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Abstract: In this study, we have considered the rotational motions of a particle around the origin of the unit 2-sphere S2
with constant angular velocity in semi-Euclidean 3-space with index two Fj , namely geodesic motions of SO(2,1). Then
we have obtained the vector and the matrix representations of the spherical rotations around the origin of a particle on
S3 . Furthermore, we consider some relations between semi-Riemann spaces SO(2,1) and 7153 such as diffeomorphism
and isometry. We have obtained the system of differential equations giving geodesics of Sasaki semi-Riemann manifold
(Th 52, gs ) . Moreover, we consider the stationary motion of a particle on S2 corresponding to one parameter curve
of SO(2,1), which determines a geodesic of SO(2,1). Finally, we obtain the system of differential equations giving
geodesics of the semi-Riemann space (SO(2,1),h) and we show that the system of differential equations giving geodesics

of Riemann space (SO(2,1),h) is equal to that of (71.5%,¢%).
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1. Introduction

The particle kinematics on the unit 2- sphere S3 in semi-Euclidean 3-space Ej is a new research field, which has
attracted the attention of researchers. The rotational motion of a particle around the origin of S3 corresponds
to a one-parameter curve of special orthogonal group SO(2,1) in Ej. In this paper, we study the rotational
motion of a particle with constant angular velocity around the origin of S5, which defines a geodesic of SO(2,1).

The spherical rotation of a vector around a fixed point was considered by Euler in 1765. He defined
the vector representation of the spherical rotation of a vector about a fixed point in Euclidean 3-space. The
matrix and quaternion representations corresponding to this rotation were obtained by Rodrigues and Hamilton,
respectively [4].

Rotation motion is used for many different aims, such as describing the equations of the hydrodynamics
of ideal fluids [1], generating the equations of motion for a robot manipulator [12], or the optimization of the
rotation averaging problem [5].

The reason we deal with the geodesics of the special orthogonal group SO(2,1) is to find a geometrical

or dynamical interpretation to geodesics of the tangent sphere bundle 7755 .

Klingenberg and Sasaki defined an isomorphism from the tangent sphere bundle 7152 to the special

orthogonal group SO(3). Moreover, they showed that this isomorphism is an isometry between the Sasaki
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Riemann manifold 71.5? with metric ¢° and Riemann space SO(3) with metric structure h derived by the
Killing form. Then they considered the geodesics of 7752 in detail [7].

Ayhan studied the geodesics of the tangent sphere bundle T35%. He found the Sasaki semi-Riemann
metric on 7157 and then he obtained the system of differential equations giving geodesics on 7157 [2].

Ayhan considered the geodesics of the special orthogonal group SO(1,2) in E{. He showed that the
systems of differential equations giving geodesics of SO(1,2) and T} H? are equal [3].

Arnold defined the geodesics of the special orthogonal group in 3-dimensional Euclidean space by station-
ary motions on SO(3). Moreover, he showed that the stationary motions are motions of particles with constant
angular velocity in E? [1].

Novelia and O’Reilly indicated that a rotating particle with constant angular velocity corresponds to a
one-parameter curve and this curve is a geodesic of the special orthogonal group SO(3) in Euclidean 3-space
E3. Then they showed that this geodesic corresponds to a great circle on the unit 3-sphere. Moreover, they
described the kinetic energy of a rotating particle in terms of the unit quaternion. They showed that kinetic
energy of the rotating particle is constant along the geodesics of the special orthogonal group [9)].

Jaferi and Yayl studied the generalized quaternions and they have indicated how unit generalized
quaternions can be used to describe rotation in 3-dimensional space E3 5 [6].

Korolko and Leite proved that the kinematic equations for rolling the Lorentzian sphere are solved
completely when rolling along geodesics [8].

Now let us take a closer look at the topics in the sections of the article.

In the second section of this paper, we examine the vector representation of the spherical rotational
around the origin of a particle on the unit 2-sphere S5 in ES. Then we consider the matrix representation
of this rotation depending on a rotation angles and a rotation axis. Moreover, we consider the tangent vector
space TrSO(2,1) at identity rotation I of SO(2,1) denoted by so(2,1). Then we see that so(2,1) consists
of skew symmetric matrices and we obtain the expression of a tangent vector of so(2,1) with respect to basis
vectors of so(2,1). Moreover, we consider the semi-Riemann metric on SO(2,1). Finally, we are interested in
the relations between 7753 and so(2,1).

In the third section, we study the expression with respect to the local coordinate functions of a point
on 1157, the orthonormal frame on T52, the covariant derivations of basis vectors of this orthonormal frame,
Sasaki semi-Riemann metric g° on 7157, the adapted basis and dual basis vectors on 7752 with respect to
¢°, and geodesics of (T1 S%,gs) inspired by [2]

In the fourth section, we examine the relation between the stationary motion of a rotating particle around
the origin of S2 and a geodesic of SO(2,1). Then we obtain the stationary motion of a particle on S5 with
constant angular velocity producing a geodesic of SO(2,1).

