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Abstract We use Noether symmetry approach to find
spherically symmetric static solutions of the non-minimally
coupled electromagnetic fields to gravity. We construct the
point-like Lagrangian under the spherical symmetry assump-
tion. Then we determine Noether symmetry and the corre-
sponding conserved charge. We derive Euler-Lagrange equa-
tions from this point-like Lagrangian and show that these
equations are same with the differential equations derived
from the field equations of the model. Also we give two new
exact asymptotically flat solutions to these equations and
investigate some thermodynamic properties of these black
holes.

1 Introduction

The late time expansion of the universe and the missing mat-
ter at large astrophysical scales still remain the most impor-
tant issues of modern cosmology. Although Einstein’s grav-
ity with the cosmological constant known as �CDM is in
agreement with the observations, it has some problems such
as fine tuning and coincidence. Since dark matter particle has
not yet been observed directly, the efforts to modify the Ein-
stein’s theory of gravity have recently increased by studying
the models such as f (R) gravity, scalar-tensor gravity and
vector-tensor gravity.

Due to the modification of the Einstein’s gravity, it is pos-
sible to modify the Einstein-Maxwell theory to the f (R)-
Maxwell theory in the presence of the electromagnetic field.
The spherically symmetric static solution of this theory
with constant Ricci scalar, which is similar to the Reissner–
Nordstrom-AdS black hole solution, was given in [1]. How-
ever, in general cases with dynamical non-constant Ricci
scalar, it is not easy to find more general solutions. Then one
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can take into account the non-minimal couplings between
electromagnetic fields and gravity like Y (R)F2-type. The
feature of the non-minimal theory is to have a large class of
solutions such as the spherically symmetric [3–7] and cos-
mological solutions [8–10]. It is interesting to note that such
non-minimal couplings, which are first order in R, have been
obtained in [11–14] from a five-dimensional Lagrangian via
dimensional reduction. Also, [15–18] investigated various
aspects of these couplings, such as charge conservation and
the relationship between electric charge and geometry. The
general couplings in RnF2-form applied to the generation of
primordial magnetic fields in the inflation stage [8,9,19–23].
Therefore, it is possible to consider the more general cou-
plings in Y (R)F2 form and their solutions can give us more
information about the relation between electric charge and
space-time curvature. Especially in the presence of medium
with very high density electromagnetic fields, these cou-
plings may arise and their effects can be significant even
far from the source.

The Noether symmetry approach is one of the effective
techniques to find solutions of a Lagrangian without using
field equations. This symmetry approach allows us to find
conserved quantities of a model by using the symmetry of
the Lagrangian which is invariant along a vector field. Then
the vector field can be determined by this symmetry and each
symmetry of the Lagrangian gives a conserved quantity. This
symmetry approach has been applied to f (R) gravity suc-
cessfully to find out solutions and select the corresponding
f (R) function which is compatible with the Noether sym-
metry [24–26].

This study is organized as follows: In the second section,
we find the first order point-like action of the model for the
spherically symmetric static metric and electric field. After
we apply the Noether symmetry approach to the action, we
obtain the system of partial differential equations. By solv-
ing the system, we find the Noether charge and the corre-
sponding vector field for the non-minimal Y (R)F2 model.
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In the third section, after we obtain Euler-Lagrange equations
we give two new solutions to the equations and investigate
some thermodynamic properties of the black hole solutions.
Finally, we summarize the results in the last section.

2 Noether symmetry approach for the non-minimal
model

Let us start with the following action of the non-minimally
coupled electromagnetic fields to gravity [3,4,23]

I =
∫ [

R

2κ2 ∗ 1 − Y (R)F ∧ ∗F
]

. (1)

By taking the variation of the action, and obtaining the field
equations, we can find the solutions [3–7] for the spherically
symmetric static metric

ds2 = −A(r)dt2 + 1

A(r)
dr2 + B(r)dθ2

+B(r) sin2 θdϕ2 . (2)

Here the corresponding Ricci curvature scalar is

R = −A′′ − 2AB ′′

B
− 2A′B ′

B
+ AB ′2

2B2 + 2

B
. (3)

Alternatively, we can find the solutions also from Noether
symmetry approach by taking the following action of the
non-minimally coupled model with the Lagrange multiplier
λ

I =
∫ [

R

2κ2 ∗ 1 − Y (R)F ∧ ∗F − λ(R − R̄) ∗ 1

]
. (4)

Here variation of the action with respect to λ gives us R = R̄
and R̄ is defined as

R̄ = R∗ − A′′ − 2AB ′′

B
(5)

to eliminate the second order derivatives in the action via
integration by parts. Here R∗ is defined as R∗ = − 2A′B′

