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Abstract: In this study, we have considered the rotational motions of a particle around the origin of the unit 2 -sphere S2
2

with constant angular velocity in semi-Euclidean 3 -space with index two E3
2 , namely geodesic motions of SO(2, 1) . Then

we have obtained the vector and the matrix representations of the spherical rotations around the origin of a particle on
S2
2 . Furthermore, we consider some relations between semi-Riemann spaces SO(2, 1) and T1S

2
2 such as diffeomorphism

and isometry. We have obtained the system of differential equations giving geodesics of Sasaki semi-Riemann manifold
(T1S

2
2 , g

S) . Moreover, we consider the stationary motion of a particle on S2
2 corresponding to one parameter curve

of SO(2, 1) , which determines a geodesic of SO(2, 1) . Finally, we obtain the system of differential equations giving
geodesics of the semi-Riemann space (SO(2, 1), h) and we show that the system of differential equations giving geodesics
of Riemann space (SO(2, 1), h) is equal to that of (T1S

2
2 , g

S) .
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1. Introduction
The particle kinematics on the unit 2- sphere S2

2 in semi-Euclidean 3-space E3
2 is a new research field, which has

attracted the attention of researchers. The rotational motion of a particle around the origin of S2
2 corresponds

to a one-parameter curve of special orthogonal group SO(2, 1) in E3
2 . In this paper, we study the rotational

motion of a particle with constant angular velocity around the origin of S2
2 , which defines a geodesic of SO(2, 1) .

The spherical rotation of a vector around a fixed point was considered by Euler in 1765. He defined
the vector representation of the spherical rotation of a vector about a fixed point in Euclidean 3-space. The
matrix and quaternion representations corresponding to this rotation were obtained by Rodrigues and Hamilton,
respectively [4].

Rotation motion is used for many different aims, such as describing the equations of the hydrodynamics
of ideal fluids [1], generating the equations of motion for a robot manipulator [12], or the optimization of the
rotation averaging problem [5].

The reason we deal with the geodesics of the special orthogonal group SO(2, 1) is to find a geometrical
or dynamical interpretation to geodesics of the tangent sphere bundle T1S2

2 .
Klingenberg and Sasaki defined an isomorphism from the tangent sphere bundle T1S

2 to the special
orthogonal group SO(3) . Moreover, they showed that this isomorphism is an isometry between the Sasaki
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Riemann manifold T1S
2 with metric gS and Riemann space SO(3) with metric structure h derived by the

Killing form. Then they considered the geodesics of T1S2 in detail [7].

Ayhan studied the geodesics of the tangent sphere bundle T1S
2
1 . He found the Sasaki semi-Riemann

metric on T1S
2
1 and then he obtained the system of differential equations giving geodesics on T1S

2
1 [2].

Ayhan considered the geodesics of the special orthogonal group SO(1, 2) in E3
1 . He showed that the

systems of differential equations giving geodesics of SO(1, 2) and T1H
2
1 are equal [3].

Arnold defined the geodesics of the special orthogonal group in 3-dimensional Euclidean space by station-
ary motions on SO(3) . Moreover, he showed that the stationary motions are motions of particles with constant
angular velocity in E3 [1].

Novelia and O’Reilly indicated that a rotating particle with constant angular velocity corresponds to a
one-parameter curve and this curve is a geodesic of the special orthogonal group SO(3) in Euclidean 3-space
E3 . Then they showed that this geodesic corresponds to a great circle on the unit 3-sphere. Moreover, they
described the kinetic energy of a rotating particle in terms of the unit quaternion. They showed that kinetic
energy of the rotating particle is constant along the geodesics of the special orthogonal group [9].

Jaferi and Yaylı studied the generalized quaternions and they have indicated how unit generalized
quaternions can be used to describe rotation in 3-dimensional space E3

αβ [6].

Korolko and Leite proved that the kinematic equations for rolling the Lorentzian sphere are solved
completely when rolling along geodesics [8].

Now let us take a closer look at the topics in the sections of the article.
In the second section of this paper, we examine the vector representation of the spherical rotational

around the origin of a particle on the unit 2-sphere S2
2 in E3

2 . Then we consider the matrix representation
of this rotation depending on a rotation angles and a rotation axis. Moreover, we consider the tangent vector
space TISO(2, 1) at identity rotation I of SO(2, 1) denoted by so(2, 1) . Then we see that so(2, 1) consists
of skew symmetric matrices and we obtain the expression of a tangent vector of so(2, 1) with respect to basis
vectors of so(2, 1) . Moreover, we consider the semi-Riemann metric on SO(2, 1) . Finally, we are interested in
the relations between T1S

2
2 and so(2, 1) .

In the third section, we study the expression with respect to the local coordinate functions of a point
on T1S

2
2 , the orthonormal frame on T1S

2
2 , the covariant derivations of basis vectors of this orthonormal frame,

Sasaki semi-Riemann metric gS on T1S
2
2 , the adapted basis and dual basis vectors on T1S

2
2 with respect to

gS , and geodesics of
(
T1S

2
2 , g

S
)

inspired by [2]

In the fourth section, we examine the relation between the stationary motion of a rotating particle around
the origin of S2

2 and a geodesic of SO(2, 1) . Then we obtain the stationary motion of a particle on S2
2 with

constant angular velocity producing a geodesic of SO(2, 1) .

In the last section, we consider a new representation of an orthonormal basis of T1S2
2 via the Euler

rotation matrices. Then we define a differentiable map between Riemann spaces
(
T1S

2
2 , g

S
)

and (SO(2, 1), h) .
We show that the line element of

(
T1S

2
2 , g

S
)

is equal to the line element of (SO(2, 1), h) . Moreover, we obtain
the second-order derivative of a rotation matrix R of SO(2, 1) with respect to components of R . Finally, we
obtain the system of differential equations giving geodesics of (SO(2, 1), h) and we prove the equality of the
systems of differential equations giving the geodesics (SO(2, 1), h) and

(
T1S

2
2 , g

S
)
.
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2. Spherical rotations in SO(2, 1) and T1S
2
2

In this section, the vectorial and matrix representations of the spherical rotation of a particle around the origin
of S2

2 are obtained. Then the tangent vector space at identity rotation I of SO(2, 1) denoted by so(2, 1) , the
skew symmetric structure of so(2, 1) , and the expression of a vector of so(2, 1) with respect to the basis vectors
of so(2, 1) are considered. Moreover, the symmetric metric structure on SO(2, 1) , geodesics of SO(2, 1) , and
the relations between SO(2, 1) and T1S

2
2 are studied.