In the last section, we consider a new representation of an orthonormal basis of 7753 via the Euler
rotation matrices. Then we define a differentiable map between Riemann spaces (11.53,¢°) and (SO(2,1),h).
We show that the line element of (7153, ¢°) is equal to the line element of (SO(2,1),h). Moreover, we obtain
the second-order derivative of a rotation matrix R of SO(2,1) with respect to components of R. Finally, we
obtain the system of differential equations giving geodesics of (SO(2,1),h) and we prove the equality of the
systems of differential equations giving the geodesics (SO(2,1),h) and (Tlsg, g° ) .
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2. Spherical rotations in SO(2,1) and 7353

In this section, the vectorial and matrix representations of the spherical rotation of a particle around the origin
of S2 are obtained. Then the tangent vector space at identity rotation I of SO(2,1) denoted by so(2,1), the
skew symmetric structure of so(2,1), and the expression of a vector of so(2,1) with respect to the basis vectors
of so(2,1) are considered. Moreover, the symmetric metric structure on SO(2,1), geodesics of SO(2,1), and
the relations between SO(2,1) and 7153 are studied.

The vectorial representation of the spherical rotation of a point P of S35 about fixed point O along the

n rotation axis by the angle of rotation ¢ is given by

!

r = r4+(nxr)sinhp+nx (nxr)(—1+ coshyp), (2.1)

where r and 7’ are the initial and final position vector of a point P of S3 [8].
The matrix representation of a spherical rotation was considered by Rodrigues in 3-dimensional Euclidean
space [4]. Assuming that N is a skew-symmetric matrix in semi-Euclidean 3-space Ej corresponding to a unit

vector n = (ny; mn2 ng3) given by

0 —ng N9
N = —ns3 0 nq s (22)
no —nN1 0

then the cross product n X r can be defined as follows:

i —j —k
nXxXr=|n ng ns |,
T T2 T3

and shown in matrix form as
nxr=Nr. (2.3)

If we put (2.3) into (2.1), we get the matrix representation of the rotation as follows:

r" = Rr, (2.4)

where R is defined as follows:
R =1+ Nsinhg + N?(—1 + cosh ¢), (2.5)

where T is the unit matrix and R = R,,(¢) is the rotation matrix described by the direction cosines ni,ns, ns

of the rotation axis n and the rotation angle ¢ [6]. By calculating (2.5), we obtain R, (¢) by

(n 4+ n3) (coshgo —1)+1  —ngsinhg — niny (cosh — 1)  ngsinh g — ning (cosh — 1)
ning (coshp — 1) — ngsinh ¢ 1 — (coshp — 1) (nf — n3) ny sinh ¢ — ngng (coshgp —1) | . (2.6)
nasinh ¢ + nying (coshp — 1) —nysinh g — nang (coshp — 1) 1 — (cosh — 1) (n} — n3)

Definition 2.1 The set of length-preserving linear transformation in three-dimensional semi-Fuclidean space
with index 2 under the composition’s operation of transformations is a group. This group is called the special
orthogonal group, denoted by SO(2,1) (see [11]) or SO2(3) (see [10]), and described by the following set:

SO(2,1) ={R:R"xR=x and det R =1},
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where
1 0 0
X = 0 -1 0
0 0 -1

Theorem 2.2 The so(2,1) tangent vector space of SO(2,1) at point I consists of skew-symmetric matrices.

Proof Let R = R,(¢) be the rotation matrix described by the direction cosines n1,ns,n3 of the rotation axis
n = (ny,n2,n3) and the rotation angle . This rotation matrix R = R, (¢) is given by (2.6). A tangent vector

of so(2,1) has been obtained by taking into ¢ = 0 in the derivative of (2.6) with respect to ¢ as follows:

d
0= | (Rl
P lp=0
where
. (n% + n%) sinh ¢ —ningsinh —ngcoshy  nyngsinh ¢ + ny cosh
R.(¢) = | —ningsinh¢ — nzcosh e — (n} —n3) sinhp —ngns sinh ¢ + n; cosh ¢
ningsinh ¢ +nycoshy  —ngnzsinh ¢ — ng cosh v — (n} —n3)sinh
and
. 0 —n3g N2
N = Rn(O) = —ns 0 ny
o —Nnq 0

R, (0) € T1SO(2,1) is a skew-symmetric matrix defined by N7 = —yNy, where y is defined by

1 0 0
x=[0 -1 o0
0 0 -1

O

Definition 2.3 The basis vectors of the nondegenerate subspace of so(2,1) consisting of timelike and spacelike

vectors is given by the following matrices:

0 0 O 0 0 1 0O -1 0
by = 0 0 1 |,b= 0 0 0 |,b3= -1 0 0 ],
0 -1 0 1 0 0 0 0 O
and
0 0 O 0 0 1 0 -1 0
bs = 0 0 1 |],b5= 0 0 0 |,bg= 1 0 O
01 0 -1 0 0 0 0 O

The expression with respect to basis vectors of the tangent vector N € so(2,1) is given by the following equality:

N = n1b1 —+ 712(72 —+ 7’Lgb3 + 0b4 —+ 0b5 —+ 0b6
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Definition 2.4 The symmetric metric structure on the tangent vector space so(2,1) at a point I = R(e)|._,
of SO(2,1) is defined as follows:

h: so(2,1) x so0(2,1) — R
(X],Y:[) — h(X],Y[) = —%TT‘GC@{X[.Y]},

where the (X1,Yr) = Trace {X1.Yr} map is called the Killing form of SO(3) [9]. Since h has nondegenerate,
symmetric, bilinear form, h will be a semi-Riemann metric on SO(2,1). Thus, (SO(2,1),h) is called a

semi-Riemann space (see [3]).

Now we show that the map between the rotation matrices of SO(2,1) and the elements of the tangent

sphere bundle 7752 of S2 is a diffeomorphism.

Theorem 2.5 T1S2 is diffeomorphic to the special orthogonal group SO(2,1).