B +
AB′2
2B2 + 2

B . The variation of the action with respect to R gives

λ = 1

2κ2 ∗ 1 − YR(R)F ∧ ∗F (6)

where YR(R) = dY (R)
dR . If we substitute (5) and (6) in the

action (4), we obtain the following Lagrangian

L = R

2κ2 ∗ 1 − Y (R)F ∧ ∗F

−
(

1

2κ2 ∗ 1 − YR(R)F ∧ ∗F
)

×
(
R − R∗ + A′′ + 2AB ′′

B

)
. (7)

We see that YR(R)F ∧∗F term in the Lagrangian has higher
order derivatives which complicates the Noether approach.
But, fortunately we have the following equation from the
trace of the field equations

YR(R)F ∧ ∗F = − 1

2κ2 (8)

which corresponds to the conservation of the energy-
momentum tensor [9] and eliminates the higher order deriva-
tives in the Lagrangian. By taking the electromagnetic tensor
F ,

F = φ′(r)e1 ∧ e0 , (9)

which has only the electric potential φ(r), the Lagrangian of
the model is obtained as

L = B

κ2

[
− R

2
+ κ2Y (R)φ′2 + R∗ − A′′ − 2AB ′′

B

]
. (10)

In the Lagrangian, the second order derivatives can be elim-
inated by integration by parts and it turns out to be the fol-
lowing point-like Lagrangian

L = AB ′2

2κ2B
+ A′B ′

κ2 − BR

2κ2 + BY (R)φ′2 + 2

κ2 . (11)

By considering the the configuration space Q which has the
generalized coordinates qi ≡ {A, B, φ, R} and its tangent
space T Q ≡ {qi , q ′i }, we look for the symmetries of the
Lagrangian. Noether’s theorem states that if the Lie derivative
of a Lagrangian vanishes

LX L(qi , q ′i ) = XL(qi , q ′i ) = 0 (12)

along a vector field X

X = αi
∂

∂qi
+ α′

i
∂

∂q ′i , (13)

then X is a symmetry of the action and each symmetry of the
action corresponds to a conserved quantity or first integral
such as


0 = αi
∂L

∂q ′i . (14)

Then we take the Lie derivative of the point-like Lagrangian
in the configuration space to find the first integral

LX L = α1
∂L

∂A
+ α2

∂L

∂B
+ α3

∂L

∂φ
+ α4

∂L

∂R

+α′
1

∂L

∂A′ + α′
2

∂L

∂B ′ + α′
3
∂L

∂φ′ + α′
4

∂L

∂R′ (15)

= α1
B ′2

2κ2B
+ α2

(−AB ′2

2κ2B2 − R

2κ2 + Y (R)φ′2
)

+α4

(−B

2κ2 + BYR(R)φ′2
)

+ α′
1
B ′

κ2

+α′
2

(
AB ′

κ2B
+ A′

κ2

)
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+α′
32BY (R)φ′ = 0 (16)

where αi = αi (A, B, φ, R). Here the derivatives α′
i can be

written by the chain rule

α′
i = ∂αi

∂A
A′ + ∂αi

∂B
B ′ + ∂αi

∂φ
φ′ + ∂αi

∂R
R′ (17)

and the Lie derivative of the point-like Lagrangian gives us
the following system of partial differential equations

α1

2B
− α2A

2B2 + ∂α1

∂B
+ ∂α2

∂B

A

B
= 0, (18)

α2Y (R) + α4BYR(R) + 2
∂α3

∂φ
BY (R) = 0, (19)

∂α1

∂φ

1

κ2 + ∂α2

∂φ

1

κ2

A

B
+ 2

∂α3

∂B
BY (R) = 0, (20)

∂α1

∂A
+ ∂α2

∂A

A

B
+ ∂α2

∂B
= 0, (21)

∂α2

∂φ

1

κ2 + 2
∂α3

∂A
BY (R) = 0, (22)

∂α1

∂R
+ ∂α2

∂R

A

B
= 0, (23)

∂α2

∂A
= 0,

∂α2

∂R
= 0,

∂α3

∂R
BY (R) = 0, (24)

α2R + α4B = 0. (25)

A solution to the system for an arbitrary Y (R) function can
be found as

α1 = c1√
B

, α2 = 0, α3 = c2, α4 = 0 . (26)

Here c1, c2 are arbitrary constants. Then the X vector field
can be found as

X = c1√
B

∂

∂A
− c1

2B3/2

∂

∂A′ + c2
∂

∂φ
(27)

and the the constant of motion (14) becomes


0 = 2c1

κ2 + 2c2BY (R)φ′. (28)

3 Euler–Lagrange equations

In order to determine the non-minimal function and the met-
ric functions, we calculate the Euler–Lagrange equations
from

d

dr

(
∂L

∂q ′i

)
− ∂L

∂qi
= 0 (29)

for the Lagrangian (11). Then we obtain the following dif-
ferential equations for A, B, φ, R, respectively:

B ′′ − B ′2

2B
= 0, (30)

A′B ′

B
+ AB ′′

B
− AB ′2

2B2 + A′′ + R

2
− Y (R)φ′2κ2 = 0,

(31)

(Bφ′Y (R))′ = 0, (32)

YR(R)φ′2 = 1

2κ2 . (33)

From (30) and (32) we find

B(r) = b1(r + b2)
2, Y (R)φ′ = q

B
, (34)

where q is an integration constant and it corresponds to the
electric charge of the source. We note that the condition (33)
can be found by taking the derivative of equation (31) with
respect to r as in [7]. Then we have only the following dif-
ferential equation (31) to solve

A′′

2
− AB ′2

4B2 + 1

B
− κ2Y (R)φ′2 = 0 (35)

which is same with the differential equation obtained from
the field equations of the model in [4–7] for B = r2. Thus we
show that these two different methods give the same differ-
ential equation (35). The conserved charge (28) of the model
turns out to be


0 = 2c1

κ2 + 2qc2 (36)

for the Noether symmetry. We see that the conserved quan-
tity involves the gravitational coupling constant κ2 and the
electric charge of the system q. We also calculate the energy
function from

EL = q ′i
(

∂L

∂qi

)
− L (37)

and find

EL = BR

2κ2 + AB ′2

2κ2B
+ A′B ′

κ2 + BY (R)φ′2 − 2

κ2 . (38)

By substituting the Ricci scalar (3) in the energy function
(38), we find that the function is equal to zero, since equation
(38) is nothing more than equation (35). Furthermore, we can
choose B = r2 without loss of generality then (35) becomes

A′′

2
+ 1 − A

r2 − κ2Y (R)φ′2 = 0. (39)

3.1 Some new solutions

In order to obtain solutions of the differential equation (39),
we can choose the non-minimal function Y (R) that deter-
mines the strength of the coupling and find the metric func-
tion A(r) as a first method. Alternatively, we can choose pos-
sible geometries which are asymptotically flat and involve
correction terms to the known Reissner–Nordstrom solution
as a second method. Then we can find the corresponding
non-minimal function Y (R). Here we consider the second
method and we take the following metric function with the
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Fig. 1 The Hawking temperature versus the event horizon radius with q = 0.4, the dotted curve is the Reissner–Nordstrom case and the solid
curve is the non-minimal model

Yukawa-like correction term

A1(r) = 1 − 2M

r
+ q2

r2 − a
e−r

r2 (40)

which gives the solution

φ(r) = q

r
− ae−r (r + 4)

qr
, (41)

Y (r) = 8q2/κ2

4q2 − a(r + 2)2e−r
. (42)

Then the Ricci scalar becomes R = a
er r2 for the metric func-

tion and by taking the inverse function r = 2W (x), we can
re-express the non-minimal function (42) in terms of R as

Y (R) = 8q2/κ2

4q2 − 4(W (x) + 1)2e−2W (x)
(43)

where W (x) is the Lambert function with x =
√

a
4R .

Secondly, we choose another metric function with the
Yukawa-like correction term

A2(r) = 1 − 2M

r
+ q2

r2 −
(

1 + 4

r
+ 6

r2

)
ae−r (44)

which is also asymptotically flat. Then we obtain the follow-
ing solution

φ(r) = q

r
− a(r3 + 6r2 + 18r + 24)e−r

qr
, (45)

Y (r) = 8q2/κ2

4q2 − a(r4 + 4r3 + 12r2 + 24r + 24)e−r
. (46)

We calculate the Ricci scalar for the second metric as R =
ae−r and the inverse function r = lnx with x = a

R . Then the
non-minimal function becomes

Y (R) = 8q2/κ2

4q2 − (ln4x + 4ln3x+12ln2x+24lnx + 24)R
.

(47)

3.2 Some thermodynamic properties of the solutions

The above metric functions (40) and (44) may describe a
naked singularity without horizon or a black hole with one
horizon or two horizons which are called event horizon and
Cauchy horizon depending on the choice of the parameters.
In the cases with event horizon r = rh , the Hawking temper-
ature is defined by

T = A′(rh)
4π

(48)

and the temperatures can be found

4πT1 = a(rh + 2)

r3
h e

rh
+ 2M

r2
h

− 2q2

r3
h

, (49)

4πT2 =
(
a(r3

h + 4r2
h + 10rh + 12)

r3
h e

rh

)
+ 2M

r2
h

− 2q2

r3
h

(50)

for the above metric functions (40) and (44). We give the
variation of the temperatures with the event horizon radius
rh in Fig. 1 for this non-minimal model and the Reissner–
Nordstrom case. By using the entropy of black hole S = πr2

h ,
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(a) C1 for 0 ≤ rh ≤ 1.5 (b) C2 for 0 ≤ rh ≤ 1.5