The vectorial representation of the spherical rotation of a point P of S2
2 about fixed point O along the

n rotation axis by the angle of rotation φ is given by

r′ = r + (n× r) sinhφ+ n× (n× r)(−1 + coshφ), (2.1)

where r and r′ are the initial and final position vector of a point P of S2
2 [8].

The matrix representation of a spherical rotation was considered by Rodrigues in 3-dimensional Euclidean
space [4]. Assuming that N is a skew-symmetric matrix in semi-Euclidean 3-space E3

2 corresponding to a unit
vector n = (n1 n2 n3) given by

N =

 0 −n3 n2
−n3 0 n1
n2 −n1 0

 , (2.2)

then the cross product n× r can be defined as follows:

n× r =

∣∣∣∣∣∣
i −j −k
n1 n2 n3
r1 r2 r3

∣∣∣∣∣∣ ,
and shown in matrix form as

n× r = Nr. (2.3)

If we put (2.3) into (2.1) , we get the matrix representation of the rotation as follows:

r′ = Rr, (2.4)

where R is defined as follows:
R = I +N sinhφ+N2(−1 + coshφ), (2.5)

where I is the unit matrix and R = Rn(φ) is the rotation matrix described by the direction cosines n1, n2, n3

of the rotation axis n and the rotation angle φ [6]. By calculating (2.5) , we obtain Rn(φ) by

 (
n22 + n23

)
(coshφ− 1) + 1 −n3 sinhφ− n1n2 (coshφ− 1) n2 sinhφ− n1n3 (coshφ− 1)

n1n2 (coshφ− 1)− n3 sinhφ 1− (coshφ− 1)
(
n21 − n23

)
n1 sinhφ− n2n3 (coshφ− 1)

n2 sinhφ+ n1n3 (coshφ− 1) −n1 sinhφ− n2n3 (coshφ− 1) 1− (coshφ− 1)
(
n21 − n22

)
 . (2.6)

Definition 2.1 The set of length-preserving linear transformation in three-dimensional semi-Euclidean space
with index 2 under the composition’s operation of transformations is a group. This group is called the special
orthogonal group, denoted by SO(2, 1) (see [11]) or SO2(3) (see [10]), and described by the following set:

SO(2, 1) =
{
R : RTχR = χ and detR = 1

}
,
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where

χ =

 1 0 0
0 −1 0
0 0 −1

.
Theorem 2.2 The so(2, 1) tangent vector space of SO(2, 1) at point I consists of skew-symmetric matrices.

Proof Let R = Rn(φ) be the rotation matrix described by the direction cosines n1, n2, n3 of the rotation axis
n = (n1, n2, n3) and the rotation angle φ . This rotation matrix R = Rn(φ) is given by (2.6) . A tangent vector
of so(2, 1) has been obtained by taking into φ = 0 in the derivative of (2.6) with respect to φ as follows:

Ṙn(0) =
d

dφ

∣∣∣∣
φ=0

{Rn(φ)},

where

Ṙn(φ) =

 (
n22 + n23

)
sinhφ −n1n2 sinhφ− n3 coshφ n1n3 sinhφ+ n2 coshφ

−n1n2 sinhφ− n3 coshφ −
(
n21 − n23

)
sinhφ −n2n3 sinhφ+ n1 coshφ

n1n3 sinhφ+ n2 coshφ −n2n3 sinhφ− n1 coshφ −
(
n21 − n22

)
sinhφ


and

N = Ṙn(0) =

 0 −n3 n2
−n3 0 n1
n2 −n1 0

 .

Ṙn(0) ∈ TISO(2, 1) is a skew-symmetric matrix defined by NT = −χNχ , where χ is defined by

χ =

 1 0 0
0 −1 0
0 0 −1

 .

2

Definition 2.3 The basis vectors of the nondegenerate subspace of so(2, 1) consisting of timelike and spacelike
vectors is given by the following matrices:

b1 =

 0 0 0
0 0 1
0 −1 0

 , b2 =

 0 0 1
0 0 0
1 0 0

 , b3 =

 0 −1 0
−1 0 0
0 0 0

 ,

and

b4 =

 0 0 0
0 0 1
0 1 0

 , b5 =

 0 0 1
0 0 0
−1 0 0

 , b6 =

 0 −1 0
1 0 0
0 0 0

 .

The expression with respect to basis vectors of the tangent vector N ∈ so(2, 1) is given by the following equality:

N = n1b1 + n2b2 + n3b3 + 0.b4 + 0.b5 + 0.b6.
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Definition 2.4 The symmetric metric structure on the tangent vector space so(2, 1) at a point I = R(ε)|ε=0

of SO(2, 1) is defined as follows:

h : so(2, 1)× so(2, 1) → R
(XI , YI) → h(XI , YI) = − 1

2Trace {XI .YI} ,

where the (XI , YI) → Trace {XI .YI} map is called the Killing form of SO(3) [9]. Since h has nondegenerate,
symmetric, bilinear form, h will be a semi-Riemann metric on SO(2, 1) . Thus, (SO(2, 1), h) is called a
semi-Riemann space (see [3]).

Now we show that the map between the rotation matrices of SO(2, 1) and the elements of the tangent
sphere bundle T1S2

2 of S2
2 is a diffeomorphism.

Theorem 2.5 T1S
2
2 is diffeomorphic to the special orthogonal group SO(2, 1) .

Proof Let ψ be a map from T1S
2
2 to SO(2, 1) and y be an element of T1S2

2 . The unit spacelike vector e1(y)
issues from the center of S2

2 and ends at the point π(y) where π : T1S
2
2 → S2

2 . e2(y) is identical to y , i.e.
e2(y) ≡ y is unit timelike vector. e1(y)× e2(y) is also a unit timelike vector, where × means cross product in
E3

2 and e2(y) , e1(y)× e2(y) have the same Kozsul character. Thus, the map ψ : T1S
2
2 → SO(2, 1) defined by

y → (e1(y), e2(y), e1(y)× e2(y)) is a diffeomorphism. 2

Theorem 2.6 Geodesics of T1S2
2 are either one-parameter subgroups of SO(2, 1) or their left cosets. These

subgroups describe the geodesics of SO(2, 1) .