Proof Let ¢ be a map from 7152 to SO(2,1) and y be an element of T755. The unit spacelike vector e;(y)
issues from the center of S7 and ends at the point 7(y) where 7 : T1.53 — S2. e3(y) is identical to y, i.e.
ea(y) =y is unit timelike vector. e;(y) X ea(y) is also a unit timelike vector, where x means cross product in
E3 and es(y), e1(y) x ez(y) have the same Kozsul character. Thus, the map 1 : 7193 — SO(2,1) defined by
y — (e1(y), e2(y), e1(y) X e2(y)) is a diffeomorphism. O

Theorem 2.6 Geodesics of T1S3 are either one-parameter subgroups of SO(2,1) or their left cosets. These
subgroups describe the geodesics of SO(2,1).

Proof Let H be a one-parameter subgroup of SO(2,1). Then H is a group of rotations around a fixed
axis [ through the origin O. We denote I with (i,7,k) and elements of H by f,,0 € R mod2w. If we put
i(0) = fo(2),5(0) = f5(j), then (i(0),5(0),i(0) x j (o)) draws a geodesic on (SO(2,1),h) as o varies. Thus,
j (o) draws a geodesic of (T15%,¢°). When [ does not have the direction 4, the initial point of j, i.e. end
point of i(c), draws a circle C' on S3 and j(c) makes a constant angle with C' as o varies. When [ has the
same direction as 4, i(o) coincides with the fixed vector i. We denote the end point of ¢ by xo. Then j (o)

draws a fiber 77! {xo}. Any geodesic of (SO(2,1),h) that does not pass through I is given by a left coset of a
one-parameter subgroup H, i.e. as a family of a frames } (i(0),j(0),i(0) x j(o)), where } € SO(2,1). This
corresponds to a vector field }(] (o)) on T1S5%. Therefore, the geodesic of T153 that corresponds to a left

coset of a one-parameter subgroup H of SO(2,1) is either a unit vector field along a geodesic curve f (C) of

52, which makes a constant angle with } (C), or a fiber 71 {} (ZL'O)} . O
Let us now show that the map v of (TlSQQ, gs) with (SO(2,1),h) is an isometry.

Theorem 2.7 The map 1 : T1S3 — SO(2,1) is an isometry of (T15%,9%) with (SO(2,1),h).

Proof In order to show the isometry of the map 1, it is sufficient to show the isometry of the differential of

the map ¢, where 1, is a map from the tangent space TyTlSS at the point y = 1)~1(I) to the tangent space
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T750(2,1) at the unit element I of SO(2,1). We see that y is a tangent vector equal to j = (0,1,0) at the
point i = (1,0,0). Now take an element X; = 1,b; + 12bz + n3b3. Then it corresponds by ¢! to

ey = —n3j+mk, ey = n3i —mk,
ey = €] xj+ixe,
where i is spacelike and j and k are timelike vectors. Thus, we have
—1\/ —1\/
g ((07") X, (v71) Xp) =< ey, ey > + < eh, k >*=nf —n3 — 15 = h(X1, X))

Therefore, the correctness of the claim of the theorem is seen. O

3. Geodesics on 1153

This section covers some issues such as the expression with respect to the local coordinate functions of any
point on 7152, the orthonormal frame of 7152, the covariant derivations of basis vectors of this orthonormal
frame, Sasaki semi-Riemann metric ¢° on 7152, and the adapted basis and dual basis vectors on 7157 with

respect to g°. This section is inspired by [2].

Definition 3.1 Let e;(a,0) be any point on S2 given by
e1(a,d) = (coshacosh @, cosh asinh 8, sinh a) (3.1)

with respect to the geodesic polar coordinates a,f of S2. Then the unit vectors for the a-curve and 6 -curve at
point e1(a,0) are given by
Oey 1 Oeq

= — - '2
fo da and s sinha 00 (3:2)
In addition, the unit tangent vectors fo and f3 have the following local expression:
f2(a,0) = (sinhacosh®,sinhasinh@,cosha),
f3(a,8) = (sinh@,cosh®,0), (3.3)

with respect to standard orthonormal basis of E3. Thus fa, f3 are the base vectors, which span to tangent

vector space at the point ei(a,0) of S5, and ey is a unit spacelike and fo and f3 are unit timelike vectors.

Theorem 3.2 Let S5 be the unit 2-sphere and {e1, fa, f3} be another orthonormal basis in semi-Euclidean

space E3. The covariant derivations of basis vectors are given by

deq 0 da cosh adf e1
dfs | = da 0 sinh adf fa
df3 coshadf) — sinh adf 0 f3

Proof We use the covariant derivations of basis vectors ey, fo, f3 in order to examine the change of the frames

on two different points with infinitesimal distance on S3 (i.e. (ey, fo, f3) and (e + dey, fo + dfa, f3 + df3)).
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The covariant derivatives of these vectors are calculated by using partial derivation as follows:

Oe Oe

de, = aialda + a—eldﬁ = dafy + cosh adf fs,

dfs = %da 4 %dﬁ = daey + sinh adf f3,
Oa o0

dfs = %da + %dﬂ = cosh adfe; — sinh adf fs.
Oa o0

O

Definition 3.3 The disjoint union of the tangent vector spaces including all unit tangent vectors at each point

of S2 is called the tangent sphere bundle of S3 and represented by Ty S3 = ( U) 2Tels§. Let m:T1S83 — S2
Vei(a,0)€S3

be a canonical projection map and ey be an element of T1S3 at any point e1(a,0) of S5. If we denote the angle
between fo and es by w, then (a,0,w) can be considered as the local coordinates for es. es and es have the
following local expression:

es(a,8,w) = coswfo + sinwfs,

es(a,0,w) = —sinwfs + cosw 3. (3.4)

Therefore, {e1,ea,e3} is a new orthonormal system, which characterizes all points in Ty1S3, and ey is spacelike

and ey and ez are timelike unit vectors.

