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Abstract
Uncontrolled seizures may lead to irreversible damages in the brain and various limitations in the patient’s life. There exist

experimental studies to stabilize the patient seizures. However, the experimental setups have many sensory devices to

measure the dynamics of the brain cortex. These equipments prevent to produce small portable stabilizers for patients in

everyday life. Recently, a comprehensive cortex model is introduced to apply model-based observers and controllers.

However, this cortex model can be uncertain and have time-varying parameters. Therefore, in this paper, a robust Takagi–

Sugeno (TS) controller and observer are designed to suppress the epileptic seizures without sensory measurements. The

unavailable sensory measurements are provided by the designed nonlinear observer. The exponential convergence of the

observer and controller is satisfied by the feedback parameter design using linear matrix inequalities. In addition, TS fuzzy

observer–controller design has been compared with the conventional PID method in terms of control performance and

design problem. The numerical computations show that the epileptic seizures are more effectively suppressed by the TS

fuzzy observer-based controller under uncertain membrane potential dynamics.

Keywords Cortex model � Epileptic seizure � Uncertain dynamics � Takagi–Sugeno fuzzy modeling � Observer-based

stabilization � PID control

Introduction

The functions of the human brain, one of the most complex

systems known, are investigated by analysis of neuronal

excitability and synaptic transmissions. Simulation of

mesoscopic cortical electrical activity with a mathematical

model of the brain cortex system is very important for the

treatment of seizures such as epilepsy, Parkinson, cortical

spreading depression and etc. (Traub et al. 2005; Kramer

et al. 2007; Wang et al. 2015). Such neurological disor-

ders, which can be assessed by electroencephalogram

(EEG), is characterized by genetic or developmental

anomalies, trauma, central nervous system infections or

tumor-induced chaotic electrical brain activity (Iasemidis

2003). In addition, there are several studies that treat these

neurological disorders with deep brain stimulating voltage.

In these studies, it was observed that epileptic seizures

were controlled by clinical parameters adjusted periodi-

cally to certain values (Hu et al. 2018). Thanks to EEG-

based approaches to drug discovery and optimization,

changes in brain activity, drug effects on structural and

functional recovery are better understood (Mumtaz et al.

2018). Epilepsy is not only a discomfort in the central

nervous system, but also a change in the different disorders

of the brain activity into seizures. The chaotic dynamics in

seizure-phase consist of high amplitude regular spike wave

oscillations, in contrast to low amplitude irregular oscilla-

tions in the non-seizure-phase (Taylor et al. 2015). Control

signals produced by known feedback control methods

(direct electrical stimulation, magnetic stimulation and

optogenetics) are applied as the treatment of instant sei-

zures (Ratnadurai-Giridharan et al. 2017). However, the

designed control methods are based on the assumption that

the exact mathematical model of the cortex is known. Since

it is not effective to measure all dynamics of the cortex

model (CM), the control methods applied to this model are

& Meriç Çetin
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generally designed based on the minimization of the output

error.

Nonlinear observers have an important role in moni-

toring and control for state and parameter estimation.

Although the sensor technology is evolved for measure-

ment of the states, the observers are preferred due to the

weight/size limitations of the sensors. In addition to this,

the observers are more advantageous in terms of cost since

they are software-based. In this study, an observer-based

controller has been designed to estimate all unmeasurable

states of cortex dynamics. There are several studies in the

literature that include different mechanisms of control and

estimation using the brain cortex model. For instance, in

Çetin and Beyhan (2018), an adaptive unscented Kalman

filter-based optimal controller is proposed to control the

dynamics of uncertain cortex with a single membrane

potential measurement in their recent study. In Shan et al.

(2015), to reproduce the dynamics and to estimate the

unmeasurable parameters of the model, a control frame-

work has been proposed to inhibit epilepticform wave in a

neural mass model by external electric field. The values of

neurophysiological parameters were estimated using the

detailed biophysical model of brain activity in Rowe et al.

(2004). In López-Cuevas et al. (2015), a cubature Kalman

filter was used to estimate the parameters and status of the

model during seizure from observed electrophysiological

signals. In Tsakalis et al. (2006), the problem of controlling

or suppressing seizures by means of feedback control was

investigated. Kramer et al. (2006) showed that three con-

trollers could be used to eliminate the seizure activity. The

authors presented new approaches to investigate a feedback

control model for epileptic seizures in humans with Lopour

and Szeri (2010). In Wang et al. (2016), a Proportional

Integral (PI) type closed-loop controller was designed to

suppress the epileptic activity in the neural-mass model of

Jansen where the controller parameters were optimized to

keep the system in stable region. Haghighi and Markazi

(207) has led to further investigation of possible seizure

prevention approaches.

Nerve cells communicate with the generation and

transmission of short electrical pulses. It is possible to

obtain the control of the membrane potential and ionic

currents, which is important for suppressing oscillations,

blocking the action potential transmission and neuromod-

ulation, by an observer-based control method (Fröhlich and

Jezernik 2005; Beyhan 2017). Recently, efficient applica-

tions of Takagi–Sugeno (TS) fuzzy control methodologies

have been developed for complex dynamic systems in

various neuroscience applications. TS fuzzy models,

expressed by a group of linear sub-models, are considered

as a useful tool for approaching such complex nonlinear

systems. These models are preferred as modern control

tools due to their success in accurate modeling, prediction,

estimation, control and fault tolerance in the control of

such nonlinear systems (Tseng et al. 2001; Tanaka and

Wang 2004; Ho and Chou 2007; Lendek et al. 2009; Wu

et al. 2010; Li et al. 2015; Tong et al. 2016; Dahmani et al.