Proof Let H be a one-parameter subgroup of SO(2, 1) . Then H is a group of rotations around a fixed
axis l through the origin O. We denote I with (i, j, k) and elements of H by fσ, σ ∈ R mod2π . If we put
i (σ) = fσ(i), j (σ) = fσ(j) , then (i (σ) , j (σ) , i (σ)× j (σ)) draws a geodesic on (SO(2, 1), h) as σ varies. Thus,
j (σ) draws a geodesic of (T1S

2
2 , g

S) . When l does not have the direction i , the initial point of j , i.e. end
point of i(σ) , draws a circle C on S2

2 and j(σ) makes a constant angle with C as σ varies. When l has the
same direction as i , i(σ) coincides with the fixed vector i . We denote the end point of i by x0 . Then j (σ)

draws a fiber π−1 {x0} . Any geodesic of (SO(2, 1), h) that does not pass through I is given by a left coset of a

one-parameter subgroup H, i.e. as a family of a frames
∼
f (i (σ) , j (σ) , i (σ)× j (σ)) , where

∼
f ∈ SO(2, 1) . This

corresponds to a vector field
∼
f (j (σ)) on T1S

2
2 . Therefore, the geodesic of T1S

2
2 that corresponds to a left

coset of a one-parameter subgroup H of SO(2, 1) is either a unit vector field along a geodesic curve
∼
f (C) of

S2
2 , which makes a constant angle with

∼
f (C) , or a fiber π−1

{
∼
f (x0)

}
. 2

Let us now show that the map ψ of
(
T1S

2
2 , g

S
)

with (SO(2, 1), h) is an isometry.

Theorem 2.7 The map ψ : T1S
2
2 → SO(2, 1) is an isometry of (T1S

2
2 , g

S) with (SO(2, 1), h) .

Proof In order to show the isometry of the map ψ , it is sufficient to show the isometry of the differential of
the map ψ , where ψ∗ is a map from the tangent space TyT1S

2
2 at the point y = ψ−1(I) to the tangent space
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TISO(2, 1) at the unit element I of SO(2, 1) . We see that y is a tangent vector equal to j = (0, 1, 0) at the
point i = (1, 0, 0) . Now take an element XI = η1b1 + η2b2 + η3b3 . Then it corresponds by ψ−1 to

e′1 = −η3j + η2k, e
′

2 = η3i− η1k,

e′3 = e′1 × j + i× e′2,

where i is spacelike and j and k are timelike vectors. Thus, we have

gS(
(
ψ−1

)′
XI ,

(
ψ−1

)′
XI) =< e′1, e

′
1 > + < e′2, k >

2= η21 − η22 − η23 = h(XI , XI).

Therefore, the correctness of the claim of the theorem is seen. 2

3. Geodesics on T1S
2
2

This section covers some issues such as the expression with respect to the local coordinate functions of any
point on T1S

2
2 , the orthonormal frame of T1S2

2 , the covariant derivations of basis vectors of this orthonormal
frame, Sasaki semi-Riemann metric gS on T1S

2
2 , and the adapted basis and dual basis vectors on T1S

2
2 with

respect to gS . This section is inspired by [2].

Definition 3.1 Let e1(a, θ) be any point on S2
2 given by

e1(a, θ) = (cosh a cosh θ, cosh a sinh θ, sinh a) (3.1)

with respect to the geodesic polar coordinates a, θ of S2
2 . Then the unit vectors for the a-curve and θ -curve at

point e1(a, θ) are given by

f2 =
∂e1
∂a

and f3 =
1

sinh a
∂e1
∂θ

. (3.2)

In addition, the unit tangent vectors f2 and f3 have the following local expression:

f2(a, θ) = (sinh a cosh θ, sinh a sinh θ, cosh a),

f3(a, θ) = (sinh θ, cosh θ, 0), (3.3)

with respect to standard orthonormal basis of E3
2 . Thus f2, f3 are the base vectors, which span to tangent

vector space at the point e1(a, θ) of S2
2 , and e1 is a unit spacelike and f2 and f3 are unit timelike vectors.

Theorem 3.2 Let S2
2 be the unit 2-sphere and {e1, f2, f3} be another orthonormal basis in semi-Euclidean

space E3
2 . The covariant derivations of basis vectors are given by

 de1
df2
df3

 =

 0 da cosh adθ
da 0 sinh adθ

cosh adθ − sinh adθ 0

 e1
f2
f3

 .

Proof We use the covariant derivations of basis vectors e1, f2, f3 in order to examine the change of the frames
on two different points with infinitesimal distance on S2

2 (i.e. (e1, f2, f3) and (e1 + de1, f2 + df2, f3 + df3)) .
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The covariant derivatives of these vectors are calculated by using partial derivation as follows:

de1 =
∂e1
∂a

da+
∂e1
∂θ

dθ = daf2 + cosh adθf3,

df2 =
∂f2
∂a

da+
∂f2
∂θ

dθ = dae1 + sinh adθf3,

df3 =
∂f3
∂a

da+
∂f3
∂θ

dθ = cosh adθe1 − sinh adθf2.

2

Definition 3.3 The disjoint union of the tangent vector spaces including all unit tangent vectors at each point
of S2

2 is called the tangent sphere bundle of S2
2 and represented by T1S

2
2 = ∪

∀e1(a,θ)∈S2
2

Te1S
2
2 . Let π : T1S

2
2 → S2

2

be a canonical projection map and e2 be an element of T1S2
2 at any point e1(a, θ) of S2

2 . If we denote the angle
between f2 and e2 by ω , then (a, θ, ω) can be considered as the local coordinates for e2 . e2 and e3 have the
following local expression:

e2(a, θ, ω) = cosωf2 + sinωf3,
e3(a, θ, ω) = − sinωf2 + cosωf3.

(3.4)

Therefore, {e1, e2, e3} is a new orthonormal system, which characterizes all points in T1S
2
2 , and e1 is spacelike

and e2 and e3 are timelike unit vectors.

Theorem 3.4 Let T1S2
2 be the tangent sphere bundle of S2

2 and e1, e2, e3 be unit orthogonal elements of
T1S

2
2 . The covariant derivations of these elements are obtained by the following equations:

de1 = (cosωda+ sinω cosh adθ) e2 + (− sinωda+ cosω cosh adθ) e3,

de2 = (cosωda+ sinω cosh adθ) e1 + (dω + sinh adθ) e3,

de3 = (− sinωda+ cosω cosh adθ) e1 − (dω + sinh adθ) e2.

