1.30        | 0.95           | 0.70       | 0.44           |
| Set 25  | 3.17        | 5.10           | 2.83        | 4.22           | 2.32       | 3.05           | 1.53        | 1.60           | 0.81       | 0.77           |
| Set 26  | 2.29        | 2.04           | 2.07        | 1.66           | 1.68       | 1.19           | 1.29        | 0.87           | 0.70       | 0.46           |
| Set 27  | 3.57        | 5.66           | 3.13        | 4.64           | 2.48       | 3.31           | 1.63        | 1.75           | 0.86       | 0.81           |
| Set 28  | 2.07        | 0.95           | 1.98        | 0.96           | 1.74       | 0.73           | 1.30        | 0.50           | 0.70       | 0.29           |
| Set 29  | 2.06        | 1.35           | 1.91        | 1.18           | 1.73       | 1.06           | 1.30        | 0.71           | 0.68       | 0.35           |
| Set 30  | 2.00        | 0.90           | 1.90        | 0.93           | 1.65       | 0.92           | 1.25        | 0.75           | 0.69       | 0.42           |

**Tablo 5.6:** ZB zemin sınıfı ile uyumlu setler için hesaplanan  $m_u$  ve  $s_u$  de erleri (cm)

| vme     | 1.          | Kat            | 2.          | Kat            | 3. ]        | Kat            | 4.]         | Kat            | 5. ]        | Kat            |
|---------|-------------|----------------|-------------|----------------|-------------|----------------|-------------|----------------|-------------|----------------|
| Setleri | $m_{\rm u}$ | s <sub>u</sub> | $m_{\rm u}$ | s <sub>u</sub> | $m_{\rm u}$ | s <sub>u</sub> | $m_{\rm u}$ | s <sub>u</sub> | $m_{\rm u}$ | s <sub>u</sub> |
| Set 01  | 4.80        | 4.45           | 4.35        | 3.75           | 3.70        | 2.83           | 2.47        | 1.41           | 1.15        | 0.53           |
| Set 02  | 5.84        | 6.28           | 5.15        | 5.09           | 4.05        | 3.51           | 2.65        | 2.22           | 1.29        | 1.22           |
| Set 03  | 6.56        | 9.80           | 5.60        | 8.32           | 4.31        | 5.93           | 2.51        | 2.65           | 1.09        | 0.83           |
| Set 04  | 5.12        | 5.16           | 4.36        | 4.19           | 3.41        | 2.86           | 2.43        | 1.80           | 1.36        | 0.93           |
| Set 05  | 5.78        | 5.79           | 4.92        | 4.52           | 3.77        | 2.91           | 2.38        | 1.67           | 1.09        | 0.75           |
| Set 06  | 8.77        | 16.92          | 7.54        | 14.05          | 5.54        | 9.14           | 3.04        | 3.78           | 1.25        | 1.08           |
| Set 07  | 5.90        | 7.09           | 5.23        | 5.81           | 4.20        | 3.89           | 2.68        | 2.03           | 1.29        | 0.88           |
| Set 08  | 5.03        | 4.65           | 4.34        | 3.84           | 3.55        | 2.91           | 2.42        | 1.71           | 1.20        | 0.86           |
| Set 09  | 4.58        | 4.16           | 4.20        | 3.42           | 3.48        | 2.63           | 2.26        | 1.51           | 1.04        | 0.61           |
| Set 10  | 6.48        | 9.70           | 5.51        | 7.75           | 3.97        | 4.62           | 2.51        | 2.14           | 1.21        | 0.87           |
| Set 11  | 4.64        | 4.91           | 4.10        | 3.97           | 3.25        | 2.64           | 2.22        | 1.52           | 1.10        | 0.72           |
| Set 12  | 4.20        | 3.20           | 3.83        | 2.60           | 3.30        | 1.94           | 2.28        | 1.19           | 1.10        | 0.61           |
| Set 13  | 5.89        | 6.89           | 5.02        | 5.50           | 3.85        | 3.66           | 2.40        | 2.06           | 1.09        | 0.86           |
| Set 14  | 5.53        | 3.72           | 4.88        | 3.03           | 4.16        | 2.31           | 2.83        | 1.43           | 1.27        | 0.66           |
| Set 15  | 6.14        | 7.93           | 5.17        | 6.24           | 3.93        | 3.87           | 2.54        | 2.09           | 1.29        | 1.08           |
| Set 16  | 4.95        | 6.17           | 4.58        | 5.12           | 3.89        | 3.56           | 2.56        | 1.87           | 1.19        | 0.78           |
| Set 17  | 5.34        | 6.25           | 4.69        | 5.01           | 3.75        | 3.22           | 2.36        | 1.62           | 1.06        | 0.58           |
| Set 18  | 4.74        | 4.35           | 4.14        | 3.62           | 3.41        | 2.65           | 2.21        | 1.54           | 1.13        | 0.76           |
| Set 19  | 6.22        | 6.93           | 5.41        | 5.42           | 4.16        | 3.36           | 2.59        | 1.70           | 1.11        | 0.62           |
| Set 20  | 5.97        | 7.43           | 5.17        | 6.07           | 3.95        | 3.97           | 2.52        | 1.98           | 1.20        | 0.81           |
| Set 21  | 5.04        | 4.20           | 4.44        | 3.54           | 3.76        | 2.70           | 2.55        | 1.52           | 1.22        | 0.62           |
| Set 22  | 6.34        | 7.84           | 5.26        | 6.24           | 3.64        | 3.81           | 2.19        | 1.87           | 1.02        | 0.73           |
| Set 23  | 4.86        | 5.73           | 4.00        | 4.71           | 3.14        | 3.11           | 2.08        | 1.75           | 1.06        | 0.83           |
| Set 24  | 6.71        | 12.45          | 5.97        | 10.46          | 4.70        | 7.23           | 2.76        | 3.12           | 1.17        | 0.92           |
| Set 25  | 8.49        | 16.69          | 7.21        | 13.88          | 5.34        | 9.08           | 3.00        | 3.79           | 1.31        | 1.15           |
| Set 26  | 5.66        | 6.68           | 4.95        | 5.27           | 3.81        | 3.27           | 2.41        | 1.66           | 1.13        | 0.66           |
| Set 27  | 5.80        | 7.21           | 5.05        | 5.93           | 4.03        | 3.93           | 2.69        | 2.11           | 1.32        | 0.99           |
| Set 28  | 7.60        | 9.89           | 6.25        | 7.81           | 4.30        | 4.67           | 2.52        | 2.27           | 1.20        | 0.95           |
| Set 29  | 8.46        | 15.03          | 7.26        | 12.51          | 5.37        | 8.33           | 2.90        | 3.51           | 1.21        | 1.06           |
| Set 30  | 5.16        | 8.01           | 4.32        | 6.30           | 3.17        | 3.77           | 2.09        | 1.91           | 1.09        | 0.90           |

**Tablo 5.7:** ZC zemin sınıfı ile uyumlu setler için hesaplanan  $m_u$  ve  $s_u$  de erleri (cm)

Tablo 5.6-5.8'de, göreli kat ötelenmesi taleplerinin ivme seti için hesaplanan ortalamasının alt katlarda daha yüksek oldu u, üst katlara do ru azaldı 1 görülmektedir. Ayrıca zemin sınıfı ZB'den ZD'ye de i tikçe, do al olarak göreli kat ötelenmesi taleplerinin arttı 1 gözlenmektedir. Bunlarla birlikte, herhangi bir zemin sınıfı için katlara ait göreli kat ötelenmesi de erlerinin kullanılan ivme kaydı takımı setine ba lı olarak rastgele de i ti i, aynı zemin sınıfı ile uyumlu setlere ait  $m_u$  de erlerinin farklılık gösterdi i belirlenmi tir.

| vme     | 1.         | Kat            | 2.          | Kat            | 3. 1       | Kat  | 4. ]       | Kat  | 5. ]       | Kat  |
|---------|------------|----------------|-------------|----------------|------------|------|------------|------|------------|------|
| Setleri | $m_{ m u}$ | s <sub>u</sub> | $m_{\rm u}$ | s <sub>u</sub> | $m_{ m u}$ | su   | $m_{ m u}$ | su   | $m_{ m u}$ | su   |
| Set 01  | 6.34       | 5.63           | 5.75        | 4.79           | 4.62       | 3.57 | 2.80       | 1.90 | 1.17       | 0.63 |
| Set 02  | 9.16       | 12.14          | 7.75        | 9.94           | 5.70       | 6.50 | 3.37       | 3.48 | 1.42       | 1.41 |
| Set 03  | 6.13       | 5.98           | 5.60        | 5.03           | 4.56       | 3.75 | 2.84       | 2.04 | 1.19       | 0.69 |
| Set 04  | 6.21       | 7.08           | 5.32        | 5.45           | 4.26       | 3.99 | 2.65       | 2.37 | 1.14       | 1.00 |
| Set 05  | 6.25       | 5.20           | 5.65        | 4.38           | 4.54       | 3.13 | 2.84       | 1.62 | 1.24       | 0.68 |
| Set 06  | 8.17       | 12.55          | 6.87        | 10.03          | 4.89       | 6.01 | 2.82       | 3.01 | 1.25       | 1.27 |
| Set 07  | 5.45       | 3.38           | 5.00        | 2.69           | 4.19       | 2.17 | 2.68       | 1.27 | 1.18       | 0.54 |
| Set 08  | 6.55       | 6.65           | 5.86        | 5.62           | 4.64       | 3.88 | 2.75       | 2.00 | 1.16       | 0.80 |
| Set 09  | 6.91       | 3.92           | 6.06        | 3.12           | 4.84       | 2.29 | 3.00       | 1.34 | 1.27       | 0.66 |
| Set 10  | 7.22       | 7.75           | 6.10        | 5.63           | 4.89       | 4.00 | 3.09       | 2.25 | 1.34       | 0.93 |
| Set 11  | 8.55       | 11.77          | 7.36        | 9.70           | 5.49       | 6.35 | 3.26       | 3.33 | 1.38       | 1.32 |
| Set 12  | 5.66       | 6.05           | 5.18        | 4.96           | 4.23       | 3.72 | 2.59       | 2.15 | 1.14       | 0.88 |
| Set 13  | 7.54       | 6.05           | 6.70        | 4.94           | 5.37       | 3.62 | 3.17       | 1.95 | 1.33       | 0.80 |
| Set 14  | 9.34       | 14.42          | 7.76        | 11.08          | 5.38       | 6.24 | 3.05       | 2.91 | 1.30       | 1.16 |
| Set 15  | 6.53       | 5.05           | 5.87        | 4.24           | 4.71       | 3.17 | 2.97       | 1.83 | 1.30       | 0.70 |
| Set 16  | 6.36       | 4.79           | 5.63        | 3.99           | 4.65       | 3.10 | 2.85       | 1.75 | 1.20       | 0.67 |
| Set 17  | 8.68       | 10.18          | 7.40        | 8.61           | 5.72       | 6.02 | 3.38       | 3.25 | 1.44       | 1.29 |
| Set 18  | 9.47       | 13.70          | 7.90        | 10.85          | 5.66       | 6.48 | 3.24       | 3.20 | 1.37       | 1.30 |
| Set 19  | 6.63       | 7.65           | 5.94        | 6.35           | 4.66       | 4.16 | 2.76       | 2.10 | 1.16       | 0.80 |
| Set 20  | 8.23       | 8.48           | 7.25        | 7.04           | 5.73       | 5.18 | 3.11       | 2.11 | 1.20       | 0.67 |
| Set 21  | 9.26       | 15.19          | 7.84        | 11.83          | 5.55       | 7.04 | 3.17       | 3.41 | 1.33       | 1.29 |
| Set 22  | 6.44       | 6.23           | 5.70        | 5.17           | 4.70       | 3.87 | 2.93       | 2.20 | 1.28       | 0.84 |
| Set 23  | 7.75       | 9.33           | 6.94        | 7.67           | 5.50       | 4.93 | 3.23       | 2.33 | 1.25       | 0.65 |
| Set 24  | 6.65       | 5.38           | 5.76        | 4.46           | 4.56       | 3.22 | 2.77       | 1.79 | 1.18       | 0.72 |
| Set 25  | 8.86       | 10.74          | 7.65        | 9.07           | 5.63       | 6.12 | 3.23       | 3.09 | 1.37       | 1.20 |
| Set 26  | 6.05       | 6.92           | 5.47        | 5.71           | 4.53       | 4.21 | 2.77       | 2.26 | 1.16       | 0.73 |
| Set 27  | 5.82       | 2.83           | 5.17        | 2.41           | 4.25       | 1.96 | 2.72       | 1.27 | 1.19       | 0.60 |
| Set 28  | 6.85       | 5.05           | 6.15        | 4.17           | 5.01       | 3.13 | 3.01       | 1.72 | 1.24       | 0.65 |
| Set 29  | 7.35       | 7.60           | 6.51        | 6.24           | 5.15       | 4.64 | 3.12       | 2.51 | 1.35       | 0.89 |
| Set 30  | 6.44       | 7.20           | 5.85        | 5.91           | 5.68       | 5.60 | 2.89       | 2.31 | 1.21       | 0.79 |

**Tablo 5.8:** ZD zemin sınıfı ile uyumlu setler için hesaplanan  $m_u$  ve  $s_u$  de erleri (cm)

ekil 5.3'te, ZB sınıfı zemin ile uyumlu setlere ait  $m_{u/h}$  de erleri her kat için ayrı ayrı verilmi tir. ekilde ele alınan göreli kat ötelenmesi oranı talepleri açısından de erlendirme yapıldı ında, ilk iki katta daha yüksek göreli kat ötelenmesi oranı talebinin elde edildi i, en üst katta ise en dü ük taleplerin gözlendi i görülmektedir. ZB sınıfı zemin ile uyumlu 30 ivme kaydı takımı seti için hesaplanan  $m_{u/h}$ de erlerinin birinci katta %0.50-1.02 arasında, ikinci katta ise %0.58-1.04 arasında de i ti i belirlenmi tir. Birinci ve ikinci katta, 30 sete ait  $m_{u/h}$  de erlerinin ortalaması yani beklenen de eri sırası ile %0.66 ve %0.72'dir.



ekil 5.3: ZB ile uyumlu setlere ait  $m_{U/h}$  de erleri

ekil 5.4'te, ZC sınıfı zemin ile uyumlu setlere ait  $m_{u/h}$  de erleri verilmi tir. ZC sınıfı zemin içinde, ilk iki katta daha yüksek göreli kat ötelenmesi oranı talebinin elde edildi i, en üst katta ise en dü ük taleplerin gözlendi i görülmektedir. 30 ivme kaydı takımı seti için hesaplanan  $m_{u/h}$  de erlerinin birinci katta %1.20-2.50 arasında, ikinci katta ise %1.28-2.51 arasında de i ti i belirlenmi tir. ZC sınıfı zemin için, birinci ve ikinci katta, 30 sete ait  $m_{u/h}$  de erlerinin ortalaması yani beklenen de eri sırası ile %1.68 ve %1.70'dir.



ekil 5.4: ZC ile uyumlu setlere ait  $m_{u/h}$  de erleri

ekil 5.5'te, ZD sınıfı zemin ile uyumlu setlere ait  $m_{u/h}$  de erleri verilmi tir. 30 ivme kaydı takımı seti için hesaplanan  $m_{u/h}$  de erlerinin birinci katta %1.56-2.70 arasında, ikinci katta ise %1.67-%2.63 arasında de i ti i belirlenmi tir. ZD sınıfı zemin için, birinci ve ikinci katta, 30 sete ait  $m_{u/h}$  de erlerinin ortalaması yani beklenen de eri sırası ile %2.07 ve %2.11'dir.



ekil 5.5: ZD ile uyumlu setlere ait  $m_{u/h}$  de erleri

ekil 5.3-5.5'te özetlenen sonuçlara göre en yüksek göreli kat ötelenmesi oranı taleplerinin elde edildi i birinci ve ikinci kat için, ivme kaydı takımlarından elde edilen ötelenme taleplerinin sete ait ortalama etrafındaki saçılımını temsil eden  $CoV_{u/h}$  de erleri sırası ile ekil 5.6 ve ekil 5.7'de verilmi tir. Buna göre, göreli kat ötelenmesi oranı taleplerinin set içerisindeki saçılımı oldukça yüksektir. Zemin sınıfları açısından bakıldı ında, saçılımın zemin sınıfının de i imi ile ili kisi olmadı ı, tüm zemin sınıfları için ivme setlerine ba lı olarak rastgele de i ti i görülmektedir.



ekil 5.6: vme setleri için birinci kata ait  $CoV_{u/h1}$ de erleri

ekil 5.6'da verilen birinci kata ait  $CoV_{u/h1}$ de erleri ZB sınıfı zemin için 0.33-1.62 arasında, ZC sınıfı zemin için 0.67-1.97 arasında ve ZD sınıfı zemin için 0.49-1.64 arasında de i mektedir. Bu katta, 30 sete ait  $CoV_{u/h1}$ de erlerinin ortalaması yani beklenen de eri ZB, ZC ve ZD zemin sınıfı için sırası ile 0.92, 1.22 ve 1.05 olarak hesaplanmı tır.



ekil 5.7: vme setleri için ikinci kata ait  $CoV_{u/h1}$ de erleri

ekil 5.7'de verilen ikinci kata ait  $CoV_{u/hl}$ de erleri ZB sınıfı zemin için 0.39-1.51 arasında, ZC sınıfı zemin için 0.62-1.92 arasında ve ZD sınıfı zemin için 0.47-1.51 arasında de i mektedir. Bu katta, 30 sete ait  $CoV_{u/hl}$ de erlerinin ortalaması yani beklenen de eri ZB, ZC ve ZD zemin sınıfı için sırası ile 0.90, 1.15 ve 0.98 olarak hesaplanmı tır.

# 6. VARYANS ANAL Z ve ORTALAMANIN GÜVEN ARALI I

#### 6.1 Giri

Çalı ma kapsamında, aynı hedef spektrum uyumlu setlerden elde edilen ortalama ötelenme talepleri arasındaki ( $m_{UeY}$ ,  $m_{u/h}$ ) farklılı ın istatistiksel olarak anlamlı olup olmadı ını ara tırmak üzere sürekli de i kenlere uygulanan varyans analizi (ANOVA) kullanılmı tır. Varyans analizi için  $U_{mak}/H$  ve  $u_{mak}/h$  ifadeleri ile temsil edilen maksimum çatı ötelenmesi oranı ve maksimum göreli kat ötelenmesi oranı talepleri ele alınmı tır.

Bu kısımda ayrıca, ivme kaydı takımı setlerinde yer alan kayıtlar için hesaplanan  $\bigcup_{mak}/H$  ve  $\bigsqcup_{mak}/h$  de erlerinin sete ait ortalamalarının ( $m_{\bigcup/H}$  ve  $m_{\sqcup/h}$ ) örnekleme da ılımları belirlenmi ve iki farklı güven düzeyi için (%90 ve %95) ortalamaların güven aralı ı tahmin edilmi tir.

#### 6.2 Varyans Analizi

Varyans analizi, iki veya daha fazla ana kitle ortalamasının bir arada kıyaslanması, aralarındaki farkın anlamlı olup olmadı ının test edilmesi için kullanılan bir yöntemdir (Orhunbilge 1997, Kartal 1998, Dilek ve di . 2010).

Varyans analizinde; de erlendirilen gözlemlerin tek bir de i kenin seçeneklerine veya birbirinden etkilenen iki ayrı de i kenin seçeneklerine göre düzenlemi olması durumuna göre tek yönlü ve çift yönlü olmak üzere iki farklı model eklinde uygulanmaktadır. Bu çalı mada sadece aynı zemin sınıfı ile uyumlu farklı setlerden elde edilen ötelenme talepleri arasındaki farklılık de erlendirildi i için tek yönlü varyans analizi yapılmı tır. Tek yönlü varyans analizi; gözlemlerin sadece bir de i kenin ıklarına göre gruplara ayrıldı ı ve bu grupların ortalamaları ile gözlemlerin seçildi i ana kitle ortalamalarının birbirine e itli inin test edildi i analiz modelidir. Bu modelde her birim mevcut k sayıda ana kitleden sadece birine dâhil olabilir. Burada test edilen hipotez, verilen ana kitle ortalamalarının e itli idir (Denklem 6.1). Hipotez kabul edildi inde; ele alınan birden fazla ana kitlenin ortalamaları arasında anlamlı bir farkın olmadı 1, bir fark varsa bile bu farkın tesadüfi oldu u belirlenmi olur (Orhunbilge 1997).

$$H_0: -_1 = -_2 = -_3 = \dots = -_k \tag{6.1}$$

Tablo 6.1'de, *k* sayıda ana kitlenin,  $n_1$ ,  $n_2$ ,  $n_3$ ,..., $n_k$  sayıda mevcuda sahip gözlem de erleri verilmi tir.  $X_{ij}$ , gözlem de eri (*i* indisi bulundu u grup, *j* indisi bulundu u gözlem numarasını gösterir),  $T_{1+}$ , *i*. gruptaki gözlemler toplamı,  $T_{++}$ , tüm gözlemler toplamı ve *N*, toplam gözlem sayısıdır.

Tablo 6.1: Tek yönlü varyans analizinde k tane ba ımsız kitlenin gözlem de erleri

| Gözlem No | $X_1$      | $X_2$      | $X_3$       | <br>$X_k$      | Toplam      |
|-----------|------------|------------|-------------|----------------|-------------|
| 1         | $X_{11}$   | X 21       | <b>X</b> 31 | <br>$X_{k1}$   |             |
| 2         | $X_{12}$   | X 22       | $X_{32}$    | <br>X k 2      |             |
| •         | •          | •          | •           | <br>•          |             |
|           | •          | •          | •           | <br>•          |             |
| •         | •          | •          | •           | <br>•          |             |
| •         | $X_{1n_1}$ | $X_{2n_2}$ | $X$ 3 $n_3$ | <br>$X_{kn_k}$ |             |
| Toplam    | $T_{1+}$   | $T_{2+}$   | $T_{3+}$    | <br>$T_{k+}$   | $T_{^{++}}$ |
| Ortalama  | $X_1$      | X 2        | $X_3$       | $X_k$          | X           |

Tablo 6.1'deki gibi düzenlenmi gözlem de erleri kullanılarak, gruplar arası kareler toplamı (GAKT) ve grup içi kareler toplamı (G KT) hesaplanır (Denklem 6.2 ve Denklem 6.3). Toplam kareler toplamı (TKT) ise GAKT ile G KT de erlerinin toplamı olarak ifade edilmektedir (Denklem 6.4).

$$GAKT = \sum_{i=1}^{k} \frac{T_{i+}^2}{n_i} - \frac{T_{++}^2}{N}$$
(6.2)

$$G KT = \sum_{i=1}^{k} \sum_{j=1}^{n_i} X_{ij}^2 - \sum_{i=1}^{k} \frac{T_{i+}^2}{n_i}$$
(6.3)

$$TKT = GAKT + G KT = \sum_{i=1}^{k} \sum_{j=1}^{n_i} X_{ij}^2 - \sum_{i=1}^{k} \frac{T_{++}^2}{N}$$
(6.4)

Gruplar arası serbestlik derecesi (k-1) ve grup içi serbestlik derecesine (N-k) ba lı olarak, gruplar arası varyans  $(s_M^2)$  ve grup içi varyans  $(s_0^2)$  de erleri Denklem 6.5 ve Denklem 6.6 kullanılarak hesaplanır.

$$s_M^2 = \frac{GAKT}{k-1} \tag{6.5}$$

$$s_0^2 = \frac{G KT}{N-k} \tag{6.6}$$

Varyanslar hesaplandıktan sonra F istatisti i hesaplanır (Denklem 6.7). Daha sonra, gruplar arası ve grup içi serbestlik dereceleri ile seçilen anlamlılık düzeyine ba lı olarak F-da ılım tablosundan (Ek-C'de verilmi tir) kritik F de eri ( $F_{kr}$ ) okunur. E er hesaplanan F istatisti i,  $F_{kr}$  de erinden küçük ise hipotez kabul edilir, aksi takdirde hipotez reddedilir. Hipotezin kabul edilmesi, seçilen anlamlılık düzeyinde, ana kitle ortalamaları arasında istatistiksel olarak anlamlı bir fark olmadı 1, yani ele alınan tüm grupların aynı ana kitleden rasgele seçilen örnekler olarak kabul edilece i anlamına gelmektedir.

$$F = \frac{s_M^2}{s_0^2}$$
(6.7)

Varyans analizine örnek olarak, her biri n=22 gözlem de erine sahip temsili k=5 ivme kaydı setine ait veriler (Tablo 6.2) ile hesaplar gösterilmi tir. Tablo 6.2'de verilen de erler kullanılarak serbestlik dereceleri belirlenmi , gruplar arası kareler toplamı (*GAKT*) ile grup içi kareler toplamı (*G KT*) hesaplanmı tır. Daha sonra gruplar arası ve grup içi varyans de erleri hesaplanmı ve *F* istatisti i bulunmu tur. Gruplar arası ve grup içi serbestlik dereceleri ile seçilen %5 anlamlılık düzeyine göre  $F_{kr}$  okunarak *F* istatisti i ile kıyaslanmı tır. Örnek varyans analizi için yapılan bu hesaplamalar Tablo 6.3'te verilmi tir.

Tablo 6.3'te verilen de erler ile yapılan tek yönlü varyans analizi sonucunda F=0.278 bulunmu tur. F tablosundan, serbestlik dereceleri (sırası ile 4 ve 105) ve anlamlılık düzeyine göre  $F_{kr}=2.458$  olarak okunmu tur. F de eri,  $F_{kr}$  de erinden küçük oldu undan hipotez kabul edilmi olur. Yani, Tablo 6.2'de verilen ve aynı

hedef spektrumla uyumlu temsili be set için elde edilen ortalama talepler, %5 anlamlılık düzeyinde aynı ana kitleden rastgele seçilen örnekler olarak kabul edilir.

| vme Kaydı | Set 1  | Set 2  | Set 3  | Set 4  | Set 5  |
|-----------|--------|--------|--------|--------|--------|
| 1.Kayıt   | 3.85   | 4.88   | 10.16  | 3.39   | 4.84   |
| 2.Kayıt   | 2.11   | 9.87   | 3.18   | 14.07  | 2.30   |
| 3.Kayıt   | 10.41  | 7.45   | 6.06   | 7.16   | 6.80   |
| 4.Kayıt   | 17.06  | 5.13   | 9.06   | 5.42   | 5.01   |
| 5.Kayıt   | 10.45  | 6.25   | 6.19   | 9.71   | 14.53  |
| 6.Kayıt   | 2.09   | 5.31   | 1.21   | 5.62   | 4.52   |
| 7.Kayıt   | 4.27   | 18.86  | 11.75  | 8.32   | 13.82  |
| 8.Kayıt   | 1.18   | 4.73   | 7.07   | 4.37   | 5.29   |
| 9.Kayıt   | 2.47   | 3.72   | 4.75   | 2.31   | 2.44   |
| 10.Kayıt  | 6.22   | 4.59   | 8.99   | 3.33   | 1.11   |
| 11.Kayıt  | 18.13  | 1.35   | 5.94   | 5.56   | 3.41   |
| 12.Kayıt  | 3.87   | 4.80   | 10.16  | 3.44   | 4.85   |
| 13.Kayıt  | 2.12   | 9.91   | 3.17   | 14.01  | 2.28   |
| 14.Kayıt  | 10.53  | 7.48   | 6.07   | 7.21   | 6.72   |
| 15.Kayıt  | 17.06  | 5.18   | 9.07   | 5.53   | 5.08   |
| 16.Kayıt  | 10.46  | 6.31   | 6.25   | 9.73   | 14.43  |
| 17.Kayıt  | 2.09   | 5.30   | 1.19   | 5.58   | 4.53   |
| 18.Kayıt  | 4.19   | 19.31  | 11.73  | 8.30   | 13.75  |
| 19.Kayıt  | 1.17   | 4.79   | 7.00   | 4.36   | 5.46   |
| 20.Kayıt  | 2.46   | 3.74   | 4.76   | 2.29   | 2.41   |
| 21.Kayıt  | 6.20   | 4.58   | 8.77   | 3.35   | 1.11   |
| 22.Kayıt  | 18.45  | 1.34   | 5.90   | 5.69   | 3.41   |
| Toplam    | 156.84 | 144.88 | 148.43 | 138.75 | 128.10 |
| Ortalama  | 7.13   | 6.59   | 6.75   | 6.31   | 5.82   |

Tablo 6.2: Örnek tek yönlü varyans analiz verileri

Tez çalı masında, her bir zemin sınıfı için 30 ivme kaydı takımı seti kullanılmı tır. Her bir set için de 22 analiz ile ötelenme talepleri elde edilmi tir. Yani her bir zemin sınıfı için, 30 ivme kaydı takımı seti toplam grup sayısını (k=30) ve 22 analiz ise her gruptaki gözlem sayısını (n=22) ifade etmektedir. Varyans analizi için; anlamlılık düzeyi  $\Gamma$ =0.05 alınmı tır. Gruplar arası ve grup içi serbestlik derecesi ise sırasıyla k-1=29 ve N-k=630'dur. Buna göre tüm analizler için  $F_{kr}$ =1.486 olacaktır.

| <b>Tablo 6.3:</b> Ornek tek yönlü varyans analızı için hesaplanan de erle | Örnek tek yönlü varyans analizi için hesaplanan de erler |
|---------------------------------------------------------------------------|----------------------------------------------------------|
|---------------------------------------------------------------------------|----------------------------------------------------------|

| Kaynak        | Kareler Toplamı | Serbestlik Derecesi | Varyans | F de eri |
|---------------|-----------------|---------------------|---------|----------|
| Gruplar Arası | 21.08           | <i>k</i> -1=4       | 5.27    | 0.278    |
| Grup çi       | 1992.07         | <i>N-k</i> =105     | 18.97   |          |
| Toplam        | 2013.16         |                     |         | -        |

## 6.3 Varyans Analiz Sonuçları

Tek yönlü varyans analizi sonuçları maksimum çatı ötelenmesi oranı talepleri için Tablo 6.4'te, maksimum göreli kat ötelenmesi oranı talepleri için Tablo 6.5'te verilmi tir.