2016; Beyhan et al. 2017; Wei et al. 2017). In TS fuzzy

modeling, stability analysis and controller/observer gain

design associated with each sub-model is obtained by lin-

ear matrix inequality (LMI) tools. In addition, the fuzzy

controller asymptotically stabilizes the TS fuzzy model, if

there is a common solution to the LMI-based stability

conditions (Boyd et al. 1997). A fuzzy Proportional-In-

tegral-Derivative (PID) controller was designed for a class

of neural mass models in Liu et al. (2013). For Hindmarsh

Rose neuronal model, an affine TS fuzzy modeling-based

observer and controller has been proposed in Beyhan

(2017). A fuzzy interpolation method was used to approach

the nonlinear stochastic Hodgkin–Huxley neuron system

(Chen and Li 2010). In Aly and Tapus (2015), an online

incremental learning system was developed to understand

and produce multimodal actions from a cognitive per-

spective using TS fuzzy model.

In this study, observer-based stabilization of the

epileptic cortex dynamics is investigated while the intro-

duced mathematical model is assumed under unknown

uncertainties and noise. In order that, a robust TS fuzzy

observer/controller is designed and applied for the obser-

ver-based stabilization. Except the membrane potential, all

the states are estimated and utilized in state feedback

control. Note that the estimated states are trusted for the

feedback control since the designed observer feedback

gains satisfy the exponential stability and so the conver-

gence of the estimates. In addition, the standard PID sta-

bilization results of the cortex model have been presented

comparatively to enhance the contribution of the designed

controller for uncertain and noisy cases. In numerical

computations, acceptable and applicable results are

obtained for a real time treatment. It is expected that a low-

cost software based portable device can be produced in the

future, and many patient’s life will be healed by the sta-

bilization of the epileptic seizure.

The organization of the paper follows that: in Sect. 2,

the human brain cortex model used in this study is pre-

sented. TS fuzzy observer-based controller design is

introduced in Sect. 3. The computational results are given

in Sect. 4 and the conclusions are discussed in Sect. 5.
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Chaotic dynamics of brain cortex model

Since animal implementation experiments encourage new

studies, some tests should be done on mathematical models

in order to understand the effects of experiments on

humans. The cortex model, which represents the electrical

activity of the human brain cortex, is expressed involving

stochastic partial differential equations (SPDEs). Accord-

ing to Lopour and Szeri (2010), this model is a mean-field

model, meaning that all of its variables represent spatially

averaged properties of populations of neurons. Electroen-

cephalography (EEG) based applications such as epilepsy

(Kramer et al. 2007), sleep (Wilson et al. 2006) and

anesthesia (Steyn-Ross et al. 2003) can be investigated in

consideration of the stochastic and nonlinear behavior of

cortex model. The cortex model presented SPDEs in sec-

ond-order terms as in Liley et al. (1999) is converted into a

simpler system (Kramer et al. 2007) as

_heðtÞ ¼ððhreste � heÞ þ weeðheÞIee
þ wieðheÞIie þ uþ vÞ=se;

_hiðtÞ ¼ððhresti � hiÞ þ weiðhiÞIei
þ wiiðhiÞIiiÞ=si;

_IeeðtÞ ¼Jee;

_JeeðtÞ ¼ � 2ceJee � c2
eIee þ ½Nb

eeSeðheÞ
þ /e þ pee�Geceeþ C1;

_IeiðtÞ ¼Jei;

_JeiðtÞ ¼ � 2ceJei � c2
eIei þ ½Nb

eiSeðheÞ
þ /i þ pei�Geceeþ C2;

_IieðtÞ ¼Jie;

_JieðtÞ ¼ � 2ciJie � c2
i Iie þ ½Nb

ieSiðhiÞ þ pie�
Gicieþ C3;

_IiiðtÞ ¼Jii;

_JiiðtÞ ¼ � 2ciJii � c2
i Iii þ ½Nb

iiSiðhiÞ þ pii�
Gicieþ C4;

_/eðtÞ ¼ve;

_veðtÞ ¼ � 2�mKeeve � ð�mKeeÞ2/e

þ �mKeeN
a
ee

o

ot
þ �mKee

� �
SeðheÞ;

_/iðtÞ ¼vi;

_viðtÞ ¼ � 2�mKeivi � ð�mKeiÞ2/i

þ �mKeiN
a
ei

o

ot
þ �mKei

� �
SeðheÞ;

ð1Þ

where the indexes e and i indicate excitatory and inhibitory

neuron populations, the states he ðmVÞ and hi ðmVÞ imply

that the excitatory and inhibitory mean soma potential for a

neuronal population, respectively. Iee ðmVÞ is the postsy-

naptic activation of the excitatory population due to inputs

from the excitatory population and Iei ðmVÞ is the postsy-

naptic activation of the inhibitory population due to inputs

from excitatory population. Similarly, Iie ðmVÞ is the

postsynaptic activation of the excitatory population due to

inputs from the inhibitory population and Iii ðmVÞ is the

postsynaptic activation of the inhibitory population due to

inputs from inhibitory population. /eðs�1Þ and /iðs�1Þ are

corticocortical inputs to excitatory and inhibitory popula-

tions, respectively. The variables C1;C2;C3 and C4 are the

stochastic inputs. v is uncertainty term that is considered to

cause external disturbances, system failures or noise. In

Eq. (1), the term u which was calculated by TS fuzzy

model based feedback control and applied by the cortical

surface electrode was added. wjkðhkÞðj; k 2 e; iÞ ¼
hrevj �hk

jhrev
j
�hrest

k
j ; ðj; k 2 e; iÞ; terms are weighting factors for Ijk

inputs. The sigmoid functions mapping to the soma

potential to the firing rate are expressed as SeðheÞ ¼
Smaxe

1þexp½�geðhe�heÞ� and SiðhiÞ ¼ Smaxi

1þexp½�giðhi�hiÞ�. The definition of the

Pee and Ce parameters in the dimensionless form of the

cortex model are as follows.