(c) C1 for 0 rh 0.5 (d) C2 for 0 rh 0.5

Fig. 2 The heat capacity versus the event horizon radius with q = 0.4, the dotted curve corresponds to the Reissner–Nordstrom case and the solid
curve to the non-minimal case

we calculate the heat capacity from

C = T

(
∂S

∂T

)
q

(51)

for the above two metric functions and obtain

C1 = 2πr2
h

((
r2
h − q2

)
erh + a(rh + 1)

)
(
3q2 − r2

h

)
erh − a

(
r2
h + 3rh + 3

) , (52)

C2 = 2πr2
h

((
r2
h − q2

)
erh + a

(
r3
h + 3r2

h + 6rh + 6
))

(
3q2 − r2

h

)
erh − a

(
r4
h + 3r3

h + 9r2
h + 18rh + 18

) .

(53)

Heat capacity gives us information about thermal stabil-
ity intervals and phase transition points of a black hole. Heat
capacity must be positive and finite for a stable black hole.
The points where heat capacity is zero give us the Type-1
instability and the points where heat capacity diverges give
us Type-2 instability points which correspond to the sec-
ond order phase transition for a black hole. We plot also the
heat capacity versus the horizon radius rh for the Reissner–
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Nordstrom solution and the non-minimal model in Fig. 2 with
different ranges to see these points clearly. Numerically, we
can find upper bounds for the non-minimal parameter a as
a = 0.16 for A1 solution and a = 0.026 for A2 solution with
q = 0.4, to have a stable black hole. Furthermore, the type-2
instability points decrease from 0.7 to 0, while a increases
from 0 to the upper bounds, respectively. Moreover, these
upper bounds of the parameter a can increase to higher val-
ues as the electric charge increases.

On the other hand, the first law of thermodynamics is given
by

dM = TdS + φdq (54)

for a non-rotating black hole with mass M and electromag-
netic potential φ. It is interesting to show that the mass M in
the first law can be expressed by the Smarr formula [27]

M = 2T S + φQ (55)

for the Reissner–Nordstrom black hole in the Einstein–
Maxwell theory.

Furthermore, the Smarr relation can be also obtained from
the Komar integral [28–31] with a correction term as

M = 2T S + qφ − 1

2

∫
τdV (56)

where τ is the trace of energy-momentum tensor obtaining
from the gravitational field equation

Ga = κ2τa (57)

and it can be related with the work density [32]. In the min-
imal Einstein–Maxwell case, this relation (56) is automati-
cally satisfied, since the trace of Maxwell energy-momentum
tensor is zero. In contrast to the Einstein-Maxwell theory, the
non-minimally coupled Y (R)F2 theory has a non-vanishing
trace of energy-momentum tensor. By taking κ2 = 8π , the
trace is found

τ = 1

8π
∗ (Ga ∧ ea) = R

8π

= − 1

8π

[
A′′ + 4A′

r
+ 2

r2 (A − 1)

]
. (58)

In order to investigate whether these metric functions (40)
and (44) satisfy the Smarr formula we calculate the correction
term as∫
V

τ

2
dV = 1

16π

∫ ∞

rh
R(r)4πr2dr

= M

2
+ r2

h A
′(rh)
4

− rh
2

(59)

for the the metric functions. Then we firstly consider the
electric potential (41) at the event horizon

φ =
∫ ∞

rh
Edr = q

rh
− a

e−rh (rh + 4)

4qrh
. (60)

Thus the mass obtained from the Smarr formula (56) turns
out to be

M = q2 + r2
h − ae−rh

2rh
(61)

and it is equal to the mass obtained from A(rh) = 0. The
Smarr formula (56) is also satisfied for the second solution
(45) similarly, and the mass is found

M = q2 + r2
h − a

(
r2
h + 4rh + 6

)
e−rh

2rh
. (62)

4 Conclusion

In this study, we have considered Noether symmetry approach
to find spherically symmetric, static solutions of the non-
minimally coupledY (R)F2 theory. By considering the point-
like Lagrangian of the Y (R)F2 theory with spherical sym-
metry, we have found a vector field, satisfying the Noether
symmetry condition, and the corresponding conserved quan-
tity for any Y (R) function. We have also derived Euler-
Lagrange equations from the point-like Lagrangian. Then we
have shown that these equations are same with the equations
derived from the field equations of the non-minimal model.

We have also given two exact asymptotically flat solutions
and the corresponding non-minimal model. Then we have
investigated some thermodynamic properties of these solu-
tions such as the Hawking temperature and the heat capacity
to determine the thermal stability intervals of the solutions.
Furthermore we have shown that the solutions satisfy the
the modified Smarr formula for the models with non-zero
energy-momentum tensor.
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