Tablo 6.4: Maksimum çatı ötelenmesi oranı için varyans analizi sonuçları

| Zemin | F     | $F_{kr}$ |
|-------|-------|----------|
| ZB    | 0.596 |          |
| ZC    | 0.404 | 1.486    |
| ZD    | 0.360 |          |

Tablo 6.4'te görüldü ü gibi tüm zemin sınıfları için F de eri  $F_{kr}$  de erinin oldukça altındadır. Tablo 6.5'te ise, tüm zemin sınıfları için ve tüm katlarda, maksimum göreli kat ötelenmesi talepleri için hesaplanan F de erleri,  $F_{kr}$  de erinin altındadır. Bu sonuçlara göre, çalı mada kullanılan betonarme bina ve zemin sınıfları için geçerli olmak üzere, %5 anlamlılık düzeyinde, aynı hedef spektrumla uyumlu farklı ivme setlerinden elde edilen ortalama ötelenme talepleri arasında istatistiksel olarak anlamlı bir fark yoktur. Yani, aynı hedef spektrumla uyumlu farklı ivme setlerinden elde edilen ötelenme talepleri, aynı popülasyondan rastgele seçilen örnekler olarak kabul edilebilir.

| Zemin | Kat | F     | $F_{kr}$ |
|-------|-----|-------|----------|
|       | 5   | 0.290 |          |
|       | 4   | 0.372 |          |
| ZB    | 3   | 0.531 |          |
|       | 2   | 0.635 |          |
|       | 1   | 0.648 |          |
|       | 5   | 0.265 |          |
| ZC    | 4   | 0.288 |          |
|       | 3   | 0.410 | 1.486    |
|       | 2   | 0.434 |          |
|       | 1   | 0.440 |          |
|       | 5   | 0.200 |          |
|       | 4   | 0.192 |          |
| ZD    | 3   | 0.279 |          |
|       | 2   | 0.389 |          |
|       | 1   | 0.453 |          |

|--|

#### 6.4 Örnekleme Da ılımı ve Ortalamanın Güven Aralı 1

Tamamının gözlenmesi imkansız olan ana kitleden alınan sınırlı sayıda örnekten elde edilen verilerden faydalanarak, bu örneklerin alındı 1 ana kitle (popülasyon) hakkında bilgi edinmek ve çıkarımlarda bulunmak, çıkarımsal istatisti in konusudur. Çıkarımsal istatistik, örnekleme ve örnekleme da ılımı kavramlarına dayanır (Gürsakal, 2013).

Örnekleme da ılımı, aynı ana kitleden alınacak tüm olası örnekler için bir istatisti in da ılımı olarak tanımlanabilir. Dolayısıyla, bir istatisti in de eri, ana kitleden alınacak örnekleme ba lıdır. Bu nedenle, örneklem istatisti i bir rastgele de i kendir ve bir olasılık da ılımına sahiptir. statisti in olasılık da ılımına ise örnekleme da ılımı adı verilir. Örnekleme da ılımları iki önemli istatistik ile tanımlanabilir: ortalama ve varyans.

Örneklerin ortalamasının (*m*) tam olarak örneklerin alındı 1 ana kitlenin ortalaması  $\mu$ 'ye e it olmasını beklenmemektedir ancak  $\mu$ 'ye yakın olacaktır. Bu nedenle, nokta tahmininden ziyade bazen belli bir güven derecesinde  $\mu$ 'nün içinde bulundu u bir aralık belirleyebilmek daha önemli hale gelir. Böyle aralık tahmin elde etmek için nokta tahmin edicinin olasılık da ılımından yararlanılır (Palancı ve di . 2018). Ana kitle parametresi  $\mu$  için, aralık tahminlerinin olasılık bildirimi Denklem 6.8'de verilmi tir.

$$P(1 \le - \le u) = 1 - r \quad ; \quad 0 < r < 1 \tag{6.8}$$

Denklem 6.8'de *l* ve *u* de eri sırası ile güven aralı ının alt ve üst sınırlarını,  $\Gamma$  anlamlılık düzeyini, (1- $\Gamma$ ) güven düzeyini, (*l*,*u*) aralı 1  $\mu$  parametresi için %100(1-) güven aralı ını ifade etmektedir.

Ortalaması  $\mu$  ve varyansı <sup>2</sup> olan ve normal da 11di 1 bilinen bir ana kitleden alınan *n* boyutunda bir örnek için, örnek ortalaması *m*'nin de eri, örnekteki rastgele de i kenlerin de erleri kullanılarak hesaplanır. Örnek ortalamasının, ana kitle ortalaması  $\mu$  merkezli oldu u ve normal da 11di 1 beklenir ve örnek büyüklü ü arttıkça örnek varyansı yani saçılım azalır (Denklem 6.9).

$$E[m] = \sim \quad \text{ve} \quad Var(m) = \frac{\dagger^2}{n} \tag{6.9}$$

Ortalaması  $\mu$  ve varyansı <sup>2</sup> olan bir ana kitleden alınan örnek göz önüne alındı ında, *n* yeterince büyük ise, Merkezi Limit Teoremi, ana kitle normal bir da ılıma sahip olmasa bile örnek da ılımının normal oldu unu belirtir. Bu durumda örnek da ılımının ortalaması ve varyansı yine Denklem 6.9'da verildi i gibi olacaktır.

Normal da ıldı ı kabul edilen bir örnek olması durumunda, ana kitle ortalamasının güven aralı ı için verilen Denklem 6.8, Denklem 6.10'daki gibi düzenlenebilir. Denklem 6.10'da s örnek standart sapmasını, z ise standart normal de i keni temsil etmektedir.

$$P(l < \sim < u) = P\left[m - z_{r/2} \frac{s}{\sqrt{n}} \le \sim \le m + z_{r/2} \frac{s}{\sqrt{n}}\right] = 1 - r$$
(6.10)

Ana kitle ortalaması ile ilgili sonuç çıkarımında ana kitlenin olasılık da ılımı ancak örnek sayısı n < 30 ise gündeme gelir. E er n < 30 ise ve ana kitlenin da ılımı normal varsayılırsa, ana kitle varyansının bilinmesi durumunda normal da ılım; ana kitle varyansının bilinmemesi durumunda *t*-da ılımı kullanılır.

Tez çalı masında, her bir zemin sınıfı için 30 ivme seti kullanılmı tır. Bu setlerin her biri için elde edilen  $m_{U/H}$  de eri, bu de erle ilgili ana kitleden (ortalaması  $\sim_{U/H}$ ) rastgele çekilmi n=30 büyüklü üne sahip bir örne i temsil etmektedir. Benzer ekilde, bu setlerin her biri için elde edilen  $m_{U/h}$  de eri de, ilgili ana kitleden (ortalaması  $\sim_{U/h}$ ) rastgele çekilmi n=30 büyüklü üne sahip bir örne i temsil etmektedir. Benzer ekilde, bu setlerin her biri için elde edilen  $m_{U/h}$  de eri de, ilgili ana kitleden (ortalaması  $\sim_{U/h}$ ) rastgele çekilmi n=30 büyüklü üne sahip bir örne i temsil etmektedir. O halde, örneklere ait bu verilerden faydalanarak, ötelenme oranı taleplerine ait ana kitlelerin ortalamasının güven aralı 1 tahmin edilebilir.



ekil 6.1: Ortalamanın güven aralı ına ait ematik gösterim

Örnek büyüklü ü n=30 oldu u için ana kitle varyansı bilinmemesine ra men, örne in normal da ıldı ı kabul edilerek Denklem 7.3 ile ana kitle ortalamasının güven aralı ı tahmin edilmi tir. Bu çalı mada, %90 ve %95 güven düzeyi için ayrı ayrı güven aralı ı tahmini yapılmı tır. ekil 7.1'de Denklem 7.3 ile verilen ana kitle ortalamasına ait güven aralı ının %95 güven düzeyi için örnek gösterimi verilmi tir. %90 ve %95 güven düzeyi için standart normal de i kenin de eri sırası ile  $z_{0.05}=1.64$ ve  $z_{0.025}=1.96$  alınmı tır.

Tablo 6.6'da maksimum çatı ötelemesi oranı talepleri için ivme kaydı setlerinden elde edilecek  $m_{U/H}$  de erlerinin ait oldu u ana kitlenin ortalaması  $\sim_{U/H}$  için %90 ve %95 güven aralı 1 tahminleri verilmi tir. Tabloda *m* ve *s*, 30 sete ait  $m_{U/H}$  de erlerinin sırası ile ortalamasını ve standart sapmasını ifade etmektedir. Tablo 6.6'ya göre, ZB sınıfı zeminlerle uyumlu ivme setlerinden elde edilecek  $m_{U/H}$  de erlerinin %90'1, 0.0046-0.0051 arasında olacaktır.  $m_{U/H}$  de erlerinin %90'1, ZC sınıfı zeminlerle uyumlu setler için 0.0106-0.0118 arasında, ZD sınıfı zeminlerle uyumlu setler için 0.0106-0.0118 arasında, ZD sınıfı zeminlerle uyumlu setler için 0.0134-0.0148 arasında olacaktır. Güven düzeyi %95 alınırsa, ZB, ZC ve ZD zemin sınıfları için  $m_{U/H}$  de erlerine ait güven aralı 1 sırası ile 0.045-0.0051, 0.0105-0.0119 ve 0.0134-0.0148 olmaktadır.

**Tablo 6.6:**  $\sim_{U/H}$  için güven aralı 1

| Zemin | т      | S      | $l_{0.90}$ | $u_{0.90}$ | $l_{0.95}$ | $u_{0.95}$ |
|-------|--------|--------|------------|------------|------------|------------|
| ZB    | 0.0048 | 0.0008 | 0.0046     | 0.0051     | 0.0045     | 0.0051     |
| ZC    | 0.0112 | 0.0019 | 0.0106     | 0.0118     | 0.0105     | 0.0119     |
| ZD    | 0.0141 | 0.0019 | 0.0135     | 0.0146     | 0.0134     | 0.0148     |

Tablo 6.7'de maksimum göreli kat ötelenmesi oranı talepleri için ivme kaydı setlerinden elde edilecek  $m_{u/h}$  de erlerinin ait oldu u ana kitlenin ortalaması  $\sim_{u/h}$  için %90 ve %95 güven aralı 1 tahminleri verilmi tir. Tabloya göre, ZB sınıfı zeminlerle uyumlu ivme setlerinden elde edilecek  $m_{u/h}$  de erlerinin %90'1, birinci katta 0.0062-0.0070 ve ikinci katta 0.0068-0.0076 arasında olacaktır. ZC zemin sınıfı için  $m_{u/h}$ de erlerinin %90'1, birinci katta 0.0158-0.0178 ve ikinci katta 0.0160-0.0179 arasında olacaktır. ZD zemin sınıfı için ise  $m_{u/h}$  de erlerinin %90'1, birinci katta 0.0196-0.0217 ve ikinci katta 0.0202-0.0220 arasında olacaktır. Güven düzeyi %95'e çıktı ında, güven aralı 1 biraz daha açılmaktadır. Örne in ZB sınıfı zemin için uyumlu ivme setlerinden elde edilecek  $m_{u/h}$  de erlerinin %95'i, birinci katta 0.0061-0.0070 ve ikinci katta 0.0067-0.0077 arasında olacaktır.

| Zemin | Kat | т      | S      | $l_{0.90}$ | $u_{0.90}$ | $l_{0.95}$ | $u_{0.95}$ |
|-------|-----|--------|--------|------------|------------|------------|------------|
|       | 5   | 0.0024 | 0.0002 | 0.0024     | 0.0025     | 0.0024     | 0.0025     |
|       | 4   | 0.0045 | 0.0004 | 0.0043     | 0.0046     | 0.0043     | 0.0046     |
| ZB    | 3   | 0.0061 | 0.0009 | 0.0058     | 0.0063     | 0.0057     | 0.0064     |
|       | 2   | 0.0072 | 0.0013 | 0.0068     | 0.0076     | 0.0067     | 0.0077     |
|       | 1   | 0.0066 | 0.0013 | 0.0062     | 0.0070     | 0.0061     | 0.0070     |
|       | 5   | 0.0039 | 0.0003 | 0.0038     | 0.0040     | 0.0038     | 0.0040     |
|       | 4   | 0.0083 | 0.0008 | 0.0081     | 0.0086     | 0.0080     | 0.0086     |
| ZC    | 3   | 0.0132 | 0.0020 | 0.0126     | 0.0138     | 0.0125     | 0.0139     |
|       | 2   | 0.0170 | 0.0032 | 0.0160     | 0.0179     | 0.0158     | 0.0181     |
|       | 1   | 0.0168 | 0.0034 | 0.0158     | 0.0178     | 0.0156     | 0.0180     |
|       | 5   | 0.0042 | 0.0003 | 0.0041     | 0.0043     | 0.0041     | 0.0043     |
|       | 4   | 0.0099 | 0.0007 | 0.0097     | 0.0101     | 0.0096     | 0.0102     |
| ZD    | 3   | 0.0166 | 0.0017 | 0.0161     | 0.0171     | 0.0160     | 0.0172     |
|       | 2   | 0.0211 | 0.0030 | 0.0202     | 0.0220     | 0.0200     | 0.0222     |
|       | 1   | 0.0207 | 0.0035 | 0.0196     | 0.0217     | 0.0194     | 0.0219     |

**Tablo 6.7:**  $\sim_{U/h}$  için güven aralı 1

# 7. SONUÇ VE ÖNER LER

Bu çalı mada, TBDY ile uyumlu olacak ekilde olu turulmu farklı ivme kaydı setleri kullanılarak yapılan zaman tanım alanında analiz sonucunda üç boyutlu bir betonarme bina için elde edilen yapısal tepki parametreleri istatistiksel olarak de erlendirilmi tir. Yapısal tepki parametreleri olarak maksimum çatı ötelenmesi ( $_{mak}$ ), maksimum çatı ötelenmesi oranı ( $_{mak}/H$ ), maksimum göreli kat ötelenmesi ( $u_{mak}$ ) ve maksimum göreli kat ötelenmesi oranı ( $u_{mak}/H$ ) seçilmi tir. Çalı mada, ayrıca, aynı hedef spektrum ile uyumlu olarak elde edilen farklı ivme kaydı setleri kullanılarak yapılan analiz sonuçlarına göre, bu setlere ait yapısal tepkiler arasındaki farkın istatistiksel olarak anlamlı olup olmadı ını ara tırılmı tır. Son olarak maksimum ötelenme taleplerinin ortalaması için güven aralı 1 tahminleri yapılmı tır.

Kullanılan ivme kaydı setleri, 50 yılda a ılma olasılı 1 %10 olan deprem düzeyi (TBDY'de tanımlanan DD2 deprem düzeyi) ve Denizli il sınırları içerisinde bulunan bir konum ile uyumlu yatay elastik tasarım spektrumları dikkate alınarak elde edilmi tir. ZB, ZC ve ZD zemin sınıfları için tanımlanmı yatay elastik tasarım spektrumları ayrı ayrı dikkate alınmı ve her bir zemin sınıfı için 30 farklı ivme kaydı takımı seti elde edilmi tir. Analizlerde toplam 90 ivme kaydı takımı seti kullanılmı tır. Her bir ivme kaydı takımı setinde 11 ivme kaydı takımı yani 22 ivme kaydı bulunmaktadır.

Betonarme binanın analizleri ile, bir ivme kaydı takımı setinde bulunan her bir ivme kaydı takımı için ayrı ayrı maksimum çatı ötelenmesi talepleri ( $U_{mak}$ ) ve maksimum göreli kat ötelenmesi talepleri ( $u_{mak}$ ) elde edilmi tir. Bu talepler kullanılarak, bina için maksimum çatı ötelenmesi oranı ( $U_{mak}/H$ ) ve her bir kat için maksimum göreli kat ötelenmesi oranı ( $u_{mak}/h$ ) talepleri hesaplanmı tır. Daha sonra her bir set için  $U_{mak}/H$  de erlerinin ortalaması ( $m_{U/H}$ ), standart sapması ( $s_{U/H}$ ) ve varyasyon katsayısı ( $CoV_{U/H}$ ) ile  $u_{mak}/h$  de erlerinin ortalaması ( $m_{U/h}$ ), standart sapması ( $s_{U/h}$ ) ve varyasyon katsayısı ( $CoV_{U/h}$ ) hesaplanmı tır. Bu de erler, tez çalı ması kapsamında istatistiksel de erlendirmelerin yapılması amacıyla kullanılmı tır. Tez çalı ması kapsamında yapılan çalı malar sonucunda a a ıda maddeler halinde ifade edilen sonuçlara ula ılmı tır:

- Betonarme bina için herhangi bir zemin sınıfı ile uyumlu, farklı setlere ait  $m_{\cup}$  ve  $CoV_{\cup}$  de erlerinin, kullanılan ivme setine ba lı olarak rastgele de i ti i görülmü tür. Yani, aynı hedef spektrumla uyumlu olsa bile, farklı ivme setleri kullanıldı ında, her bir set için farklı  $m_{\cup}$  ve  $CoV_{\cup}$  de erlerinin elde edilebilece i anla ılmaktadır.
- Maksimum çatı ötelenmesi taleplerinin, beklendi i gibi, zemin sınıfı ZB'den ZD'ye de i tikçe arttı ı gözlenmi tir. vme setleri için hesaplanan m de erleri, ZB zemin sınıfı için 5.82cm-10.90cm arasında, ZC zemin sınıfı için 13.72cm-25.14cm arasında ve ZD zemin sınıfı 17.45cm-26.79cm arasında de i mektedir.
- *m* de erlerinin bina yüksekli ine bölünmesi ile elde edilen maksimum çatı ötelenmesi oranı (*m*  $_{/H}$ ) talepleri, ZB zemin sınıfı ile uyumlu ivme setleri için %0.38-0.70 arasında, ZC zemin sınıfı ile uyumlu ivme setleri için %0.89-1.62 arasında ve ZD zemin sınıfı ile uyumlu ivme setleri için %1.13-1.73 arasında de i mektedir. vme kaydı setlerinden elde edilecek *m*  $_{/H}$  de erlerinin ortalaması (beklenen de eri) ise ZB, ZC ve ZD zemin sınıfı için sırası ile %0.48, %1.12 ve %1.41 olarak hesaplanmı tır.
- CoV /H de erleri, ZB zemin sınıfı ile uyumlu ivme setleri için 0.33-1.47 arasında, ZC zemin sınıfı ile uyumlu ivme setleri için 0.59-1.83 arasında ve ZD zemin sınıfı ile uyumlu ivme setleri için 0.47-1.45 arasında de i mektedir. vme kaydı setlerinden elde edilecek CoV /H de erlerinin ortalaması (beklenen de eri) ise ZB, ZC ve ZD zemin sınıfı için sırası ile 0.83, 1.09 ve 0.95 olarak hesaplanmı tır. Varyasyon katsayısının yüksek de erleri, ivme seti içerisinde yer alan kayıtlardan elde edilen maksimum çatı ötelenmesi oranı taleplerinin ortalama etrafındaki saçılımının yüksek oldu unu göstermektedir. Herhangi bir zemin sınıfı için daha dü ük veya daha yüksek saçılım elde edildi ini söylemek mümkün de ildir.
- Çalı mada ele alınan betonarme bina için maksimum göreli kat ötelenmesi oranı taleplerinin de ZB sınıfı zeminden ZD sınıfı zemine do ru gidildikçe arttı 1, binaların alt katlarında di er katlara oranla daha fazla oldu u görülmü tür. Betonarme bina için ivme setlerine ait  $m_{u/h}$  de erleri açısından

de erlendirme yapıldı ında, genel olarak ilk iki katta daha yüksek göreli kat ötelenmesi oranı talebinin elde edildi i, en üst katta ise en dü ük taleplerin gözlendi i görülmektedir. ZB sınıfı zemin ile uyumlu 30 ivme kaydı takımı seti için hesaplanan  $m_{\text{u/h}}$  de erlerinin birinci katta %0.50-%1.02 arasında, ikinci katta ise %0.58-%1.04 arasında de i ti i belirlenmi tir. Birinci ve ikinci katta, 30 sete ait  $m_{u/h}$  de erlerinin ortalaması yani beklenen de eri sırası ile %0.66 ve %0.72'dir. ZC sınıfı zemin ile uyumlu 30 ivme kaydı takımı seti için hesaplanan  $m_{\text{u/h}}$  de erlerinin birinci katta %1.20-%2.50 arasında, ikinci katta ise %1.28-%2.51 arasında de i ti i belirlenmi tir. ZC sınıfı zemin için, birinci ve ikinci katta, 30 sete ait  $m_{u/h}$  de erlerinin ortalaması yani beklenen de eri sırası ile %1.68 ve %1.70'dir. ZD sınıfı zemin ile uyumlu 30 ivme kaydı takımı seti için hesaplanan  $m_{u/h}$  de erlerinin birinci katta %1.56-%2.70 arasında, ikinci katta ise %1.67-%2.63 arasında de i ti i belirlenmi tir. ZD sınıfı zemin için, birinci ve ikinci katta, 30 sete ait  $m_{\rm wh}$  de erlerinin ortalaması yani beklenen de eri sırası ile %2.07 ve %2.11'dir.

En yüksek göreli kat ötelenmesi oranı taleplerinin elde edildi i birinci ve ikinci kat için, ivme kaydı takımlarından elde edilen ötelenme taleplerinin sete ait ortalama etrafındaki saçılımını temsil eden  $CoV_{u/h}$  de erleri birinci katta ZB sınıfı zemin için 0.33-1.62 arasında, ZC sınıfı zemin için 0.67-1.97 arasında ve ZD sınıfı zemin için 0.49-1.64 arasında de i mektedir. Bu katta, 30 sete ait  $CoV_{u/h}$ de erlerinin ortalaması yani beklenen de eri ZB, ZC ve ZD zemin sınıfı için sırası ile 0.92, 1.22 ve 1.05 olarak hesaplanmı tır. kinci kata ait CoVu/hilde erleri ZB sınıfı zemin için 0.39-1.51 arasında, ZC sınıfı zemin için 0.62-1.92 arasında ve ZD sınıfı zemin için 0.47-1.51 arasında de i mektedir. Bu katta, 30 sete ait  $CoV_{w/h}$ de erlerinin ortalaması yani beklenen de eri ZB, ZC ve ZD zemin sınıfı için sırası ile 0.90, 1.15 ve 0.98 olarak hesaplanmı tır. Buna göre, göreli kat ötelenmesi oranı taleplerinin set içerisindeki saçılımı da oldukça yüksektir. Zemin sınıfları açısından bakıldı ında, saçılımın zemin sınıfının de i imi ile ili kisi olmadı ı, tüm zemin sınıfları için ivme setlerine ba lı olarak rastgele de i ti i görülmektedir.

- Analiz sonuçları hem *m* hem de  $m_{u/h}$  de erlerinin, aynı hedef spektrumla uyumlu farklı ivme setleri için rastgele de i mekte oldu unu göstermi tir. Bilindi i gibi bu de erler TBDY'ye göre tasarım veya performans de erlendirmesi için dikkate alınabilmektedir. Bu durum gözönünde bulundurularak, aynı hedef spektrumla uyumlu farklı ivme setlerinden elde edilen yapısal tepkiler arasındaki farkın düzeyinin incelenmesi amaçlanmı tır. Bu amaçla maksimum ötelenme talepleri ve maksimum göreli kat ötelenmesi talepleri ayrı ayrı dikkate alınarak tek yönlü varyans analizi yapılmı tır. Varyans analizi sonuçları, tez çalı masında kullanılan betonarme bina için, aynı zemin sınıfı ile uyumlu olarak elde edilen farklı ivme setleri kullanılarak hesaplanan ötelenme taleplerinin, %5 anlamlılık düzeyi ile aynı ana kitleden (aynı populasyodan) rastgele seçilen örnekler olarak kabul edilebilece ini göstermi tir. Ba ka bir deyi le, aynı hedef spektrumla uyumlu farklı ivme setlerinden elde edilen yapısal tepkiler arasındaki fark, %5 anlamlılık düzeyi ile istatistiksel olarak anlamlı de ildir.
- Maksimum çatı ötelemesi oranı talepleri için ivme kaydı setlerinden elde edilecek  $m_{U/H}$  de erlerinin ait oldu u ana kitlenin ortalaması  $\sim_{U/H}$  için %90 ve %95 güven aralı 1 tahminleri verilmi tir. ZB sınıfı zeminlerle uyumlu ivme setlerinden elde edilecek  $m_{U/H}$  de erlerinin %90'1, 0.0046-0.0051 arasında olacaktır.  $m_{U/H}$  de erlerinin %90'1, ZC sınıfı zeminlerle uyumlu setler için 0.0106-0.0118 arasında, ZD sınıfı zeminlerle uyumlu setler için 0.0134-0.0148 arasında olacaktır. Güven düzeyi %95 alınırsa, ZB, ZC ve ZD zemin sınıfları için  $m_{U/H}$  de erlerine ait güven aralı 1 sırası ile 0.0045-0.0051, 0.0105-0.0119 ve 0.0134-0.0148 olmaktadır.
- Maksimum göreli kat ötelenmesi oranı talepleri için ivme kaydı setlerinden elde edilecek  $m_{u/h}$  de erlerinin ait oldu u ana kitlenin ortalaması  $\sim_{u/h}$  için %90 ve %95 güven aralı ı tahminleri bulunmu tur. ZB sınıfı zeminlerle uyumlu ivme setlerinden elde edilecek  $m_{u/h}$  de erlerinin %90'ı, birinci katta 0.0062-0.0070 ve ikinci katta 0.0068-0.0076 arasında olacaktır. ZC zemin sınıfı için  $m_{u/h}$  de erlerinin %90'ı, birinci katta 0.0158-0.0178 ve ikinci katta 0.0160-0.0179 arasında olacaktır. ZD zemin sınıfı için ise  $m_{u/h}$  de erlerinin %90'ı, birinci katta 0.0196-0.0217 ve ikinci katta 0.0202-0.0220 arasında olacaktır. Güven düzeyi %95'e çıktı ında, güven aralı ı biraz daha

açılmaktadır. ZB sınıfı zemin için uyumlu ivme setlerinden elde edilecek  $m_{u/h}$  de erlerinin %95'inin, birinci katta 0.0061-0.0070 ve ikinci katta 0.0067-0.0077 arasında olaca 1, ZC sınıfı zemin için uyumlu ivme setlerinden elde edilecek  $m_{u/h}$  de erlerinin %95'inin, birinci katta 0.0156-0.0180 ve ikinci katta 0.0158-0.0181 arasında olaca 1, ZD sınıfı zemin için uyumlu ivme setlerinden elde edilecek  $m_{u/h}$  de erlerinin %95'inin, birinci katta 0.0156-0.0180 ve ikinci katta 0.0158-0.0181 arasında olaca 1, ZD sınıfı zemin için uyumlu ivme setlerinden elde edilecek  $m_{u/h}$  de erlerinin %95'inin ise birinci katta 0.0194-0.0219 ve ikinci katta 0.0200-0.0222 arasında olaca 1 görülmü tür.

Bu çalı mada elde edilen sonuçlar, ivme kaydı seçiminde kullanılan katalog, analiz için kullanılan bina modeli ve hedef spektrum dikkate alınarak bu çalı mada kullanılmak üzere elde edilen ivme setleri için geçerlidir. Çalı mada elde edilen sonuçların daha geni bir ölçüde de erlendirilmesi amacı ile a a ıda yer alan çalı maların da yapılmasının uygun olaca ı dü ünülmektedir.

- Bu çalı mada, DD-2 deprem düzeyi dikkate alınarak belirli bir koordinat için zemin sınıflarına ait yatay elastik tasarım spektrumu, ivme kaydı setlerinin elde edilmesi için hedef spektrum olarak tanımlanmı tır. Türkiye Deprem Tehlike Haritası'nda farklı deprem düzeyi ve farklı koordinatlar için elde edilecek farklı hedef spektrumlar dikkate alınarak benzer çalı malar yapılabilir.
- Çalı mada sadece bir betonarme bina modeli kullanılmı tır. Bu sebeple, bu çalı mada elde edilen sonuçların genellenmesi mümkün de ildir. Farklı betonarme bina modelleri dikkate alınarak yapılacak çalı malar ile bu konuda daha fazla bilgi edinilmesi mümkündür.
- Güvenilirlik esaslı tasarım veya de erlendirme amacıyla, yapısal tepkilere ait olasılık da ılımlarının tahminine yönelik çalı malar için farklı ta ıyıcı sistemler dikkate alınarak benzer çalı maların yapılmasının da mevcut bilgi birikimine katkı sa layaca ı dü ünülmektedir.

# 8. KAYNAKLAR

Akkar, S., Sandikkaya, M.A., Senyurt, M., Sisi, A.A., Ay, B.Ö., Traversa, P., Douglas, J., Cotton, F., Luzi, L., Hernandez, B., and Godey, S., "Reference Database for Seismic Ground- Motion in Europe (RESORCE)", *Bulletin of Earthquake Engineering*, 12, 311-339, (2014).

Ambraseys, N.N., Douglas, J., Rinaldis, D., Berge, T.C., Suhadolc, P., Costa, G., Sigbjornsson, R. ve Smit, P., "Dissemination of European Strong-Motion Data", *Cd-Rom Collection. UK: Engineering and Physical Sciences Research Council*, (2004).

Amasralı, S., Çok Katlı Betonarme Yapıların Üç Boyutlu Analiz ve Tasarımı, STA4-CAD, Ver.13, 1, stanbul, (2000).

Ancheta, T.D., Darragh, R.B., Stewart, J.P., Seyhan, E., Silva, W.J., Chiou, B.S.-J., Wooddell, K.E., Graves, R.W., Kottke, A.R., Boore, D.M., Kishida T., and Donahue, J.L., "NGA-West2 Database", *Earthquake Spectra*, 30, 989-1005, (2014).

ASCE. *Seismic Evaluation of Existing Buildings*: American Society of Civil Engineers (ASCE Standard), 31-03, America, (2003).