Pee ¼
pee

Smaxe

; Ce ¼
GeeS

max
e

cejhreve � hreste j ð2Þ

The parameters of the cortex dynamics are given in

Table 1. In Fig. 1, the chaotic behavior of the cortex model

without controller design was investigated and illustrated

to show how change in pathological parameters (Kramer

et al. 2006) (subcortical spike input to excitatory popula-

tion ðpeeÞ and peak amplitude of excitatory postsynaptic

potential ðGeÞ) with the influence of the stochastic input

ðCeÞ in the dynamics. According to Kramer et al. (2006),

the ‘‘healthy state’’ occurs when the typical values of

pathological parameters are pee ¼ 1100 and Ge ¼ 0:18 mV

with Ce ¼ 1:42 � 10�3. However, the ‘‘epileptic state’’

occurs when pee ¼ 54;800 and Ge ¼ 0:1 mV with Ce ¼
0:8 � 10�3: Figure 1a illustrates the bifurcation diagram

for unstabilized dynamic of heðtÞ versus the variation of the

Ce. The numerical solution of heðtÞ at the pathological

parameters with Ce ¼ 0:8 � 10�3 is given in Fig. 1b.

While the dynamics of the healthy state is similar to a

damping behavior, regular oscillations are observed on the

mean soma potential signal for epileptic state.
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Table 1 Parameters of the

cortex model (Steyn-Ross et al.

2003)

se; si Membrane time constant 0.04, 0.04 s

hreste ; hresti Resting potential �70, �70 mV

hreve ; hrevi Reversal potential 45, �90 mV

pee; pie Subcortical spike input to e population 1100, 1600 s�1

pei; pii Subcortical spike input to i population 1600, 1100 s�1

^ee;^ei Corticotical inverse-length 0.04, 0.065 mm�1

ce; ci Neurotransmitter rate constant for e, i postsynaptic potential 300, 65 s�1

Ge;Gi Peak amplitude of e i postsynaptic potential 0.18, 0.37 mV

Nb
ee;N

b
ei

Total number of local synaptic connections of e 3034, 3034

N
b
ie;N

b
ii

Total number of local synaptic connections of i 536, 536

Na
ee;N

a
ei Total number of synaptic connections from distant e populations 4000, 2000

�v Mean axonal conduction speed 7000 mm s�1

Smaxe ; Smaxi Maximum of sigmoid function 100, 100 s�1

he; hi Inflection-point potential for sigmoid function �60, �60 mV

ge; gi Sigmoid slope at inflection point 0.28, 0.14 mV�1
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Fig. 1 a Bifurcation diagram for unstabilized dynamics of Eq. (1) at

the pathological parameter values (pee ¼ 54;800;Ge ¼ 0:1�
10�3;Ce ¼ 0:8 � 10�3). b Numerical solution of the cortex model

at the pathological parameters. c Lyapunov exponents of the cortex

model. d The variation of entropy versus Ce
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Deterministic or statistical methods based on dynamic

system theory are used for analysis of neurophysiological

signals and measuring complexity. Among these methods,

the results of electrophysiological recordings analyzed by

entropy measurement for epilepsy, schizophrenia, abnor-

mal cognitive disorders, coma and sleep are presented in

Mateos et al. (2018). The entropy criterion as well as the

large Lyapunov exponent (LLE) are important statistics

used to analyze chaotic behaviors. Therefore, in this paper,

chaotic behaviors observed in cortex dynamics have been

examined by LLE and entropy criteria. The critical value

range of Ce ð½0:64; 1:15� � 10�3Þ shows its effect on LLE

and entropy in Fig. 1c, d, respectively.

Observer and controller design for cortex
model

The TS fuzzy model-based dynamic system was defined by

fuzzy IF–THEN rules that represent local linear input–

output relations of a nonlinear system in Takagi and

Sugeno (1985). The ith rule of the TS fuzzy model for

continuous fuzzy system (Tanaka et al. 1998) with the

initial state vector x(0) is as (i ¼ 1; 2; . . .; r)

IF z1ðtÞ is Mi1 and zpðtÞ is Mip

THEN
_xðtÞ ¼ AixðtÞ þ BiuðtÞ
yðtÞ ¼ CixðtÞ

� ð3Þ

where Mij is the fuzzy set, r is the rule number and

z1ðtÞ� zpðtÞ are the premise variables. xðtÞ 2 Rn is the

state vector, uðtÞ 2 Rm is the input vector and yðtÞ 2 Rq is

the output vector, respectively. Ai 2 Rn�n, Bi 2 Rn�m and

Ci 2 Rq�n constant suitable matrices and the linear equa-

tion set denoted by _xðtÞ is called the subsystem. According

to this definitions, TS fuzzy-model based system is inferred

from (3) as

_xðtÞ ¼
Xr

i¼1

hiðzðtÞÞfAixðtÞ þ BiuðtÞg

yðtÞ ¼
Xr

i¼1

hiðzðtÞÞCixðtÞ
ð4Þ

where hiðzðtÞÞ ¼ wiðzðtÞÞPr

i¼1
wiðzðtÞÞ

[ 0, wiðzðtÞÞ ¼
Qp

j¼1 Mijðzj
ðtÞÞ� 0 for all t. MijðzjðtÞÞ is the grade membership of zjðtÞ
in Mij.

Using Eq. (4), we have that
Pr

i¼1 hiðzðtÞÞ ¼ 1 and

hiðzðtÞÞ� 0 for all t. Then, the fuzzy system rules can be

represented as

IF xðtÞ is Mi1 and xðt � nþ 1Þ is Min

THEN
xðt þ 1Þ ¼ AixðtÞ þ BiuðtÞ
yðtÞ ¼ CixðtÞ

� ð5Þ

where xðtÞ ¼ ½xðtÞ xðt � 1Þ. . .xðt � nþ 1Þ�T . The stabil-

ity conditions of continuous fuzzy system (4) is investi-

gated in Tanaka et al. (1998).

Sector nonlinearity-based TS fuzzy modeling

The brain cortex model in (1) can be referred to produce

sector nonlinearities, which is used for the design of model-

based TS fuzzy systems as follows

_x ¼ fðx; uÞxþ gðx; uÞuþ aðx; uÞ þ vðxÞ;
y ¼ hðx; uÞxþ dðx; uÞ;

ð6Þ

where fð:Þ; gð:Þ and hð:Þ are nonlinear functions where

ðx; uÞ are defined in compact sets. The input (control

voltage), state and output (membrane potential) variables

are defined in compact sets with u 2 U, x 2 X and y 2 Y

and að:Þ and dð:Þ are bounded affine vector terms. vð:Þ is

uncertainty function that is considered to cause external

disturbances, system failures or noise. The output (y) is

measured where the all states are stabilized to the equi-

librium points with estimated variables. The nonlinear

state-space representation of the cortex model (CM) model

is as follows.