Theorem 3.4 Let T1S3 be the tangent sphere bundle of S3 and ey, ea, ez be unit orthogonal elements of

T153. The covariant derivations of these elements are obtained by the following equations:

dey = (coswda + sinw cosh adf) es + (— sinwda + cos w cosh adf) es,
dey = (coswda + sinw coshadf) ey + (dw + sinh adf) es,
des = (—sinwda + cosw coshadf)e; — (dw + sinh adf) es.

Proof We can use the covariant derivations of ej, ez, es in order to examine the change of the frames on two
different points with infinitesimal distance on 7755 (i.e. (e1,ea,e3) and (e; + dey, e + dea, ez + des)). The

covariant derivatives of e, es, e3 are obtained by helping the partial derivation easily. O

Definition 3.5 The I-forms providing the equation 1y = Wy =< de;, e; >, for

i,j,k € {1,2,3}, are called the connection 1-forms of T1S3 where ng = w;j is given by

M = Wz = —ws3e = dw + sinh add,
N2 = —wiz = —ws1 = sinwda — cosw cosh adf, (3.5)
N3 = wie = wg = coswda + sinw cosh adf.

Theorem 3.6 The line element between two infinitely close points in T1S5 is equal to:

do? = <dey,de; >+ < dey,es >> (3.6)
= MmAN —N2AN2—n3AN3 (3.7
= —(da)® — (d9)? + 2sinh adfdw + (dw)?. (3.8)
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Proof In semi-Euclidean space Fj, let {e1,es,e3} be an orthonormal frame at any point es € 77! ({e1})
of T1S22 and {e; + deq, es + dea, e + deg} be the orthonormal frame at another point to be an infinitely close

point to es. The infinitesimal length between these two points is obtained as follows:

do? = <dej,de; >+ < dey, es >2

mAN —n2An2 —=n3An3
— (da)® — (df)? + 2sinh adfdw + (dw)? .

O

Definition 3.7 do? determines a metric structure denoted by g° on the manifold TyS%. Moreover, {n;,n2,m3}
1s called an adapted basis 1-form for the cotangent space T(*81762)T15'§ with respect to ¢°. The tangent vectors
&1 € {1,2,3} providing the following equation are called adapted basis vectors of the tangent space T(elm)TlS%

with respect to the metric structure g° :

D N 1 for i=1
ni(&) = g° (&, &) = €ir6i = { -1 for ©1=2,3, (3.9)
where & is defined by
0
El - %7
. 0 cosw O 0
& = —sinwe- + oshadd cos w tanh Ao (3.10)
& = cosw2 sinw 9 — sinwtanh a—.

da ' cosha 90 ow

Definition 3.8 Let 1152 be the tangent sphere bundle of 2-sphere S2 in S-dimensional semi-Euclidean space
E3. If T(EI,EZ)Tng is a tangent vector space at any point (e1,e2) of 1153, g° is a semi-Riemann metric on
T1S2, where g° is defined by

gS : T(el,ez)Tl‘SQQ X T(Elm)TlS% — IR

(X.Y) S oS XY, (3:11)

Since g° has a nondegenerate, symmetric, bilinear form, g° must be a semi-Riemann metric on the tangent
sphere bundle. g¢° is called the Sasaki semi-Riemann metric and (T1$’§7gs) s also called the Sasaki semi-
Riemann manifold.

The induced semi-Riemann metric structure g% on TyS? has the matriz representation
-1 0 0
GaB 0 —1 sinha | fora,p€{l1,2,3}. (3.12)
0 sinha 1

The inverse matriz of gag s given by

-1 0 0
g 0 —sech?a  sechatanha | . (3.13)
0 sechatanha sec h2a
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Theorem 3.9 Let (Tng,gS) be a semi-Riemann manifold. Let V be Levi-Civita connection of (Tlsg,gs)
and l"gﬁ;a,ﬁ,'y € {1,2,3} be coefficients of the Christoffel symbols related to V. At the same time, V is
symmetric. Then the nonzero Christoffel symbols of (Tng,gS) are given as follows:

re = 1%cosh a,
e, = %tanh a, TY = —% sec ha, (3.14)
e, = Lsec ha, T¢, = %tanh a,

where )5 =T, for all a, 8,7 € {a,0,w}.

Proof On the Sasaki semi-Riemann manifold (T15'22, g° ), there is a unique connection V such that Vv is

torsion-free and compatible with semi-Riemann metric ¢g°. This connection is called the Levi-Civita connection

and characterized by the following Kozsul formula:

298 (v6a89a aw) = aags (80; 80.1) + 8095 (awa 8(1) - 8wgs (aaa 89) +
*gs ([0a; 6] , 0u) + gS ([96,0u] , 0a) + QS ([0 0al ; 00) »

where 9, = %789 = % and 0, = %. Since V is symmetric, [0q, 9], [0p, Ou], [0w, 0a] must be zero. If we get

Vo,00 = 1'% 0, + I‘Zeag +1'%0.,, from the Kozsul formula, we obtain the following Christoffel symbols:

1
a0 = 59” (Oagro + OoGar — Okgas) = 0,
0 L ok 1
Lo = 359 (Oagro + Opgak — Okgas) = 5 tanha,
w 1 3k 1
a0 = 39 (Oagro + Oggak — Okgan) = 5 secha,
where k € {a,0,w}. Other Christoffel symbols can be obtained by using a similar method. O
Theorem 3.10 Let (TlSQQ,gS) be a semi-Riemann manifold and

c:t€R — ct) = (a(t),0(t),w(t)) € T1S2 be a curve on T1S3. c is geodesic if and only if ¢ provides

the following system of differential equations:

a+coshab = 0,
0 + tanh aaf — sec haaw = 0, (3.15)
& + sechaaf + tanhaaw = 0.