ASCE 7-10. *Minumum Design Loads for Buildings and Other Structures*, American Society of Civil Engineers, Reston, Virginia, (2010).

ASCE 7-16. *Minimum Design Loads and Associated Criteria for Buildings and Other Structures*, American Society of Civil Engineers, Reston, Virginia, (2017).

ATC-40. Seismic Evaluation and Retrofit of Concrete Buildings, California, (1996).

Ayvaz, M.T., Kayhan, A.H., Ceylan, H. ve Gurarslan, G., "Hybridizing the Harmony Search Algorithm with A Spreadsheet 'Solver' for Solving Continuous Engineering Optimization Problems", *Engineering Optimization*, 41(12), 1119-1144, (2009).

Azak, T.E., "A Predictive Model for Maximum Interstroy Drift Ratio (MIDR) and Its Implementation in Probability-Based Desing and Performance Assessment Procedures", Doktora Tezi, *Ortado u Teknik Üniversitesi, n aat Mühendisli i Anabilim Dalı, Fen Bilimleri Enstitüsü*, Ankara, (2013).

Bakio lu M., Cisimlerin Mukavemeti, Beta Basım, stanbul, (2001).

Beyer, K. ve Bommer, J.J., "Selection and Scaling of Real Accelerograms for Bi-Axial Loading" *Journal of Earthquake Engineering*, 11, 13-45, (2007).

Bo aziçi Üniversitesi Kandilli Rasathanesi ve Deprem Ara tırma Enstitüsü Bölgesel Deprem-Tsunami zleme ve De erlendirme Merkezi, Deprem Nerelerde Olu ur [online], (15/04/2017), <u>http://www.koeri.boun.edu.tr/sismo/</u> <u>2/deprem-bilgileri/genel bilgiler/</u>, (2000).

Bommer, J.J. ve Ruggeri, C, "The specification of acceleration time-histories in seismic design codes", *European Earthquake Engineering*, 16(1), 3–17, (2002).

Bommer, J.J. ve Acevedo, A.B., "The Use of Real Earthquake Accelerograms as nput to Dynamic Analysis", *Journal of Earthquake Engineering*, Special Issue, 8(1), 43–91, (2004).

Can, H. ve Özmen, B., *Türkiye'nin Depem Gerçe i Paneli*, Gazi Üniversitesi Deprem Ara tırma ve Uygulama Merkezi, Ankara, (2010).

Canbay, E., Ersoy, U., Özcebe, G., Sucuo lu, H. ve Wasti, S.T. (eds), *Binalar için Deprem Mühendisli i Temel lkeleri*, Odtü Geli tirme Vakfı, (2008).

Celep, Z. ve Kumbasar, N., *Deprem Mühendisli ine Giri*, Beta Da 111m, stanbul, (2004).

Celep, Z., Betonarme Ta ıyıcı Sistemlerde Do rusal Olmayan Davranı ve Çözümleme, Beta Da ıtım, stanbul, (2008).

Chopra, A.K., *Dynamics of Structures: Theory and Applications to Earthquake Engineering*, Englewood Cliffs, New Jersey: Prentice Hall, (1995).

Chopra, A.K ve Goel, R.K, "A Model Pushover Analysis Procedure for Estimating Seismic Demand for Buildings", *Eartquake Engineering and Structural Dynamics* 31(3), 561-582, (2002).

DBYBHY. *Deprem Bölgelerinde Yapılacak Binalar Hakkında Yönetmelik*, T.C. Bayındırlık ve skân Bakanlı 1, Afet leri Genel Müdürlü ü, Deprem Ara tırma Dairesi, Ankara, (2007).

Demir, A., "Deprem Yönetmeli i ile Uyumlu Setler Kullanılarak Dinamik Ötelenme Taleplerinin statistiksel Olarak De erlendirilmesi", Yüksek Lisans Tezi, *Pamukkale Üniversitesi, n aat Mühendisli i Anabilimdalı, Fen Bilimler Enstitüsü*, Denizli, (2015).

Dilek, M., çi, Ö. ve Gökta, A., *Uygulamalı statistik*, Mu la: Mu la Üniversitesi Yayınları, (2010).

EUROCODE-8. *Design of Structures for Earthquake Resistance, Part 1: General Rules*, Seismic Actions and Rules for Buildings, EN1998-1-2004, European Committee for Standardization, Brussels, (2004).

Fahjan, Y.M., "Türkiye Deprem Yönetmeli i Tasarım vme Spektrumuna Uygun Gerçek Deprem Kayıtlarının Seçilmesi ve Ölçeklenmesi", *MO Teknik Dergi*, 4423-4444, (2008).

Fahjan, Y.M., Vatansever S. ve Özdemir Z., "Ölçeklenmi Deprem Kayıtları ile Yapıların Do rusal ve Do rusal Olmayan Dinamik Analizleri", *ODTÜ Türkiye Deprem Mühendisli i ve Sismoloji Konferansı*, Ankara, (2011).

FEMA-356. *Prestandard and Commentary for Seismic Rehabilitation of Buildings*, Federal Emergency Management Agency, Washington, (2000).

Garcia, R.J. ve Miranda, E., "Probabilistic Estimation of Maximum nelastic Displacement Demands for Performance-Based Design", *Earthquake Engineering and Structural Dynamics*, 9, 1235-1254, (2007).

GB. *Code for Seismic Design of Buildings*, 50011- 2001, Architecture and Building Press, Beijing, China, (2001).

Ghobarah, A., "Performance-Based Design in Earthquake Engineering State of Development Engineering Structures", *Department of Civil Engineering*, McMaster University, Hamilton, Ontario, Canada, (2001).

Gupta, A. ve Krawinkler, H., "Estimation of Seismic Drift Demands for Frame Structures", *Earthquake Engineering and Structural Dynamics*, 29, 1287-1305, (2000).

Gürsakal, N., Çıkarımsal statistik- statistik 2, Bursa: Dora Yayınevi, (2013).
Iervolino, I., Maddaloni, G. ve Cosenza, E., "Eurocode-8 Compliant Real Record Sets for Seismic Analysis of Structures", *Journal of Earthquake Engineering*, 12, 54-90, (2008).

Iervolino, I., Galasso, C. ve Cosenza, E., "REXEL: Computer Aided Record Selection for Code-Based Seismic Structural Analysis", *Bulletin of Earthquake Engineering*, 8, 339-362, (2010).

nel, M., Meral, E. ve Özmen, H.B., "Betonarme Binalarda E de er Tek Serbestlik Dereceli Sistem ve 3-B Do rusal Elastik Olmayan Dinamik Analiz Deplasman Taleplerinin Kar 1la tırılması", *2. Türkiye Deprem Mühendisli i ve Sismoloji Konferansı*, Hatay, (2013).

Jayaram N., Lin T. ve Baker J.W., "A Computationally Efficient Ground-Motion Selection Algorithm for Matching a Target Response Spectrum Mean and Variance", *Earthquake Spectra*, 27(3), 797–815, (2011).

Kartal, M., Hipotez Testleri, Erzurum: afak Yayınevi, (1998).

Katsanos, E.I. ve Sextos, A.G., "ISSARS: An ntegrated Software Environment for Structure-Specific Earthquake Ground Motion Selection", *Advances in Engineering Software*, 58, 70-85, (2013).

Katsanos, E.I., Sextos, A.G. ve Manolis, G.D., "Selection of Earthquake Ground Motion Records: A State-of-the-art-review from a Structural Engineering Perspective", *Soil Dynamics And Earthquake Engineering*, 30, 157-169, (2010).

Kayhan, A.H., Korkmaz, K.A. ve Irfanoglu, A., "Selecting and Scaling Real Ground Motion Records Using Harmony Search Algorithm", *Soil Dynamics and Earthquake Engineering*, 31, 941-953, (2011).

Kayhan, A.H., "Armoni Ara tırması ile vme Kaydı Seçimi ve Ölçeklendirme", *MO Teknik Dergi*, 23(1), 5751-5775, (2012).

Kayhan, A.H., "Scaled and Unscaled Ground Motion Sets for Uni-Directional and Bi-Directional Dynamic Analysis", *Earthquake and Structures*, 10(3), 563-588, (2016).

Kayhan, A.H. ve Demir A., "Tek Serbestlik Sistemlerde Maksimum Ötelenme Talebi Üzerinde Çevrimsel Davranı Modellerinin Etkisi", *Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi*, 22(6), 442-453, (2016a). Kayhan, A.H. ve Demir, A., "Statistical Evaluation of Drift Demands of RC Frames Using Code-Compatible Real Ground Motion Record Sets", *Structural Engineering and Mechanics*, 953-977, (2016b).

Kayhan, A.H., Demir, A. ve Palancı, M., "Statistical Evaluation of Maximum Displacement Demands of SDOF Systems by Code-Compatible Nonlinear Time History Analysis", *Soil Dynamics and Earthquake Engineering*, 115, 513-530, (2018).

Kent, D.C. ve Park, R., "Flexural Members with Confined Concrete", *ASCE Journal Of The Structural Division*, (1969).

Korkmaz, A., "Kapasite Spektrumu Yöntemi ile Betonarme Çerçeve Yapıların Performans Noktalarının Belirlenmesi", *Selçuk Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi*, 20(2), 19-34, (2005).

Li, Y.R., "Nonlinear Time History and Push-Over Analyses for Seismic Design and Evulation", Ph.D Thesis, *University of Texas*, Austin, (1996).

Lin, Y. ve Miranda, E., "Estimation of Maximum Roof Displacement Demands in Regular Multistory Buildings", *Journal of Engineering Mechanics ASCE*, 136, 1-11, (2009).

Macedo, L. ve Castro, J.M., "SelEQ: An Advanced Ground Motion Record Selection and Scaling Framework", *Advances in Engineering Software*, (2017).

Mander, J.B., Priestley, M.J.N. ve Park, R., "Theoretical Stress-Strain Model For Confined Concrete", *ASCE Journal Of The Structural Engineering*, (1988).

Medina, A.R. ve Krawinkler, H., "Evaluation of Drift Demands for the Seismic Performance Assessment of Frames", *Journal of Structural Engineering*, 7, 1003-1013, (2005).

Meral, E., "Dü ük ve Orta Yükseklikteki Betonarme Yapıların Sismik Deplasman Taleplerinin De erlendirilmesi", Yüksek Lisans Tezi, *Pamukkale Üniversitesi Fen Bilimleri Enstitüsü n aat Mühendisli i Anabilim Dalı*, Denizli, (2010).

Miranda, E., "Approximate Seismic Lateral Deformation Demand in Multistory Buildings", *Journal of Structural Engineering*, 125, 417-425, (1999). Mollaioli, F. ve Bruno, S., "Influence of Site Effects on nelastic Displacement Ratios for SDOF and MDOF Systems", *Computers and Mathematics with Applications*, 55, 184–207, (2008).

Naeim, F., Alimoradi, A. ve Pezeshk, S., Selection and Scaling of Ground Motion Time Histories for Structural Design Using Genetic Algorithms, Earthquake Spectra, 20(2), 413-426, (2004).

Orhunbilge, N., Örnekleme Yöntemleri ve Hipotez Testleri, .Ü., letme Fakültesi, letme ktisadı Yayın No:405, stanbul, (1997).

Önür, Ö., "Dü ük ve Orta Yükseklikteki Betonarme Yapıların Deplasman Taleplerinin Do rusal Elastik Zaman Tanım Alanında Analizle Belirlenmesi", Yüksek Lisans Tezi, *Pamukkale Üniversitesi Fen Bilimleri Enstitüsü n aat Mühendisli i Anabilim Dalı*, Denizli, (2011).

Özmen, B., Nurlu, M. ve Gürler, H., "Co rafi Bilgi Sistemi ile Deprem Bölgelerinin ncelenmesi", Bayındırlık ve skân Bakanlı 1 Afet leri Genel Müdürlü ü, (1997).

Özmen, H.B., nel, M. ve Bilgin, H., "Betonarme Elemanların Do rusal Ötesi Davranı larının Modellenmesi", *6. Ulusal Deprem Mühendisli i Konferansı*, stanbul, (2007).

Özmen, H.B., "Dü ük ve Orta Yükseklikteki Betonarme Yapıların Deprem Performanslarını Etkileyen Faktörlerin rdelenmesi", Doktora Tezi, *Pamukkale Üniversitesi Fen Bilimler Enstitüsü Yapı Anabilim Dalı*, Denizli, (2011).

Palancı, M., Kayhan, A.H. ve Demir, A., "A Statistical Assessment on Global Drift Ratio Demands of Mid-Rise RC Buildings using Code-Compatible Real Ground Motion Records", *Bulletin of Earthquake Engineering*, 16, 5453-5488, (2018)

Priestley, M.J.N., Calvi, G.M. ve Kowalsky, M.J., "Displacement-Based Seismic Design of Structures", *IUSS Press*, Pavia, Italy, (2007).

Reyes, J.C., Gonzales, C. ve Kalkan, E., "Improved ASCE/SEI 7-10 Ground-Motion Scaling Procedure for Nonlinear Analysis of Buildings", *Journal of Earthquake Engineering*, DOI: 10.1080/13632469.2018.1526140, (2018).

Riddell, R., Garcia, J.E. ve Garces, E., "Inelastic Deformation Response of SDOF Systems Subjected to Earthquakes", *Earthquake Engineering and Structural Dynamics*, 31, 515-538, (2002).

Samanta, A. ve Huang, Y.H., "Ground-Motion Scaling for Seismic Performance Assessment of High-Rise Moment-Resisting Frame Building", *Soil Dynamic and Earthquake Engineering*, 94, 125-135, (2017).

SAP2000 V.14.2.2 CSI., Integrated finite elements analysis and design of structues basic analysis reference manual, Berkeley, USA, (2010).

SEAOC Vision 2000 Committee. *Performance-Based Seismic Engineering*, Report Prepared by Structural Engineers Association of California, Sacramento, California, (1995).

SEAONC. Subcommittee of The Structural Engineers Association of Northern California, Seismic Analysis of the Charaima Building Caraballeda, Venezuela Report No: EERC 70-4, (1970).

Shakeri, K., Khansoltani, E. ve Pessiki, S., "Ground Motion Scaling for Seismic Response Analysis by Considering Inelastic Response and Contribution of the Higher Modes", *Soil Dynamic and Earthquake Engineering*, 110, 70-85, (2018).

Sheikh, S.A. ve Uzumeri, S.M., "Analytical Model for Concrete Confinement in Tied Columns", *ASCE Journal Of The Structural Division*, (1982).

TBDY. *Türkiye Binalar Deprem Yönetmeli i*, Çevre ve ehircilik Bakanlı 1, Ankara, (2018).

Türkiye Deprem Tehlike Haritası, T.C. çi leri Bakanlı 1 Afet ve Acil Durum Yönetimi Deprem Dairesi Ba kanlı 1, https:// tdth.afad.gov.tr, (2018).

Tekin, G., "Probabilistic Earthquake Response Analysis of Single Degree of Freedom Structures", Yüksek Lisans Tezi, *Bo aziçi Üniversitesi, Fen Bilimleri Enstitüsü, n aat Mühendisli i Anabilim Dalı*, stanbul, (2010).

TS-500. Betonarme Yapıların Tasarım ve Yapım Kuralları, Türk Standartları Enstitüsü, Ankara, 67s, (2000).

Zengin, E. ve Akkar, S., "Do rusal Olmayan Dinamik Analizler için Önerilen Kayıt Seçim ve Ölçeklendirme Yöntemi", *Sekizinci Ulusal Deprem Mühendisli i Konferansı*, stanbul, (2015).

# **EKLER**

#### 9. EKLER

## EK A. Analiz Modeli çin Kiri Boyuna Donatıları

| 1.Kat |    |       |    | SC  | DL | UÇ  |   |    |    |    |    |       |    | S   | 4 | UÇ  |   |    |    |     |
|-------|----|-------|----|-----|----|-----|---|----|----|----|----|-------|----|-----|---|-----|---|----|----|-----|
| Kiri  |    |       | Üs | t   |    | -   |   | Α  | lt |    |    |       | Üs | st  |   |     |   | Α  | lt |     |
| KIII  | Mo | ontaj | Pi | lye | 1  | ave | D | üz | la | ve | Mo | ontaj | Pi | lye | 1 | ave | D | üz | 18 | ave |
| K101  | 3  | 12    | 2  | 12  | 2  | 22  | 2 | 12 | 2  | 22 | 3  | 12    | 4  | 12  |   | -   | 2 | 12 | 1  | 20  |
| K102  | 3  | 12    | 4  | 12  |    | -   | 2 | 12 | 1  | 20 | 3  | 12    | 4  | 12  | 1 | 20  | 2 | 12 | 2  | 18  |
| K103  | 3  | 12    | 4  | 12  | 1  | 20  | 2 | 12 | 1  | 18 | 3  | 12    | 4  | 12  |   | -   | 2 | 12 | 1  | 20  |
| K104  | 3  | 12    | 4  | 12  |    | -   | 2 | 12 | 1  | 20 | 3  | 12    | 2  | 12  | 2 | 22  | 2 | 12 | 2  | 22  |
| K105  | 3  | 12    | 2  | 12  | 2  | 16  | 2 | 12 | 3  | 16 | 3  | 12    | 4  | 12  | 2 | 18  | 2 | 12 | 2  | 20  |
| K106  | 3  | 12    | 4  | 12  | 2  | 18  | 2 | 12 | 2  | 20 | 3  | 12    | 4  | 12  |   | -   | 2 | 12 | 1  | 16  |
| K107  | 3  | 12    | 4  | 12  |    | -   | 2 | 12 | 1  | 16 | 3  | 12    | 4  | 12  | 3 | 14  | 2 | 12 | 2  | 20  |
| K108  | 3  | 12    | 4  | 12  | 3  | 14  | 2 | 12 | 2  | 20 | 3  | 12    | 2  | 12  | 2 | 16  | 2 | 12 | 3  | 16  |
| K109  | 3  | 14    | 2  | 12  | 3  | 16  | 2 | 12 | 2  | 22 | 3  | 14    | 4  | 12  |   | -   | 2 | 12 | 1  | 16  |
| K110  | 3  | 14    | 4  | 12  |    | -   | 2 | 12 | 1  | 16 | 3  | 14    | 4  | 12  | 1 | 12  | 2 | 12 | 4  | 12  |
| K111  | 3  | 14    | 4  | 12  | 1  | 12  | 2 | 12 | 4  | 12 | 3  | 14    | 4  | 12  |   | -   | 2 | 12 | 1  | 16  |
| K112  | 3  | 14    | 4  | 12  |    | -   | 2 | 12 | 1  | 16 | 3  | 14    | 2  | 12  | 3 | 16  | 2 | 12 | 2  | 22  |
| K113  | 3  | 12    | 2  | 12  | 2  | 16  | 2 | 12 | 3  | 16 | 3  | 12    | 4  | 12  | 2 | 18  | 2 | 12 | 2  | 20  |
| K114  | 3  | 12    | 4  | 12  | 2  | 18  | 2 | 12 | 2  | 20 | 3  | 12    | 4  | 12  |   | -   | 2 | 12 | 1  | 16  |
| K115  | 3  | 12    | 4  | 12  |    | -   | 2 | 12 | 1  | 16 | 3  | 12    | 4  | 12  | 3 | 14  | 2 | 12 | 2  | 20  |
| K116  | 3  | 12    | 4  | 12  | 3  | 14  | 2 | 12 | 2  | 20 | 3  | 12    | 2  | 12  | 2 | 16  | 2 | 12 | 3  | 16  |
| K117  | 3  | 12    | 2  | 12  | 2  | 22  | 2 | 12 | 2  | 22 | 3  | 12    | 4  | 12  |   | -   | 2 | 12 | 1  | 20  |
| K118  | 3  | 12    | 4  | 12  |    | -   | 2 | 12 | 1  | 20 | 3  | 12    | 4  | 12  | 1 | 20  | 2 | 12 | 2  | 18  |
| K119  | 3  | 12    | 4  | 12  | 1  | 20  | 2 | 12 | 2  | 18 | 3  | 12    | 4  | 12  |   | -   | 2 | 12 | 1  | 20  |
| K120  | 3  | 12    | 4  | 12  |    | -   | 2 | 12 | 1  | 20 | 3  | 12    | 2  | 12  | 2 | 22  | 2 | 12 | 2  | 22  |
| K121  | 3  | 12    | 2  | 12  | 2  | 16  | 2 | 12 | 3  | 16 | 3  | 12    | 4  | 12  | 1 | 22  | 2 | 12 | 3  | 16  |
| K122  | 3  | 12    | 4  | 12  | 1  | 22  | 2 | 12 | 3  | 16 | 3  | 12    | 4  | 12  |   | -   | 2 | 12 | 1  | 16  |
| K123  | 3  | 12    | 4  | 12  |    | -   | 2 | 12 | 1  | 16 | 3  | 12    | 4  | 12  | 1 | 22  | 2 | 12 | 2  | 20  |
| K124  | 3  | 12    | 4  | 12  | 1  | 22  | 2 | 12 | 2  | 20 | 3  | 12    | 2  | 12  | 2 | 16  | 2 | 12 | 3  | 16  |
| K125  | 3  | 14    | 2  | 12  | 2  | 22  | 2 | 12 | 2  | 22 | 3  | 14    | 4  | 12  |   | -   | 2 | 12 | 2  | 12  |
| K126  | 3  | 14    | 4  | 12  |    | -   | 2 | 12 | 2  | 12 | 3  | 14    | 4  | 12  | 1 | 16  | 2 | 12 | 2  | 18  |
| K127  | 3  | 14    | 4  | 12  | 1  | 16  | 2 | 12 | 2  | 18 | 3  | 14    | 4  | 12  |   | -   | 2 | 12 | 2  | 12  |
| K128  | 3  | 14    | 4  | 12  |    | -   | 2 | 12 | 2  | 12 | 3  | 14    | 2  | 12  | 2 | 22  | 2 | 12 | 2  | 22  |
| K129  | 3  | 12    | 2  | 12  | 3  | 12  | 2 | 12 | 4  | 12 | 3  | 12    | 4  | 12  | 1 | 22  | 2 | 12 | 4  | 12  |
| K130  | 3  | 12    | 4  | 12  | 1  | 22  | 2 | 12 | 4  | 12 | 3  | 12    | 4  | 12  |   | -   | 2 | 12 | 1  | 14  |
| K131  | 3  | 12    | 4  | 12  |    | -   | 2 | 12 | 1  | 14 | 3  | 12    | 4  | 12  | 1 | 22  | 2 | 12 | 4  | 12  |
| K132  | 3  | 12    | 4  | 12  | 1  | 22  | 2 | 12 | 4  | 12 | 3  | 12    | 2  | 12  | 3 | 12  | 2 | 12 | 4  | 12  |
| K133  | 3  | 14    | 2  | 12  | 2  | 22  | 2 | 12 | 2  | 22 | 3  | 14    | 4  | 12  |   | -   | 2 | 12 | 2  | 12  |
| K134  | 3  | 14    | 4  | 12  |    | -   | 2 | 12 | 2  | 12 | 3  | 14    | 4  | 12  | 1 | 16  | 2 | 12 | 2  | 18  |
| K135  | 3  | 14    | 4  | 12  | 1  | 16  | 2 | 12 | 2  | 18 | 3  | 14    | 4  | 12  |   | -   | 2 | 12 | 2  | 12  |
| K136  | 3  | 14    | 4  | 12  |    | -   | 2 | 12 | 2  | 12 | 3  | 14    | 2  | 12  | 2 | 22  | 2 | 12 | 2  | 22  |
| K137  | 3  | 12    | 2  | 12  | 2  | 16  | 2 | 12 | 3  | 16 | 3  | 12    | 4  | 12  | 1 | 22  | 2 | 12 | 3  | 16  |
| K138  | 3  | 12    | 4  | 12  | 1  | 22  | 2 | 12 | 3  | 16 | 3  | 12    | 4  | 12  | - |     | 2 | 12 | 1  | 16  |
| K139  | 3  | 12    | 4  | 12  |    | -   | 2 | 12 | 1  | 16 | 3  | 12    | 4  | 12  | 1 | 22  | 2 | 12 | 2  | 20  |
| K140  | 3  | 12    | 4  | 12  | 1  | 22  | 2 | 12 | 2  | 20 | 3  | 12    | 2  | 12  | 2 | 16  | 2 | 12 | 3  | 16  |

 Tablo A.1: Analiz modeli 1.kat kiri boyuna donatıları

| 2.Kat |    |       |    | S   | OL UQ |   |     |    |     |    |       |    | S   | A  | UÇ  | , |    |    |     |
|-------|----|-------|----|-----|-------|---|-----|----|-----|----|-------|----|-----|----|-----|---|----|----|-----|
| Kiri  |    |       | Ü  | st  |       |   | A   | lt |     |    |       | Ü  | st  |    |     |   | Α  | lt |     |
| IXIII | Mo | ontaj | Pi | lye | lave  | D | Düz | la | ave | Mo | ontaj | Pi | lye | 1: | ave | D | üz | la | ave |
| K201  | 3  | 12    | 2  | 12  | 2 18  | 2 | 12  | 2  | 20  | 3  | 12    | 4  | 12  |    | -   | 2 | 12 | 1  | 18  |
| K202  | 3  | 12    | 4  | 12  | -     | 2 | 12  | 1  | 18  | 3  | 12    | 4  | 12  | 1  | 14  | 2 | 12 | 1  | 22  |
| K203  | 3  | 12    | 4  | 12  | 1 14  | 2 | 12  | 1  | 22  | 3  | 12    | 4  | 12  |    | -   | 2 | 12 | 1  | 18  |
| K204  | 3  | 12    | 4  | 12  | -     | 2 | 12  | 1  | 18  | 3  | 12    | 2  | 12  | 2  | 18  | 2 | 12 | 1  | 20  |
| K205  | 3  | 12    | 2  | 12  | 3 12  | 2 | 12  | 2  | 16  | 3  | 12    | 4  | 12  | 2  | 12  | 2 | 12 | 2  | 16  |
| K206  | 3  | 12    | 4  | 12  | 2 12  | 2 | 12  | 2  | 16  | 3  | 12    | 4  | 12  |    | -   | 2 | 12 | 1  | 16  |
| K207  | 3  | 12    | 4  | 12  | -     | 2 | 12  | 1  | 16  | 3  | 12    | 4  | 12  | 1  | 18  | 2 | 12 | 2  | 16  |
| K208  | 3  | 12    | 4  | 12  | 1 18  | 2 | 12  | 2  | 16  | 3  | 12    | 2  | 12  | 3  | 12  | 2 | 12 | 2  | 16  |
| K209  | 3  | 12    | 2  | 12  | 2 18  | 2 | 12  | 3  | 14  | 3  | 12    | 4  | 12  |    | -   | 2 | 12 | 1  | 14  |
| K210  | 3  | 12    | 4  | 12  | -     | 2 | 12  | 1  | 14  | 3  | 12    | 4  | 12  | 1  | 14  | 2 | 12 | 1  | 22  |
| K211  | 3  | 12    | 4  | 12  | 1 14  | 2 | 12  | 1  | 22  | 3  | 12    | 4  | 12  |    | -   | 2 | 12 | 1  | 14  |
| K212  | 3  | 12    | 4  | 12  | -     | 2 | 12  | 1  | 14  | 3  | 12    | 2  | 12  | 2  | 18  | 2 | 12 | 3  | 14  |
| K213  | 3  | 12    | 2  | 12  | 3 12  | 2 | 12  | 2  | 16  | 3  | 12    | 4  | 12  | 1  | 18  | 2 | 12 | 2  | 16  |
| K214  | 3  | 12    | 4  | 12  | 1 18  | 2 | 12  | 2  | 16  | 3  | 12    | 4  | 12  |    | -   | 2 | 12 | 1  | 16  |
| K215  | 3  | 12    | 4  | 12  | -     | 2 | 12  | 1  | 16  | 3  | 12    | 4  | 12  | 1  | 18  | 2 | 12 | 2  | 16  |
| K216  | 3  | 12    | 4  | 12  | 1 18  | 2 | 12  | 2  | 16  | 3  | 12    | 2  | 12  | 3  | 12  | 2 | 12 | 2  | 16  |
| K217  | 3  | 12    | 2  | 12  | 1 18  | 2 | 12  | 2  | 20  | 3  | 12    | 4  | 12  |    | -   | 2 | 12 | 1  | 18  |
| K218  | 3  | 12    | 4  | 12  | -     | 2 | 12  | 1  | 18  | 3  | 12    | 4  | 12  | 1  | 14  | 2 | 12 | 1  | 22  |
| K219  | 3  | 12    | 4  | 12  | 1 14  | 2 | 12  | 1  | 22  | 3  | 12    | 4  | 12  |    | -   | 2 | 12 | 1  | 18  |
| K220  | 3  | 12    | 4  | 12  | -     | 2 | 12  | 1  | 18  | 3  | 12    | 2  | 12  | 2  | 18  | 2 | 12 | 2  | 20  |
| K221  | 3  | 12    | 2  | 12  | 2 14  | 2 | 12  | 2  | 16  | 3  | 12    | 4  | 12  | 1  | 14  | 2 | 12 | 4  | 12  |
| K222  | 3  | 12    | 4  | 12  | 1 14  | 2 | 12  | 4  | 12  | 3  | 12    | 4  | 12  |    | -   | 2 | 12 | 1  | 16  |
| K223  | 3  | 12    | 4  | 12  | -     | 2 | 12  | 1  | 16  | 3  | 12    | 4  | 12  | 1  | 14  | 2 | 12 | 4  | 12  |
| K224  | 3  | 12    | 4  | 12  | 1 14  | 2 | 12  | 4  | 12  | 3  | 12    | 2  | 12  | 2  | 14  | 2 | 12 | 2  | 16  |
| K225  | 3  | 12    | 2  | 12  | 3 16  | 2 | 12  | 2  | 18  | 3  | 12    | 4  | 12  |    | -   | 2 | 12 | 1  | 16  |
| K226  | 3  | 12    | 4  | 12  | -     | 2 | 12  | 1  | 16  | 3  | 12    | 4  | 12  | 1  | 16  | 2 | 12 | 1  | 22  |
| K227  | 3  | 12    | 4  | 12  | 1 16  | 2 | 12  | 1  | 22  | 3  | 12    | 4  | 12  |    | -   | 2 | 12 | 1  | 16  |
| K228  | 3  | 12    | 4  | 12  | -     | 2 | 12  | 1  | 16  | 3  | 12    | 2  | 12  | 3  | 16  | 2 | 12 | 2  | 18  |
| K229  | 3  | 12    | 2  | 12  | 2 14  | 2 | 12  | 3  | 12  | 3  | 12    | 4  | 12  | 1  | 16  | 2 | 12 | 3  | 12  |
| K230  | 3  | 12    | 4  | 12  | 1 16  | 2 | 12  | 3  | 12  | 3  | 12    | 4  | 12  |    | -   | 2 | 12 | 1  | 14  |
| K231  | 3  | 12    | 4  | 12  | -     | 2 | 12  | 1  | 14  | 3  | 12    | 4  | 12  | 1  | 16  | 2 | 12 | 3  | 12  |
| K232  | 3  | 12    | 4  | 12  | 1 16  | 2 | 12  | 3  | 12  | 3  | 12    | 2  | 12  | 2  | 14  | 2 | 12 | 3  | 12  |
| K233  | 3  | 12    | 2  | 12  | 3 16  | 2 | 12  | 2  | 18  | 3  | 12    | 4  | 12  |    | -   | 2 | 12 | 1  | 16  |
| K234  | 3  | 12    | 4  | 12  | -     | 2 | 12  | 1  | 16  | 3  | 12    | 4  | 12  | 1  | 16  | 2 | 12 | 1  | 22  |
| K235  | 3  | 12    | 4  | 12  | 1 16  | 2 | 12  | 1  | 22  | 3  | 12    | 4  | 12  |    | -   | 2 | 12 | 1  | 16  |
| K236  | 3  | 12    | 4  | 12  | -     | 2 | 12  | 1  | 16  | 3  | 12    | 2  | 12  | 3  | 16  | 2 | 12 | 2  | 18  |
| K237  | 3  | 12    | 2  | 12  | 2 14  | 2 | 12  | 2  | 16  | 3  | 12    | 4  | 12  | 1  | 14  | 2 | 12 | 4  | 12  |
| K238  | 3  | 12    | 4  | 12  | 1 14  | 2 | 12  | 4  | 12  | 3  | 12    | 4  | 12  |    | -   | 2 | 12 | 1  | 16  |
| K239  | 3  | 12    | 4  | 12  | -     | 2 | 12  | 1  | 16  | 3  | 12    | 4  | 12  | 1  | 14  | 2 | 12 | 4  | 12  |
| K240  | 3  | 12    | 4  | 12  | 1 14  | 2 | 12  | 4  | 12  | 3  | 12    | 2  | 12  | 2  | 14  | 2 | 12 | 2  | 16  |