_xðtÞ ¼ AxðtÞ þ BuðtÞ þ v

yðtÞ ¼ CxðtÞ
ð7Þ

where
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and the parameters in Eq. (8)

p1 ¼ Nb
eeGecez5e; p2 ¼ N

b
eiGecez5e; p3 ¼ N

b
ieGiciz6e;

p4 ¼ N
b
iiGiciz6e; p5 ¼ �v ^ee N

a
eez7 þ ð�v^eeÞ2

Na
eez5;

p6 ¼ �v ^ei N
a
eiz7 þ ð�v^eiÞ2

Na
eiz5; p7 ¼ Gecee;

p8 ¼ �ð�v^eeÞ2; p9 ¼ �2�v^ee; p10 ¼ �ð�v^eiÞ2;
p11 ¼ �2�v^ei

In the nonlinear state-space form of brain cortex model, the

minimum and maximum values of the design functions

(z1ðxÞ; . . .; z7ðxÞ) can be calculated according to the mini-

mum and maximum values of the CM model dynamics

where he 2 ½�70; 45� mV, hi 2 ½�90;�70� mV.

As an example, let’s explain how z1ðxÞ limit values are

calculated. According to the Table 1, hreste � 70 mV,

hresti � 70 mV, hreve 45 mV, hrevi � 90 mV. The maximum

limit value of nz1 ¼ 1
se
ðhe

rev�heðtÞ
herev�herest

Þ ¼ 1
0:04

ð45 mV�ð�70ÞmV
45 mV�ð�70ÞmVÞ

¼ 25: In addition, the minimum limit value of

nz1 ¼ 1
0:04

ð 45 mV�ð45ÞmV
45 mV�ð�70ÞmVÞ ¼ 0: The limit values of the

other nonlinear design functions (z2ðxÞ; . . .; z7ðxÞ) are

calculated similarly. The designed sector nonlinear-based

TS fuzzy system rule-base are given as follows

1. z1ðxÞ ¼ 1
se
ðhe

rev�heðtÞ
herev�herest

Þ 2 ½0; 25� where nz1 ¼ 0 and nz1 ¼
25 are set. The weighting functions are defined as

w1
1 ¼ nz1 � z1ðxÞ

nz1 � nz1

;

w1
0 ¼ 1 � w1

1:

ð9Þ

The value of the designed function can be determined

using the weighted sum of the functions as

z1ðxÞ ¼ nz1w
1
0ðz1Þ � nz1w

1
1ðz1Þ: ð10Þ

2. z2ðxÞ ¼ 1
se
ðhi

rev�heðtÞ
herest�hirev

Þ 2 ½�1:687 � 102;�25� where

nz2 ¼ �1:687 � 102 and nz2 ¼ �25 are set. The

weighting functions are defined as

A ¼

�1

se
0

z1

se
0 0 0

z2

se
0 0 0 0 0 0 0

0
�1

si
0 0

z3

si
0 0 0

z4

si
0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0

p1 0 � c2
e � 2ce 0 0 0 0 0 0 p7 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0

p2 0 0 0 � c2
e � 2ce 0 0 0 0 0 0 p7 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 p3 0 0 0 0 � c2
i � 2ci 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 p4 0 0 0 0 0 0 � c2
i � 2ci 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0

p5 0 0 0 0 0 0 0 0 0 p8 p9 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1

p6 0 0 0 0 0 0 0 0 0 0 0 p10 p11

2
666666666666666666666666666666664

3
777777777777777777777777777777775

B ¼ 1

se
0 0 0 0 0 0 0 0 0 0 0 0 0

� �T

C ¼ 1 0 0 0 0 0 0 0 0 0 0 0 0 0½ �
ð8Þ
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w2
1 ¼ nz2 � z2ðxÞ

nz2 � nz2

;

w2
0 ¼ 1 � w2

1:

ð11Þ

The value of the designed function can be determined

using the weighted sum of the functions as

z2ðxÞ ¼ nz2w
2
0ðz2Þ � nz2w

2
1ðz2Þ: ð12Þ

3. z3ðxÞ ¼ 1
si
ðhe

rev�hiðtÞ
herev�hirest

Þ 2 ½25; 29:347� where nz3 ¼ 25 and

nz3 ¼ 29:347 are set. The weighting functions are

defined as

w3
1 ¼ nz3 � z3ðxÞ

nz3 � nz3

;

w3
0 ¼ 1 � w3

1:

ð13Þ

The value of the designed function can be determined

using the weighted sum of the functions as

z3ðxÞ ¼ nz3w
3
0ðz3Þ � nz3w

3
1ðz3Þ: ð14Þ

4. z4ðxÞ ¼ 1
si
ðhi

rev�hiðtÞ
hirest�hirev

Þ 2 ½�25; 0� where nz4 ¼ �25 and

nz4 ¼ 0 are set. The weighting functions are defined as

w4
1 ¼ nz4 � z4ðxÞ

nz4 � nz4

;

w4
0 ¼ 1 � w4

1:

ð15Þ

The value of the designed function can be determined

using the weighted sum of the functions as

z4ðxÞ ¼ nz4w
4
0ðz4Þ � nz4w

4
1ðz4Þ: ð16Þ

5. z5ðxÞ ¼ 1
he
ð Smaxe

1þexp½�geðhe�heÞ�Þ 2 ½�0:081; 2:222� where

nz5 ¼ �0:081 and nz5 ¼ 2:222 are set. The weighting

functions are defined as

w5
1 ¼ nz5 � z5ðxÞ

nz5 � nz5

;

w5
0 ¼ 1 � w5

1:

ð17Þ

The value of the designed function can be determined

using the weighted sum of the functions as

z5ðxÞ ¼ nz5w
5
0ðz5Þ � nz5w

5
1ðz5Þ: ð18Þ

6. z6ðxÞ ¼ 1
hi
ð Smaxi

1þexp½�giðhi�hiÞ�Þ 2 ½�0:282;�0:016� where

nz6 ¼ �0:282 and nz6 ¼ �0:016 are set. The weight-

ing functions are defined as

w6
1 ¼ nz6 � z6ðxÞ

nz6 � nz6

;

w6
0 ¼ 1 � w6

1:

ð19Þ

The value of the designed function can be determined

using the weighted sum of the functions as

z6ðxÞ ¼ nz6w
6
0ðz6Þ � nz6w

6
1ðz6Þ: ð20Þ

7. z7ðxÞ ¼ 1
he
ðS

max
e ge exp½geðhe�heÞ�

ðexp½geðhe�heÞ� þ1Þ2Þ 2 ½�0:021; 1:06 � 10�13�
where nz7 ¼ �0:021 and nz7 ¼ 1:06 � 10�13 are set.

The weighting functions are defined as

w7
1 ¼ nz7 � z7ðxÞ

nz7 � nz7

;

w7
0 ¼ 1 � w7

1:

ð21Þ

The value of the designed function can be determined

using the weighted sum of the functions as

z7ðxÞ ¼ nz7w
7
0ðz7Þ � nz7w

7
1ðz7Þ: ð22Þ

Using the above definitions, R
j
i fuzzy sets ði ¼ 0; 1; j ¼

1; . . .; 7Þ and TS fuzzy rule base can be defined according

to the weighting functions. There are 7 nonlinear design

functions ðp ¼ 7Þ and 128 fuzzy rules ðr ¼ 2p ¼ 128Þ.
Some of the rule base as follows
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Rule 1: IF z1 is R1
0 and z2 is R2

0 and z3 is R3
0 and z4 is R4

0 and

z5 is R5
0 and z6 is R6

0 and z7 is R7
0

THEN _xðtÞ ¼ A1xðtÞ þ B1uðtÞ; yðtÞ ¼ C1xðtÞ

The corresponding A1 matrix depends on ½nz1; nz2; nz3; nz4; nz5; nz6; nz7�

B1 ¼ 1

se
0 0 0 0 0 0 0 0 0 0 0 0 0

� �T
C1 ¼ 1 0 0 0 0 0 0 0 0 0 0 0 0 0½ �

The fuzzy membership function of this rule is hð1ÞðzÞ ¼ w1
0w

2
0w

3
0w

4
0w

5
0w

6
0w

7
0

Rule 2: IF z1 is R1
0 and z2 is R2

0 and z3 is R3
0 and z4 is R4

0 and

z5 is R5
0 and z6 is R6

0 and z7 is R7
1

THEN _xðtÞ ¼ A2xðtÞ þ B2uðtÞ; yðtÞ ¼ C2xðtÞ

The corresponding A2 matrix depends on ½nz1; nz2; nz3; nz4; nz5; nz6; nz7�

B2 ¼ 1

se
0 0 0 0 0 0 0 0 0 0 0 0 0

� �T
C2 ¼ 1 0 0 0 0 0 0 0 0 0 0 0 0 0½ �

The fuzzy membership function of this rule is hð2ÞðzÞ ¼ w1
0w

2
0w

3
0w

4
0w

5
0w

6
0w

7
1

..

.

Rule 127: IF z1 is R1
0 and z2 is R2

1 and z3 is R3
1 and z4 is R4

1 and

z5 is R5
1 and z6 is R6

1 and z7 is R7
0

THEN _xðtÞ ¼ A127xðtÞ þ B127uðtÞ; yðtÞ ¼ C127xðtÞ

The corresponding A127 matrix depends on ½nz1; nz2; nz3; nz4; nz5; nz6; nz7�

B127 ¼ 1

se
0 0 0 0 0 0 0 0 0 0 0 0 0

� �T
C127 ¼ 1 0 0 0 0 0 0 0 0 0 0 0 0 0½ �

The fuzzy membership function of this rule is hð127ÞðzÞ ¼ w1
0w

2
1w

3
1w

4
1w

5
1w

6
1w

7
0

Rule 128: IF z1 is R1
0 and z2 is R2

1 and z3 is R3
1 and z4 is R4

1 and

z5 is R5
1 and z6 is R6

1 and z7 is R7
1

THEN _xðtÞ ¼ A128xðtÞ þ B128uðtÞ; yðtÞ ¼ C128xðtÞ

The corresponding A128 matrix depends on ½nz1; nz2; nz3; nz4; nz5; nz6; nz7�

B128 ¼ 1

se
0 0 0 0 0 0 0 0 0 0 0 0 0

� �T
C128 ¼ 1 0 0 0 0 0 0 0 0 0 0 0 0 0½ �

The fuzzy membership function of this rule is hð128ÞðzÞ ¼ w1
0w

2
1w

3
1w

4
1w

5
1w

6
1w

7
1

ð23Þ
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After that, observer-based controller design using the TS

fuzzy model instead of the CM model can explain.

TS fuzzy controller based stabilization

Fuzzy controllers are designed to provide xðtÞ ! 0 when

t ! 1 to stabilization of control systems. For Eq. (3) the

following fuzzy controller based stabilization is designed

via parallel distributed compensation (PDC) (Wang et al.