Proof c(t) = (a(t),0(t),w(t)) is geodesic if and only if V¢ must be zero. Since ¢ is equal to ad, + 08 +wd,, ,

V¢ is equal to
Vi, (@0u + 005 +&0.,) + Vo, (a0a + 00 + @0, + Vo, (a0 + 00 + @0,
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Therefore, we get
Vee = al, +ab {2 tanh a0y + <2 sec ha) 8w}

.. 1 1 -

+-aw <2 sec hady + 3 tanh a@w) + 009 +
1 - 1 1

+§ cosh afwd, + ab {2 tanh a0y + (2 sec ha> 8w}
.. 1 1 1 . .

+aw —3 sec hady + 3 tanhad, | + 3 cosh afwd, + wd,,.

If we organize V¢,
Vee = (d + cosh aéw) Oq
+ (9 + tanh aah — sec hadw) Op
+ ((IJ + sec haad + tanh ado&) O,

it can be seen that the claim of the theorem is true. O

4. Rotations in SO(2,1)

In this section, the rotational motion of a particle around the origin of S3 is studied. Then the kinetic energy
of a rotating particle on S3 is defined in terms of the semi-Riemann structure h on SO(2,1) and the angular
velocity vector of this particle. Then the fact that the rotational motion of a particle with constant angular
velocity around the origin of the sphere produces a geodesic of SO(2,1) is obtained.

Let SO(2,1) be a group of rotations of semi-Euclidean 3-space, i.e. the configuration space of the
rotational motions of particles around the origin of the unit 2-sphere S5. The rotational motion of a particle on
S3 is described by a curve v = y(t) in SO(2,1). Let so(2,1) be the space of angular velocities of all possible
rotations. The value of v(t) at the initial instant, i.e. ¢ = 0, corresponds to identity rotation I and the value
of angular velocity of the rotating particle at the initial instant corresponds to angular velocity denoted by
(0) = R.

Let us define the motion v : IR — SO(2,1) such that (0) = I and %(0) = R. This motion is defined
by the curve (t) = exp(Rt), which is a one-parameter curve of SO(2,1) with angular velocity R. R is the
tangent vector to SO(2,1) at the identity rotation I.

The rotational motion of a particle under inertia (with no external forces) around the origin of the unit
sphere S3 corresponds to the one-parameter curve on SO(2, 1), which is a geodesic of (SO(2,1),h).

The geodesics of semi-Riemann space (SO(2,1),h) are extremizers of kinetic energy T of a rotating

particle under inertia around the origin of S2. The kinetic energy of the rotating particle is determined by
T=h(RR).
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To every motion t — 7(t) of a rotating particle, we can associate following curves:
t— 4(t) € so(2,1),
which are called the motion of the vectors of angular velocity.

Theorem 4.1 The evolution of the vector 4 in so(2,1) is determined by the following differential equation:

diy
Ly
o (¥, 9),

where B defines an operator
B :s0(2,1) x so(2,1) = so(2,1)

by the identity
h(la,b],¢) = h(B(c,a),b),

for all b € s0(2,1) ( see, [1]).
Definition 4.2 v € s0(2,1) is called a stationary point if
B(v,v) =0.

Then the geodesic v(t) = exp(vt), originating from the point v(0) = I with initial velocity 4(0) = v, is called

stationary motion [1].

Now we examine the relation between the stationary motion and angular velocity under the inertia of a rotating

particle on S3.

Theorem 4.3 The rotational motion of v(t) in SO(2,1) is a geodesic if y(t) is a motion with constant angular

velocity.

Proof Let the curve «(¢) be a stationary motion, i.e. a geodesic of SO(2,1). Then ~(t) is a motion with
acceleration free, i.e. 7 = 0. Namely, B(v,v) =0 for 4(0) =v. Let T = h (R, R) be the kinetic energy of a

rotating particle on S3. If we take the derivation of T with respect to the variable ¢, we get

2T = h (4,7) = h (%, B(3,9) = b (3,41,9) = 0.

Thus, the stationary motions on SO(2,1) are motions with constant kinetic energy. Since the kinetic energy of
the rotating particles with constant angular velocity is constant, the motions of these particles produce geodesics
of SO(2,1). O

Corollary 4.4 The kinetic energy along the geodesic curves ~(t) in the configuration space SO(2,1) is
conserved, i.e. constant.

Now let us examine how the rotational motion of a rotating particle with constant angular velocity along a
geodesic circle of the unit 2-sphere S3 corresponds to a geodesic in SO(2,1) and that the kinetic energy of this

particle is constant at each stage of the movement.
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Example 4.5 The rotational motion of a rotating particle with constant angular velocity along the timelike
geodesic circle lying on the z = 0 plane of S3 corresponds to a geodesic of SO(2,1). Furthermore, the kinetic
energy of this particle is constant at every stage of its motion.