 Tablo A.2: Analiz modeli 2.kat kiri boyuna donatıları

| 3.Kat |    |       |    | S   | OL U | 7<br>5 |     |    |     |    |       |    | S.  | A | UÇ  | 1<br>/ |     |    |     |
|-------|----|-------|----|-----|------|--------|-----|----|-----|----|-------|----|-----|---|-----|--------|-----|----|-----|
| Viri  |    |       | Ü  | st  |      |        | А   | lt |     |    |       | Ü  | st  |   |     |        | А   | lt |     |
| КШ    | Mo | ontaj | Pi | lye | lave | ]      | Düz | 1  | ave | Mo | ontaj | Pi | lye | 1 | ave | D      | )üz | la | ave |
| K301  | 2  | 12    | 2  | 12  | 3 12 | 2      | 12  | 1  | 20  | 2  | 12    | 4  | 12  |   | -   | 2      | 12  | 1  | 12  |
| K302  | 2  | 12    | 4  | 12  | -    | 2      | 12  | 1  | 12  | 2  | 12    | 4  | 12  | 1 | 12  | 2      | 12  | 2  | 12  |
| K303  | 2  | 12    | 4  | 12  | 1 12 | 2      | 12  | 2  | 12  | 2  | 12    | 4  | 12  |   | -   | 2      | 12  | 1  | 12  |
| K304  | 2  | 12    | 4  | 12  | -    | 2      | 12  | 1  | 12  | 2  | 12    | 2  | 12  | 3 | 12  | 2      | 12  | 1  | 20  |
| K305  | 3  | 12    | 2  | 12  | 1 14 | 2      | 12  | 1  | 16  | 3  | 12    | 4  | 12  | 1 | 12  | 2      | 12  | 2  | 12  |
| K306  | 3  | 12    | 4  | 12  | 1 12 | 2      | 12  | 2  | 12  | 3  | 12    | 4  | 12  |   | -   | 2      | 12  | 1  | 12  |
| K307  | 3  | 12    | 4  | 12  | -    | 2      | 12  | 1  | 12  | 3  | 12    | 4  | 12  | 1 | 12  | 2      | 12  | 2  | 12  |
| K308  | 3  | 12    | 4  | 12  | 1 12 | 2      | 12  | 2  | 12  | 3  | 12    | 2  | 12  | 1 | 14  | 2      | 12  | 1  | 16  |
| K309  | 3  | 12    | 2  | 12  | 1 20 | 2      | 12  | 2  | 12  | 3  | 12    | 4  | 12  |   | -   | 2      | 12  | 1  | 12  |
| K310  | 3  | 12    | 4  | 12  | -    | 2      | 12  | 1  | 12  | 3  | 12    | 4  | 12  |   | -   | 2      | 12  | 2  | 12  |
| K311  | 3  | 12    | 4  | 12  | -    | 2      | 12  | 2  | 12  | 3  | 12    | 4  | 12  |   | -   | 2      | 12  | 1  | 12  |
| K312  | 3  | 12    | 4  | 12  | -    | 2      | 12  | 1  | 12  | 3  | 12    | 2  | 12  | 1 | 20  | 2      | 12  | 2  | 12  |
| K313  | 3  | 12    | 2  | 12  | 1 14 | 2      | 12  | 1  | 16  | 3  | 12    | 4  | 12  | 1 | 12  | 2      | 12  | 2  | 12  |
| K314  | 3  | 12    | 4  | 12  | 1 12 | 2      | 12  | 2  | 12  | 3  | 12    | 4  | 12  |   | -   | 2      | 12  | 1  | 12  |
| K315  | 3  | 12    | 4  | 12  | -    | 2      | 12  | 1  | 12  | 3  | 12    | 4  | 12  | 1 | 12  | 2      | 12  | 2  | 12  |
| K316  | 3  | 12    | 4  | 12  | 1 12 | 2      | 12  | 2  | 12  | 3  | 12    | 2  | 12  | 1 | 14  | 2      | 12  | 1  | 16  |
| K317  | 2  | 12    | 2  | 12  | 3 12 | 2      | 12  | 1  | 20  | 2  | 12    | 4  | 12  |   | -   | 2      | 12  | 1  | 12  |
| K318  | 2  | 12    | 4  | 12  | -    | 2      | 12  | 1  | 12  | 2  | 12    | 4  | 12  | 1 | 12  | 2      | 12  | 2  | 12  |
| K319  | 2  | 12    | 4  | 12  | 1 12 | 2      | 12  | 2  | 12  | 2  | 12    | 4  | 12  |   | -   | 2      | 12  | 1  | 12  |
| K320  | 2  | 12    | 4  | 12  | -    | 2      | 12  | 1  | 12  | 2  | 12    | 2  | 12  | 3 | 12  | 2      | 12  | 1  | 20  |
| K321  | 2  | 12    | 2  | 12  | 2 12 | 2      | 12  | 1  | 16  | 2  | 12    | 4  | 12  | 1 | 12  | 2      | 12  | 1  | 18  |
| K322  | 2  | 12    | 4  | 12  | 1 12 | 2      | 12  | 1  | 18  | 2  | 12    | 4  | 12  |   | -   | 2      | 12  | 1  | 12  |
| K323  | 2  | 12    | 4  | 12  | -    | 2      | 12  | 1  | 12  | 2  | 12    | 4  | 12  | 1 | 12  | 2      | 12  | 1  | 18  |
| K324  | 2  | 12    | 4  | 12  | 1 12 | 2      | 12  | 1  | 18  | 2  | 12    | 2  | 12  | 2 | 12  | 2      | 12  | 1  | 16  |
| K325  | 3  | 12    | 2  | 12  | 1 22 | 2      | 12  | 1  | 18  | 3  | 12    | 4  | 12  |   | -   | 2      | 12  | 1  | 12  |
| K326  | 3  | 12    | 4  | 12  | -    | 2      | 12  | 1  | 12  | 3  | 12    | 4  | 12  | 1 | 12  | 2      | 12  | 2  | 12  |
| K327  | 3  | 12    | 4  | 12  | 1 12 | 2      | 12  | 2  | 12  | 3  | 12    | 4  | 12  |   | -   | 2      | 12  | 1  | 12  |
| K328  | 3  | 12    | 4  | 12  | -    | 2      | 12  | 1  | 12  | 3  | 12    | 2  | 12  | 1 | 22  | 2      | 12  | 1  | 18  |
| K329  | 2  | 12    | 2  | 12  | 2 12 | 2      | 12  | 1  | 16  | 2  | 12    | 4  | 12  | 1 | 12  | 2      | 12  | 1  | 16  |
| K330  | 2  | 12    | 4  | 12  | 1 12 | 2      | 12  | 1  | 16  | 2  | 12    | 4  | 12  |   | -   | 2      | 12  | 1  | 12  |
| K331  | 2  | 12    | 4  | 12  | -    | 2      | 12  | 1  | 12  | 2  | 12    | 4  | 12  | 1 | 12  | 2      | 12  | 1  | 16  |
| K332  | 2  | 12    | 4  | 12  | 1 12 | 2      | 12  | 1  | 16  | 2  | 12    | 2  | 12  | 2 | 12  | 2      | 12  | 1  | 16  |
| K333  | 3  | 12    | 2  | 12  | 1 22 | 2      | 12  | 1  | 18  | 3  | 12    | 4  | 12  |   | -   | 2      | 12  | 1  | 12  |
| K334  | 3  | 12    | 4  | 12  | -    | 2      | 12  | 1  | 12  | 3  | 12    | 4  | 12  | 1 | 12  | 2      | 12  | 2  | 12  |
| K335  | 3  | 12    | 4  | 12  | 1 12 | 2      | 12  | 2  | 12  | 3  | 12    | 4  | 12  |   | -   | 2      | 12  | 1  | 12  |
| K336  | 3  | 12    | 4  | 12  | -    | 2      | 12  | 1  | 12  | 3  | 12    | 2  | 12  | 1 | 22  | 2      | 12  | 1  | 18  |
| K337  | 2  | 12    | 2  | 12  | 2 12 | 2      | 12  | 1  | 16  | 2  | 12    | 4  | 12  | 1 | 12  | 2      | 12  | 1  | 18  |
| K338  | 2  | 12    | 4  | 12  | 1 12 | 2      | 12  | 1  | 18  | 2  | 12    | 4  | 12  |   | -   | 2      | 12  | 1  | 12  |
| K339  | 2  | 12    | 4  | 12  | -    | 2      | 12  | 1  | 12  | 2  | 12    | 4  | 12  | 1 | 12  | 2      | 12  | 1  | 18  |
| K340  | 2  | 12    | 4  | 12  | 1 12 | 2      | 12  | 1  | 18  | 2  | 12    | 2  | 12  | 2 | 12  | 2      | 12  | 1  | 16  |

Tablo A.3: Analiz modeli 3.kat kiri boyuna donatıları

| 4.Kat |    |       |    | S   | OL UÇ |   |     |    |     |    |       |    | S   | A | UÇ  | l<br>, |    |    |     |
|-------|----|-------|----|-----|-------|---|-----|----|-----|----|-------|----|-----|---|-----|--------|----|----|-----|
| Kiri  |    |       | Ü  | st  |       |   | А   | lt |     |    |       | Ü  | st  |   | -   |        | Α  | lt |     |
| КШ    | Mo | ontaj | Pi | lye | lave  | D | )üz | la | ive | Mo | ontaj | Pi | lye | 1 | ave | D      | üz | la | ave |
| K401  | 2  | 12    | 2  | 12  | 1 12  | 2 | 12  | 1  | 12  | 2  | 12    | 4  | 12  |   | -   | 2      | 12 | 1  | 12  |
| K402  | 2  | 12    | 4  | 12  | -     | 2 | 12  | 1  | 12  | 2  | 12    | 4  | 12  |   | -   | 2      | 12 | 1  | 12  |
| K403  | 2  | 12    | 4  | 12  | -     | 2 | 12  | 1  | 12  | 2  | 12    | 4  | 12  |   | -   | 2      | 12 | 1  | 12  |
| K404  | 2  | 12    | 4  | 12  | -     | 2 | 12  | 1  | 12  | 2  | 12    | 2  | 12  | 1 | 12  | 2      | 12 | 1  | 12  |
| K405  | 2  | 12    | 2  | 12  | 1 12  | 2 | 12  | 1  | 12  | 2  | 12    | 4  | 12  |   | -   | 2      | 12 | 1  | 12  |
| K406  | 2  | 12    | 4  | 12  | -     | 2 | 12  | 1  | 12  | 2  | 12    | 4  | 12  |   | -   | 2      | 12 | 1  | 12  |
| K407  | 2  | 12    | 4  | 12  | -     | 2 | 12  | 1  | 12  | 2  | 12    | 4  | 12  |   | -   | 2      | 12 | 1  | 12  |
| K408  | 2  | 12    | 4  | 12  | -     | 2 | 12  | 1  | 12  | 2  | 12    | 2  | 12  | 1 | 12  | 2      | 12 | 1  | 12  |
| K409  | 2  | 12    | 2  | 12  | 1 16  | 2 | 12  | 1  | 12  | 2  | 12    | 4  | 12  |   | -   | 2      | 12 | 1  | 12  |
| K410  | 2  | 12    | 4  | 12  | -     | 2 | 12  | 1  | 12  | 2  | 12    | 4  | 12  |   | -   | 2      | 12 | 1  | 12  |
| K411  | 2  | 12    | 4  | 12  | -     | 2 | 12  | 1  | 12  | 2  | 12    | 4  | 12  |   | -   | 2      | 12 | 1  | 12  |
| K412  | 2  | 12    | 4  | 12  | -     | 2 | 12  | 1  | 12  | 2  | 12    | 2  | 12  | 1 | 16  | 2      | 12 | 1  | 12  |
| K413  | 2  | 12    | 2  | 12  | 1 12  | 2 | 12  | 1  | 12  | 2  | 12    | 4  | 12  |   | -   | 2      | 12 | 1  | 12  |
| K414  | 2  | 12    | 4  | 12  | -     | 2 | 12  | 1  | 12  | 2  | 12    | 4  | 12  |   | -   | 2      | 12 | 1  | 12  |
| K415  | 2  | 12    | 4  | 12  | -     | 2 | 12  | 1  | 12  | 2  | 12    | 4  | 12  |   | -   | 2      | 12 | 1  | 12  |
| K416  | 2  | 12    | 4  | 12  | -     | 2 | 12  | 1  | 12  | 2  | 12    | 2  | 12  | 1 | 12  | 2      | 12 | 1  | 12  |
| K417  | 2  | 12    | 2  | 12  | 1 12  | 2 | 12  | 1  | 12  | 2  | 12    | 4  | 12  |   | -   | 2      | 12 | 1  | 12  |
| K418  | 2  | 12    | 4  | 12  | -     | 2 | 12  | 1  | 12  | 2  | 12    | 4  | 12  |   | -   | 2      | 12 | 1  | 12  |
| K419  | 2  | 12    | 4  | 12  | -     | 2 | 12  | 1  | 12  | 2  | 12    | 4  | 12  |   | -   | 2      | 12 | 1  | 12  |
| K420  | 2  | 12    | 4  | 12  | -     | 2 | 12  | 1  | 12  | 2  | 12    | 2  | 12  | 1 | 12  | 2      | 12 | 1  | 12  |
| K421  | 2  | 12    | 2  | 12  | 1 12  | 2 | 12  | 1  | 12  | 2  | 12    | 4  | 12  |   | -   | 2      | 12 | 1  | 12  |
| K422  | 2  | 12    | 4  | 12  | -     | 2 | 12  | 1  | 12  | 2  | 12    | 4  | 12  |   | -   | 2      | 12 | 1  | 12  |
| K423  | 2  | 12    | 4  | 12  | -     | 2 | 12  | 1  | 12  | 2  | 12    | 4  | 12  |   | -   | 2      | 12 | 1  | 12  |
| K424  | 2  | 12    | 4  | 12  | -     | 2 | 12  | 1  | 12  | 2  | 12    | 2  | 12  | 1 | 12  | 2      | 12 | 1  | 12  |
| K425  | 2  | 12    | 2  | 12  | 1 16  | 2 | 12  | 1  | 12  | 2  | 12    | 4  | 12  |   | -   | 2      | 12 | 1  | 12  |
| K426  | 2  | 12    | 4  | 12  | -     | 2 | 12  | 1  | 12  | 2  | 12    | 4  | 12  |   | -   | 2      | 12 | 1  | 12  |
| K427  | 2  | 12    | 4  | 12  | -     | 2 | 12  | 1  | 12  | 2  | 12    | 4  | 12  |   | -   | 2      | 12 | 1  | 12  |
| K428  | 2  | 12    | 4  | 12  | -     | 2 | 12  | 1  | 12  | 2  | 12    | 2  | 12  | 1 | 16  | 2      | 12 | 1  | 12  |
| K429  | 2  | 12    | 2  | 12  | 1 12  | 2 | 12  | 1  | 12  | 2  | 12    | 4  | 12  |   | -   | 2      | 12 | 1  | 12  |
| K430  | 2  | 12    | 4  | 12  | -     | 2 | 12  | 1  | 12  | 2  | 12    | 4  | 12  |   | -   | 2      | 12 | 1  | 12  |
| K431  | 2  | 12    | 4  | 12  | -     | 2 | 12  | 1  | 12  | 2  | 12    | 4  | 12  |   | -   | 2      | 12 | 1  | 12  |
| K432  | 2  | 12    | 4  | 12  | -     | 2 | 12  | 1  | 12  | 2  | 12    | 2  | 12  | 1 | 12  | 2      | 12 | 1  | 12  |
| K433  | 2  | 12    | 2  | 12  | 1 16  | 2 | 12  | 1  | 12  | 2  | 12    | 4  | 12  |   | -   | 2      | 12 | 1  | 12  |
| K434  | 2  | 12    | 4  | 12  | -     | 2 | 12  | 1  | 12  | 2  | 12    | 4  | 12  |   | -   | 2      | 12 | 1  | 12  |
| K435  | 2  | 12    | 4  | 12  | -     | 2 | 12  | 1  | 12  | 2  | 12    | 4  | 12  |   | -   | 2      | 12 | 1  | 12  |
| K436  | 2  | 12    | 4  | 12  | _     | 2 | 12  | 1  | 12  | 2  | 12    | 2  | 12  | 1 | 16  | 2      | 12 | 1  | 12  |
| K437  | 2  | 12    | 2  | 12  | 1 12  | 2 | 12  | 1  | 12  | 2  | 12    | 4  | 12  |   | -   | 2      | 12 | 1  | 12  |
| K438  | 2  | 12    | 4  | 12  | _     | 2 | 12  | 1  | 12  | 2  | 12    | 4  | 12  |   | -   | 2      | 12 | 1  | 12  |
| K439  | 2  | 12    | 4  | 12  | _     | 2 | 12  | 1  | 12  | 2  | 12    | 4  | 12  |   | -   | 2      | 12 | 1  | 12  |
| K440  | 2  | 12    | 4  | 12  |       | 2 | 12  | 1  | 12  | 2  | 12    | 2  | 12  | 1 | 12  | 2      | 12 | 1  | 12  |

 Tablo A.4: Analiz modeli 4.kat kiri boyuna donatıları

| 5.Kat |    |       |    | SC  | DL UÇ |   |     |      |    |      |    | SA  | A UÇ | l<br>, |    |      |
|-------|----|-------|----|-----|-------|---|-----|------|----|------|----|-----|------|--------|----|------|
| Vini  |    |       | Üs | st  |       |   | Α   | lt   |    |      | Üs | st  |      |        | Α  | lt   |
| KIII  | Mo | ontaj | Pi | lye | lave  | D | )üz | lave | Mo | ntaj | Pi | lye | lave | D      | üz | lave |
| K501  | 2  | 12    | 2  | 12  | -     | 2 | 12  | -    | 2  | 12   | 4  | 12  | -    | 2      | 12 | -    |
| K502  | 2  | 12    | 4  | 12  | -     | 2 | 12  | -    | 2  | 12   | 4  | 12  | -    | 2      | 12 | -    |
| K503  | 2  | 12    | 4  | 12  | -     | 2 | 12  | -    | 2  | 12   | 4  | 12  | -    | 2      | 12 | -    |
| K504  | 2  | 12    | 4  | 12  | -     | 2 | 12  | -    | 2  | 12   | 2  | 12  | -    | 2      | 12 | -    |
| K505  | 2  | 12    | 2  | 12  | -     | 2 | 12  | -    | 2  | 12   | 4  | 12  | -    | 2      | 12 |      |
| K506  | 2  | 12    | 4  | 12  | -     | 2 | 12  | -    | 2  | 12   | 4  | 12  | -    | 2      | 12 | -    |
| K507  | 2  | 12    | 4  | 12  | -     | 2 | 12  | -    | 2  | 12   | 4  | 12  | -    | 2      | 12 | -    |
| K508  | 2  | 12    | 4  | 12  | -     | 2 | 12  | -    | 2  | 12   | 2  | 12  | -    | 2      | 12 | -    |
| K509  | 2  | 12    | 2  | 12  | -     | 2 | 12  | -    | 2  | 12   | 4  | 12  | -    | 2      | 12 | -    |
| K510  | 2  | 12    | 4  | 12  | -     | 2 | 12  | -    | 2  | 12   | 4  | 12  | -    | 2      | 12 | -    |
| K511  | 2  | 12    | 4  | 12  | -     | 2 | 12  | -    | 2  | 12   | 4  | 12  | -    | 2      | 12 | -    |
| K512  | 2  | 12    | 4  | 12  | -     | 2 | 12  | -    | 2  | 12   | 2  | 12  | -    | 2      | 12 | -    |
| K513  | 2  | 12    | 2  | 12  | -     | 2 | 12  | -    | 2  | 12   | 4  | 12  | -    | 2      | 12 | -    |
| K514  | 2  | 12    | 4  | 12  | -     | 2 | 12  | -    | 2  | 12   | 4  | 12  | -    | 2      | 12 | -    |
| K515  | 2  | 12    | 4  | 12  | -     | 2 | 12  | -    | 2  | 12   | 4  | 12  | -    | 2      | 12 | -    |
| K516  | 2  | 12    | 4  | 12  | -     | 2 | 12  | -    | 2  | 12   | 2  | 12  | -    | 2      | 12 | -    |
| K517  | 2  | 12    | 2  | 12  | -     | 2 | 12  | -    | 2  | 12   | 4  | 12  | -    | 2      | 12 | -    |
| K518  | 2  | 12    | 4  | 12  | -     | 2 | 12  | -    | 2  | 12   | 4  | 12  | -    | 2      | 12 | -    |
| K519  | 2  | 12    | 4  | 12  | -     | 2 | 12  | -    | 2  | 12   | 4  | 12  | -    | 2      | 12 | -    |
| K520  | 2  | 12    | 4  | 12  | -     | 2 | 12  | -    | 2  | 12   | 2  | 12  | -    | 2      | 12 | -    |
| K521  | 2  | 12    | 2  | 12  | -     | 2 | 12  | -    | 2  | 12   | 4  | 12  | -    | 2      | 12 | -    |
| K522  | 2  | 12    | 4  | 12  | -     | 2 | 12  | -    | 2  | 12   | 4  | 12  | -    | 2      | 12 | -    |
| K523  | 2  | 12    | 4  | 12  | -     | 2 | 12  | -    | 2  | 12   | 4  | 12  | -    | 2      | 12 | -    |
| K524  | 2  | 12    | 4  | 12  | I     | 2 | 12  | I    | 2  | 12   | 2  | 12  | I    | 2      | 12 | -    |
| K525  | 2  | 12    | 2  | 12  | -     | 2 | 12  | -    | 2  | 12   | 4  | 12  | -    | 2      | 12 | -    |
| K526  | 2  | 12    | 4  | 12  | -     | 2 | 12  | -    | 2  | 12   | 4  | 12  | -    | 2      | 12 | -    |
| K527  | 2  | 12    | 4  | 12  | -     | 2 | 12  | -    | 2  | 12   | 4  | 12  | -    | 2      | 12 | -    |
| K528  | 2  | 12    | 4  | 12  | -     | 2 | 12  | -    | 2  | 12   | 2  | 12  | -    | 2      | 12 | -    |
| K529  | 2  | 12    | 2  | 12  | -     | 2 | 12  | -    | 2  | 12   | 4  | 12  | -    | 2      | 12 | -    |
| K530  | 2  | 12    | 4  | 12  | -     | 2 | 12  | -    | 2  | 12   | 4  | 12  | -    | 2      | 12 | -    |
| K531  | 2  | 12    | 4  | 12  | -     | 2 | 12  | -    | 2  | 12   | 4  | 12  | -    | 2      | 12 | -    |
| K532  | 2  | 12    | 4  | 12  | -     | 2 | 12  | -    | 2  | 12   | 2  | 12  | -    | 2      | 12 | -    |
| K533  | 2  | 12    | 2  | 12  | -     | 2 | 12  | -    | 2  | 12   | 4  | 12  | -    | 2      | 12 | -    |
| K534  | 2  | 12    | 4  | 12  | -     | 2 | 12  | -    | 2  | 12   | 4  | 12  | -    | 2      | 12 | -    |
| K535  | 2  | 12    | 4  | 12  | -     | 2 | 12  | -    | 2  | 12   | 4  | 12  | -    | 2      | 12 | -    |
| K536  | 2  | 12    | 4  | 12  | -     | 2 | 12  | -    | 2  | 12   | 2  | 12  | -    | 2      | 12 | -    |
| K537  | 2  | 12    | 2  | 12  | -     | 2 | 12  | -    | 2  | 12   | 4  | 12  | -    | 2      | 12 | -    |
| K538  | 2  | 12    | 4  | 12  | -     | 2 | 12  | -    | 2  | 12   | 4  | 12  | -    | 2      | 12 | -    |
| K539  | 2  | 12    | 4  | 12  | -     | 2 | 12  | -    | 2  | 12   | 4  | 12  | -    | 2      | 12 | -    |
| K540  | 2  | 12    | 4  | 12  | -     | 2 | 12  | -    | 2  | 12   | 2  | 12  | -    | 2      | 12 | -    |

 Tablo A.5: Analiz modeli 5.kat kiri boyuna donatıları

## EK B. vme Kaydı Setlerine ve Kayıtlara Ait Bilgiler

| SE    | T 1   | SE    | ET 2   | SE    | Т3    | SE    | T 4   | SE    | Т 5   | SE    | T 6   |
|-------|-------|-------|--------|-------|-------|-------|-------|-------|-------|-------|-------|
| Kayıt | Ölçek | Kayıt | Ölçek  | Kayıt | Ölçek | Kayıt | Ölçek | Kayıt | Ölçek | Kayıt | Ölçek |
| 140   | 0.687 | 1091  | 1.2184 | 350   | 0.828 | 621   | 1.328 | 5614  | 1.841 | 5078  | 1.666 |
| 621   | 0.856 | 6265  | 1.0687 | 6348  | 0.749 | 292   | 1.141 | 818   | 1.649 | 5614  | 1.338 |
| 5038  | 1.413 | 362   | 1.8866 | 1795  | 0.710 | 6265  | 0.885 | 354   | 1.681 | 642   | 1.548 |
| 6269  | 1.671 | 1893  | 1.5760 | 140   | 1.796 | 6337  | 1.090 | 364   | 0.944 | 350   | 1.077 |
| 193   | 1.788 | 5090  | 0.6490 | 604   | 1.252 | 960   | 0.814 | 960   | 1.394 | 6272  | 1.019 |
| 383   | 0.613 | 5789  | 0.8005 | 2023  | 0.969 | 551   | 1.674 | 467   | 0.845 | 9071  | 1.601 |
| 1901  | 1.881 | 292   | 1.3971 | 5086  | 1.808 | 5038  | 1.028 | 292   | 1.127 | 1899  | 1.725 |
| 3925  | 0.711 | 1902  | 1.1667 | 364   | 1.806 | 140   | 0.872 | 608   | 1.039 | 608   | 0.807 |
| 6124  | 0.710 | 647   | 1.9454 | 1994  | 1.451 | 818   | 1.654 | 1091  | 0.599 | 870   | 0.825 |
| 5789  | 0.931 | 5615  | 1.6276 | 128   | 1.353 | 5272  | 0.787 | 773   | 0.990 | 5035  | 1.231 |
| 6262  | 1.168 | 1852  | 1.1770 | 616   | 1.981 | 1011  | 1.329 | 5085  | 0.581 | 5827  | 1.822 |
| SE    | Т 7   | SE    | ET 8   | SE    | Т9    | SE    | Г 10  | SET   | Γ11   | SE    | Г 12  |
| Kayıt | Ölçek | Kayıt | Ölçek  | Kayıt | Ölçek | Kayıt | Ölçek | Kayıt | Ölçek | Kayıt | Ölçek |
| 5038  | 1.212 | 367   | 1.610  | 1884  | 1.427 | 1891  | 1.776 | 357   | 0.770 | 616   | 1.049 |
| 6348  | 1.387 | 5789  | 1.079  | 193   | 1.293 | 6272  | 0.815 | 960   | 1.110 | 879   | 1.268 |
| 615   | 0.662 | 5078  | 1.193  | 554   | 1.794 | 359   | 0.902 | 467   | 1.816 | 246   | 1.132 |
| 487   | 1.032 | 128   | 1.960  | 6331  | 1.706 | 467   | 1.296 | 140   | 1.369 | 351   | 0.964 |
| 765   | 0.867 | 621   | 0.858  | 128   | 1.021 | 366   | 1.027 | 351   | 1.173 | 359   | 1.203 |
| 1917  | 0.809 | 359   | 1.204  | 4557  | 0.881 | 385   | 1.799 | 554   | 1.310 | 1011  | 0.507 |
| 598   | 1.838 | 1899  | 0.833  | 616   | 1.526 | 879   | 0.898 | 243   | 1.199 | 5087  | 0.698 |
| 6100  | 0.631 | 2753  | 0.943  | 385   | 1.008 | 350   | 0.541 | 607   | 0.687 | 773   | 1.935 |
| 5078  | 1.979 | 5271  | 1.606  | 140   | 0.688 | 5090  | 1.085 | 5086  | 1.528 | 1960  | 1.091 |
| 961   | 0.977 | 6331  | 1.692  | 5086  | 0.617 | 554   | 1.978 | 359   | 1.335 | 140   | 1.409 |
| 6337  | 1.399 | 357   | 0.782  | 1011  | 1.643 | 791   | 1.217 | 6272  | 0.634 | 7160  | 1.752 |
| SE    | Г 13  | SE    | T 14   | SE    | Г 15  | SE    | Г 16  | SET   | Г 17  | SE    | Г 18  |
| Kayıt | Ölçek | Kayıt | Ölçek  | Kayıt | Ölçek | Kayıt | Ölçek | Kayıt | Ölçek | Kayıt | Ölçek |
| 359   | 1.030 | 59    | 1.478  | 5615  | 1.191 | 4560  | 1.005 | 6262  | 1.156 | 6122  | 0.945 |
| 360   | 1.474 | 350   | 1.959  | 1011  | 1.473 | 364   | 1.864 | 7160  | 1.383 | 1894  | 1.418 |
| 5035  | 1.168 | 6122  | 1.200  | 5272  | 0.965 | 6267  | 0.531 | 1893  | 1.086 | 350   | 1.524 |
| 351   | 1.533 | 1240  | 1.886  | 6269  | 0.942 | 350   | 1.101 | 554   | 1.631 | 789   | 0.994 |
| 879   | 1.327 | 1902  | 1.307  | 851   | 1.757 | 146   | 1.305 | 487   | 1.170 | 1240  | 1.823 |
| 621   | 1.042 | 3954  | 0.945  | 246   | 0.816 | 292   | 1.404 | 990   | 0.942 | 193   | 1.943 |
| 128   | 1.220 | 364   | 1.039  | 879   | 1.733 | 80    | 1.435 | 369   | 1.103 | 59    | 1.112 |
| 851   | 0.939 | 369   | 1.054  | 5036  | 0.946 | 652   | 1.795 | 1884  | 1.983 | 6348  | 1.652 |
| 6100  | 1.204 | 357   | 1.556  | 358   | 1.968 | 1884  | 0.937 | 17036 | 0.549 | 351   | 1.247 |
| 3925  | 1.271 | 626   | 1.291  | 5086  | 1.419 | 3925  | 0.635 | 7083  | 1.860 | 5038  | 0.856 |
| 246   | 1.268 | 5078  | 1.119  | 6123  | 1.515 | 385   | 1.278 | 4679  | 0.859 | 5078  | 0.684 |