1995)

IF z1ðtÞ is Mi1 and. . . and zpðtÞ is Mip

THEN uðtÞ ¼ �FixðtÞ; i ¼ 1; 2; . . .; r:

ð24Þ

The fuzzy controller is to determine the local feedback

gains Fi with respect to linear state feedback rules as

uðtÞ ¼ �
Pr

i¼1 wiðzðtÞÞFixðtÞPr
i¼1 wiðzðtÞÞ

¼ �
Xr

i¼1

hiðzðtÞÞFixðtÞ:

ð25Þ

Using (25) into (4), the continuous fuzzy system is

obtained as

_xðtÞ ¼
Xr

i¼1

Xr

j¼1

hiðzðtÞÞhjðzðtÞÞfAi � BiFjgxðtÞ

y ¼
Xr

i¼1

hiðzðtÞÞCixðtÞ:
ð26Þ

If Gij ¼ Ai � BiFj, then Eq. (26) can be rewritten as

_xðtÞ ¼
Xr

i¼1

hiðzðtÞÞhiðzðtÞÞGiixðtÞ

þ 2
Xr

i\j

hiðzðtÞÞhjðzðtÞÞ
Gij þGji

2

� �
xðtÞ:

ð27Þ

The continuous fuzzy control system defined by (27) is

asymptotically stable in the presence of a common positive

defined P matrix such that

GT
iiPþ PGii\0; i ¼ 1; 2; . . .; r

Gij þGji

2

� �T

Pþ P
Gij þGji

2

� �
� 0; i\j

ð28Þ

In addition, if r that fire is less than or equal s where

1\s� r, the continuous fuzzy control system defined by

(27) is asymptotically stable in the presence of a common

positive defined P matrix and a common positive semi-

definite matrix Q such that

GT
iiPþ PGii þ ðs� 1ÞQ\0

Gij þGji

2

� �T

Pþ P
Gij þGji

2

� �
�Q� 0; i\j

ð29Þ

for all i and j excepting the pairs (i, j) such that

hiðzðtÞÞhjðzðtÞÞ ¼ 0; 8t and s[ 1 (Tanaka et al. 1998). It is

specified in Wang et al. (1995, 1996) that the common P

problem for the fuzzy controller design can be solved

numerically and the stability conditions of (28) can be

expressed by linear matrix inequalities (LMIs) (Boyd et al.

1997). In Tanaka et al. (1998), LMI-based designs for

fuzzy controllers/observers were presented for both dis-

crete-time and continuous-time fuzzy control systems. In

these designs, nonlinear systems were defined by fuzzy

models. LMI-based designs provide system stability, decay

rate and constraints on control input/output (Boyd et al.

1997). According to Tanaka et al. (1998), the design

problem that determines the Fi coefficients for CFS can be

defined as (X[ 0;Y� 0 and Miði ¼ 1� rÞ satisfying):

�XAT
i � AiXþMT

i B
T
i þ BiMi � ðs� 1ÞY[ 0

2Y�XAT
i � AiX� XAT

j � AjX

þMT
j B

T
i þ BiMj þMT

i B
T
j þ BjMi � 0; i\j

ð30Þ

where X ¼ P�1;Mi ¼ FiX;Y ¼ XQX. The conditions in

(30) are LMI’s and a positive definite matrix X, a positive

semi-definite matrix Y and Mi, which satisfy the above

conditions, can be found. There are powerful mathematical

programming tools available in the literature to solve this

feasibility problem (Sturm 1999; Lofberg 2004). Therefore,

Fi;P and Q can be obtained as P ¼ X�1;Fi ¼ MiX
�1;Q ¼

PYP from the solutions X;Y and Mi.

TS fuzzy observer design for unmeasurable
dynamics

An observer is used to reconstruct or estimate state vari-

ables when the state of a system is not fully available. A

fuzzy observer, which is designed by the PDC, can be used

to estimate the unobservable states of a real-time system.

The observer rule for continuous fuzzy system is repre-

sented by

IF z1ðtÞ is Mi1 and. . . and zpðtÞ is Mip

THEN _̂xðtÞ ¼ Aix̂ðtÞ þ BiuðtÞ þKiðyðtÞ � ŷðtÞÞ;

i ¼ 1; 2; . . .; r:

ð31Þ

where ŷðtÞ ¼
Pr

i¼1 hiðẑðtÞÞCix̂ðtÞ, x̂ðtÞ is the estimated

state vector, Ki is the observer gain for the ith subsystem
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and Ai and Ci must be observable. The purpose of the TS

fuzzy observer design is to provide xðtÞ � x̂ðtÞ ! 0 when

t ! 1. If zðtÞ depends on the estimated state variables, the

overall fuzzy observer is represented as follows (Tanaka

et al. 1998)

_̂xðtÞ ¼
Xr

i¼1

hiðzðtÞÞfAix̂ðtÞ þ BiuðtÞ þKiðyðtÞ � ŷðtÞÞg:

ð32Þ

The observer error dynamics is represented as

_̂eðtÞ ¼
Xr

i¼1

hiðzðtÞÞfAi þ BiuðtÞ �KiCigê: ð33Þ

The Lyapunov function (V ¼ êTPê) is used to prove the

stability conditions of (33). The observer error dynamics

converges to the zero with designed local gains,

asymptotically.

Theorem 1 (Tanaka et al. 1998) The given dynamics in

(33) are asymptotically stable, if there exists a common

P ¼ PT [ 0 such that

PðAi �KiCÞ þ ðAi �KiCÞTP\0 i ¼ 1; . . .; r ð34Þ

where Mi ¼ PKi (34) is turn into

ðPAi �MiCÞ þ ðPAi �MiCÞT\0 i ¼ 1; . . .; r ð35Þ

This LMI can be numerically solved using mathematical

programming tools (Lofberg 2004). In addition, the LMIs

for desired decay rate ðaÞ can be defined in the TS fuzzy

observer design.

Theorem 2 (Tanaka et al. 1998) The desired decay rate of

(33) is at least a[ 0, if there exists a common P ¼ PT [ 0

such that

PðAi �KiCÞ þ ðPðAi �KiCÞÞT þ 2aP\0 i ¼ 1; . . .; r

ð36Þ

The design of the fuzzy observer turns into the determi-

nation of local gains Ki ¼ M�1
i P with solving LMIs in

(36).

Embedded observer–controller design

In the presence of unmeasurable states, the main purpose of

the observer-based control strategy is to find the common

solution in full compliance with all inequalities. Thus, the

ideal behavior of system dynamics can be stabilized. LMI

designs can also be used with TS fuzzy observer based

controller. It is not easy to obtain observer and controller

gains directly when the problem is not convex. xðtÞ ! 0

for the regulator design and xðtÞ � x̂ðtÞ ! 0 for the

observer design are required to satisfy when t ! 1. There

are two possible case where z1ðtÞ� zpðtÞ depend on esti-

mated states by a fuzzy observer or do not depend.