Proof We can use the covariant derivations of e1, e2, e3 in order to examine the change of the frames on two
different points with infinitesimal distance on T1S

2
2 (i.e. (e1, e2, e3) and (e1 + de1, e2 + de2, e3 + de3)) . The

covariant derivatives of e1, e2, e3 are obtained by helping the partial derivation easily. 2

Definition 3.5 The 1-forms providing the equation ηk = wij =< dei, ej >, for
i, j, k ∈ {1, 2, 3} , are called the connection 1-forms of T1S2

2 where ηk = wij is given by

η1 = w23 = −w32 = dω + sinh adθ,

η2 = −w13 = −w31 = sinωda− cosω cosh adθ, (3.5)

η3 = w12 = w21 = cosωda+ sinω cosh adθ.

Theorem 3.6 The line element between two infinitely close points in T1S
2
2 is equal to:

dσ2 = < de1, de1 > + < de2, e3 >
2 (3.6)

= η1 ∧ η1 − η2 ∧ η2 − η3 ∧ η3 (3.7)

= − (da)
2 − (dθ)

2
+ 2 sinh adθdω + (dω)

2
. (3.8)
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Proof In semi-Euclidean space E3
2 , let {e1, e2, e3} be an orthonormal frame at any point e2 ∈ π−1 ({e1})

of T1S2
2 and {e1 + de1, e2 + de2, e3 + de3} be the orthonormal frame at another point to be an infinitely close

point to e2 . The infinitesimal length between these two points is obtained as follows:

dσ2 = < de1, de1 > + < de2, e3 >
2

= η1 ∧ η1 − η2 ∧ η2 − η3 ∧ η3

= − (da)
2 − (dθ)

2
+ 2 sinh adθdω + (dω)

2
.

2

Definition 3.7 dσ2 determines a metric structure denoted by gS on the manifold T1S
2
2 . Moreover, {η1, η2, η3}

is called an adapted basis 1-form for the cotangent space T ∗
(e1,e2)

T1S
2
2 with respect to gS . The tangent vectors

ξi; i ∈ {1, 2, 3} providing the following equation are called adapted basis vectors of the tangent space T(e1,e2)T1S2
2

with respect to the metric structure gS :

ηi(ξi) = gS (ξi, ξi) = εi, εi =

{
1 for i = 1
−1 for i = 2, 3,

(3.9)

where ξi is defined by

ξ1 =
∂

∂ω
,

ξ2 = − sinω ∂

∂a
+

cosω
cosh a

∂

∂θ
− cosω tanh a ∂

∂ω
, (3.10)

ξ3 = cosω ∂

∂a
+

sinω
cosh a

∂

∂θ
− sinω tanh a ∂

∂ω
.

Definition 3.8 Let T1S2
2 be the tangent sphere bundle of 2-sphere S2

2 in 3-dimensional semi-Euclidean space
E3

2 . If T(e1,e2)T1S2
2 is a tangent vector space at any point (e1, e2) of T1S2

2 , gS is a semi-Riemann metric on
T1S

2
2 , where gS is defined by

gS : T(e1,e2)T1S
2
2 × T(e1,e2)T1S

2
2 → IR

(X,Y ) → gS (X,Y ) .
(3.11)

Since gS has a nondegenerate, symmetric, bilinear form, gS must be a semi-Riemann metric on the tangent
sphere bundle. gS is called the Sasaki semi-Riemann metric and

(
T1S

2
2 , g

S
)

is also called the Sasaki semi-
Riemann manifold.

The induced semi-Riemann metric structure gS on T1S
2
2 has the matrix representation

gαβ :

 −1 0 0
0 −1 sinh a
0 sinh a 1

 for α, β ∈ {1, 2, 3}. (3.12)

The inverse matrix of gαβ is given by

gβα :

 −1 0 0
0 − sech2a secha tanh a
0 secha tanh a sech2a

 . (3.13)
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Theorem 3.9 Let
(
T1S

2
2 , g

S
)

be a semi-Riemann manifold. Let ▽ be Levi-Civita connection of
(
T1S

2
2 , g

S
)

and Γγαβ ;α, β, γ ∈ {1, 2, 3} be coefficients of the Christoffel symbols related to ▽ . At the same time, ▽ is

symmetric. Then the nonzero Christoffel symbols of
(
T1S

2
2 , g

S
)

are given as follows:

Γaθω = 1
2 cosh a,

Γθaθ =
1
2 tanh a, Γθaω = − 1

2 secha,
Γωaθ =

1
2 secha, Γωaω = 1

2 tanh a,
(3.14)

where Γγαβ = Γγβα for all α, β, γ ∈ {a, θ, ω} .

Proof On the Sasaki semi-Riemann manifold
(
T1S

2
2 , g

S
)
, there is a unique connection ▽ such that ▽ is

torsion-free and compatible with semi-Riemann metric gS . This connection is called the Levi-Civita connection
and characterized by the following Kozsul formula:

2gS (▽∂a∂θ, ∂ω) = ∂ag
S (∂θ, ∂ω) + ∂θg

S (∂ω, ∂a)− ∂ωg
S (∂a, ∂θ) +

−gS ([∂a, ∂θ] , ∂ω) + gS ([∂θ, ∂ω] , ∂a) + gS ([∂ω, ∂a] , ∂θ) ,

where ∂a = ∂
∂a , ∂θ =

∂
∂θ and ∂ω = ∂

∂ω . Since ▽ is symmetric, [∂a, ∂θ] , [∂θ, ∂ω] , [∂ω, ∂a] must be zero. If we get
▽∂a∂θ = Γaaθ∂a + Γθaθ∂θ + Γωaθ∂ω , from the Kozsul formula, we obtain the following Christoffel symbols:

Γaaθ =
1

2
gak (∂agkθ + ∂θgak − ∂kgaθ) = 0,

Γθaθ =
1

2
gθk (∂agkθ + ∂θgak − ∂kgaθ) =

1

2
tanh a,

Γωaθ =
1

2
g3k (∂agkθ + ∂θgak − ∂kgaθ) =

1

2
secha,

where k ∈ {a, θ, ω} . Other Christoffel symbols can be obtained by using a similar method. 2

Theorem 3.10 Let
(
T1S

2
2 , g

S
)

be a semi-Riemann manifold and
c : t ∈ R → c(t) = (a(t), θ(t), ω(t)) ∈ T1S

2
2 be a curve on T1S

2
2 . c is geodesic if and only if c provides

the following system of differential equations:

..
a+ cosh a

.