Tablo B.1: ZB sınıfı zemin için elde edilen ivme kaydı setleri

## Tablo B.1: ZB sınıfı zemin için elde edilen ivme kaydı setleri

| SET                                                                                    | Г <b>1</b> 9                                                                                                                                                 | SET                                                                                       | Г 20                                                                                                                                                                           | SE                                                                                                 | Г 21                                                                                                                                                           | SE                                                                                          | Г 22                                                                                                                                                           | SET                                                                                      | Г 23                                                                                                                                                            | SE                                                                                                   | Г 24                                                                                                                                                         |
|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Kayıt                                                                                  | Ölçek                                                                                                                                                        | Kayıt                                                                                     | Ölçek                                                                                                                                                                          | Kayıt                                                                                              | Ölçek                                                                                                                                                          | Kayıt                                                                                       | Ölçek                                                                                                                                                          | Kayıt                                                                                    | Ölçek                                                                                                                                                           | Kayıt                                                                                                | Ölçek                                                                                                                                                        |
| 1900                                                                                   | 1.271                                                                                                                                                        | 647                                                                                       | 0.546                                                                                                                                                                          | 5038                                                                                               | 1.326                                                                                                                                                          | 355                                                                                         | 1.749                                                                                                                                                          | 369                                                                                      | 0.768                                                                                                                                                           | 646                                                                                                  | 1.148                                                                                                                                                        |
| 1795                                                                                   | 1.951                                                                                                                                                        | 140                                                                                       | 1.484                                                                                                                                                                          | 1240                                                                                               | 1.369                                                                                                                                                          | 382                                                                                         | 1.881                                                                                                                                                          | 3954                                                                                     | 1.037                                                                                                                                                           | 773                                                                                                  | 1.998                                                                                                                                                        |
| 6331                                                                                   | 1.508                                                                                                                                                        | 7160                                                                                      | 1.485                                                                                                                                                                          | 351                                                                                                | 1.543                                                                                                                                                          | 4560                                                                                        | 0.590                                                                                                                                                          | 5824                                                                                     | 1.145                                                                                                                                                           | 1240                                                                                                 | 0.508                                                                                                                                                        |
| 364                                                                                    | 1.620                                                                                                                                                        | 862                                                                                       | 1.369                                                                                                                                                                          | 1011                                                                                               | 1.054                                                                                                                                                          | 629                                                                                         | 1.167                                                                                                                                                          | 5272                                                                                     | 0.843                                                                                                                                                           | 140                                                                                                  | 1.171                                                                                                                                                        |
| 5614                                                                                   | 1.795                                                                                                                                                        | 1891                                                                                      | 1.580                                                                                                                                                                          | 826                                                                                                | 1.260                                                                                                                                                          | 6267                                                                                        | 1.070                                                                                                                                                          | 80                                                                                       | 1.672                                                                                                                                                           | 292                                                                                                  | 1.110                                                                                                                                                        |
| 385                                                                                    | 1.610                                                                                                                                                        | 5272                                                                                      | 1.381                                                                                                                                                                          | 6267                                                                                               | 0.822                                                                                                                                                          | 1011                                                                                        | 1.765                                                                                                                                                          | 5618                                                                                     | 1.394                                                                                                                                                           | 383                                                                                                  | 0.701                                                                                                                                                        |
| 17036                                                                                  | 1.093                                                                                                                                                        | 879                                                                                       | 1.091                                                                                                                                                                          | 6265                                                                                               | 1.191                                                                                                                                                          | 350                                                                                         | 0.736                                                                                                                                                          | 1891                                                                                     | 1.974                                                                                                                                                           | 6270                                                                                                 | 1.300                                                                                                                                                        |
| 775                                                                                    | 1.114                                                                                                                                                        | 17036                                                                                     | 1.456                                                                                                                                                                          | 5824                                                                                               | 1.668                                                                                                                                                          | 764                                                                                         | 0.857                                                                                                                                                          | 879                                                                                      | 1.679                                                                                                                                                           | 5090                                                                                                 | 1.285                                                                                                                                                        |
| 347                                                                                    | 1.049                                                                                                                                                        | 6269                                                                                      | 1.098                                                                                                                                                                          | 5618                                                                                               | 1.837                                                                                                                                                          | 7160                                                                                        | 0.889                                                                                                                                                          | 146                                                                                      | 1.461                                                                                                                                                           | 5078                                                                                                 | 1.595                                                                                                                                                        |
| 879                                                                                    | 0.548                                                                                                                                                        | 6265                                                                                      | 0.838                                                                                                                                                                          | 1894                                                                                               | 0.984                                                                                                                                                          | 128                                                                                         | 1.457                                                                                                                                                          | 380                                                                                      | 1.076                                                                                                                                                           | 6265                                                                                                 | 0.903                                                                                                                                                        |
| 455                                                                                    | 0.870                                                                                                                                                        | 5655                                                                                      | 0.896                                                                                                                                                                          | 128                                                                                                | 0.759                                                                                                                                                          | 5615                                                                                        | 1.655                                                                                                                                                          | 5615                                                                                     | 1.573                                                                                                                                                           | 5680                                                                                                 | 1.371                                                                                                                                                        |
|                                                                                        |                                                                                                                                                              |                                                                                           |                                                                                                                                                                                |                                                                                                    |                                                                                                                                                                |                                                                                             |                                                                                                                                                                |                                                                                          |                                                                                                                                                                 |                                                                                                      |                                                                                                                                                              |
| SET                                                                                    | Г <b>25</b>                                                                                                                                                  | SET                                                                                       | Г 26                                                                                                                                                                           | SE                                                                                                 | Г 27                                                                                                                                                           | SE                                                                                          | Г 28                                                                                                                                                           | SET                                                                                      | Г 29                                                                                                                                                            | SE                                                                                                   | Г 30                                                                                                                                                         |
| SET<br>Kayıt                                                                           | Ölçek                                                                                                                                                        | SET<br>Kayıt                                                                              | Г 26<br>Ölçek                                                                                                                                                                  | SE:<br>Kayıt                                                                                       | Г 27<br>Ölçek                                                                                                                                                  | SE:<br>Kayıt                                                                                | Г 28<br>Ölçek                                                                                                                                                  | SET<br>Kayıt                                                                             | Г 29<br>Ölçek                                                                                                                                                   | SE:<br>Kayıt                                                                                         | Г 30<br>Ölçek                                                                                                                                                |
| SET<br>Kayıt<br>3954                                                                   | Ölçek<br>1.955                                                                                                                                               | SET<br>Kayıt<br>363                                                                       | Г 26<br>Ölçek<br>0.870                                                                                                                                                         | SET<br>Kayıt<br>355                                                                                | Г 27<br>Ölçek<br>1.452                                                                                                                                         | SET<br>Kayıt<br>551                                                                         | Г 28<br>Ölçek<br>1.906                                                                                                                                         | SET<br>Kayıt<br>6336                                                                     | Г 29<br>Ölçek<br>0.699                                                                                                                                          | SET<br>Kayıt<br>355                                                                                  | Г 30<br>Ölçek<br>0.584                                                                                                                                       |
| SET<br>Kayıt<br>3954<br>6269                                                           | 7 25<br>Ölçek<br>1.955<br>1.377                                                                                                                              | SET<br>Kayıt<br>363<br>6327                                                               | T 26<br>Ölçek<br>0.870<br>0.593                                                                                                                                                | SE7<br>Kayıt<br>355<br>7160                                                                        | Г 27<br>Ölçek<br>1.452<br>1.395                                                                                                                                | SE <sup>7</sup><br>Kayıt<br>551<br>5655                                                     | Г 28<br>Ölçek<br>1.906<br>0.863                                                                                                                                | SE7<br>Kayıt<br>6336<br>646                                                              | Г 29<br>Ölçek<br>0.699<br>1.084                                                                                                                                 | SE7<br>Kayıt<br>355<br>2753                                                                          | Г 30<br>Ölçek<br>0.584<br>1.417                                                                                                                              |
| SET<br>Kayıt<br>3954<br>6269<br>879                                                    | Ölçek<br>1.955<br>1.377<br>1.699                                                                                                                             | SE7<br>Kayıt<br>363<br>6327<br>5789                                                       | Ölçek         Ölçek         0.870         0.593         0.820                                                                                                                  | SE <sup>2</sup><br>Kayıt<br>355<br>7160<br>5027                                                    | T 27<br>Ölçek<br>1.452<br>1.395<br>1.311                                                                                                                       | SE<br>Kayıt<br>551<br>5655<br>6267                                                          | T 28<br>Ölçek<br>1.906<br>0.863<br>1.706                                                                                                                       | SE7<br>Kayıt<br>6336<br>646<br>5828                                                      | <ul> <li>C 29</li> <li>Ölçek</li> <li>0.699</li> <li>1.084</li> <li>0.793</li> </ul>                                                                            | SE <sup>7</sup><br>Kayıt<br>355<br>2753<br>5086                                                      | T 30<br>Ölçek<br>0.584<br>1.417<br>1.467                                                                                                                     |
| SET<br>Kayıt<br>3954<br>6269<br>879<br>80                                              | Ölçek       1.955       1.377       1.699       1.575                                                                                                        | SET<br>Kayıt<br>363<br>6327<br>5789<br>5827                                               | C 26         Ölçek         0.870         0.593         0.820         1.842                                                                                                     | SE<br>Kayıt<br>355<br>7160<br>5027<br>2753                                                         | T 27<br>Ölçek<br>1.452<br>1.395<br>1.311<br>0.773                                                                                                              | SE<br>Kayıt<br>551<br>5655<br>6267<br>6124                                                  | T 28<br>Ölçek<br>1.906<br>0.863<br>1.706<br>1.811                                                                                                              | SE7<br>Kayıt<br>6336<br>646<br>5828<br>243                                               | <ul> <li>C 29</li> <li>Ölçek</li> <li>0.699</li> <li>1.084</li> <li>0.793</li> <li>1.528</li> </ul>                                                             | SE<br>Kayıt<br>355<br>2753<br>5086<br>6270                                                           | T 30         Ölçek         0.584         1.417         1.467         1.162                                                                                   |
| SET<br>Kayıt<br>3954<br>6269<br>879<br>80<br>128                                       | 25<br>Ölçek<br>1.955<br>1.377<br>1.699<br>1.575<br>0.741                                                                                                     | SET<br>Kayıt<br>363<br>6327<br>5789<br>5827<br>5614                                       | <ul> <li>C 26</li> <li>Ölçek</li> <li>0.870</li> <li>0.593</li> <li>0.820</li> <li>1.842</li> <li>1.904</li> </ul>                                                             | SE<br>Kayıt<br>355<br>7160<br>5027<br>2753<br>879                                                  | C 27         Ölçek         1.452         1.395         1.311         0.773         1.782                                                                       | SE<br>Kayıt<br>551<br>5655<br>6267<br>6124<br>95                                            | C 28         Ölçek         1.906         0.863         1.706         1.811         1.563                                                                       | SE7<br>Kayıt<br>6336<br>646<br>5828<br>243<br>6272                                       | <ul> <li>C 29</li> <li>Ölçek</li> <li>0.699</li> <li>1.084</li> <li>0.793</li> <li>1.528</li> <li>1.783</li> </ul>                                              | SE7<br>Kayıt<br>355<br>2753<br>5086<br>6270<br>646                                                   | 7 30         Ölçek         0.584         1.417         1.467         1.162         1.197                                                                     |
| SET<br>Kayıt<br>3954<br>6269<br>879<br>80<br>128<br>621                                | 25         Ölçek         1.955         1.377         1.699         1.575         0.741         1.846                                                         | SET<br>Kayıt<br>363<br>6327<br>5789<br>5827<br>5614<br>6335                               | C 26         Ölçek         0.870         0.593         0.820         1.842         1.904         0.672                                                                         | SE7<br>Kayıt<br>355<br>7160<br>5027<br>2753<br>879<br>5680                                         | <ul> <li>C 27</li> <li>Ölçek</li> <li>1.452</li> <li>1.395</li> <li>1.311</li> <li>0.773</li> <li>1.782</li> <li>0.673</li> </ul>                              | SE7<br>Kayıtı<br>5551<br>5655<br>6267<br>6124<br>95<br>1902                                 | C 28         Ölçek         1.906         0.863         1.706         1.811         1.563         0.946                                                         | SE7<br>Kayıt<br>6336<br>646<br>5828<br>243<br>6272<br>359                                | C 29         Ölçek         0.699         1.084         0.793         1.528         1.783         1.345                                                          | SE7<br>Kayıt<br>355<br>2753<br>5086<br>6270<br>646<br>1240                                           | 30         Ölçek         0.584         1.417         1.467         1.162         1.197         1.096                                                         |
| SET<br>Kayıt<br>3954<br>6269<br>879<br>80<br>128<br>621<br>1240                        | 25<br>Ölçek<br>1.955<br>1.377<br>1.699<br>1.575<br>0.741<br>1.846<br>1.818                                                                                   | SET<br>Kayıt<br>363<br>6327<br>5789<br>5827<br>5614<br>6335<br>364                        | <ul> <li>C 26</li> <li>Ölçek</li> <li>0.870</li> <li>0.593</li> <li>0.820</li> <li>1.842</li> <li>1.904</li> <li>0.672</li> <li>1.652</li> </ul>                               | SE <sup>7</sup><br>Kayıt<br>355<br>7160<br>5027<br>2753<br>879<br>5680<br>358                      | C 27         Ölçek         1.452         1.395         1.311         0.773         1.782         0.673         1.588                                           | SE <sup>7</sup><br>Kayıt<br>555<br>6267<br>6124<br>95<br>1902<br>140                        | C28         Ölçek         1.906         0.863         1.706         1.811         1.563         0.946         1.746                                            | SE7<br>Kayıt<br>6336<br>646<br>5828<br>243<br>6272<br>359<br>193                         | C29         Ölçek         0.699         1.084         0.793         1.528         1.783         1.345         1.231                                             | SE <sup>7</sup><br>Kayıt<br>355<br>2753<br>5086<br>6270<br>646<br>1240<br>140                        | 30         Ölçek         0.584         1.417         1.467         1.162         1.197         1.096         1.957                                           |
| SET<br>Kayıt<br>3954<br>6269<br>879<br>80<br>128<br>621<br>1240<br>3446                | 25<br>Ölçek<br>1.955<br>1.377<br>1.699<br>1.575<br>0.741<br>1.846<br>1.818<br>0.513                                                                          | SET<br>Kayıt<br>363<br>6327<br>5789<br>5827<br>5614<br>6335<br>364<br>5087                | C 26         Ölçek         0.870         0.593         0.820         1.842         1.904         0.672         1.652         1.241                                             | SE <sup>7</sup><br>Kayıt<br>355<br>7160<br>5027<br>2753<br>879<br>5680<br>358<br>5038              | C 27         Ölçek         1.452         1.395         1.311         0.773         1.782         0.673         1.588         0.793                             | SE <sup>7</sup><br>Kayıtı<br>551<br>6267<br>6124<br>95<br>1902<br>140<br>847                | C 28         Ölçek         1.906         0.863         1.706         1.811         1.563         0.946         1.746                                           | SE7<br>Kayıtı<br>6336<br>646<br>5828<br>243<br>6272<br>359<br>193<br>5270                | C 29         Ölçek         0.699         1.084         0.793         1.528         1.783         1.345         1.231         0.987                              | SE <sup>7</sup><br>Kayıt<br>355<br>2753<br>5086<br>6270<br>646<br>1240<br>140<br>1899                | 30         Ölçek         0.584         1.417         1.467         1.162         1.197         1.096         1.957         1.122                             |
| SET<br>Kayıt<br>3954<br>6269<br>879<br>80<br>128<br>621<br>1240<br>3446<br>292         | 25         Ölçek         1.955         1.377         1.699         1.575         0.741         1.846         1.818         0.513         0.594               | SET<br>Kayıt<br>363<br>6327<br>5789<br>5827<br>5614<br>6335<br>364<br>5087<br>879         | <ul> <li>C 26</li> <li>Ölçek</li> <li>0.870</li> <li>0.593</li> <li>0.820</li> <li>1.842</li> <li>1.904</li> <li>0.672</li> <li>1.652</li> <li>1.241</li> <li>0.760</li> </ul> | SE <sup>7</sup><br>Kayıt<br>355<br>7160<br>5027<br>2753<br>879<br>5680<br>358<br>5038<br>80        | C 27         Ölçek         1.452         1.395         1.311         0.773         1.782         0.673         1.588         0.793         1.302               | SE <sup>7</sup><br>Kayıt<br>551<br>5655<br>6267<br>6124<br>95<br>1902<br>140<br>847<br>6344 | C28         Ölçek         1.906         0.863         1.706         1.811         1.563         0.946         1.746         1.492         1.218                | SE7<br>Kayıt<br>6336<br>646<br>5828<br>243<br>6272<br>359<br>193<br>5270<br>5038         | C29         Ölçek         0.699         1.084         0.793         1.528         1.783         1.345         1.231         0.987         1.060                 | SE <sup>7</sup><br>Kayıt<br>355<br>2753<br>5086<br>6270<br>646<br>1240<br>140<br>1899<br>369         | 30         Ölçek         0.584         1.417         1.467         1.162         1.197         1.096         1.957         1.122         0.974               |
| SET<br>Kayıt<br>3954<br>6269<br>879<br>80<br>128<br>621<br>1240<br>3446<br>292<br>5087 | 25         Ölçek         1.955         1.377         1.699         1.575         0.741         1.846         1.818         0.513         0.594         1.092 | SET<br>Kayıt<br>363<br>6327<br>5789<br>5827<br>5614<br>6335<br>364<br>5087<br>879<br>1900 | C 26         Ölçek         0.870         0.593         0.820         1.842         1.904         0.672         1.652         1.241         0.760                               | SE <sup>7</sup><br>Kayıt<br>355<br>7160<br>5027<br>2753<br>879<br>5680<br>358<br>5038<br>80<br>385 | C 27         Ölçek         1.452         1.395         1.311         0.773         1.782         0.673         1.588         0.793         1.302         1.701 | SE7<br>Kayıtı<br>5551<br>6267<br>6124<br>95<br>1902<br>140<br>847<br>6344<br>195            | C 28         Ölçek         1.906         0.863         1.706         1.811         1.563         0.946         1.746         1.492         1.218         0.895 | SE7<br>Kayıtı<br>6336<br>646<br>2828<br>243<br>6272<br>359<br>193<br>5270<br>5038<br>128 | C 29         Ölçek         0.699         1.084         0.793         1.528         1.783         1.345         1.231         0.987         1.060         0.6666 | SE <sup>7</sup><br>Kayıt<br>355<br>2753<br>5086<br>6270<br>646<br>1240<br>140<br>1899<br>369<br>7158 | 30         Ölçek         0.584         1.417         1.467         1.162         1.197         1.096         1.957         1.122         0.974         0.514 |

| SE    | T 1   | SE    | T 2   | SE    | Т3    | SE    | T 4   | SE    | Т 5   | SE    | T 6   |
|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Kayıt | Ölçek | Kayıt | Ölçek | Kayıt | Ölçek | Kayıt | Ölçek | Kayıt | Ölçek | Kayıt | Ölçek |
| 4874  | 0.908 | 825   | 1.840 | 825   | 0.678 | 1787  | 1.963 | 5815  | 1.107 | 3474  | 1.853 |
| 901   | 1.947 | 5818  | 1.917 | 5482  | 1.225 | 4848  | 1.815 | 4218  | 1.612 | 524   | 1.918 |
| 139   | 1.989 | 4228  | 1.926 | 1086  | 0.948 | 514   | 1.385 | 4228  | 1.498 | 451   | 0.852 |
| 5664  | 1.982 | 6971  | 1.277 | 2717  | 1.461 | 1510  | 1.196 | 1532  | 1.563 | 5478  | 1.792 |
| 811   | 1.182 | 5664  | 1.332 | 811   | 1.192 | 1549  | 1.577 | 5286  | 1.247 | 825   | 1.178 |
| 864   | 1.525 | 247   | 1.764 | 5819  | 1.300 | 295   | 1.966 | 4040  | 0.615 | 1055  | 1.240 |
| 3907  | 1.370 | 2626  | 0.550 | 6875  | 1.805 | 4071  | 1.887 | 4064  | 1.415 | 356   | 0.910 |
| 4857  | 1.143 | 3760  | 1.995 | 5656  | 1.910 | 5815  | 1.990 | 1208  | 1.840 | 3948  | 1.298 |
| 265   | 1.842 | 864   | 1.608 | 787   | 0.503 | 451   | 1.875 | 983   | 1.485 | 587   | 1.817 |
| 4858  | 1.733 | 4169  | 1.587 | 1505  | 1.549 | 4858  | 1.441 | 590   | 0.595 | 1505  | 1.991 |
| 4510  | 1.742 | 1787  | 0.718 | 4149  | 1.353 | 1520  | 1.972 | 825   | 1.638 | 1502  | 1.091 |
| SE    | T 7   | SE    | T 8   | SE    | T 9   | SE    | Г 10  | SET   | Г 11  | SET   | Г 12  |
| Kayıt | Ölçek | Kayıt | Ölçek | Kayıt | Ölçek | Kayıt | Ölçek | Kayıt | Ölçek | Kayıt | Ölçek |
| 414   | 1.923 | 1633  | 1.154 | 4040  | 0.956 | 1086  | 1.924 | 5813  | 1.674 | 3474  | 1.634 |
| 4873  | 1.338 | 4369  | 1.435 | 5656  | 1.555 | 5815  | 1.924 | 288   | 1.216 | 1510  | 1.087 |
| 3746  | 1.638 | 4040  | 1.022 | 983   | 1.290 | 1617  | 1.059 | 451   | 1.719 | 285   | 1.597 |
| 1085  | 1.669 | 4876  | 1.009 | 2821  | 1.874 | 222   | 1.122 | 2658  | 1.105 | 1643  | 1.982 |
| 139   | 0.613 | 4218  | 1.502 | 5265  | 1.644 | 1205  | 0.976 | 5804  | 1.936 | 4213  | 1.309 |
| 5656  | 1.859 | 103   | 1.558 | 4229  | 1.547 | 5804  | 1.032 | 810   | 1.665 | 471   | 1.385 |
| 2888  | 1.392 | 4193  | 1.854 | 4219  | 1.259 | 451   | 0.845 | 983   | 1.210 | 5658  | 0.842 |
| 554   | 1.877 | 1549  | 1.630 | 648   | 1.645 | 4845  | 1.442 | 3871  | 1.900 | 1633  | 1.446 |
| 1617  | 1.970 | 2650  | 1.908 | 4477  | 1.221 | 4040  | 1.399 | 763   | 1.854 | 5656  | 1.711 |
| 3507  | 1.987 | 4133  | 1.805 | 3884  | 1.738 | 353   | 1.160 | 3264  | 1.914 | 982   | 1.033 |
| 5478  | 1.929 | 3750  | 1.886 | 1633  | 1.288 | 1520  | 0.917 | 1510  | 1.686 | 4101  | 1.982 |
| SET   | Г 13  | SE    | Г 14  | SET   | Г 15  | SE    | Г 16  | SET   | Г 17  | SET   | Г 18  |
| Kayıt | Ölçek | Kayıt | Ölçek | Kayıt | Ölçek | Kayıt | Ölçek | Kayıt | Ölçek | Kayıt | Ölçek |
| 1504  | 1.391 | 763   | 1.812 | 1086  | 1.898 | 3474  | 1.974 | 1510  | 1.942 | 1633  | 1.987 |
| 4369  | 1.508 | 2626  | 1.963 | 1549  | 1.760 | 5637  | 1.460 | 4350  | 1.711 | 1013  | 1.672 |
| 5810  | 1.777 | 8166  | 1.787 | 4040  | 0.846 | 755   | 1.881 | 4169  | 1.835 | 5678  | 1.271 |
| 4040  | 0.897 | 4031  | 1.212 | 4101  | 1.620 | 1520  | 1.985 | 1052  | 1.710 | 139   | 1.821 |
| 4218  | 1.941 | 1053  | 0.800 | 2712  | 0.534 | 3757  | 1.666 | 1612  | 1.648 | 3474  | 1.872 |
| 825   | 1.948 | 5664  | 1.435 | 6928  | 1.856 | 4846  | 1.964 | 243   | 1.892 | 88    | 1.162 |
| 600   | 1.690 | 1511  | 1.357 | 72    | 1.335 | 901   | 1.706 | 3927  | 1.619 | 2624  | 1.578 |
| 3346  | 0.754 | 802   | 1.639 | 5800  | 1.203 | 88    | 1.468 | 901   | 1.834 | 4870  | 1.932 |
| 5678  | 0.728 | 4218  | 1.766 | 952   | 0.973 | 1492  | 1.319 | 779   | 0.959 | 3746  | 1.714 |
| 4350  | 0.986 | 451   | 1.215 | 2646  | 1.509 | 410   | 1.903 | 1762  | 1.532 | 1012  | 1.768 |
| 1080  | 1.667 | 5474  | 0.945 | 4218  | 1.504 | 1633  | 0.868 | 825   | 1.820 | 3932  | 1.554 |