If z1ðtÞ� zpðtÞ depends on estimated state, Eq. (37) is

used instead of Eq. (25) in the use of the fuzzy observer as

follows

uðtÞ ¼ �
Pr

i¼1 wiðzðtÞÞFix̂ðtÞPr
i¼1 wiðzðtÞÞ

¼ �
Xr

i¼1

hiðzðtÞÞFix̂ðtÞ:

ð37Þ

From (37) and (32), we obtain these equations, where

eðtÞ ¼ xðtÞ � x̂ðtÞ

_xðtÞ ¼
Xr

i¼1

Xr

j¼1

hiðzðtÞÞhjðzðtÞÞfðAi � BiFjÞxðtÞ þ BiFjeðtÞg

_eðtÞ ¼
Xr

i¼1

Xr

j¼1

hiðzðtÞÞhjðzðtÞÞfAi �KiCjgeðtÞ

ð38Þ

The TS fuzzy observer-based controller is represented for a

continuous system as

_xaðtÞ ¼
Xr

i¼1

Xr

j¼1

hiðzðtÞÞhjðzðtÞÞGijxaðtÞ

¼
Xr

i¼1

hiðzðtÞÞhiðzðtÞÞGiixaðtÞ

þ 2
Xr

i\j

hiðzðtÞÞhjðzðtÞÞ
Gij þGji

2
xaðtÞ

ð39Þ

The equilibrium point of the system defined by (39) is

asymptotically stable if there is a definite positive P matrix

such that

GT
iiPþ PGii\0

ðGij þGjiÞT

2
Pþ PðGij þGji

2
Þ\0; i\j

ð40Þ

In addition, the continuous fuzzy control system defined by

(39) is asymptotically stable in the presence of a common

positive defined P matrix and a common positive semi-

definite matrix Q such that

GT
iiPþ PGii þ ðs� 1ÞQ\0

ðGij þGjiÞT

2
Pþ P

ðGij þGjiÞ
2

�Q� 0; i\j

ð41Þ

for all i and j excepting the pairs (i, j) such that

hiðzðtÞÞhjðzðtÞÞ ¼ 0; 8t and s[ 1 (Tanaka et al. 1998). The

LMI’s for decay rate can be defined in the TS fuzzy

observer-based system as follows
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GT
iiPþ PGii þ ðs� 1ÞQþ 2aP\0

ðGij þGjiÞT

2
Pþ P

ðGij þGjiÞ
2

�Qþ 2aP� 0; i\j

ð42Þ

where a[ 0. The conditions (40), (41) and (42) can be

converted to LMI to find feedback gains Fi and observer

gains Ki.

To present the proposed controller more clearly, sche-

matic diagram of the TS fuzzy observer-based controller is

illustrated in Fig. 2.

Computational results

In this section, the application results of the embedded

observer–controller are presented to suppress the epileptic

seizures. The numerical computations were performed with

the fourth order Runge–Kutta integration routine and

sampling period was selected as T ¼ 10�4 s. Using

Eqs. (36) and (42), the decay rates for observer/controller

design were determined by a grid-search of a reasonable

interval then selected as a1 ¼ 105; a2 ¼ 103, respectively.

Those parameters affect the convergence of the estimation/

stabilization errors. There exist seven sector nonlinearity

functions in the cortex model therefore 128 TS fuzzy rules

are constructed. To estimate and stabilize each TS fuzzy

subsystem, 128 observer and controller feedback gain

vector are calculated. Below, the first and last feedback

gains of the observer (Ki) and controller (Fi) are given.

K1 ¼

4:45 � 107

2:61 � 10�9

�9:11 � 10�6

�1:02 � 10�9

�2:40 � 10�11

2:87 � 10�11

4:33 � 10�5

�4:12 � 10�9

�1:87 � 10�9

5:62 � 10�10

�7:53 � 10�9

8:34 � 10�9

8:30 � 10�9

�6:60 � 10�9

2
666666666666666666666666666664

3
777777777777777777777777777775

; . . .;K128 ¼

4:05 � 107

2:37 � 10�9

�8:27 � 10�6

�9:33 � 10�10

�2:18 � 10�11

2:61 � 10�11

3:94 � 10�5

�3:74 � 10�9

�1:70 � 10�9

5:11 � 10�10

�6:84 � 10�9

7:58 � 10�9

7:54 � 10�9

�5:99 � 10�9

2
666666666666666666666666666664

3
777777777777777777777777777775

:

ð43Þ

F1 ¼

3:96 � 103

�6:37 � 10�5

�0:92 � 102

�5:62 � 102

�2:60 � 10�4

41:01 � 10�2

�0:94 � 102

6:99 � 103

�1:02 � 10�5

1:70 � 10�3

�0:12 � 101

5:03 � 102

0:16 � 102

5:245 � 101

2
666666666666666666666666666664

3
777777777777777777777777777775

; . . .;F128 ¼

5:69 � 103

�3:92 � 10�5

�0:12 � 102

�9:70 � 103

�4:29 � 10�4

74:01 � 10�2

�0:11 � 102

8:95 � 102

�6:94 � 10�6

2:40 � 10�3

�0:27 � 101

1:09 � 103

0:17 � 101

0:83 � 102

2
666666666666666666666666666664

3
777777777777777777777777777775

:

ð44Þ

Fig. 2 Block diagram of TS

fuzzy observer–controller
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It is assumed that the mathematical model of the brain

cortex has uncertainties, unknown parameters, unmodeled

dynamics, noise or disturbances. Therefore, the

observer/controller must suppress these uncertainties when

a real-time application is considered. In order to simulate

the uncertainty condition, it is applied an artificial uncer-

tainty function to the membrane potential dynamics in

epileptic case as vðtÞ ¼ 40 þ 20sinðheðtÞÞ. For the uncer-

tain case of the dynamics, the all stabilization and esti-

mation dynamics of the cortex model are shown in Figs. 3

and 4, respectively. In Fig. 3a, the epileptic and stabilized

membrane potential are shown with desired reference

membrane potential. The applied control signal to stabilize

the membrane potential is given in Fig. 3b. The produced

and applied control signal is in the range of the applicable

interval. The complete stabilized states are normalized and

plotted in Fig. 3c since some of the states have very large

values. Remember that these stabilization results are

obtained under uncertain case and estimation of the

unmeasured states. Therefore, the state estimation errors

are normalized and demonstrated in Fig. 3d.