θ
.
ω = 0,

..

θ + tanh a .a
.

θ − secha .a .ω = 0, (3.15)
..
ω + secha .a

.

θ + tanh a .a .ω = 0.

Proof c(t) = (a(t), θ(t), ω(t)) is geodesic if and only if ∇ċċ must be zero. Since ċ is equal to ȧ∂a+ θ̇∂θ+ ω̇∂ω ,
∇ċċ is equal to

∇ȧ∂a

(
ȧ∂a + θ̇∂θ + ω̇∂ω

)
+∇θ̇∂θ

(
ȧ∂a + θ̇∂θ + ω̇∂ω

)
+∇ω̇∂ω

(
ȧ∂a + θ̇∂θ + ω̇∂ω

)
.
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Therefore, we get

∇ċċ =
··
a∂a + ȧθ̇

{
1

2
tanh a∂θ +

(
1

2
secha

)
∂ω

}
+ȧω̇

(
−1

2
secha∂θ +

1

2
tanh a∂ω

)
+

··
θ∂θ +

+
1

2
cosh aθ̇ω̇∂a + ȧθ̇

{
1

2
tanh a∂θ +

(
1

2
secha

)
∂ω

}
+ȧω̇

(
−1

2
secha∂θ +

1

2
tanh a∂ω

)
+

1

2
cosh aθ̇ω̇∂a +

··
ω∂ω.

If we organize ∇ċċ ,

∇ċċ =
(
..
a+ cosh a

.

θ
.
ω
)
∂a

+
(..
θ + tanh a .a

.

θ − secha .a .ω
)
∂θ

+
(
..
ω + secha .a

.

θ + tanh a .a .ω
)
∂ω,

it can be seen that the claim of the theorem is true. 2

4. Rotations in SO(2,1)

In this section, the rotational motion of a particle around the origin of S2
2 is studied. Then the kinetic energy

of a rotating particle on S2
2 is defined in terms of the semi-Riemann structure h on SO(2, 1) and the angular

velocity vector of this particle. Then the fact that the rotational motion of a particle with constant angular
velocity around the origin of the sphere produces a geodesic of SO(2, 1) is obtained.

Let SO(2, 1) be a group of rotations of semi-Euclidean 3-space, i.e. the configuration space of the
rotational motions of particles around the origin of the unit 2-sphere S2

2 . The rotational motion of a particle on
S2
2 is described by a curve γ = γ(t) in SO(2, 1) . Let so(2, 1) be the space of angular velocities of all possible

rotations. The value of γ(t) at the initial instant, i.e. t = 0 , corresponds to identity rotation I and the value
of angular velocity of the rotating particle at the initial instant corresponds to angular velocity denoted by
γ̇(0) = Ṙ .

Let us define the motion γ : IR → SO(2, 1) such that γ(0) = I and γ̇(0) = Ṙ . This motion is defined
by the curve γ(t) = exp(Ṙt) , which is a one-parameter curve of SO(2, 1) with angular velocity Ṙ . Ṙ is the
tangent vector to SO(2, 1) at the identity rotation I .

The rotational motion of a particle under inertia (with no external forces) around the origin of the unit
sphere S2

2 corresponds to the one-parameter curve on SO(2, 1) , which is a geodesic of (SO(2, 1), h) .
The geodesics of semi-Riemann space (SO(2, 1), h) are extremizers of kinetic energy T of a rotating

particle under inertia around the origin of S2
2 . The kinetic energy of the rotating particle is determined by

T = h
(
Ṙ, Ṙ

)
.
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To every motion t→ γ(t) of a rotating particle, we can associate following curves:

t→ γ̇(t) ∈ so(2, 1),

which are called the motion of the vectors of angular velocity.

Theorem 4.1 The evolution of the vector γ̇ in so(2, 1) is determined by the following differential equation:

dγ̇

dt
= B(γ̇, γ̇),

where B defines an operator
B : so(2, 1)× so(2, 1) → so(2, 1)

by the identity
h ([a, b], c) = h (B(c, a), b) ,

for all b ∈ so(2, 1) ( see, [1]).

Definition 4.2 v ∈ so(2, 1) is called a stationary point if

B(v, v) = 0.

Then the geodesic γ(t) = exp(vt) , originating from the point γ(0) = I with initial velocity γ̇(0) = v , is called
stationary motion [1].

Now we examine the relation between the stationary motion and angular velocity under the inertia of a rotating
particle on S2

2 .

Theorem 4.3 The rotational motion of γ(t) in SO(2, 1) is a geodesic if γ(t) is a motion with constant angular
velocity.

Proof Let the curve γ(t) be a stationary motion, i.e. a geodesic of SO(2, 1) . Then γ(t) is a motion with

acceleration free, i.e. ··
γ = 0 . Namely, B(v, v) = 0 for γ̇(0) = v . Let T = h

(
Ṙ, Ṙ

)
be the kinetic energy of a

rotating particle on S2
2 . If we take the derivation of T with respect to the variable t , we get

2
·
T = h

(
γ̇,

··
γ
)
= h (γ̇, B(γ̇, γ̇)) = h ([γ̇, γ̇], γ̇) = 0.

Thus, the stationary motions on SO(2, 1) are motions with constant kinetic energy. Since the kinetic energy of
the rotating particles with constant angular velocity is constant, the motions of these particles produce geodesics
of SO(2, 1) . 2

Corollary 4.4 The kinetic energy along the geodesic curves γ(t) in the configuration space SO(2, 1) is
conserved, i.e. constant.

Now let us examine how the rotational motion of a rotating particle with constant angular velocity along a
geodesic circle of the unit 2-sphere S2

2 corresponds to a geodesic in SO(2, 1) and that the kinetic energy of this
particle is constant at each stage of the movement.
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Example 4.5 The rotational motion of a rotating particle with constant angular velocity along the timelike
geodesic circle lying on the z = 0 plane of S2

2 corresponds to a geodesic of SO(2, 1) . Furthermore, the kinetic
energy of this particle is constant at every stage of its motion.