Tablo B.2: ZC sınıfı zemin için elde edilen ivme kaydı setleri

## Tablo B.2: ZC sınıfı zemin için elde edilen ivme kaydı setleri

| SE                         | Г 19                                      | SE                                  | Г 20                                      | SE                                 | Г 21                                               | SET                                        | Г 22                                               | SET                                      | Г 23                                               | SET                                            | Г 24                                               |
|----------------------------|-------------------------------------------|-------------------------------------|-------------------------------------------|------------------------------------|----------------------------------------------------|--------------------------------------------|----------------------------------------------------|------------------------------------------|----------------------------------------------------|------------------------------------------------|----------------------------------------------------|
| Kayıt                      | Ölçek                                     | Kayıt                               | Ölçek                                     | Kayıt                              | Ölçek                                              | Kayıt                                      | Ölçek                                              | Kayıt                                    | Ölçek                                              | Kayıt                                          | Ölçek                                              |
| 5807                       | 1.708                                     | 1086                                | 0.557                                     | 249                                | 1.825                                              | 4383                                       | 1.981                                              | 4219                                     | 1.878                                              | 5478                                           | 1.965                                              |
| 1062                       | 1.690                                     | 249                                 | 1.081                                     | 4133                               | 1.148                                              | 3192                                       | 1.804                                              | 4070                                     | 1.929                                              | 4219                                           | 1.528                                              |
| 3750                       | 1.896                                     | 71                                  | 1.936                                     | 1511                               | 1.930                                              | 755                                        | 1.967                                              | 763                                      | 1.961                                              | 3505                                           | 0.722                                              |
| 313                        | 1.883                                     | 8833                                | 1.896                                     | 779                                | 0.657                                              | 983                                        | 1.134                                              | 6875                                     | 1.887                                              | 1505                                           | 1.727                                              |
| 2626                       | 0.701                                     | 991                                 | 1.543                                     | 139                                | 1.918                                              | 5807                                       | 1.612                                              | 5678                                     | 0.793                                              | 4285                                           | 0.984                                              |
| 990                        | 1.780                                     | 5482                                | 1.216                                     | 15                                 | 0.825                                              | 825                                        | 1.994                                              | 2462                                     | 1.929                                              | 1617                                           | 1.082                                              |
| 139                        | 1.394                                     | 1085                                | 1.727                                     | 983                                | 0.916                                              | 5658                                       | 0.856                                              | 3507                                     | 1.203                                              | 4850                                           | 1.252                                              |
| 1511                       | 1.598                                     | 5484                                | 0.706                                     | 4873                               | 1.420                                              | 284                                        | 1.147                                              | 3870                                     | 1.497                                              | 5775                                           | 1.794                                              |
| 8164                       | 1.309                                     | 5664                                | 1.420                                     | 5664                               | 1.213                                              | 4510                                       | 1.613                                              | 1086                                     | 1.552                                              | 3871                                           | 1.500                                              |
| 825                        | 1.984                                     | 4864                                | 1.728                                     | 4211                               | 0.850                                              | 1086                                       | 1.411                                              | 3744                                     | 1.118                                              | 4031                                           | 0.681                                              |
| 802                        | 1.933                                     | 265                                 | 1.380                                     | 801                                | 1.578                                              | 357                                        | 1.099                                              | 1551                                     | 0.813                                              | 4211                                           | 0.988                                              |
| SE                         | Г 25                                      | SE                                  | Г 26                                      | SE                                 | Г 27                                               | SET                                        | Г 28                                               | SET                                      | Г 29                                               | SET                                            | Г 30                                               |
| Kayıt                      | Ölçek                                     | Kayıt                               | Ölçek                                     | Kayıt                              | Ölçek                                              | Kayıt                                      | Ölçek                                              | Kayıt                                    | Ölçek                                              | Kayıt                                          | Ölçek                                              |
| 1633                       | 0.704                                     | 675                                 | 0.996                                     | 4211                               | 0.745                                              | 825                                        | 1.996                                              | 5678                                     | 1.941                                              | 1086                                           | 1.976                                              |
| 5270                       | 0.960                                     | 4870                                | 0.911                                     | 1632                               | 1.889                                              | 2658                                       | 0.563                                              | 1505                                     | 1.872                                              | 2942                                           | 1.065                                              |
| 5656                       | 1.397                                     | 472                                 | 1.784                                     | 4101                               | 1.754                                              | 1053                                       | 0.792                                              | 5482                                     | 0.911                                              | 87                                             | 0.953                                              |
| 3757                       | 1.305                                     | 1006                                | 1.120                                     | 982                                | 1.201                                              | 1086                                       | 1.937                                              | 3964                                     | 1.798                                              | 5658                                           | 1.398                                              |
| 5482                       | 1.127                                     | 1078                                | 1 903                                     | <i>A</i> 1 <i>A</i>                | 1 206                                              | 4011                                       | 0 5 4 5                                            | 246                                      | 1 427                                              | 221                                            | 1 768                                              |
| 809                        |                                           |                                     | 1.705                                     | 414                                | 1.380                                              | 4211                                       | 0.545                                              | 240                                      | 1.437                                              | 231                                            | 1.700                                              |
|                            | 1.100                                     | 4228                                | 1.237                                     | 4873                               | 1.380                                              | 4211<br>1505                               | 0.545<br>1.009                                     | 4205                                     | 1.437                                              | 3744                                           | 1.235                                              |
| 1549                       | 1.100<br>1.537                            | 4228<br>825                         | 1.965<br>1.966                            | 4873<br>50                         | 1.380<br>1.877<br>1.654                            | 4211<br>1505<br>451                        | 0.545<br>1.009<br>0.995                            | 4205<br>450                              | 1.437<br>1.721<br>1.629                            | 231<br>3744<br>1197                            | 1.235<br>1.249                                     |
| 1549<br>4031               | 1.100<br>1.537<br>1.530                   | 4228<br>825<br>1013                 | 1.903<br>1.237<br>1.966<br>0.907          | 4873<br>50<br>5656                 | 1.380<br>1.877<br>1.654<br>1.989                   | 4211<br>1505<br>451<br>3932                | 0.545<br>1.009<br>0.995<br>0.809                   | 246<br>4205<br>450<br>88                 | 1.437<br>1.721<br>1.629<br>0.921                   | 231<br>3744<br>1197<br>825                     | 1.235<br>1.249<br>0.734                            |
| 1549<br>4031<br>291        | 1.100<br>1.537<br>1.530<br>1.693          | 4228<br>825<br>1013<br>4219         | 1.903<br>1.237<br>1.966<br>0.907<br>1.426 | 4873<br>50<br>5656<br>5776         | 1.380<br>1.877<br>1.654<br>1.989<br>0.811          | 4211<br>1505<br>451<br>3932<br>1058        | 0.545<br>1.009<br>0.995<br>0.809<br>1.094          | 246<br>4205<br>450<br>88<br>4850         | 1.437<br>1.721<br>1.629<br>0.921<br>1.378          | 231       3744       1197       825       5617 | 1.235<br>1.249<br>0.734<br>1.981                   |
| 1549<br>4031<br>291<br>801 | 1.100<br>1.537<br>1.530<br>1.693<br>0.994 | 4228<br>825<br>1013<br>4219<br>5482 | 1.237<br>1.966<br>0.907<br>1.426<br>0.654 | 4873<br>50<br>5656<br>5776<br>1072 | 1.380<br>1.877<br>1.654<br>1.989<br>0.811<br>1.441 | 4211<br>1505<br>451<br>3932<br>1058<br>300 | 0.545<br>1.009<br>0.995<br>0.809<br>1.094<br>0.700 | 246<br>4205<br>450<br>88<br>4850<br>1013 | 1.437<br>1.721<br>1.629<br>0.921<br>1.378<br>0.505 | 231<br>3744<br>1197<br>825<br>5617<br>3468     | 1.708<br>1.235<br>1.249<br>0.734<br>1.981<br>1.075 |

| SE    | T 1   | SE    | ET 2   | SE    | Т 3   | SE    | T 4   | SE    | Т 5   | SE    | T 6   |
|-------|-------|-------|--------|-------|-------|-------|-------|-------|-------|-------|-------|
| Kayıt | Ölçek | Kayıt | Ölçek  | Kayıt | Ölçek | Kayıt | Ölçek | Kayıt | Ölçek | Kayıt | Ölçek |
| 558   | 1.544 | 6911  | 1.6205 | 209   | 0.902 | 1063  | 1.759 | 4348  | 1.983 | 4894  | 1.533 |
| 1646  | 1.495 | 5774  | 1.5990 | 725   | 1.763 | 30    | 0.526 | 5825  | 1.984 | 5780  | 1.522 |
| 169   | 1.715 | 5832  | 1.5019 | 4104  | 1.908 | 5774  | 1.825 | 30    | 1.836 | 183   | 1.975 |
| 960   | 1.300 | 634   | 1.1200 | 5969  | 1.845 | 722   | 0.820 | 1044  | 1.779 | 1495  | 0.751 |
| 6927  | 1.688 | 8625  | 0.9082 | 1084  | 1.540 | 180   | 0.965 | 4084  | 1.353 | 5831  | 1.519 |
| 1084  | 1.501 | 5780  | 1.9425 | 778   | 1.195 | 126   | 1.725 | 767   | 1.755 | 1602  | 1.349 |
| 668   | 1.637 | 1076  | 1.7061 | 1491  | 1.908 | 595   | 1.241 | 181   | 1.123 | 1176  | 1.455 |
| 767   | 1.247 | 958   | 0.6366 | 126   | 1.694 | 6927  | 1.066 | 1008  | 0.924 | 2943  | 1.736 |
| 3830  | 1.126 | 183   | 1.6045 | 3754  | 1.952 | 2429  | 1.418 | 3754  | 1.907 | 126   | 0.863 |
| 6966  | 1.130 | 126   | 1.8056 | 711   | 1.284 | 1119  | 1.808 | 5785  | 1.699 | 529   | 0.762 |
| 183   | 1.570 | 4894  | 1.4120 | 4895  | 0.899 | 412   | 1.867 | 5836  | 1.998 | 5803  | 0.661 |
| SE    | Т7    | SE    | ET 8   | SE    | Т9    | SE    | Г 10  | SE    | Г 11  | SE    | Г 12  |
| Kayıt | Ölçek | Kayıt | Ölçek  | Kayıt | Ölçek | Kayıt | Ölçek | Kayıt | Ölçek | Kayıt | Ölçek |
| 6927  | 1.692 | 3215  | 1.619  | 126   | 1.871 | 6927  | 1.872 | 4894  | 1.390 | 1554  | 1.950 |
| 322   | 1.328 | 993   | 1.124  | 184   | 1.071 | 652   | 1.733 | 412   | 1.076 | 987   | 1.732 |
| 1119  | 1.352 | 184   | 1.123  | 4895  | 1.115 | 30    | 1.248 | 4105  | 1.869 | 1063  | 1.485 |
| 5969  | 1.705 | 126   | 0.851  | 998   | 1.290 | 767   | 1.591 | 180   | 1.376 | 1602  | 1.999 |
| 721   | 1.640 | 725   | 1.916  | 1000  | 1.981 | 209   | 1.984 | 161   | 1.889 | 5652  | 0.623 |
| 5827  | 1.603 | 5812  | 1.027  | 1101  | 0.859 | 1077  | 0.944 | 6975  | 1.407 | 5774  | 1.733 |
| 1602  | 1.552 | 1044  | 1.979  | 4102  | 1.948 | 1063  | 1.964 | 614   | 1.996 | 1003  | 0.925 |
| 502   | 1.877 | 1203  | 1.448  | 776   | 1.298 | 184   | 1.632 | 8958  | 1.818 | 5975  | 1.273 |
| 126   | 0.606 | 6927  | 1.722  | 3754  | 1.958 | 4853  | 1.917 | 5825  | 1.773 | 5825  | 1.938 |
| 5836  | 1.269 | 5825  | 1.742  | 4875  | 0.799 | 826   | 1.582 | 3963  | 0.934 | 547   | 1.736 |
| 5774  | 1.834 | 767   | 1.776  | 6962  | 1.330 | 668   | 1.338 | 1084  | 1.356 | 183   | 1.421 |
| SE    | Г 13  | SE    | T 14   | SET   | Г 15  | SE    | Г 16  | SE    | Г 17  | SET   | Г 18  |
| Kayıt | Ölçek | Kayıt | Ölçek  | Kayıt | Ölçek | Kayıt | Ölçek | Kayıt | Ölçek | Kayıt | Ölçek |
| 1498  | 0.879 | 6911  | 0.811  | 1026  | 1.671 | 767   | 1.345 | 8102  | 1.788 | 770   | 1.361 |
| 184   | 1.997 | 6927  | 1.998  | 314   | 1.001 | 652   | 1.617 | 5249  | 1.377 | 175   | 1.351 |
| 4895  | 0.886 | 602   | 1.256  | 169   | 1.601 | 126   | 1.742 | 171   | 1.986 | 767   | 1.876 |
| 4081  | 1.905 | 183   | 1.507  | 767   | 1.454 | 5780  | 1.631 | 232   | 1.872 | 4894  | 1.605 |
| 1063  | 1.115 | 126   | 1.082  | 4104  | 1.461 | 6927  | 1.039 | 2009  | 1.931 | 1084  | 1.123 |
| 316   | 1.961 | 130   | 1.381  | 181   | 1.375 | 1495  | 1.827 | 5827  | 1.761 | 315   | 1.592 |
| 4861  | 1.205 | 721   | 1.381  | 960   | 1.720 | 1602  | 1.976 | 4894  | 1.226 | 6927  | 1.714 |
| 1007  | 1.049 | 328   | 0.782  | 322   | 1.648 | 562   | 1.838 | 184   | 1.416 | 5969  | 0.573 |
| 6927  | 1.942 | 4102  | 0.661  | 1120  | 1.139 | 8887  | 1.280 | 2943  | 1.486 | 181   | 1.308 |
| 4881  | 1.776 | 4894  | 1.711  | 1106  | 1.005 | 5817  | 1.728 | 126   | 1.906 | 316   | 0.754 |
| 768   | 1.681 | 5829  | 1.446  | 126   | 1.016 | 1120  | 0.784 | 5823  | 1.741 | 1007  | 1.394 |

Tablo B.3: ZD sınıfı zemin için elde edilen ivme kaydı setleri

| Tablo B.3: ZD sınıfı zemin i | çin elde edilen | ivme kaydı setleri |
|------------------------------|-----------------|--------------------|
|------------------------------|-----------------|--------------------|

| SET                                                                                   | Г 19                                                                                                                                                           | SE                                                                                                    | Г 20                                                                                                    | SE                                                                                      | Г 21                                                                                                                                                           | SE                                                                                      | Г 22                                                                                                                                             | SE                                                                                       | Г 23                                                                                                                                                           | SET                                                                                    | Г 24                                                                                                                                             |
|---------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| Kayıt                                                                                 | Ölçek                                                                                                                                                          | Kayıt                                                                                                 | Ölçek                                                                                                   | Kayıt                                                                                   | Ölçek                                                                                                                                                          | Kayıt                                                                                   | Ölçek                                                                                                                                            | Kayıt                                                                                    | Ölçek                                                                                                                                                          | Kayıt                                                                                  | Ölçek                                                                                                                                            |
| 692                                                                                   | 1.726                                                                                                                                                          | 179                                                                                                   | 1.893                                                                                                   | 1553                                                                                    | 0.508                                                                                                                                                          | 6962                                                                                    | 1.074                                                                                                                                            | 4391                                                                                     | 1.595                                                                                                                                                          | 562                                                                                    | 1.244                                                                                                                                            |
| 2710                                                                                  | 1.124                                                                                                                                                          | 181                                                                                                   | 1.872                                                                                                   | 4894                                                                                    | 1.695                                                                                                                                                          | 652                                                                                     | 1.915                                                                                                                                            | 126                                                                                      | 1.486                                                                                                                                                          | 4895                                                                                   | 0.684                                                                                                                                            |
| 984                                                                                   | 1.610                                                                                                                                                          | 953                                                                                                   | 1.156                                                                                                   | 981                                                                                     | 1.559                                                                                                                                                          | 412                                                                                     | 0.588                                                                                                                                            | 183                                                                                      | 1.336                                                                                                                                                          | 2378                                                                                   | 1.526                                                                                                                                            |
| 126                                                                                   | 1.822                                                                                                                                                          | 5797                                                                                                  | 1.789                                                                                                   | 1115                                                                                    | 0.882                                                                                                                                                          | 547                                                                                     | 1.869                                                                                                                                            | 5836                                                                                     | 1.952                                                                                                                                                          | 993                                                                                    | 1.980                                                                                                                                            |
| 723                                                                                   | 1.802                                                                                                                                                          | 4862                                                                                                  | 1.729                                                                                                   | 30                                                                                      | 1.586                                                                                                                                                          | 8069                                                                                    | 1.678                                                                                                                                            | 768                                                                                      | 1.686                                                                                                                                                          | 1063                                                                                   | 1.383                                                                                                                                            |
| 5975                                                                                  | 1.885                                                                                                                                                          | 960                                                                                                   | 1.426                                                                                                   | 4066                                                                                    | 1.904                                                                                                                                                          | 6911                                                                                    | 1.691                                                                                                                                            | 652                                                                                      | 1.868                                                                                                                                                          | 183                                                                                    | 1.964                                                                                                                                            |
| 1602                                                                                  | 1.726                                                                                                                                                          | 126                                                                                                   | 1.700                                                                                                   | 692                                                                                     | 1.484                                                                                                                                                          | 310                                                                                     | 1.683                                                                                                                                            | 949                                                                                      | 1.767                                                                                                                                                          | 126                                                                                    | 1.368                                                                                                                                            |
| 5774                                                                                  | 1.762                                                                                                                                                          | 964                                                                                                   | 1.873                                                                                                   | 1084                                                                                    | 1.536                                                                                                                                                          | 1119                                                                                    | 1.751                                                                                                                                            | 6                                                                                        | 1.749                                                                                                                                                          | 1082                                                                                   | 1.780                                                                                                                                            |
| 2706                                                                                  | 1.691                                                                                                                                                          | 6893                                                                                                  | 1.982                                                                                                   | 6930                                                                                    | 1.184                                                                                                                                                          | 767                                                                                     | 1.430                                                                                                                                            | 1495                                                                                     | 1.939                                                                                                                                                          | 776                                                                                    | 1.110                                                                                                                                            |
| 614                                                                                   | 0.850                                                                                                                                                          | 5825                                                                                                  | 1.603                                                                                                   | 681                                                                                     | 1.981                                                                                                                                                          | 1602                                                                                    | 1.412                                                                                                                                            | 1045                                                                                     | 1.832                                                                                                                                                          | 6966                                                                                   | 1.836                                                                                                                                            |
| 183                                                                                   | 1.859                                                                                                                                                          | 2005                                                                                                  | 1.953                                                                                                   | 171                                                                                     | 1.766                                                                                                                                                          | 6927                                                                                    | 1.875                                                                                                                                            | 1116                                                                                     | 1.456                                                                                                                                                          | 184                                                                                    | 1.222                                                                                                                                            |
|                                                                                       |                                                                                                                                                                |                                                                                                       |                                                                                                         |                                                                                         |                                                                                                                                                                |                                                                                         |                                                                                                                                                  |                                                                                          |                                                                                                                                                                |                                                                                        |                                                                                                                                                  |
| SE                                                                                    | Г 25                                                                                                                                                           | SE                                                                                                    | Г 26                                                                                                    | SE                                                                                      | Г 27                                                                                                                                                           | SE                                                                                      | Г 28                                                                                                                                             | SE                                                                                       | Г 29                                                                                                                                                           | SET                                                                                    | Г 30                                                                                                                                             |
| SE7<br>Kayıt                                                                          | Г 25<br>Ölçek                                                                                                                                                  | SE <sup>7</sup><br>Kayıt                                                                              | Г 26<br>Ölçek                                                                                           | SE7<br>Kayıt                                                                            | Г 27<br>Ölçek                                                                                                                                                  | SE<br>Kayıt                                                                             | Г 28<br>Ölçek                                                                                                                                    | SE<br>Kayıt                                                                              | Г 29<br>Ölçek                                                                                                                                                  | SET<br>Kayıt                                                                           | Г 30<br>Ölçek                                                                                                                                    |
| SE<br>Kayıt<br>5827                                                                   | Г 25<br>Ölçek<br>1.302                                                                                                                                         | SE <sup>2</sup><br>Kayıt<br>1119                                                                      | Г 26<br>Ölçek<br>0.913                                                                                  | SE<br>Kayıt<br>721                                                                      | Г 27<br>Ölçek<br>1.732                                                                                                                                         | SE<br>Kayıt<br>180                                                                      | Г 28<br>Ölçek<br>1.658                                                                                                                           | SET<br>Kayıt<br>1503                                                                     | Г 29<br>Ölçek<br>1.420                                                                                                                                         | SET<br>Kayıt<br>5652                                                                   | Г 30<br>Ölçek<br>1.317                                                                                                                           |
| SE7<br>Kayıt<br>5827<br>2694                                                          | Г 25<br>Ölçek<br>1.302<br>1.042                                                                                                                                | SE <sup>7</sup><br>Kayıt<br>1119<br>3749                                                              | Г 26<br>Ölçek<br>0.913<br>1.926                                                                         | SE7<br>Kayıt<br>721<br>1084                                                             | Г 27<br>Ölçek<br>1.732<br>0.647                                                                                                                                | SE<br>Kayıt<br>180<br>5831                                                              | Г 28<br>Ölçek<br>1.658<br>1.913                                                                                                                  | SE<br>Kayıt<br>1503<br>5829                                                              | Г 29<br>Ölçek<br>1.420<br>1.877                                                                                                                                | SE7<br>Kayıt<br>5652<br>692                                                            | Г 30<br>Ölçek<br>1.317<br>1.742                                                                                                                  |
| SE7<br>Kayıt<br>5827<br>2694<br>232                                                   | Г 25<br>Ölçek<br>1.302<br>1.042<br>1.979                                                                                                                       | SE'<br>Kayıt<br>1119<br>3749<br>1084                                                                  | Г 26<br>Ölçek<br>0.913<br>1.926<br>1.629                                                                | SE7<br>Kayıt<br>721<br>1084<br>3563                                                     | Г 27<br>Ölçek<br>1.732<br>0.647<br>1.873                                                                                                                       | SE<br>Kayıt<br>180<br>5831<br>5268                                                      | Г 28<br>Ölçek<br>1.658<br>1.913<br>1.827                                                                                                         | SE7<br>Kayıt<br>1503<br>5829<br>6911                                                     | Г 29<br>Ölçek<br>1.420<br>1.877<br>1.596                                                                                                                       | SE7<br>Kayıt<br>5652<br>692<br>767                                                     | Г 30<br>Ölçek<br>1.317<br>1.742<br>1.454                                                                                                         |
| SE7<br>Kayıt<br>5827<br>2694<br>232<br>183                                            | Г 25<br>Ölçek<br>1.302<br>1.042<br>1.979<br>1.897                                                                                                              | SE <sup>7</sup><br>Kayıt<br>1119<br>3749<br>1084<br>5825                                              | Г 26<br>Ölçek<br>0.913<br>1.926<br>1.629<br>0.835                                                       | SE7<br>Kayıt<br>721<br>1084<br>3563<br>183                                              | Г 27<br>Ölçek<br>1.732<br>0.647<br>1.873<br>1.848                                                                                                              | SE7<br>Kayıt<br>180<br>5831<br>5268<br>1000                                             | Г 28<br>Ölçek<br>1.658<br>1.913<br>1.827<br>1.935                                                                                                | SE7<br>Kayıt<br>1503<br>5829<br>6911<br>1602                                             | Г 29<br>Ölçek<br>1.420<br>1.877<br>1.596<br>1.357                                                                                                              | SE7<br>Kayıt<br>5652<br>692<br>767<br>183                                              | Г 30<br>Ölçek<br>1.317<br>1.742<br>1.454<br>1.361                                                                                                |
| SE7<br>Kayıt<br>5827<br>2694<br>232<br>183<br>723                                     | Г 25<br>Ölçek<br>1.302<br>1.042<br>1.979<br>1.897<br>1.790                                                                                                     | SE <sup>7</sup><br>Kayıt<br>1119<br>3749<br>1084<br>5825<br>4348                                      | Г 26<br>Ölçek<br>0.913<br>1.926<br>1.629<br>0.835<br>1.735                                              | SE7<br>Kayıt<br>721<br>1084<br>3563<br>183<br>725                                       | T 27<br>Ölçek<br>1.732<br>0.647<br>1.873<br>1.848<br>1.835                                                                                                     | SE<br>Kayıt<br>180<br>5831<br>5268<br>1000<br>126                                       | Г 28<br>Ölçek<br>1.658<br>1.913<br>1.827<br>1.935<br>1.817                                                                                       | SE<br>Kayıt<br>1503<br>5829<br>6911<br>1602<br>5975                                      | Г 29<br>Ölçek<br>1.420<br>1.877<br>1.596<br>1.357<br>1.915                                                                                                     | SET<br>Kayıt<br>5652<br>692<br>767<br>183<br>209                                       | Г 30<br>Ölçek<br>1.317<br>1.742<br>1.454<br>1.361<br>1.773                                                                                       |
| SE<br>Kayıt<br>5827<br>2694<br>232<br>183<br>723<br>126                               | Г 25<br>Ölçek<br>1.302<br>1.042<br>1.979<br>1.897<br>1.790<br>1.370                                                                                            | SE <sup>7</sup><br>Kayıt<br>1119<br>3749<br>1084<br>5825<br>4348<br>232                               | Г 26<br>Ölçek<br>0.913<br>1.926<br>1.629<br>0.835<br>1.735<br>1.747                                     | SE7<br>Kayıt<br>721<br>1084<br>3563<br>183<br>725<br>1116                               | T 27<br>Ölçek<br>1.732<br>0.647<br>1.873<br>1.848<br>1.835<br>1.495                                                                                            | SE<br>Kayıt<br>180<br>5831<br>5268<br>1000<br>126<br>412                                | Г 28<br>Ölçek<br>1.658<br>1.913<br>1.827<br>1.935<br>1.817<br>1.383                                                                              | SE<br>Kayıt<br>1503<br>5829<br>6911<br>1602<br>5975<br>547                               | T 29         Ölçek         1.420         1.877         1.596         1.357         1.915         1.168                                                         | SET<br>Kayıt<br>5652<br>692<br>767<br>183<br>209<br>3830                               | T 30         Ölçek         1.317         1.742         1.454         1.361         1.773         1.898                                           |
| SE<br>Kayıt<br>5827<br>2694<br>232<br>183<br>723<br>126<br>4861                       | Г 25<br>Ölçek<br>1.302<br>1.042<br>1.979<br>1.897<br>1.790<br>1.370<br>1.682                                                                                   | SE <sup>*</sup><br>Kayıt<br>1119<br>3749<br>1084<br>5825<br>4348<br>232<br>5774                       | Г 26<br>Ölçek<br>0.913<br>1.926<br>1.629<br>0.835<br>1.735<br>1.747<br>1.769                            | SE7<br>Kayıt<br>721<br>1084<br>3563<br>183<br>725<br>1116<br>181                        | T 27<br>Ölçek<br>1.732<br>0.647<br>1.873<br>1.848<br>1.835<br>1.495<br>0.860                                                                                   | SE7<br>Kayıt<br>180<br>5831<br>5268<br>1000<br>126<br>412<br>1106                       | Г 28<br>Ölçek<br>1.658<br>1.913<br>1.827<br>1.935<br>1.817<br>1.383<br>1.097                                                                     | SE7<br>Kayıt<br>1503<br>5829<br>6911<br>1602<br>5975<br>547<br>679                       | T 29<br>Ölçek<br>1.420<br>1.877<br>1.596<br>1.357<br>1.915<br>1.168<br>1.988                                                                                   | SE7<br>Kayıtı<br>5652<br>692<br>767<br>183<br>209<br>3830<br>171                       | T 30         Ölçek         1.317         1.742         1.454         1.361         1.773         1.898         1.804                             |
| SE<br>Kayıt<br>5827<br>2694<br>232<br>183<br>723<br>126<br>4861<br>4894               | Г 25         Ölçek         1.302         1.042         1.979         1.897         1.790         1.370         1.682         1.180                             | SE <sup>7</sup><br>Kayıt<br>1119<br>3749<br>1084<br>5825<br>4348<br>232<br>5774<br>183                | Г 26<br>Ölçek<br>0.913<br>1.926<br>1.629<br>0.835<br>1.735<br>1.747<br>1.769<br>1.781                   | SE7<br>Kayıt<br>721<br>1084<br>3563<br>183<br>725<br>1116<br>181<br>1602                | C 27         Ölçek         1.732         0.647         1.873         1.848         1.835         1.495         0.860         1.560                             | SE<br>Kayıt<br>180<br>5831<br>5268<br>1000<br>126<br>412<br>1106<br>169                 | Г 28<br>Ölçek<br>1.658<br>1.913<br>1.827<br>1.935<br>1.817<br>1.383<br>1.097<br>1.678                                                            | SE7<br>Kayıt<br>1503<br>5829<br>6911<br>1602<br>5975<br>547<br>679<br>5838               | C 29         Ölçek         1.420         1.877         1.596         1.357         1.915         1.168         1.988         1.436                             | SE<br>Kayıt<br>5652<br>692<br>767<br>183<br>209<br>3830<br>171<br>1602                 | T 30         Ölçek         1.317         1.742         1.454         1.361         1.773         1.898         1.804         1.690               |
| SE<br>Kayıt<br>5827<br>2694<br>232<br>183<br>723<br>126<br>4861<br>4894<br>412        | Г 25<br>Ölçek<br>1.302<br>1.042<br>1.979<br>1.897<br>1.790<br>1.370<br>1.682<br>1.180<br>1.574                                                                 | SE <sup>°</sup><br>Kayıt<br>1119<br>3749<br>1084<br>5825<br>4348<br>232<br>5774<br>183<br>5620        | Г 26<br>Ölçek<br>0.913<br>1.926<br>1.629<br>0.835<br>1.735<br>1.747<br>1.769<br>1.781<br>1.176          | SE7<br>Kayıt<br>721<br>1084<br>3563<br>183<br>725<br>1116<br>181<br>1602<br>4393        | T 27<br>Ölçek<br>1.732<br>0.647<br>1.873<br>1.848<br>1.835<br>1.495<br>0.860<br>1.560<br>1.908                                                                 | SE7<br>Kayıt<br>180<br>5831<br>5268<br>1000<br>126<br>412<br>1106<br>169<br>1044        | Г 28<br>Ölçek<br>1.658<br>1.913<br>1.827<br>1.935<br>1.817<br>1.383<br>1.097<br>1.678<br>1.086                                                   | SE7<br>Kayıt<br>1503<br>5829<br>6911<br>1602<br>5975<br>547<br>679<br>5838<br>5817       | C 29         Ölçek         1.420         1.877         1.596         1.357         1.915         1.168         1.988         1.436         1.972               | SE7<br>Kayıtı<br>5652<br>692<br>767<br>183<br>209<br>3830<br>171<br>1602<br>1084       | T 30         Ölçek         1.317         1.742         1.454         1.361         1.773         1.898         1.804         1.690         1.656 |
| SE<br>Kayıt<br>5827<br>2694<br>232<br>183<br>723<br>126<br>4861<br>4894<br>412<br>627 | F 25         Ölçek         1.302         1.042         1.979         1.897         1.790         1.370         1.682         1.180         1.574         0.887 | SE <sup>7</sup><br>Kayıt<br>1119<br>3749<br>1084<br>5825<br>4348<br>232<br>5774<br>183<br>5620<br>625 | Г 26<br>Ölçek<br>0.913<br>1.926<br>1.629<br>0.835<br>1.735<br>1.747<br>1.769<br>1.781<br>1.176<br>1.504 | SE7<br>Kayıt<br>721<br>1084<br>3563<br>183<br>725<br>1116<br>181<br>1602<br>4393<br>960 | C 27         Ölçek         1.732         0.647         1.873         1.848         1.835         1.495         0.860         1.560         1.908         1.823 | SE7<br>Kayıt<br>180<br>5831<br>5268<br>1000<br>126<br>412<br>1106<br>169<br>1044<br>316 | F 28         Ölçek         1.658         1.913         1.827         1.935         1.817         1.383         1.097         1.678         1.086 | SE<br>Kayıt<br>1503<br>5829<br>6911<br>1602<br>5975<br>547<br>679<br>5838<br>5817<br>668 | C 29         Ölçek         1.420         1.877         1.596         1.357         1.915         1.168         1.988         1.436         1.972         1.567 | SE<br>Kayıt<br>5652<br>692<br>767<br>183<br>209<br>3830<br>171<br>1602<br>1084<br>3717 | T 30         Ölçek         1.317         1.742         1.454         1.361         1.773         1.898         1.804         1.650         1.785 |

| KAYIT | Deprem smi                 | Tarihi     | Büyüklük | stasyon Kodu |
|-------|----------------------------|------------|----------|--------------|
| 59    | Friuli (aftershock)        | 7.5.1976   | 5.20     | ST20         |
| 95    | Friuli (aftershock)        | 17.6.1976  | 5.20     | ST20         |
| 128   | Friuli (aftershock)        | 15.9.1976  | 6.00     | ST36         |
| 140   | Friuli (aftershock)        | 15.9.1976  | 6.00     | ST36         |
| 193   | Montenegro                 | 9.4.1979   | 5.40     | ST64         |
| 195   | Montenegro                 | 15.4.1979  | 6.90     | ST66         |
| 243   | Valnerina                  | 19.9.1979  | 5.80     | ST82         |
| 246   | Valnerina                  | 19.9.1979  | 5.80     | ST61         |
| 292   | Campano Lucano             | 23.11.1980 | 6.90     | ST98         |
| 350   | Biga                       | 5.7.1983   | 6.10     | ST129        |
| 357   | Umbria                     | 29.4.1984  | 5.60     | ST134        |
| 358   | Umbria                     | 29.4.1984  | 5.60     | ST135        |
| 359   | Umbria                     | 29.4.1984  | 5.60     | ST136        |
| 362   | Umbria                     | 29.4.1984  | 5.60     | ST137        |
| 364   | Lazio Abruzzo              | 7.5.1984   | 5.90     | ST139        |
| 369   | Lazio Abruzzo              | 7.5.1984   | 5.90     | ST109        |
| 380   | Lazio Abruzzo (aftershock) | 11.5.1984  | 5.50     | ST274        |
| 382   | Lazio Abruzzo (aftershock) | 11.5.1984  | 5.50     | ST140        |
| 383   | Lazio Abruzzo (aftershock) | 11.5.1984  | 5.50     | ST153        |
| 385   | Lazio Abruzzo (aftershock) | 11.5.1984  | 5.50     | ST155        |
| 467   | Chenoua                    | 29.10.1989 | 5.90     | ST181        |
| 487   | Javakheti Highland         | 16.12.1990 | 5.40     | ST193        |
| 551   | Tithorea                   | 18.11.1992 | 5.90     | ST212        |
| 554   | Near coast of Filiatra     | 5.3.1993   | 5.20     | ST213        |
| 598   | Umbria Marche              | 26.9.1997  | 6.00     | ST222        |
| 604   | Umbria Marche              | 26.9.1997  | 6.00     | ST225        |
| 607   | Umbria Marche              | 26.9.1997  | 6.00     | ST226        |