The real stabilized states and their estimates under

uncertain case are illustrated in Fig. 4. The estimated states

converge to the real values in short periods. At first, there is

obtained relatively higher estimation errors, however, their

values are to be compensated by the state feedback gains of

both observer and controller. These estimation results are

based on the system model therefore the uncertainty of the

model is also compensated by the observer feedback gains.

It also shows the robustness of the designed observer.

The standard PID controller, which can only operate

within the linear operating range, is still the most widely

used controller in the industrial applications in terms of

simple design and efficiency. In this part of the paper, the

standard PID control results of the cortex model have been

illustrated comparatively to the TS fuzzy observer–con-

troller design. The stabilization and tracking results of the

designed controllers for constant membrane potential and

spike waveform, including uncertain conditions, are shown
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Fig. 4 TS fuzzy observer estimation results
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in Fig. 5. Note that the spike waveform of Hodgkin Huxley

neuron is used to show the applicability of the designed

controllers. The PID parameters have been calculated as

optimum values through grid-search as follows: (i) to

stabilize a constant trajectory: KP ¼ 4;KI ¼ 0:3;KD ¼ 2:

(ii) to stabilize a spike waveform: KP ¼ 40;KI ¼ 35;

KD ¼ 0:2, respectively.
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(e) Stabilization errors.
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Fig. 5 Comparative stabilization results with different membrane potentials
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In addition to uncertain case, a Gaussian measurement

noise with SNR 20 dB was applied to the measured output

for constant membrane potential and spike waveform as

shown in Fig. 6. The corresponding performance results for

designed controllers in this section are given in Table 2.

According to these results, seizure oscillations are sup-

pressed by both controllers seen in Figs. 5 and 6. The

stabilization and tracking of the membrane potential by

using the standard PID controller is not as efficient as the

TS Fuzzy controller in terms of transient-response char-

acteristics such as rise time, settling time and maximum

overshoot.

Discussion and conclusion

The mathematical dynamics of the cortex model has many

sector or nonlinearity functions. Therefore, at first, it can be

seen difficult to construct a TS fuzzy model of cortex

model for an observer/controller designs. However, in the

end of a detailed work on the sector functions, a TS fuzzy

model is designed for the cortex model.The TS fuzzy

controller produces a control signal based on the state

feedback so that there is no adapting parameters or online

optimization that provides faster generation of the control

signal. The feedback gains of controller/observer only

depend on the feasible solution of the LMI equations, once

a feedback vector is obtained then they are not changed and

applied continuously.

Due to the large number of the constructed fuzzy rules,

the convergence of the states and production of the control

signal can also be expected slow. In contrast, according to

the application results, the applied control signal can be

produced in an applicable period and the convergence of

the epileptic membrane potential needs very-small time in

numerical simulation. These are the main motivations of

presenting the application results. In fact, in the opti-

mization of the feedback constants, they are designed to

Table 2 Numerical

performances
Performance PID controller TS Fuzzy controller

ðRMSEðeÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
T

R T

0
eðtÞ2

dt

q
Þ (for states)

State estimation err. (for 14 state) – 8.41�102

Stabilization err. (constant ref.) 0.66 0.30

Stabilization err. under noise (constant ref.) 0.77 0.31

Stabilization err. (spike waveform) 0.67 0.44

Stabilization err. under noise (spike waveform) 0.81 0.56

PðuÞ ¼ 1
2T

R T

0
uðtÞ2

dt (for control signal)

Average power (constant ref.) 82.23 53.71

Average power under noise (constant ref.) 84.40 62.33

Average power under (spike waveform) 82.68 52.23

Average power under noise (spike waveform) 85.53 62.21
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Fig. 6 Stabilization membrane potentials with different trajectories under noise

Cognitive Neurodynamics (2020) 14:51–67 65

123



provide an exponential convergence of states and sup-

pressing the unknown small uncertainties. Noting that the

theory of TS fuzzy controller and observer design are well-

established and the feedback vectors providing an expo-

nential convergence guarantee is based on the linear system

theory and feasible LMI solution.

Although widely used, tuning of the PID parameters is

an important problem to be solved to achieve the desired

control performance. There are different methods for set-

ting PID parameters in linear time-invariant (LTI) systems.

However, these parameters are usually adjusted for local

regions using the linearization methods of the nonlinear

systems. But linearization method is mostly unsatisfactory

for highly nonlinear systems. Furthermore, there may be

some uncertainities in the closed-loop control that cause

different linearization points when the system contains

chaotic dynamics such as cortex model.

As a summary, many sensory device are not needed by

using the TS fuzzy observer design, and an exponential

convergence of epilepsy stabilization is obtained by using

the TS fuzzy controller. Compared with PID controller, it

can be concluded that the a TS fuzzy observer–controller

can be designed for the complex dynamics of cortex model

such that these designs provide a satisfactory level of

performances for the application in real-time and produc-

tion of a portable device.
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Çetin M, Beyhan S (2018) Adaptive stabilization of uncertain cortex

dynamics under joint estimates and input constraints. IEEE

Trans Circuits Syst II Express Briefs. https://doi.org/10.1109/

TCSII.2018.2855450

Chen BS, Li CW (2010) Robust observer-based tracking control of

Hodgkin–Huxley neuron systems under environmental distur-

bances. Neural Comput 22(12):3143–3178

Dahmani H, Pagès O, El Hajjaji A (2016) Observer-based state

feedback control for vehicle chassis stability in critical situa-

tions. IEEE Trans Control Syst Technol 24(2):636–643
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