The vector product of the position vector (cosh t, sinh t, 0) with the velocity vector (sinh t, cosh t, 0) of this
particle moving on the sphere S2

2 gives the angular velocity vector n = (0, 0,−1) of this particle. Since the
differential of n with respect to the variable t is equal to zero, the angular velocity of this particle is constant at
each stage of the movement. The motion of this particle is the spherical rotation of a point p of S2

2 about fixed
point O along the rotation axis n = (0, 0,−1) and corresponds to the following skew-symmetric matrix:

N =

 0 1 0
1 0 0
0 0 0

 .

Furthermore, N can also be seen as a tangent vector in the tangent vector space so(2, 1) of SO(2, 1) at point
I . Since the exponential map carries the tangent vectors passing through the origin of so(2, 1) to the geodesics
of SO(2, 1) through I , R(t) = exp(Nt) is a geodesic in SO(2, 1) . By using the definition of the exponential
map, we get

R(t) = exp(Nt) = I +
Nt

1!
+

(Nt)2

2!
+

(Nt)
3

3!
+ ...

If we calculate the different powers of N , we can see that odd powers of N are equal to N and even powers of
N are equal to the matrix N2 given by

N2 =

 1 0 0
0 1 0
0 0 0

 .

If we edit the above R(t) equation, we get

R(t) = I + (t+
t3

3!
+
t5

5!
+ ...)N + (

t2

2!
+
t4

4!
+
t6

6!
+ ...)N2

and
R(t) = I + (sinh t)N + (−1 + cosh t)N2.

Thus, R(t) has the following matrix representation:

R(t) =

 cosh t sinh t 0
sinh t cosh t 0
0 0 1

 ,

and it is a geodesic in SO(2, 1) . This rotation matrix is used to determine the coordinates of the final position
vector of a point p of S2

2 given the initial position vector. Since the geodesic R(t) = exp(Nt) provides the
equations R(0) = I and Ṙ(0) = N , R(t) can be a stationary motion.
Let us consider the kinetic energy of the rotating particle without any external force on the timelike geodesic
circle given by γ(t) = (cosh t, sinh t, 0) of the unit 2-sphere S2

2 in semi-Euclidean space E3
2 . The kinetic energy

of this particle is equal to

T =
1

2
< n, n >,
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where n is the angular velocity vector of this particle and <,> is the standard inner product in E3
2 . If we

calculate T , we can see that the kinetic energy of this particle is constant and equal to −1 regardless of t .
Now we have shown that the kinetic energy of the stationary motion R(t) in semi-Riemann space (SO(2, 1), h)

is constant. The kinetic energy of this particle moving along the curve R(t) is equal to

T = h(N,N) = −1

2
Trace{N.N} = −1,

where N is equal to Ṙ(0) . Thus, the kinetic energy of this particle moving along the curve R(t) in
SO(2, 1) is constant and equal to −1 . Namely, the kinetic energy of this particle at every stage of its motion
does not change.

5. Geodesics of SO(2,1)

In this section, the expression of the orthonormal basis of T1S2
2 with respect to the Euler rotation matrices

is obtained. Then a differentiable map between semi-Riemann spaces (T1S
2
2 , g

S) and (SO(2, 1), h) is defined
and it is shown that the line element of (T1S

2
2 , g

S) is equal to the line element of (SO(2, 1), h) . Furthermore,
the second-order derivative of a rotation matrix R of SO(2, 1) is obtained. Finally, the system of differential
equations giving geodesics of (SO(2, 1), h) is obtained and the equality of the systems of differential equations
giving the geodesics (SO(2, 1), h) and (T1S

2
2 , g

S) is found.
Let us take any point e1 on the unit 2-sphere S2

2 and the unit tangent vectors f2 and f3 passing from
the point e1 . The local coordinate expressions of e1, f2, f3 in 3-dimensional semi-Euclidean space are given
by

e1(a, θ) = (cosh a cosh θ, cosh a sinh θ, sinh a) ,

f2(a, θ) = (sinh a cosh θ, sinh a sinh θ, cosh a),

f3(a, θ) = (sinh θ, cosh θ, 0),

with respect to geodesic polar coordinates a, θ . The unit tangent vectors f2, f3 belong to the tangent vector
space of the unit 2-sphere at point e1 . This tangent vector space is denoted by Te1S

2
2 . Let e2 be both any

tangent vector of Te1S2
2 and an element of the tangent sphere bundle π−1{e1} = Te1S

2
2 ⊂ T1S

2
2 . To determine

the position of e2 , we use the new coordinate denoted by ω . Let ω be any angle between f2 and e2 . Thus,
new basis vectors e2 and e3 of Te1S2

2 are the following local coordinate expressions:

e2(a, θ, ω) = cosωf2 + sinωf3,
e3(a, θ, ω) = − sinωf2 + cosωf3,

with respect to basis {f2, f3} of Te1S2
2 and

e2 = (cosω sinh a cosh θ + sinω sinh θ, cosω sinh a sinh θ − sinω cosh θ, cosω cosh a),

e3 = (− sinω sinh a cosh θ + cosω sinh θ,− sinω sinh a sinh θ − cosω cosh θ,− sinω cosh a),

with respect to the standard orthonormal basis of E3
2 . Thus, e1, e2, e3 are orthonormal basis elements of T1S2

2 .
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Theorem 5.1 The matrix R =
(
e1 e2 e3

)T is an element of SO(2, 1) where R is given by cosh θ cosh a sinh θ cosh a sinh a
sinh θ sinω + cosh θ cosω sinh a cosh θ sinω + sinh θ cosω sinh a cosω cosh a
sinh θ cosω − cosh θ sinω sinh a cosh θ cosω − sinh θ sinω sinh a − sinω cosh a

 .

Proof It has been straightforwardly seen that the rotation matrix R provides the equality RTχR = χ , where
χ is defined as in Definition 2.2. Therefore, R is an element of SO(2, 1) . 2

Theorem 5.2 The representation via the Euler rotation matrices of R =
(
e1 e2 e3

)T is equal to the
multiplication of the following rotation matrices:

R = Rx(−ω)Rz(−a)Ry(θ)Q,

where

Q =

 1 0 0
0 0 1
0 1 0

 ,

and Rx(−ω), Ry(θ) Rz(−a) and Q are elements of SO(2, 1) and Rz(−a) describes the rotation matrix with
respect to the z axis by the hyperbolic angle −a .