Tablo B.4: ZB sınıfı zeminlerde kaydedilen kayıtlara ait bilgiler

| KAYIT | Deprem smi                 | Tarihi     | Büyüklük | stasyon Kodu |
|-------|----------------------------|------------|----------|--------------|
| 608   | Umbria Marche              | 26.9.1997  | 6.00     | ST136        |
| 615   | Umbria Marche              | 26.9.1997  | 6.00     | ST138        |
| 616   | Umbria Marche              | 26.9.1997  | 6.00     | ST134        |
| 621   | Umbria Marche (aftershock) | 6.10.1997  | 5.50     | ST136        |
| 626   | Umbria Marche (aftershock) | 6.10.1997  | 5.50     | ST222        |
| 629   | Umbria Marche (aftershock) | 6.10.1997  | 5.50     | ST225        |
| 642   | Umbria Marche (aftershock) | 14.10.1997 | 5.60     | ST225        |
| 646   | Umbria Marche (aftershock) | 14.10.1997 | 5.60     | ST234        |
| 647   | Umbria Marche (aftershock) | 14.10.1997 | 5.60     | ST222        |
| 652   | Umbria Marche (aftershock) | 14.10.1997 | 5.60     | ST236        |
| 764   | Umbria Marche              | 26.9.1997  | 6.00     | ST266        |
| 773   | Umbria Marche (aftershock) | 3.10.1997  | 5.30     | ST222        |
| 775   | Umbria Marche (aftershock) | 3.10.1997  | 5.30     | ST136        |
| 789   | Umbria Marche (aftershock) | 12.10.1997 | 5.20     | ST225        |
| 791   | Umbria Marche (aftershock) | 12.10.1997 | 5.20     | ST234        |
| 818   | Umbria Marche (aftershock) | 12.10.1997 | 5.20     | ST235        |
| 826   | Umbria Marche (aftershock) | 12.10.1997 | 5.20     | ST236        |
| 847   | Umbria Marche (aftershock) | 26.3.1998  | 5.40     | ST269        |
| 851   | Umbria Marche (aftershock) | 26.3.1998  | 5.40     | ST235        |
| 862   | Umbria Marche (aftershock) | 21.3.1998  | 5.00     | ST233        |
| 870   | Umbria Marche (aftershock) | 3.4.1998   | 5.10     | ST136        |
| 960   | Sicilia-Orientale          | 13.12.1990 | 5.60     | ST296        |
| 961   | Sicilia-Orientale          | 13.12.1990 | 5.60     | ST297        |
| 990   | Lazio Abruzzo (aftershock) | 11.5.1984  | 5.50     | ST313        |
| 1240  | Izmit (aftershock)         | 13.9.1999  | 5.80     | ST561        |
| 1795  | Golbasi                    | 6.6.1986   | 5.80     | ST587        |

| KAYIT | Deprem smi                    | Tarihi     | Büyüklük | stasyon Kodu |
|-------|-------------------------------|------------|----------|--------------|
| 1852  | Astakos                       | 22.1.1988  | 5.10     | ST1301       |
| 1884  | Filippias                     | 16.6.1990  | 5.50     | ST1312       |
| 1891  | Kranidia                      | 25.10.1984 | 5.50     | ST1320       |
| 1893  | Near SW coast of Peloponnes   | 10.12.1987 | 5.20     | ST1321       |
| 1894  | Near coast of Filiatra        | 5.3.1993   | 5.20     | ST1321       |
| 1899  | Gulf of Kiparissiakos         | 7.9.1985   | 5.40     | ST1323       |
| 1900  | Kalamata (aftershock)         | 10.6.1987  | 5.30     | ST1323       |
| 1901  | Near coast of Filiatra        | 5.3.1993   | 5.20     | ST1323       |
| 1902  | Anchialos                     | 30.4.1985  | 5.60     | ST1324       |
| 1917  | Ierissos                      | 26.8.1983  | 5.10     | ST1328       |
| 1960  | Near NE coast of Rodos island | 25.10.1987 | 5.10     | ST1335       |
| 1994  | Skydra-Edessa                 | 18.2.1986  | 5.30     | ST1354       |
| 2023  | Kremidia (aftershock)         | 25.10.1984 | 5.00     | ST1323       |
| 4557  | Bovec                         | 12.4.1998  | 5.60     | ST750        |
| 4560  | Bovec                         | 12.4.1998  | 5.60     | ST727        |
| 4679  | South Iceland                 | 17.6.2000  | 6.50     | ST2563       |
| 5027  | Oelfus                        | 13.11.1998 | 5.10     | ST2496       |
| 5035  | Oelfus                        | 13.11.1998 | 5.10     | ST2491       |
| 5036  | Oelfus                        | 13.11.1998 | 5.10     | ST2492       |
| 5038  | Oelfus                        | 13.11.1998 | 5.10     | ST2495       |
| 5078  | Mt. Hengill Area              | 4.6.1998   | 5.40     | ST2496       |
| 5085  | Mt. Hengill Area              | 4.6.1998   | 5.40     | ST2497       |
| 5086  | Mt. Hengill Area              | 4.6.1998   | 5.40     | ST2556       |
| 5087  | Mt. Hengill Area              | 4.6.1998   | 5.40     | ST2491       |
| 5090  | Mt. Hengill Area              | 4.6.1998   | 5.40     | ST2495       |
| 5270  | Mt. Vatnafjoll                | 25.5.1987  | 6.00     | ST2486       |

| KAYIT | Deprem smi                 | Tarihi     | Büyüklük | stasyon Kodu |
|-------|----------------------------|------------|----------|--------------|
| 5271  | Mt. Vatnafjoll             | 25.5.1987  | 6.00     | ST2483       |
| 5272  | Mt. Vatnafjoll             | 25.5.1987  | 6.00     | ST2487       |
| 5614  | Friuli (aftershock)        | 11.9.1976  | 5.30     | ST36         |
| 5615  | Friuli (aftershock)        | 11.9.1976  | 5.50     | ST36         |
| 5655  | NE of Banja Luka           | 13.8.1981  | 5.70     | ST2950       |
| 5680  | Montenegro (aftershock)    | 15.4.1979  | 5.80     | ST66         |
| 5789  | Jesreel Plain              | 24.8.1984  | 5.30     | ST2992       |
| 5824  | Strofades (foreshock)      | 26.4.1997  | 5.00     | ST1323       |
| 5827  | Strofades (aftershock)     | 18.11.1997 | 6.00     | ST1323       |
| 5828  | Strofades (aftershock)     | 18.11.1997 | 5.30     | ST1323       |
| 6100  | Kozani                     | 13.5.1995  | 6.50     | ST1315       |
| 6122  | Kozani (aftershock)        | 15.5.1995  | 5.20     | ST1320       |
| 6123  | Kozani (aftershock)        | 17.5.1995  | 5.30     | ST1320       |
| 6124  | Kozani (aftershock)        | 17.7.1995  | 5.20     | ST1320       |
| 6262  | South Iceland              | 17.6.2000  | 6.50     | ST2496       |
| 6265  | South Iceland              | 17.6.2000  | 6.50     | ST2494       |
| 6267  | South Iceland              | 17.6.2000  | 6.50     | ST2565       |
| 6269  | South Iceland              | 17.6.2000  | 6.50     | ST2497       |
| 6270  | South Iceland              | 17.6.2000  | 6.50     | ST2556       |
| 6272  | South Iceland              | 17.6.2000  | 6.50     | ST2568       |
| 6278  | South Iceland              | 17.6.2000  | 6.50     | ST2552       |
| 6327  | South Iceland (aftershock) | 21.6.2000  | 6.40     | ST2552       |
| 6331  | South Iceland (aftershock) | 21.6.2000  | 6.40     | ST2486       |
| 6335  | South Iceland (aftershock) | 21.6.2000  | 6.40     | ST2557       |
| 6336  | South Iceland (aftershock) | 21.6.2000  | 6.40     | ST2563       |
| 6337  | South Iceland (aftershock) | 21.6.2000  | 6.40     | ST2494       |

| KAYIT | Deprem smi                 | Tarihi     | Büyüklük | stasyon Kodu |
|-------|----------------------------|------------|----------|--------------|
| 6348  | South Iceland (aftershock) | 21.6.2000  | 6.40     | ST2493       |
| 7083  | Meydan                     | 25.6.2001  | 5.40     | ST534        |
| 7158  | Firuzabad                  | 20.6.1994  | 5.90     | ST3293       |
| 7160  | Firuzabad                  | 20.6.1994  | 5.90     | ST3295       |
| 80    | San Fernando               | 9.2.1971   | 6.61     | 0209         |
| 146   | Coyote Lake                | 8.6.1979   | 5.74     | 0806         |
| 455   | Morgan Hill                | 24.4.1984  | 6.19     | 0424         |
| 765   | Loma Prieta                | 18.10.1989 | 6.93     | 1018         |
| 879   | Landers                    | 28.6.1992  | 7.28     | 0628         |
| 1011  | Northridge-01              | 17.1.1994  | 6.69     | 0117         |
| 1091  | Northridge-01              | 17.1.1994  | 6.69     | 0117         |
| 2753  | Chi-Chi, Taiwan-04         | 20.9.1999  | 6.20     | 0920         |
| 3925  | Tottori, Japan             | 6.10.2000  | 6.61     | 1006         |
| 3954  | Tottori, Japan             | 6.10.2000  | 6.61     | 1006         |
| 5618  | Iwate                      | 13.6.2008  | 6.90     | 0613         |
| 9071  | 14151344                   | 12.6.2005  | 5.20     | 612          |
| 347   | Irpinia                    | 23.11.1980 | 6.90     | ALT          |
| 351   | Irpinia                    | 23.11.1980 | 6.90     | TDG          |
| 354   | Irpinia                    | 23.11.1980 | 6.90     | BSC          |
| 355   | Irpinia                    | 23.11.1980 | 6.90     | STR          |
| 360   | Irpinia, Italy-02          | 23.11.1980 | 6.20     | ALT          |
| 363   | Irpinia, Italy-02          | 23.11.1980 | 6.20     | BGI          |
| 366   | Irpinia, Italy-02          | 23.11.1980 | 6.20     | BSC          |
| 367   | Irpinia, Italy-02          | 23.11.1980 | 6.20     | STR          |
| 3446  | Ano Liosia (Athens)        | 7.9.1999   | 6.00     | 1701         |
| 17036 | Gran Sasso                 | 9.4.2009   | 5.40     | AQP          |

| KAYIT | Deprem smi        | Tarihi     | Büyüklük | stasyon Kodu                 |
|-------|-------------------|------------|----------|------------------------------|
| 15    | Kern County       | 21/07/1952 | 7.36     | Taft Lincoln School          |
| 50    | Lytle Creek       | 12/09/1970 | 5.33     | Wrightwood - 6074 Park Dr    |
| 71    | San Fernando      | 09/02/1971 | 6.61     | Lake Hughes #12              |
| 72    | San Fernando      | 09/02/1971 | 6.61     | Lake Hughes #4               |
| 87    | San Fernando      | 09/02/1971 | 6.61     | Santa Anita Dam              |
| 88    | San Fernando      | 09/02/1971 | 6.61     | Santa Felita Dam (Outlet)    |
| 103   | Northern Calif-07 | 07/06/1975 | 5.20     | Petrolia, General Store      |
| 139   | Tabas, Iran       | 16/09/1978 | 7.35     | Dayhook                      |
| 222   | Livermore-02      | 27/01/1980 | 5.42     | Livermore - Morgan Terr Park |
| 231   | Mammoth Lakes-01  | 25/05/1980 | 6.06     | Long Valley Dam (Upr L Abut) |
| 243   | Mammoth Lakes-04  | 25/05/1980 | 5.70     | Long Valley Dam (Upr L Abut) |
| 246   | Mammoth Lakes-06  | 27/05/1980 | 5.94     | Benton                       |
| 247   | Mammoth Lakes-06  | 27/05/1980 | 5.94     | Bishop - Paradise Lodge      |
| 249   | Mammoth Lakes-06  | 27/05/1980 | 5.94     | Fish & Game (FIS)            |
| 265   | Victoria, Mexico  | 09/06/1980 | 6.33     | Cerro Prieto                 |
| 284   | Irpinia, Italy-01 | 23/11/1980 | 6.90     | Auletta                      |
| 285   | Irpinia, Italy-01 | 23/11/1980 | 6.90     | Bagnoli Irpinio              |
| 288   | Irpinia, Italy-01 | 23/11/1980 | 6.90     | Brienza                      |
| 291   | Irpinia, Italy-01 | 23/11/1980 | 6.90     | Rionero In Vulture           |
| 295   | Irpinia, Italy-02 | 23/11/1980 | 6.20     | Auletta                      |
| 300   | Irpinia, Italy-02 | 23/11/1980 | 6.20     | Calitri                      |
| 313   | Corinth, Greece   | 24/02/1981 | 6.60     | Corinth                      |
| 353   | Coalinga-01       | 02/05/1983 | 6.36     | Parkfield - Gold Hill 4W     |
| 356   | Coalinga-01       | 02/05/1983 | 6.36     | Parkfield - Stone Corral 2E  |
| 357   | Coalinga-01       | 02/05/1983 | 6.36     | Parkfield - Stone Corral 3E  |
| 410   | Coalinga-05       | 22/07/1983 | 5.77     | Palmer Ave                   |
| 414   | Coalinga-05       | 22/07/1983 | 5.77     | Sulphur Baths (temp)         |

 Tablo B.5: ZC sınıfı zeminlerde kaydedilen kayıtlara ait bilgiler

| KAYIT | Deprem smi          | Tarihi     | Büyüklük | stasyon Kodu                             |
|-------|---------------------|------------|----------|------------------------------------------|
| 450   | Morgan Hill         | 24/04/1984 | 6.19     | Corralitos                               |
| 451   | Morgan Hill         | 24/04/1984 | 6.19     | Coyote Lake Dam - Southwest Abutment     |
| 471   | Morgan Hill         | 24/04/1984 | 6.19     | San Justo Dam (L Abut)                   |
| 472   | Morgan Hill         | 24/04/1984 | 6.19     | San Justo Dam (R Abut)                   |
| 514   | N. Palm Springs     | 08/07/1986 | 6.06     | Cabazon                                  |
| 524   | N. Palm Springs     | 08/07/1986 | 6.06     | Joshua Tree                              |
| 554   | Chalfant Valley-02  | 21/07/1986 | 6.19     | Long Valley Dam (L Abut)                 |
| 587   | New Zealand-02      | 02/03/1987 | 6.60     | Matahina Dam                             |
| 590   | Whittier Narrows-01 | 01/10/1987 | 5.99     | Altadena - Eaton Canyon                  |
| 600   | Whittier Narrows-01 | 01/10/1987 | 5.99     | Brea Dam (Downstream)                    |
| 648   | Whittier Narrows-01 | 01/10/1987 | 5.99     | La Crescenta - New York                  |
| 675   | Whittier Narrows-01 | 01/10/1987 | 5.99     | Pasadena - CIT Athenaeum                 |
| 755   | Loma Prieta         | 18/10/1989 | 6.93     | Coyote Lake Dam - Southwest Abut.        |
| 763   | Loma Prieta         | 18/10/1989 | 6.93     | Gilroy - Gavilan Coll.                   |
| 779   | Loma Prieta         | 18/10/1989 | 6.93     | LGPC                                     |
| 787   | Loma Prieta         | 18/10/1989 | 6.93     | Palo Alto - SLAC Lab                     |
| 801   | Loma Prieta         | 18/10/1989 | 6.93     | San Jose - Santa Teresa Hills            |
| 802   | Loma Prieta         | 18/10/1989 | 6.93     | Saratoga - Aloha Ave                     |
| 809   | Loma Prieta         | 18/10/1989 | 6.93     | UCSC                                     |
| 810   | Loma Prieta         | 18/10/1989 | 6.93     | UCSC Lick Observatory                    |
| 811   | Loma Prieta         | 18/10/1989 | 6.93     | WAHO                                     |
| 825   | Cape Mendocino      | 25/04/1992 | 7.01     | Cape Mendocino                           |
| 864   | Landers             | 28/06/1992 | 7.28     | Joshua Tree                              |
| 901   | Big Bear-01         | 28/06/1992 | 6.46     | Big Bear Lake - Civic Center             |
| 952   | Northridge-01       | 17/01/1994 | 6.69     | Beverly Hills - 12520 Mulhol             |
| 982   | Northridge-01       | 17/01/1994 | 6.69     | Jensen Filter Plant Administrative Buil. |

| KAYIT | Deprem smi      | Tarihi     | Büyüklük | stasyon Kodu                        |
|-------|-----------------|------------|----------|-------------------------------------|
| 983   | Northridge-01   | 17/01/1994 | 6.69     | Jensen Filter Plant Generator Buil. |
| 990   | Northridge-01   | 17/01/1994 | 6.69     | LA - City Terrace                   |
| 991   | Northridge-01   | 17/01/1994 | 6.69     | LA - Cypress Ave                    |
| 1006  | Northridge-01   | 17/01/1994 | 6.69     | LA - UCLA Grounds                   |
| 1012  | Northridge-01   | 17/01/1994 | 6.69     | LA 00                               |
| 1013  | Northridge-01   | 17/01/1994 | 6.69     | LA Dam                              |
| 1052  | Northridge-01   | 17/01/1994 | 6.69     | Pacoima Kagel Canyon                |
| 1053  | Northridge-01   | 17/01/1994 | 6.69     | Palmdale - Hwy 14 & Palmdale        |
| 1055  | Northridge-01   | 17/01/1994 | 6.69     | Pasadena - N Sierra Madre           |
| 1058  | Northridge-01   | 17/01/1994 | 6.69     | Point Mugu - Laguna Peak            |
| 1062  | Northridge-01   | 17/01/1994 | 6.69     | Rancho Palos Verdes - Luconia       |
| 1072  | Northridge-01   | 17/01/1994 | 6.69     | San Marino - SW Academy             |
| 1078  | Northridge-01   | 17/01/1994 | 6.69     | Santa Susana Ground                 |
| 1080  | Northridge-01   | 17/01/1994 | 6.69     | Simi Valley - Katherine Rd          |
| 1085  | Northridge-01   | 17/01/1994 | 6.69     | Sylmar - Converter Sta East         |
| 1086  | Northridge-01   | 17/01/1994 | 6.69     | Sylmar - Olive View Med FF          |
| 1197  | Chi-Chi, Taiwan | 20/09/1999 | 7.62     | CHY028                              |
| 1205  | Chi-Chi, Taiwan | 20/09/1999 | 7.62     | CHY041                              |
| 1208  | Chi-Chi, Taiwan | 20/09/1999 | 7.62     | CHY046                              |
| 1492  | Chi-Chi, Taiwan | 20/09/1999 | 7.62     | TCU052                              |
| 1502  | Chi-Chi, Taiwan | 20/09/1999 | 7.62     | TCU064                              |
| 1504  | Chi-Chi, Taiwan | 20/09/1999 | 7.62     | TCU067                              |
| 1505  | Chi-Chi, Taiwan | 20/09/1999 | 7.62     | TCU068                              |
| 1510  | Chi-Chi, Taiwan | 20/09/1999 | 7.62     | TCU075                              |
| 1511  | Chi-Chi, Taiwan | 20/09/1999 | 7.62     | TCU076                              |
| 1520  | Chi-Chi, Taiwan | 20/09/1999 | 7.62     | TCU088                              |

| KAYIT | Deprem smi         | Tarihi     | Büyüklük | stasyon Kodu                                                      |
|-------|--------------------|------------|----------|-------------------------------------------------------------------|
| 1529  | Chi-Chi, Taiwan    | 20/09/1999 | 7.62     | TCU102                                                            |
| 1532  | Chi-Chi, Taiwan    | 20/09/1999 | 7.62     | TCU105                                                            |
| 1549  | Chi-Chi, Taiwan    | 20/09/1999 | 7.62     | TCU129                                                            |
| 1551  | Chi-Chi, Taiwan    | 20/09/1999 | 7.62     | TCU138                                                            |
| 1612  | Duzce, Turkey      | 12/11/1999 | 7.14     | Lamont 1059                                                       |
| 1617  | Duzce, Turkey      | 12/11/1999 | 7.14     | Lamont 375                                                        |
| 1632  | Upland             | 28/02/1990 | 5.63     | Rancho Cucamonga - Law and Justince Center FF, Foothill and Haven |
| 1633  | Manjil, Iran       | 20/06/1990 | 7.37     | Abbar                                                             |
| 1643  | Sierra Madre       | 28/06/1991 | 5.61     | LA - City Terrace                                                 |
| 1762  | Hector Mine        | 16/10/1999 | 7.13     | Amboy                                                             |
| 1787  | Hector Mine        | 16/10/1999 | 7.13     | Hector                                                            |
| 1787  | Hector Mine        | 16/10/1999 | 7.13     | Hector                                                            |
| 2462  | Chi-Chi, Taiwan-03 | 20/09/1999 | 6.20     | CHY029                                                            |
| 2624  | Chi-Chi, Taiwan-03 | 20/09/1999 | 6.20     | TCU073                                                            |
| 2626  | Chi-Chi, Taiwan-03 | 20/09/1999 | 6.20     | TCU075                                                            |
| 2646  | Chi-Chi, Taiwan-03 | 20/09/1999 | 6.20     | TCU109                                                            |
| 2650  | Chi-Chi, Taiwan-03 | 20/09/1999 | 6.20     | TCU116                                                            |
| 2658  | Chi-Chi, Taiwan-03 | 20/09/1999 | 6.20     | TCU129                                                            |
| 2712  | Chi-Chi, Taiwan-04 | 20/09/1999 | 6.20     | CHY042                                                            |
| 2717  | Chi-Chi, Taiwan-04 | 20/09/1999 | 6.20     | CHY052                                                            |
| 2821  | Chi-Chi, Taiwan-04 | 20/09/1999 | 6.20     | KAU054                                                            |
| 2888  | Chi-Chi, Taiwan-04 | 20/09/1999 | 6.20     | TCU116                                                            |
| 2942  | Chi-Chi, Taiwan-05 | 22/09/1999 | 6.20     | CHY024                                                            |
| 3192  | Chi-Chi, Taiwan-05 | 22/09/1999 | 6.20     | TCU082                                                            |
| 3264  | Chi-Chi, Taiwan-06 | 25/09/1999 | 6.30     | CHY024                                                            |
| 3346  | Chi-Chi, Taiwan-06 | 25/09/1999 | 6.30     | HWA034                                                            |

| KAYIT | Deprem smi         | Tarihi     | Büyüklük | stasyon Kodu                    |
|-------|--------------------|------------|----------|---------------------------------|
| 3468  | Chi-Chi, Taiwan-06 | 25/09/1999 | 6.30     | TCU067                          |
| 3474  | Chi-Chi, Taiwan-06 | 25/09/1999 | 6.30     | TCU079                          |
| 3505  | Chi-Chi, Taiwan-06 | 25/09/1999 | 6.30     | TCU125                          |
| 3507  | Chi-Chi, Taiwan-06 | 25/09/1999 | 6.30     | TCU129                          |
| 3744  | Cape Mendocino     | 25/04/1992 | 7.01     | Bunker Hill FAA                 |
| 3746  | Cape Mendocino     | 25/04/1992 | 7.01     | Centerville Beach, Naval Fac    |
| 3750  | Cape Mendocino     | 25/04/1992 | 7.01     | Loleta Fire Station             |
| 3757  | Landers            | 28/06/1992 | 7.28     | North Palm Springs Fire Sta #36 |
| 3760  | Landers            | 28/06/1992 | 7.28     | Big Bear Lake - Civic Center    |
| 3870  | Tottori, Japan     | 06/10/2000 | 6.61     | HRS001                          |
| 3871  | Tottori, Japan     | 06/10/2000 | 6.61     | HRS002                          |
| 3884  | Tottori, Japan     | 06/10/2000 | 6.61     | HRS021                          |
| 3907  | Tottori, Japan     | 06/10/2000 | 6.61     | OKY004                          |
| 3927  | Tottori, Japan     | 06/10/2000 | 6.61     | OKYH09                          |
| 3932  | Tottori, Japan     | 06/10/2000 | 6.61     | OKYH14                          |
| 3948  | Tottori, Japan     | 06/10/2000 | 6.61     | SMNH02                          |
| 3964  | Tottori, Japan     | 06/10/2000 | 6.61     | TTR007                          |
| 4031  | San Simeon, CA     | 22/12/2003 | 6.52     | Templeton - 1-story Hospital    |
| 4040  | Bam, Iran          | 26/12/2003 | 6.60     | Bam                             |
| 4064  | Parkfield-02, CA   | 28/09/2004 | 6.00     | PARKFIELD - DONNA LEE           |
| 4070  | Parkfield-02, CA   | 28/09/2004 | 6.00     | PARKFIELD - JOAQUIN CANYON      |
| 4071  | Parkfield-02, CA   | 28/09/2004 | 6.00     | PARKFIELD - MIDDLE MOUNTAIN     |
| 4101  | Parkfield-02, CA   | 28/09/2004 | 6.00     | Parkfield - Cholame 3E          |
| 4133  | Parkfield-02, CA   | 28/09/2004 | 6.00     | Parkfield - Vineyard Cany 2W    |
| 4149  | Parkfield-02, CA   | 28/09/2004 | 6.00     | PARKFIELD - UPSAR 13            |
| 4169  | Niigata, Japan     | 23/10/2004 | 6.63     | FKSH21                          |