The vector product of the position vector (cosht,sinht,0) with the velocity vector (sinht,cosht,0) of this
particle moving on the sphere S3 gives the angular velocity vector n = (0,0,—1) of this particle. Since the
differential of n with respect to the variable t is equal to zero, the angular velocity of this particle is constant at
each stage of the movement. The motion of this particle is the spherical rotation of a point p of S3 about fized

point O along the rotation axis n = (0,0,—1) and corresponds to the following skew-symmetric matriz:
0 10
N=[100
0 0 0

Furthermore, N can also be seen as a tangent vector in the tangent vector space so(2,1) of SO(2,1) at point
I. Since the exponential map carries the tangent vectors passing through the origin of so(2,1) to the geodesics
of SO(2,1) through I, R(t) = exp(Nt) is a geodesic in SO(2,1). By using the definition of the exponential
map, we get

Nt (Nt)2 (Nt)®

R(t) = exp(Nt) =1+ ST 30

+ ..

If we calculate the different powers of N, we can see that odd powers of N are equal to N and even powers of

N are equal to the matriz N2 given by

1 00
N*=[1010
0 0 O
If we edit the above R(t) equation, we get
30 2t 45 )
R@:Hﬁ+§+a+JN+@+I+a+JN

and
R(t) = I + (sinht) N + (=1 + cosh t) N2,

Thus, R(t) has the following matriz representation:

cosht sinht 0
R(t) = | sinht cosht 0
0 0 1

7

and it is a geodesic in SO(2,1). This rotation matriz is used to determine the coordinates of the final position
vector of a point p of S3 given the initial position vector. Since the geodesic R(t) = exp(Nt) provides the
equations R(0) =1 and R(0) = N, R(t) can be a stationary motion.

Let us consider the kinetic energy of the rotating particle without any external force on the timelike geodesic

circle given by ~y(t) = (cosht,sinht,0) of the unit 2-sphere S3 in semi-Euclidean space E3. The kinetic energy

of this particle is equal to

1
T=-<nn>,
D) n,n
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where n is the angular velocity vector of this particle and <,> is the standard inner product in E3. If we
calculate T, we can see that the kinetic energy of this particle is constant and equal to —1 regardless of t.
Now we have shown that the kinetic energy of the stationary motion R(t) in semi-Riemann space (SO(2,1),h)

is constant. The kinetic energy of this particle moving along the curve R(t) is equal to
1
T=h(N,N)= —iTrace{N.N} = -1,

where N is equal to R(O) Thus, the kinetic energy of this particle moving along the curve R(t) in
SO(2,1) is constant and equal to —1. Namely, the kinetic energy of this particle at every stage of its motion

does not change.

5. Geodesics of SO(2,1)

In this section, the expression of the orthonormal basis of 7752 with respect to the Euler rotation matrices
is obtained. Then a differentiable map between semi-Riemann spaces (7155, ¢°) and (SO(2,1),h) is defined
and it is shown that the line element of (71532, ¢%) is equal to the line element of (SO(2,1),h). Furthermore,
the second-order derivative of a rotation matrix R of SO(2,1) is obtained. Finally, the system of differential
equations giving geodesics of (SO(2,1),h) is obtained and the equality of the systems of differential equations
giving the geodesics (SO(2,1),h) and (1153, ¢°) is found.

Let us take any point e; on the unit 2-sphere S5 and the unit tangent vectors fo and fs3 passing from

the point e;. The local coordinate expressions of e;, fa, f3 in 3-dimensional semi-Euclidean space are given
by

e1(a,0) = (coshacosh@, coshasinh6,sinha),
fa(a,0) = (sinhacosh@,sinhasinhé,cosha),
f3(a,8) = (sinh#@,cosh®,0),

with respect to geodesic polar coordinates a, 6. The unit tangent vectors fs, f3 belong to the tangent vector
space of the unit 2-sphere at point e;. This tangent vector space is denoted by T.,S5. Let ez be both any
tangent vector of T, S5 and an element of the tangent sphere bundle 7~!{e;} =T., S5 C T15%. To determine
the position of ey, we use the new coordinate denoted by w. Let w be any angle between fy and es. Thus,

new basis vectors ez and e of T, S5 are the following local coordinate expressions:

ea(a,0,w) = coswfy + sinwfs,
es(a,f,w) = —sinwfa + coswfs3,

with respect to basis {fa, f3} of T., S5 and

es = (coswsinhacoshf + sinw sinh @, cosw sinh a sinh § — sinw cosh 6, cosw cosh a),

es = (—sinwsinhacoshf + coswsinh 6, — sin w sinh a sinh § — cos w cosh 6, — sinw cosh a),

with respect to the standard orthonormal basis of E3. Thus, ey, e, e3 are orthonormal basis elements of 7752 .
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Theorem 5.1 The matriz R = ( e1 ey e3 )T is an element of SO(2,1) where R is given by

cosh 0 cosh a sinh @ cosh a sinh a
sinh #sinw + cosh @ coswsinha coshfsinw + sinhfcoswsinha coswcosha
sinh 6 cosw — cosh@sinwsinha coshfcosw — sinhfsinwsinha —sinwcosha

Proof It has been straightforwardly seen that the rotation matrix R provides the equality RT xR = x, where
X is defined as in Definition 2.2. Therefore, R is an element of SO(2,1). O

Theorem 5.2 The representation via the Fuler rotation matrices of R = ( e1 es e3 )T s equal to the

multiplication of the following rotation matrices:
R= Rx(iw)Rz(fa)Ry(a)Qa
where

0
Q=0 o0
1

wn O O =
(=)

and R;(—w),Ry(0) R.(—a) and Q are elements of
respect to the z axis by the hyperbolic angle —a .