Proof Rx(−ω), Ry(θ) , Rz(−a) and Q will be elements of SO(2, 1) since these matrices provide RTχR = χ .
If we multiply the following matrices by Q :

Rx(−ω) =

 1 0 0
0 cosω sinω
0 − sinω cosω

 ,

Rz(−a) =

 cosh a sinh a 0
sinh a cosh a 0
0 0 1

 ,

Ry(θ) =

 cosh θ 0 sinh θ
0 1 0

sinh θ 0 cosh θ

 ,

we can see that the theorem is correct easily. 2

Theorem 5.3 The tangent vector Ṙ at point I of SO(2, 1) is a skew-symmetric matrix of so(2, 1) as follows:

dR =

 de1
de2
de3

 = ṘR =

 0 η3 −η2
−η3 0 η1
−η2 η1 0

 e1
e2
e3

 ,

where η1, η2, η3 are given by

η1 = dω + sinh adθ,

η2 = sinωda− cosω cosh adθ, (5.1)

η3 = cosωda+ sinω cosh adθ.
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Proof If we use the covariant derivative of basis vectors of T1S2
2 in Theorem 3.4, the correctness of the claim

of this theorem is seen easily. 2

Theorem 5.4 The derivative of the map ψ from T1S
2
2 to SO(2, 1) is given by

ψ∗ = ^ ◦ f∗,

where f∗ : TyT1S
2
2 → E3

2 has the following matrix representation:

f∗ =

 cosω cosh a sinω 0
− sinω cosh a cosω 0

0 cosh a tanh a 1

 ,

and the map ^ : E3
2 → so(2, 1) is defined by

^
r =

 0 −r3 r2
−r3 0 r1
r2 −r1 0

 ,

for a vector r = (r1, r2, r3) in E3
2 .

Proof Since ψ is the map from T1S
2
2 to SO(2, 1) , ψ∗ can be the map from TyT1S

2
2 to Tψ(y)=ISO(2, 1)

defined by
ψ∗ (ξ1) = b1 ψ∗ (ξ2) = b2, ψ∗ (ξ3) = b3.

If we calculate f∗(ξ3), f∗(ξ2), f∗(ξ1), we should find the unit vector i = (1, 0, 0) , j = (0, 1, 0) , k = (0, 0, 1) of

E3
2 , respectively. Then it can be easily seen that

^
i = b1,

^
j = b2,

^
k = b3 . 2

Theorem 5.5 The line element dρ between two infinitely close points in (SO(2, 1), h) is equal to the line
element dσ between two infinitely close points in

(
T1S

2
2 , g

S
)
.

Proof Since the other point that is infinitesimal close to R = (e1 e2 e3)
T is obtained by the matrix product

ṘR, the line element of SO(2, 1) determines the image of Ṙ under h :

dρ2 = h
(
Ṙ, Ṙ

)
= −1

2
Trace(Ṙ.Ṙ)

= η21 − η22 − η23

= − (da)
2 − (dθ)

2
+ 2 sinh adθdω + (dω)

2
.

The value of dρ2 is equal to the value of dσ2 obtained by (3.8) Therefore, it is seen that the claim of theorem
is correct. 2

To find geodesic equations of SO(2, 1) , let us calculate d2R = ( d2e1 d2e2 d2e3 )T .
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Theorem 5.6 The second-order derivation of the element R =
(
e1 e2 e3

)T of SO(2, 1) is given by

d2R =

 d2e1
d2e2
d2e3

 =
··
RR,

where

d2e1 =
(
(da)

2
+ cosh2 a (dθ)

2
)
e1 +

+

(
cosωd2a+ 2 sinh a sinωdadθ+

+ cosh a sinωd2θ − sinh a cosh a cosω (dθ)
2

)
e2 +

+

(
− sinωd2a+ 2 sinh a cosωdadθ+

cosh a cosωd2θ + sinh a cosh a sinω (dθ)
2

)
e3,

d2e2 =

(
cosωd2a− 2 sinωdadω + cosh a sinωd2θ+

+2 cosh a cosωdθdω + sinh a cosh a cosω (dθ)
2

)
e1 +

+

(
cos2 ω (da)

2
+ 2 cosh a sinω cosωdadθ − sinh2 a(dθ)2+

+ cosh2 a sin2 ω (dθ)
2 − 2 sinh adθdω − (dω)

2

)
e2 +

+

(
− sinω cosω (da)

2
+ sinh ad2θ + 2 cosh a cos2 ωdadθ+

+ cosh2 a sinω cosω (dθ)
2
+ d2ω

)
e3,

d2e3 =

(
− sinωd2a− 2 cosωdadω + cosh a cosωd2θ−
−2 cosh a sinωdθdω − sinh a cosh a sinω (dθ)

2

)
e1 +

+

(
− sinω cosω (da)

2 − sinh ad2θ − 2 cosh a sin2 ωdadθ+

+ cosh2 a sinω cosω (dθ)
2 − d2ω

)
e2 +

+

(
sin2 ω (da)

2 − 2 cosh a sinω cosωdadθ + cosh2 a cos2 ω (dθ)
2

−2 sinh adθdω − sinh2 a (dθ)
2 − (dω)

2

)
e3.

Proof Taking the partial differentials of de1, de2, de3 given by Theorem 3.6 with respect to the variables a,
θ, ω , we can obtain the second-order derivation of R straightforwardly. 2

Theorem 5.7 The system of differential equations giving the geodesics of SO(2, 1) is equal to the system of
differential equations giving geodesics of (T1S

2
1 , g

S) .

Proof The curve γ(t) in SO(2, 1) is geodesic if and only if Ṫ = 2h

(
Ṙ,

··
R

)
= −Trace

(
Ṙ,

··
R

)
is equal to

zero. If we calculate Ṫ , we can find the following equation:(
d2a+ cosh adθdω

)
da+

(
d2θ + sinh ad2ω − cosh adadω

)
dθ+

+
(
d2ω + sinh ad2θ + cosh adadθ

)
dω = 0,
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where all components are equal to zero. Namely,

d2a+ cosh adθdω = 0, (5.2)

d2θ − sinh ad2ω − cosh adadω = 0, (5.3)

d2ω + sinh ad2θ + cosh adadθ = 0. (5.4)

If we multiply the equation in (5.3) by sinh a and the value of sinh ad2θ is put into equation (5.4) , we get

d2ω + sechadadθ + tanh adadω = 0. (5.5)

If we multiply the equation in (5.4) by sinh a and the value of sinh ad2ω is put into equation (5.3) , we get

d2θ − sechadadω + tanh adadθ = 0. (5.6)

Thus, if we organize equations (5.2), (5.5), and (5.6), we get the following system of differential equations:

..
a+ cosh a

.