| KAYIT | Deprem smi                          | Tarihi     | Büyüklük | stasyon Kodu                        |
|-------|-------------------------------------|------------|----------|-------------------------------------|
| 4193  | Niigata, Japan                      | 23/10/2004 | 6.63     | NGNH29                              |
| 4205  | Niigata, Japan                      | 23/10/2004 | 6.63     | NIG015                              |
| 4211  | Niigata, Japan                      | 23/10/2004 | 6.63     | NIG021                              |
| 4213  | Niigata, Japan                      | 23/10/2004 | 6.63     | NIG023                              |
| 4218  | Niigata, Japan                      | 23/10/2004 | 6.63     | NIG028                              |
| 4219  | Niigata, Japan                      | 23/10/2004 | 6.63     | NIGH01                              |
| 4226  | Niigata, Japan                      | 23/10/2004 | 6.63     | NIGH09                              |
| 4228  | Niigata, Japan                      | 23/10/2004 | 6.63     | NIGH11                              |
| 4229  | Niigata, Japan                      | 23/10/2004 | 6.63     | NIGH12                              |
| 4285  | Basso Tirreno, Italy                | 15/04/1978 | 6.00     | Patti-Cabina Prima                  |
| 4350  | Umbria Marche, Italy                | 26/09/1997 | 6.00     | Gubbio-Piana                        |
| 4369  | Umbria Marche (aftershock 1), Italy | 06/10/1997 | 5.50     | Nocera Umbra-Salmata                |
| 4383  | Umbria Marche (aftershock 2), Italy | 14/10/1997 | 5.60     | Borgo-Cerreto Torre                 |
| 4477  | L'Aquila, Italy                     | 06/04/2009 | 6.30     | GRAN SASSO (Assergi)                |
| 4510  | L'Aquila (aftershock 1), Italy      | 07/04/2009 | 5.60     | L'Aquila - V. Aterno - Centro Valle |
| 4845  | Chuetsu-oki                         | 16/07/2007 | 6.80     | Joetsu Oshimaku Oka                 |
| 4846  | Chuetsu-oki                         | 16/07/2007 | 6.80     | Joetsu Yanagishima paddocks         |
| 4848  | Chuetsu-oki                         | 16/07/2007 | 6.80     | Joetsu Ogataku                      |
| 4850  | Chuetsu-oki                         | 16/07/2007 | 6.80     | Yoshikawaku Joetsu City             |
| 4857  | Chuetsu-oki                         | 16/07/2007 | 6.80     | Kamo Kouiti Town                    |
| 4858  | Chuetsu-oki                         | 16/07/2007 | 6.80     | Tokamachi Chitosecho                |
| 4864  | Chuetsu-oki                         | 16/07/2007 | 6.80     | Yoitamachi Yoita Nagaoka            |
| 4870  | Chuetsu-oki                         | 16/07/2007 | 6.80     | Horinouchi Uonuma City              |
| 4873  | Chuetsu-oki                         | 16/07/2007 | 6.80     | Kashiwazaki City Takayanagicho      |
| 4874  | Chuetsu-oki                         | 16/07/2007 | 6.80     | Oguni Nagaoka                       |
| 4876  | Chuetsu-oki                         | 16/07/2007 | 6.80     | Kashiwazaki Nishiyamacho Ikeura     |

| KAYIT | Deprem smi      | Tarihi     | Büyüklük | stasyon Kodu                  |
|-------|-----------------|------------|----------|-------------------------------|
| 5265  | Chuetsu-oki     | 16/07/2007 | 6.80     | NIG019                        |
| 5270  | Chuetsu-oki     | 16/07/2007 | 6.80     | NIG024                        |
| 5286  | Chuetsu-oki     | 16/07/2007 | 6.80     | NIGH13                        |
| 5474  | Iwate           | 13/06/2008 | 6.90     | AKT019                        |
| 5478  | Iwate           | 13/06/2008 | 6.90     | AKT023                        |
| 5482  | Iwate           | 13/06/2008 | 6.90     | AKTH04                        |
| 5484  | Iwate           | 13/06/2008 | 6.90     | AKTH06                        |
| 5617  | Iwate           | 13/06/2008 | 6.90     | IWT009                        |
| 5637  | Iwate           | 13/06/2008 | 6.90     | IWTH05                        |
| 5656  | Iwate           | 13/06/2008 | 6.90     | IWTH24                        |
| 5658  | Iwate           | 13/06/2008 | 6.90     | IWTH26                        |
| 5664  | Iwate           | 13/06/2008 | 6.90     | MYG005                        |
| 5678  | Iwate           | 13/06/2008 | 6.90     | MYGH02                        |
| 5775  | Iwate           | 13/06/2008 | 6.90     | Tamati Ono                    |
| 5776  | Iwate           | 13/06/2008 | 6.90     | Kami, Miyagi Miyazaki City    |
| 5800  | Iwate           | 13/06/2008 | 6.90     | Yokote Masuda Tamati Masu     |
| 5804  | Iwate           | 13/06/2008 | 6.90     | Yamauchi Tsuchibuchi Yokote   |
| 5804  | Iwate           | 13/06/2008 | 6.90     | Yamauchi Tsuchibuchi Yokote   |
| 5807  | Iwate           | 13/06/2008 | 6.90     | Yuzama Yokobori               |
| 5807  | Iwate           | 13/06/2008 | 6.90     | Yuzama Yokobori               |
| 5810  | Iwate           | 13/06/2008 | 6.90     | Machimukai Town               |
| 5813  | Iwate           | 13/06/2008 | 6.90     | Mizusawaku Interior O ganecho |
| 5815  | Iwate           | 13/06/2008 | 6.90     | Yuzawa                        |
| 5818  | Iwate           | 13/06/2008 | 6.90     | Kurihara City                 |
| 5819  | Iwate           | 13/06/2008 | 6.90     | Ichinoseki Maikawa            |
| 6875  | Joshua Tree, CA | 23/04/1992 | 6.10     | Morongo Valley Fire Station   |

| KAYIT | Deprem smi            | Tarihi     | Büyüklük | stasyon Kodu           |
|-------|-----------------------|------------|----------|------------------------|
| 6928  | Darfield, New Zealand | 03/09/2010 | 7.00     | LPCC                   |
| 6971  | Darfield, New Zealand | 03/09/2010 | 7.00     | SPFS                   |
| 8164  | Duzce, Turkey         | 12/11/1999 | 7.14     | IRIGM 487              |
| 8166  | Duzce, Turkey         | 12/11/1999 | 7.14     | IRIGM 498              |
| 8833  | 14383980              | 29/7/2008  | 5.39     | Puddingstone Reservoir |

| KAYIT | Deprem smi         | Tarihi     | Büyüklük | stasyon Kodu                     |
|-------|--------------------|------------|----------|----------------------------------|
| 6     | Imperial Valley-02 | 19/05/1940 | 6.95     | El Centro Array #9               |
| 30    | Parkfield          | 28/06/1966 | 6.19     | Cholame - Shandon Array #5       |
| 126   | Gazli, USSR        | 17/05/1976 | 6.80     | Karakyr                          |
| 130   | Friuli, Italy-02   | 15/09/1976 | 5.91     | Buia                             |
| 161   | Imperial Valley-06 | 15/10/1979 | 6.53     | Brawley Airport                  |
| 169   | Imperial Valley-06 | 15/10/1979 | 6.53     | Delta                            |
| 171   | Imperial Valley-06 | 15/10/1979 | 6.53     | El Centro - Meloland Geot. Array |
| 175   | Imperial Valley-06 | 15/10/1979 | 6.53     | El Centro Array #12              |
| 179   | Imperial Valley-06 | 15/10/1979 | 6.53     | El Centro Array #4               |
| 180   | Imperial Valley-06 | 15/10/1979 | 6.53     | El Centro Array #5               |
| 181   | Imperial Valley-06 | 15/10/1979 | 6.53     | El Centro Array #6               |
| 183   | Imperial Valley-06 | 15/10/1979 | 6.53     | El Centro Array #8               |
| 184   | Imperial Valley-06 | 15/10/1979 | 6.53     | El Centro Differential Array     |
| 209   | Imperial Valley-08 | 16/10/1979 | 5.62     | Westmorland Fire Sta             |
| 232   | Mammoth Lakes-01   | 25/05/1980 | 6.06     | Mammoth Lakes H. S.              |
| 310   | Taiwan SMART1(5)   | 29/01/1981 | 5.90     | SMART1 M07                       |
| 314   | Westmorland        | 26/04/1981 | 5.90     | Brawley Airport                  |
| 315   | Westmorland        | 26/04/1981 | 5.90     | Niland Fire Station              |
| 316   | Westmorland        | 26/04/1981 | 5.90     | Parachute Test Site              |
| 322   | Coalinga-01        | 02/05/1983 | 6.36     | Cantua Creek School              |
| 328   | Coalinga-01        | 02/05/1983 | 6.36     | Parkfield - Cholame 3W           |
| 412   | Coalinga-05        | 22/07/1983 | 5.77     | Pleasant Valley P.P yard         |
| 502   | Mt. Lewis          | 31/03/1986 | 5.60     | Halls Valley                     |
| 529   | N. Palm Springs    | 08/07/1986 | 6.06     | North Palm Springs               |
| 547   | Chalfant Valley-01 | 20/07/1986 | 5.77     | Zack Brothers Ranch              |
| 558   | Chalfant Valley-02 | 21/07/1986 | 6.19     | Zack Brothers Ranch              |
| 562   | Chalfant Valley-04 | 31/07/1986 | 5.44     | Bishop - LADWP South St          |

 Tablo B.6: ZD sınıfı zeminlerde kaydedilen kayıtlara ait bilgiler

| KAYIT | Deprem smi            | Tarihi     | Büyüklük | stasyon Kodu                 |
|-------|-----------------------|------------|----------|------------------------------|
| 595   | Whittier Narrows-01   | 01/10/1987 | 5.99     | Bell Gardens - Jaboneria     |
| 602   | Whittier Narrows-01   | 01/10/1987 | 5.99     | Burbank - N Buena Vista      |
| 614   | Whittier Narrows-01   | 01/10/1987 | 5.99     | Downey - Birchdale           |
| 625   | Whittier Narrows-01   | 01/10/1987 | 5.99     | Inglewood - Union Oil        |
| 627   | Whittier Narrows-01   | 01/10/1987 | 5.99     | LA - Baldwin Hills           |
| 634   | Whittier Narrows-01   | 01/10/1987 | 5.99     | LA - Fletcher Dr             |
| 652   | Whittier Narrows-01   | 01/10/1987 | 5.99     | Lakewood - Del Amo Blvd      |
| 668   | Whittier Narrows-01   | 01/10/1987 | 5.99     | Norwalk - Imp Hwy, S Grnd    |
| 679   | Whittier Narrows-01   | 01/10/1987 | 5.99     | Pasadena - CIT Keck Lab      |
| 681   | Whittier Narrows-01   | 01/10/1987 | 5.99     | Pasadena - CIT Lura St       |
| 692   | Whittier Narrows-01   | 01/10/1987 | 5.99     | Santa Fe Springs - E.Joslin  |
| 711   | Whittier Narrows-02   | 04/10/1987 | 5.27     | LA - 116th St School         |
| 721   | Superstition Hills-02 | 24/11/1987 | 6.54     | El Centro Imp. Co. Cent      |
| 722   | Superstition Hills-02 | 24/11/1987 | 6.54     | Kornbloom Road (temp)        |
| 723   | Superstition Hills-02 | 24/11/1987 | 6.54     | Parachute Test Site          |
| 725   | Superstition Hills-02 | 24/11/1987 | 6.54     | Poe Road (temp)              |
| 767   | Loma Prieta           | 18/10/1989 | 6.93     | Gilroy Array #3              |
| 768   | Loma Prieta           | 18/10/1989 | 6.93     | Gilroy Array #4              |
| 770   | Loma Prieta           | 18/10/1989 | 6.93     | Gilroy Array #7              |
| 776   | Loma Prieta           | 18/10/1989 | 6.93     | Hollister - South & Pine     |
| 778   | Loma Prieta           | 18/10/1989 | 6.93     | Hollister Differential Array |
| 826   | Cape Mendocino        | 25/04/1992 | 7.01     | Eureka - Myrtle & West       |
| 949   | Northridge-01         | 17/01/1994 | 6.69     | Arleta - Nordhoff Fire Sta   |
| 953   | Northridge-01         | 17/01/1994 | 6.69     | Beverly Hills - 14145 Mulhol |
| 958   | Northridge-01         | 17/01/1994 | 6.69     | Camarillo                    |
| 960   | Northridge-01         | 17/01/1994 | 6.69     | Canyon Country - W Lost Cany |

| KAYIT | Deprem smi    | Tarihi     | Büyüklük | stasyon Kodu                             |
|-------|---------------|------------|----------|------------------------------------------|
| 964   | Northridge-01 | 17/01/1994 | 6.69     | Compton - Castlegate St                  |
| 981   | Northridge-01 | 17/01/1994 | 6.69     | Inglewood - Union Oil                    |
| 984   | Northridge-01 | 17/01/1994 | 6.69     | LA - 116th St School                     |
| 987   | Northridge-01 | 17/01/1994 | 6.69     | LA - Centinela St                        |
| 993   | Northridge-01 | 17/01/1994 | 6.69     | LA - Fletcher Dr                         |
| 998   | Northridge-01 | 17/01/1994 | 6.69     | LA - N Westmoreland                      |
| 1000  | Northridge-01 | 17/01/1994 | 6.69     | LA - Pico & Sentous                      |
| 1003  | Northridge-01 | 17/01/1994 | 6.69     | LA - Saturn St                           |
| 1007  | Northridge-01 | 17/01/1994 | 6.69     | Los Angeles - 7-story Univ Hospital (FF) |
| 1008  | Northridge-01 | 17/01/1994 | 6.69     | LA - W 15th St                           |
| 1015  | Northridge-01 | 17/01/1994 | 6.69     | LB - Rancho Los Cerritos                 |
| 1026  | Northridge-01 | 17/01/1994 | 6.69     | Lawndale - Osage Ave                     |
| 1044  | Northridge-01 | 17/01/1994 | 6.69     | Newhall - Fire Sta                       |
| 1045  | Northridge-01 | 17/01/1994 | 6.69     | Newhall - W Pico Canyon Rd.              |
| 1063  | Northridge-01 | 17/01/1994 | 6.69     | Rinaldi Receiving Sta                    |
| 1076  | Northridge-01 | 17/01/1994 | 6.69     | Santa Fe Springs - E.Joslin              |
| 1077  | Northridge-01 | 17/01/1994 | 6.69     | Santa Monica City Hall                   |
| 1082  | Northridge-01 | 17/01/1994 | 6.69     | Sun Valley - Roscoe Blvd                 |
| 1084  | Northridge-01 | 17/01/1994 | 6.69     | Sylmar - Converter Sta                   |
| 1101  | Kobe, Japan   | 16/01/1995 | 6.90     | Amagasaki                                |
| 1106  | Kobe, Japan   | 16/01/1995 | 6.90     | KJMA                                     |
| 1106  | Kobe, Japan   | 16/01/1995 | 6.90     | KJMA                                     |
| 1115  | Kobe, Japan   | 16/01/1995 | 6.90     | Sakai                                    |
| 1116  | Kobe, Japan   | 16/01/1995 | 6.90     | Shin-Osaka                               |
| 1116  | Kobe, Japan   | 16/01/1995 | 6.90     | Shin-Osaka                               |
| 1119  | Kobe, Japan   | 16/01/1995 | 6.90     | Takarazuka                               |

| KAYIT | Deprem smi          | Tarihi     | Büyüklük | stasyon Kodu                     |
|-------|---------------------|------------|----------|----------------------------------|
| 1120  | Kobe, Japan         | 16/01/1995 | 6.90     | Takatori                         |
| 1176  | Kocaeli, Turkey     | 17/08/1999 | 7.51     | Yarimca                          |
| 1203  | Chi-Chi, Taiwan     | 20/09/1999 | 7.62     | CHY036                           |
| 1491  | Chi-Chi, Taiwan     | 20/09/1999 | 7.62     | TCU051                           |
| 1495  | Chi-Chi, Taiwan     | 20/09/1999 | 7.62     | TCU055                           |
| 1498  | Chi-Chi, Taiwan     | 20/09/1999 | 7.62     | TCU059                           |
| 1503  | Chi-Chi, Taiwan     | 20/09/1999 | 7.62     | TCU065                           |
| 1553  | Chi-Chi, Taiwan     | 20/09/1999 | 7.62     | TCU141                           |
| 1554  | Chi-Chi, Taiwan     | 20/09/1999 | 7.62     | TCU145                           |
| 1602  | Duzce, Turkey       | 12/11/1999 | 7.14     | Bolu                             |
| 1646  | Sierra Madre        | 28/06/1991 | 5.61     | Pasadena - USGS/NSMP Office      |
| 2005  | CA/Baja Border Area | 22/02/2002 | 5.31     | El Centro - Meadows Union School |
| 2009  | CA/Baja Border Area | 22/02/2002 | 5.31     | Holtville Post Office            |
| 2378  | Chi-Chi, Taiwan-02  | 20/09/1999 | 5.90     | TCU059                           |
| 2429  | Chi-Chi, Taiwan-02  | 20/09/1999 | 5.90     | TCU141                           |
| 2694  | Chi-Chi, Taiwan-04  | 20/09/1999 | 6.20     | CHY015                           |
| 2706  | Chi-Chi, Taiwan-04  | 20/09/1999 | 6.20     | CHY032                           |
| 2710  | Chi-Chi, Taiwan-04  | 20/09/1999 | 6.20     | CHY036                           |
| 2943  | Chi-Chi, Taiwan-05  | 22/09/1999 | 6.20     | CHY025                           |
| 3215  | Chi-Chi, Taiwan-05  | 22/09/1999 | 6.20     | TCU123                           |
| 3563  | Taiwan SMART1(5)    | 29/01/1981 | 5.90     | SMART1 M04                       |
| 3717  | Whittier Narrows-02 | 04/10/1987 | 5.27     | LA - W 70th St                   |
| 3749  | Cape Mendocino      | 25/04/1992 | 7.01     | Fortuna Fire Station             |
| 3754  | Landers             | 28/06/1992 | 7.28     | Indio - Jackson Road             |
| 3830  | Yountville          | 03/09/2000 | 5.00     | Napa - Napa College              |
| 3963  | Tottori, Japan      | 06/10/2000 | 6.61     | TTR006                           |

| KAYIT | Deprem smi                          | Tarihi     | Büyüklük | stasyon Kodu                            |  |  |
|-------|-------------------------------------|------------|----------|-----------------------------------------|--|--|
| 4066  | Parkfield-02, CA                    | 28/09/2004 | 6.00     | PARKFIELD - FROELICH                    |  |  |
| 4081  | Parkfield-02, CA                    | 28/09/2004 | 6.00     | Parkfield - Cholame 5W                  |  |  |
| 4084  | Parkfield-02, CA                    | 28/09/2004 | 6.00     | PARKFIELD - 1-STORY SCHOOL BLDG         |  |  |
| 4102  | Parkfield-02, CA                    | 28/09/2004 | 6.00     | Parkfield - Cholame 3W                  |  |  |
| 4104  | Parkfield-02, CA                    | 28/09/2004 | 6.00     | Parkfield - Cholame 4AW                 |  |  |
| 4105  | Parkfield-02, CA                    | 28/09/2004 | 6.00     | Parkfield - Cholame 6W                  |  |  |
| 4348  | Umbria Marche, Italy                | 26/09/1997 | 6.00     | Castelnuovo-Assisi                      |  |  |
| 4391  | Umbria Marche (aftershock 2), Italy | 14/10/1997 | 5.60     | Norcia-Altavilla                        |  |  |
| 4393  | Umbria Marche (aftershock 2), Italy | 14/10/1997 | 5.60     | Rieti                                   |  |  |
| 4853  | Chuetsu-oki                         | 16/07/2007 | 6.80     | Joetsu City                             |  |  |
| 4861  | Chuetsu-oki                         | 16/07/2007 | 6.80     | Nakanoshima Nagaoka                     |  |  |
| 4862  | Chuetsu-oki                         | 16/07/2007 | 6.80     | Shiura Nagaoka                          |  |  |
| 4875  | Chuetsu-oki                         | 16/07/2007 | 6.80     | Kariwa                                  |  |  |
| 4881  | Chuetsu-oki                         | 16/07/2007 | 6.80     | Nagaoka Kouiti Town                     |  |  |
| 4894  | Chuetsu-oki                         | 16/07/2007 | 6.80     | Kashiwazaki NPP, Unit 1: ground surface |  |  |
| 4895  | Chuetsu-oki                         | 16/07/2007 | 6.80     | Kashiwazaki NPP, Unit 5: ground surface |  |  |
| 5249  | Chuetsu-oki                         | 16/07/2007 | 6.80     | NIG003                                  |  |  |
| 5268  | Chuetsu-oki                         | 16/07/2007 | 6.80     | NIG022                                  |  |  |
| 5620  | Iwate                               | 13/06/2008 | 6.90     | IWT012                                  |  |  |
| 5652  | Iwate                               | 13/06/2008 | 6.90     | IWTH20                                  |  |  |
| 5774  | Iwate                               | 13/06/2008 | 6.90     | Nakashinden Town                        |  |  |
| 5780  | Iwate                               | 13/06/2008 | 6.90     | Iwadeyama                               |  |  |
| 5785  | Iwate                               | 13/06/2008 | 6.90     | Yoneyamacho Tome City                   |  |  |
| 5797  | Iwate                               | 13/06/2008 | 6.90     | Oomagari Hanazono-cho, Daisen           |  |  |
| 5803  | Iwate                               | 13/06/2008 | 6.90     | Yokote Ju Monjimachi                    |  |  |
| 5812  | Iwate                               | 13/06/2008 | 6.90     | Kitakami Yanagiharach                   |  |  |

| KAYIT | Deprem smi                | Tarihi     | Büyüklük | stasyon Kodu                              |
|-------|---------------------------|------------|----------|-------------------------------------------|
| 5817  | Iwate                     | 13/06/2008 | 6.90     | Tome City, Nakadacho                      |
| 5823  | El Mayor-Cucapah          | 04/04/2010 | 7.20     | Chihuahua                                 |
| 5825  | El Mayor-Cucapah          | 04/04/2010 | 7.20     | CERRO PRIETO GEOTHERMAL                   |
| 5827  | El Mayor-Cucapah          | 04/04/2010 | 7.20     | MICHOACAN DE OCAMPO                       |
| 5829  | El Mayor-Cucapah          | 04/04/2010 | 7.20     | RIITO                                     |
| 5831  | El Mayor-Cucapah          | 04/04/2010 | 7.20     | EJIDO SALTILLO                            |
| 5832  | El Mayor-Cucapah          | 04/04/2010 | 7.20     | TAMAULIPAS                                |
| 5836  | El Mayor-Cucapah          | 04/04/2010 | 7.20     | El Centro - Meloland Geot. Array          |
| 5838  | El Mayor-Cucapah          | 04/04/2010 | 7.20     | El Centro - Meloland Geotechnic           |
| 5969  | El Mayor-Cucapah          | 04/04/2010 | 7.20     | Bonds Corner                              |
| 5975  | El Mayor-Cucapah          | 04/04/2010 | 7.20     | Calexico Fire Station                     |
| 6893  | Darfield, New Zealand     | 03/09/2010 | 7.00     | DFHS                                      |
| 6911  | Darfield, New Zealand     | 03/09/2010 | 7.00     | HORC                                      |
| 6927  | Darfield, New Zealand     | 03/09/2010 | 7.00     | LINC                                      |
| 6930  | Darfield, New Zealand     | 03/09/2010 | 7.00     | LRSC                                      |
| 6962  | Darfield, New Zealand     | 03/09/2010 | 7.00     | ROLC                                      |
| 6966  | Darfield, New Zealand     | 03/09/2010 | 7.00     | Shirley Library                           |
| 6975  | Darfield, New Zealand     | 03/09/2010 | 7.00     | TPLC                                      |
| 8069  | Christchurch, New Zealand | 21/02/2011 | 6.20     | CSTC                                      |
| 8102  | Christchurch, New Zealand | 21/02/2011 | 6.20     | LINC                                      |
| 8625  | 40204628                  | 31/10/2007 | 5.45     | San Jose; Fire Stat. 26 East              |
| 8887  | 14383980                  | 29/7/2008  | 5.39     | Santa Ana - I5 & 4th St                   |
| 8958  | 14383980                  | 29/7/2008  | 5.39     | Compton; Cressey Park Fire Stat. 3 Rosec. |

#### EK C. F Tablosu

| Payda    | Pay Serbestlik Derecesi |        |        |        |        |        |        |        |        |        |
|----------|-------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| Serbest. | 1                       | 2      | 2      | 4      | 5      | 6      | 7      | Q      | 0      | 10     |
| Derece.  | 1                       | 4      | 3      | 4      | 5      | U      | /      | 0      | 9      | 10     |
| 1        | 161.45                  | 199.50 | 215.71 | 224.58 | 230.16 | 233.99 | 236.77 | 238.88 | 240.54 | 241.88 |
| 2        | 18.51                   | 19.00  | 19.16  | 19.25  | 19.30  | 19.33  | 19.35  | 19.37  | 19.38  | 19.40  |
| 3        | 10.13                   | 9.55   | 9.28   | 9.12   | 9.01   | 8.94   | 8.89   | 8.85   | 8.81   | 8.79   |
| 4        | 7.71                    | 6.94   | 6.59   | 6.39   | 6.26   | 6.16   | 6.09   | 6.04   | 6.00   | 5.96   |
| 5        | 6.61                    | 5.79   | 5.41   | 5.19   | 5.05   | 4.95   | 4.88   | 4.82   | 4.77   | 4.74   |
| 6        | 5.99                    | 5.14   | 4.76   | 4.53   | 4.39   | 4.28   | 4.21   | 4.15   | 4.10   | 4.06   |
| 7        | 5.59                    | 4.74   | 4.35   | 4.12   | 3.97   | 3.87   | 3.79   | 3.73   | 3.68   | 3.64   |
| 8        | 5.32                    | 4.46   | 4.07   | 3.84   | 3.69   | 3.58   | 3.50   | 3.44   | 3.39   | 3.35   |
| 9        | 5.12                    | 4.26   | 3.86   | 3.63   | 3.48   | 3.37   | 3.29   | 3.23   | 3.18   | 3.14   |
| 10       | 4.96                    | 4.10   | 3.71   | 3.48   | 3.33   | 3.22   | 3.14   | 3.07   | 3.02   | 2.98   |
| 11       | 4.84                    | 3.98   | 3.59   | 3.36   | 3.20   | 3.09   | 3.01   | 2.95   | 2.90   | 2.85   |
| 12       | 4.75                    | 3.89   | 3.49   | 3.26   | 3.11   | 3.00   | 2.91   | 2.85   | 2.80   | 2.75   |
| 13       | 4.67                    | 3.81   | 3.41   | 3.18   | 3.03   | 2.92   | 2.83   | 2.77   | 2.71   | 2.67   |
| 14       | 4.60                    | 3.74   | 3.34   | 3.11   | 2.96   | 2.85   | 2.76   | 2.70   | 2.65   | 2.60   |
| 15       | 4.54                    | 3.68   | 3.29   | 3.06   | 2.90   | 2.79   | 2.71   | 2.64   | 2.59   | 2.54   |
| 16       | 4.49                    | 3.63   | 3.24   | 3.01   | 2.85   | 2.74   | 2.66   | 2.59   | 2.54   | 2.49   |
| 17       | 4.45                    | 3.59   | 3.20   | 2.96   | 2.81   | 2.70   | 2.61   | 2.55   | 2.49   | 2.45   |
| 18       | 4.41                    | 3.55   | 3.16   | 2.93   | 2.77   | 2.66   | 2.58   | 2.51   | 2.46   | 2.41   |
| 19       | 4.38                    | 3.52   | 3.13   | 2.90   | 2.74   | 2.63   | 2.54   | 2.48   | 2.42   | 2.38   |
| 20       | 4.35                    | 3.49   | 3.10   | 2.87   | 2.71   | 2.60   | 2.51   | 2.45   | 2.39   | 2.35   |
| 21       | 4.32                    | 3.47   | 3.07   | 2.84   | 2.68   | 2.57   | 2.49   | 2.42   | 2.37   | 2.32   |
| 22       | 4.30                    | 3.44   | 3.05   | 2.82   | 2.66   | 2.55   | 2.46   | 2.40   | 2.34   | 2.30   |
| 23       | 4.28                    | 3.42   | 3.03   | 2.80   | 2.64   | 2.53   | 2.44   | 2.37   | 2.32   | 2.27   |
| 24       | 4.26                    | 3.40   | 3.01   | 2.78   | 2.62   | 2.51   | 2.42   | 2.36   | 2.30   | 2.25   |
| 25       | 4.24                    | 3.39   | 2.99   | 2.76   | 2.60   | 2.49   | 2.40   | 2.34   | 2.28   | 2.24   |
| 26       | 4.23                    | 3.37   | 2.98   | 2.74   | 2.59   | 2.47   | 2.39   | 2.32   | 2.27   | 2.22   |
| 27       | 4.21                    | 3.35   | 2.96   | 2.73   | 2.57   | 2.46   | 2.37   | 2.31   | 2.25   | 2.20   |
| 28       | 4.20                    | 3.34   | 2.95   | 2.71   | 2.56   | 2.45   | 2.36   | 2.29   | 2.24   | 2.19   |
| 29       | 4.18                    | 3.33   | 2.93   | 2.70   | 2.55   | 2.43   | 2.35   | 2.28   | 2.22   | 2.18   |
| 30       | 4.17                    | 3.32   | 2.92   | 2.69   | 2.53   | 2.42   | 2.33   | 2.27   | 2.21   | 2.16   |
| 40       | 4.08                    | 3.23   | 2.84   | 2.61   | 2.45   | 2.34   | 2.25   | 2.18   | 2.12   | 2.08   |
| 50       | 4.03                    | 3.18   | 2.79   | 2.56   | 2.40   | 2.29   | 2.20   | 2.13   | 2.07   | 2.03   |
| 60       | 4.00                    | 3.15   | 2.76   | 2.53   | 2.37   | 2.25   | 2.17   | 2.10   | 2.04   | 1.99   |
| 70       | 3.98                    | 3.13   | 2.74   | 2.50   | 2.35   | 2.23   | 2.14   | 2.07   | 2.02   | 1.97   |
| 80       | 3.96                    | 3.11   | 2.72   | 2.49   | 2.33   | 2.21   | 2.13   | 2.06   | 2.00   | 1.95   |
| 90       | 3.95                    | 3.10   | 2.71   | 2.47   | 2.32   | 2.20   | 2.11   | 2.04   | 1.99   | 1.94   |
| 100      | 3.94                    | 3.09   | 2.70   | 2.46   | 2.31   | 2.19   | 2.10   | 2.03   | 1.97   | 1.93   |

Tablo C.1: Varyans analizi için *F* tablosu (r=0.05)
## 10. ÖZGEÇM

| Adı Soyadı           | : Melike Tezel                                                              |
|----------------------|-----------------------------------------------------------------------------|
| Do um Yeri ve Tarihi | : Fethiye 13/01/1993                                                        |
| Lisans Üniversite    | : Pamukkale Üniversitesi                                                    |
| Elektronik posta     | : meliketezel122@outlook.com                                                |
| leti im Adresi       | : Pamukkale Üniversitesi Mühendislik Fakültesi<br>n aat Mühendisli i Bölümü |