0(2,1) and R.(—a) describes the rotation matriz with

Proof R,(—w),R,(#), R.(—a) and @ will be elements of SO(2,1) since these matrices provide RT xR = .
If we multiply the following matrices by Q:

1 0 0
R,(—w)=1 0 cosw sinw |,
0 —sinw cosw

cosha sinha 0
R,(—a)=| sinha cosha 0 |,
0 0 1

coshf 0 sinh@

R,(8) = 0 1 0 ,
sinh® O coshé

we can see that the theorem is correct easily. O

Theorem 5.3 The tangent vector R at point I of SO(2,1) is a skew-symmetric matriz of s0(2,1) as follows:

dey ) 0 ns —m2 el
dR=| des | =RR=| -3 0 m €2 |,
des -n2 m 0 €3
where 11, N2, N3 are given by
m = dw + sinhadf,
N2 = sinwda — cosw cosh adf, (5.1)
N3 = coswda + sinw cosh adf.
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Proof If we use the covariant derivative of basis vectors of Ty.S2 in Theorem 3.4, the correctness of the claim

of this theorem is seen easily. O

Theorem 5.4 The derivative of the map v from T1S3 to SO(2,1) is given by
¢* =" © f*)
where f.:T,T153 — E3 has the following matriz representation:

cosw coshasinw 0
f«=| —sinw coshacosw 0 |,
0 coshatanha 1

and the map ~ : E3 — s0(2,1) is defined by

~ 0 —Tr3 T2
r= -rs 0 r |,
T9 —Tr1 0

for a vector r = (r1,72,73) in E3.

Proof Since ¢ is the map from 71535 to SO(2,1), v, can be the map from T, 1153 to Ty»=1SO(2,1)
defined by

Y (§1) = b1 Ps (§2) = b2, s (§3) = bs.
If we calculate f.(€3), f«(&2), f«(&1), we should find the unit vector i = (1,0,0), j = (0,1,0), k= (0,0,1) of

E3 |, respectively. Then it can be easily seen that i = by, j = by, k = b3. O

Theorem 5.5 The line element dp between two infinitely close points in (SO(2,1),h) is equal to the line

element do between two infinitely close points in (T1 S%,gs) .

Proof Since the other point that is infinitesimal close to R = (e; e e3)T is obtained by the matrix product

RR, the line element of SO(2,1) determines the image of R under h:

dp?

h (R, R) = —%Trace(R.R)

= n—n -

= —(da)® = (d9)? + 2sinh adfdw + (dw)?.

The value of dp? is equal to the value of do? obtained by (3.8) Therefore, it is seen that the claim of theorem

is correct. O

To find geodesic equations of SO(2,1), let us calculate d’R = ( d?e; d%ex d%e3 )T.
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Theorem 5.6 The second-order derivation of the element R = ( e1 ey e3 )T of SO(2,1) is given by

d2€1 .
d*R=| d% | =RR,
d2€3
where
d*e, = ((da)2 + cosh®a (d9)2) e1+
coswd?a + 2 sinh a sin wdadf+ L
+ coshasinwd?0 — sinh a cosh a cosw (d6)? )

— sinwd?a + 2 sinh a cos wdadf+ .
cosh a cos wd?6 + sinh a cosh a sin w (d6)? B

Lo — coswd?a — 2 sin wdadw + cosh a sin wd?0+ .
2 +2 cosh a cos wdfdw + sinh a cosh a cos w (d6)* !

n cos? w (da)® + 2 cosh a sin w cos wdadf — sinh? a(df)2+ e+
+ cosh? asin? w (df)? — 2sinh adfdw — (dw)? ?

(- sinw cosw (da)® + sinh ad?0 + 2 cosh a cos? wdadf+ .
+ cosh? asinw cosw (df)? + d?w %

22 _ —sinwd?a — 2 cos wdadw + cosh a cos wd?0— n
“s —2 cosh a sin wdfdw — sinh a cosh a sin w (df)” “

L —sinweosw (da)® — sinh ad?0 — 2 cosh a sin® wdadf+ e+
+ cosh? asinw cosw (df)? — d2w 2

n sin w (da)® — 2 cosh a sin w cos wdadf + cosh? a cos® w (df)? .
—2sinh adfdw — sinh? a (d6)? — (dw)? °

Proof Taking the partial differentials of dei, des, des given by Theorem 3.6 with respect to the variables a,

0, w, we can obtain the second-order derivation of R straightforwardly. a

Theorem 5.7 The system of differential equations giving the geodesics of SO(2,1) is equal to the system of
differential equations giving geodesics of (T15%,9°).

Proof The curve y(t) in SO(2,1) is geodesic if and only if T = 2h (R, R) = —Trace <R, R> is equal to
zero. If we calculate T', we can find the following equation:

(dga + cosh adﬁdw) da + (d29 + sinh ad?w — cosh adadw) do+
+ (d?w + sinh ad?6 + cosh adadﬁ) dw =0,
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where all components are equal to zero. Namely,

d?a + coshadfdw = 0, (5.2)
d?0 — sinh ad’w — coshadadw = 0, (5.3)
d*w + sinh ad®*0 + coshadadf = 0. (5.4)

If we multiply the equation in (5.3) by sinha and the value of sinhad?§ is put into equation (5.4), we get
d*w + sec hadadf + tanh adadw = 0. (5.5)

If we multiply the equation in (5.4) by sinha and the value of sinhad?w is put into equation (5.3), we get
d?0 — sec hadadw + tanh adadf = 0. (5.6)

Thus, if we organize equations (5.2), (5.5), and (5.6), we get the following system of differential equations:

q+ coshabw = 0,
0 + tanh aaf — sec haawy = 0, (5.7)
& + sec haaf + tanh aaw = 0,

and this system of differential equations is equal to the system of differential equations of (7152, g°) given by
(3.15). O

Let us consider some geodesics on the tangent sphere bundle 77,57 with respect to the particular solutions

(a =a(t),0 =0(t),w = w(t)) providing the above system of differential equations.