θ
.
ω = 0,

..

θ + tanh a .a
.

θ − secha .a .ω = 0, (5.7)
..
ω + secha .a

.

θ + tanh a .a .ω = 0,

and this system of differential equations is equal to the system of differential equations of (T1S2
2 , g

S ) given by
(3.15) . 2

Let us consider some geodesics on the tangent sphere bundle T1S2
2 with respect to the particular solutions

(a = a(t), θ = θ(t), ω = ω(t)) providing the above system of differential equations.

Example 5.8 Some geodesics of T1S2
2 can be determined by the following particular solutions providing the

system of differential equations given by (5.7):
Case 1. a = t, θ = 0, ω = π

2 ;
Case 2. a = 0 , θ = t, ω = π

4 ;
Case 3. a = 0 , θ = 0, ω = t .
Let us examine the relationships among the geodesics of SO(2, 1) , S2

2 , and T1S
2
2 for these three different cases.

As e1 given by the equation in (3.1) defines a point or a geodesic of S2
2 , the matrix whose column vector

is equal to e1 , f2 , f3 that are given by equations (3.1), (3.3) is a geodesic of SO(2, 1) and (e1; e2) defines a
geodesic of T1S2

2 where e2 is given by equation (3.4).
Case 1. If we substitute a = t, θ = 0 in equations (3.1), (3.3), we will obtain the values of e1 , f3 , and f2 as
follows:

e1 = (cosh t, 0, sinh t),
f3 = (0, 1, 0),
f2 = (sinh t 0 cosh t),

which correspond to the rotation matrix in SO(2, 1) around the y axis. This rotation matrix is a geodesic of
SO(2, 1). Furthermore, e2 is equal to f3 for ω = π

2 . As e1 = (cosh t, 0, sinh t) draws the timelike geodesic circle
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of S2
2 in E3

2 , (e1; e2) = (cosh t, 0, sinh t ; 0, 1, 0) draws a geodesic of T1S2
2 in E3

2 × E3
2 . e2 makes a constant

angle ω = π
2 with the unit tangent vector f2 ∈ Te1S

2
2 at point e1 for the different values of t ∈ [0, 2π] . Since

the velocity vectors at each point of the curves e1 and (e1; e2) are perpendicular to the acceleration vectors at
that point, these curves are geodesic curves in E3

2 and E3
2 × E3

2 , respectively. The curve (e1; e2) obtained by
the parallel translation of the vector e2 along the timelike geodesic circle of S2

2 is a horizontal geodesic curve
on T1S

2
2 .

Case 2. If we substitute a = 0, θ = t in equations (3.1), (3.3), we will obtain the values of e1 , f3 , and f2 as
follows:

e1 = (cosh t, sinh t, 0),
f3 = (sinh t, cosh t, 0),
f2 = (0 0 1),

which correspond to the rotation matrix in SO(2, 1) around the z axis. This rotation matrix is a geodesic of
SO(2, 1). Furthermore, e2 is equal to 1√

2
(f2 + f3) for ω = π

4 . As e1 = (cosh t, sinh t, 0) draws the timelike

geodesic circle of S2
2 in E3

2 , (e1; e2) = (cosh t, 0, sinh t ; 1√
2

sinh t, 1√
2

cosh t, 1√
2
) draws a geodesic of T1S2

2 in

E3
2 × E3

2 , and e2 makes a constant angle ω = π
4 with the unit tangent vector f2 ∈ Te1S

2
2 at point e1 for

the different values of t ∈ [0, 2π] . Since the velocity vectors at each point of the curves e1 and (e1; e2) are
perpendicular to the acceleration vectors at that point, these curves are geodesic curves in E3

2 and E3
2 × E3

2 ,
respectively. The curve (e1; e2) obtained by the parallel translation of the vector e2 along the timelike geodesic
circle of S2

2 is a horizontal geodesic curve on T1S
2
2 .

Case 3. If we substitute a = 0, θ = 0 in equations (3.1), (3.3), we will obtain the values of e1 , f3 , and f2 as
follows:

e1 = (1, 0, 0),
f3 = (0, 1, 0),
f2 = (0 0 1),

which correspond to the unit matrix in SO(2, 1) . This unit matrix is an identity element of SO(2, 1).

Furthermore, e2 is equal to ((cos t) f2 + (sin t) f3) for ω = t . As e1 = (1, 0, 0) is a point of S2
2 in E3

2 ,
(e1; e2) = (1, 0, 0 ; 0, sin t, cos t) draws a geodesic of T1S2

2 in E3
2 ×E3

2 . e2 makes an angle ω = t ∈ [0, 2π] with
the unit tangent vector f2 ∈ Te1S

2
2 at point e1 . Since the velocity vector at each point of the curve (e1; e2) is

perpendicular to the acceleration vector at that point, this curve is a geodesic curve in E3
2 × E3

2 and (e1; e2)

defines the unit circle lying on the tangent vector space Te1S
2
2 at point e1 of S2

2 , and it is a vertical geodesic
curve on T1S

2
2 .

6. Conclusion
In this research, we propose a new insight into geodesics on the tangent sphere bundle of unit 2-spheres via
geodesics of special orthogonal groups in semi-Euclidean space. By helping the diffeomorphism and isometry
properties between the tangent sphere bundle and special orthogonal group, we have examined the relations
between the differential geometric objects of these semi-Riemann spaces.

We have considered the vector and the matrix representation of a spherical rotation in semi-Euclidean
space, the special orthogonal group and its tangent vector space, and the semi-Riemann structure on the special
orthogonal group.
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Then we have considered the manifold structure and geodesics of the tangent sphere bundle of the unit
2-sphere in semi-Euclidean 3-space with index two, inspired by [2].

Furthermore, we were interested in the geometrical and dynamical interpretation of rotational motion of
a particle around the origin of the unit 2-sphere. We have seen that the stationary motion of a particle under
inertia on the unit 2-sphere produces a geodesic of a special orthogonal group in semi-Euclidean space.

Finally, we have proved the equality of line elements and the systems of differential equations giving
geodesics of the tangent sphere bundle and special orthogonal group.
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