Example 5.8 Some geodesics of T1 S can be determined by the following particular solutions providing the
system of differential equations given by (5.7):

Case 1. a=1t,0=0,w=75;

Case 2. a=0,0=t,w=7;

Case 3. a=0, 0=0,w=t.

Let us examine the relationships among the geodesics of SO(2,1), S%, and T1S% for these three different cases.

As e; given by the equation in (3.1) defines a point or a geodesic of S7, the matrix whose column vector

is equal to ey, fo, fs3 that are given by equations (3.1), (3.3) is a geodesic of SO(2,1) and (e1;e2) defines a
geodesic of T1S3 where ey is given by equation (3.4).
Case 1. If we substitute a = ¢, # = 0 in equations (3.1), (3.3), we will obtain the values of ey, fs, and fo as
follows:

e1 = (cosht, 0, sinht),

fs= (0, 1, 0),

fo= (sinht 0 cosht),
which correspond to the rotation matrix in SO(2,1) around the y axis. This rotation matrix is a geodesic of

SO(2,1). Furthermore, ey is equal to f3 for w = 7. As e; = (cosht,0,sinht) draws the timelike geodesic circle
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of S2 in ES, (e1;e2) = (cosht,0,sinht ; 0,1,0) draws a geodesic of 7155 in Ej x E3. ey makes a constant
angle w = § with the unit tangent vector f» € T,.,S2 at point e; for the different values of ¢ € [0,2n]. Since
the velocity vectors at each point of the curves e; and (ej;es) are perpendicular to the acceleration vectors at
that point, these curves are geodesic curves in E3 and E3 x Ej, respectively. The curve (ej;es) obtained by
the parallel translation of the vector ey along the timelike geodesic circle of S5 is a horizontal geodesic curve
on T15%.
Case 2. If we substitute a = 0, § =t in equations (3.1), (3.3), we will obtain the values of ey, f5, and fo as
follows:
e1 = (cosht, sinht, 0)
fz = (sinht, cosht, 0),
fa= (0 0 1)

which correspond to the rotation matrix in SO(2,1) around the z axis. This rotation matrix is a geodesic of
SO(2,1). Furthermore, es is equal to %(fg + f3) for w = §. As e; = (cosht,sinht,0) draws the timelike

geodesic circle of S3 in E3, (e1;ez) = (cosht,0,sinht ; % sinh ¢, % cosht, %) draws a geodesic of 7155 in
E3 x E3, and e; makes a constant angle w = 7 with the unit tangent vector fo € T.,S3 at point e; for
the different values of ¢ € [0,27]. Since the velocity vectors at each point of the curves e; and (ej;eq) are
perpendicular to the acceleration vectors at that point, these curves are geodesic curves in Ej and Ej x E3,
respectively. The curve (eg;ez) obtained by the parallel translation of the vector ey along the timelike geodesic
circle of S5 is a horizontal geodesic curve on T3 53.

Case 3. If we substitute a = 0, # = 0 in equations (3.1), (3.3), we will obtain the values of e;, f5, and fo as

follows:
€1 = (17 07 0)7
f3 = (07 17 0)7
fa= (0 0 1),

which correspond to the unit matrix in SO(2,1). This unit matrix is an identity element of SO(2,1).
Furthermore, ey is equal to ((cost) fo + (sint) f3) for w = t. As e; = (1,0,0) is a point of S7 in Ej,
(e1;e2) = (1,0,0 ; 0,sint, cost) draws a geodesic of 7153 in E3 x E3. ez makes an angle w =t € [0, 27] with
the unit tangent vector fo € T,, S5 at point e;. Since the velocity vector at each point of the curve (ej;es) is
perpendicular to the acceleration vector at that point, this curve is a geodesic curve in E3 x Ej and (ey;es)
defines the unit circle lying on the tangent vector space T,, S5 at point e; of S3, and it is a vertical geodesic

curve on T1.55.

6. Conclusion
In this research, we propose a new insight into geodesics on the tangent sphere bundle of unit 2-spheres via
geodesics of special orthogonal groups in semi-Euclidean space. By helping the diffeomorphism and isometry
properties between the tangent sphere bundle and special orthogonal group, we have examined the relations
between the differential geometric objects of these semi-Riemann spaces.

We have considered the vector and the matrix representation of a spherical rotation in semi-Euclidean
space, the special orthogonal group and its tangent vector space, and the semi-Riemann structure on the special

orthogonal group.
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Then we have considered the manifold structure and geodesics of the tangent sphere bundle of the unit

2-sphere in semi-Euclidean 3-space with index two, inspired by [2].

Furthermore, we were interested in the geometrical and dynamical interpretation of rotational motion of

a particle around the origin of the unit 2-sphere. We have seen that the stationary motion of a particle under

inertia on the unit 2-sphere produces a geodesic of a special orthogonal group in semi-Euclidean space.

Finally, we have proved the equality of line elements and the systems of differential equations giving

geodesics of the tangent sphere bundle and special orthogonal group.
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