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Abstract. In this paper, we give the constructions of the coequalizer and

coproduct objects for the category of crossed modules, in a modified category
of interest (MCI). In other words, we prove that the corresponding category is

finitely cocomplete.

1. Introduction. The notions of category of interest [18] and groups with opera-
tions [19] are date back to Higgins [15]. They both aim to unify various algebraic
structures and their properties. Precisely the notion of groups with operations is
given as a relaxed version of category of interest. Therefore, groups with operations
do not capture some algebraic structures which categories of interest do – clearly,
every category of interest is a group with operation as well. Although many well-
known algebraic categories (such as groups, vector spaces, associative algebras, Lie
algebras, etc.) are the essential examples of categories of interest, there are some
others which are not. For instance, the categories of cat1-Lie (associative, Leibniz,
etc.) algebras are not categories of interest.

At this point, a new and more general type of this notion is introduced in [4]
which is called a modified category of interest. It satisfies all axioms of the former
notion except one, which is replaced by a new and modified one. According to
this definition, every category of interest becomes a modified category of interest.
Further examples of modified categories of interest are those, which are equivalent
to the categories of crossed modules in the categories of groups, associative algebras,
commutative algebras, dialgebras, Lie algebras, Leibniz algebras, etc.

A crossed module of groups [21] ∂ : E → G is given by a group homomorphism
together with a group action B of G on E satisfying the following relations (for all
e, f ∈ E and g ∈ G):

∂(g B e) = g + ∂(e)− g, ∂(e) B f = e+ f − e.
Crossed modules are used for modeling homotopy systems of connected CW-

complexes, and also for the classification of algebraic 2-types [17]. On the other
hand, the category of crossed modules is also equivalent to the category of cat1-
groups [16] as well as to the categories of interest in the sense of [10, 11]. The
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definition of crossed module is adapted to modified categories of interest in [4]
that unifies all crossed module structures of the algebraic structures we mentioned
above. It is strongly recommended to see [6, 7] for a very detailed survey of crossed
modules and related structures. Some categorical properties of crossed modules are
examined in [1, 2, 3, 5, 8, 12, 13, 14, 20] for various algebraic structures. In fact,
some of them are examples of modified categories of interest.

As the modified category of interest is the unification of many well-known al-
gebraic structures and their properties, it is natural to ask whether it is possible
to unify some categorical properties of crossed modules via modified categories of
interest. In this context, constructions of limits (of crossed modules) in a modified
category of interest are given in [13] that yields the completeness of the correspond-
ing category. Following that study, in this paper, we prove that a category of crossed
modules in modified categories of interest is (finitely) cocomplete, namely, it has all
finite colimits.

2. Preliminaries. We recall some notions from [4] that will be used in the sequel.

Definition 2.1. Let C be a category of groups with a set of operations Ω and with
a set of identities E, such that E includes the group identities and the following
conditions hold. If Ωi is the set of i-ary operations in Ω, then:

(a) Ω = Ω0 ∪ Ω1 ∪ Ω2;
(b) the group operations (written additively : 0,−,+) are elements of Ω0, Ω1 and

Ω2 respectively. Let Ω′2 = Ω2 \ {+}, Ω′1 = Ω1 \ {−}. Assume that if ∗ ∈ Ω2,
then Ω′2 contains ∗◦ defined by x ∗◦ y = y ∗ x and assume Ω0 = {0};

(c) for each ∗ ∈ Ω′2, E includes the identity x ∗ (y + z) = x ∗ y + x ∗ z;
(d) for each ω ∈ Ω′1 and ∗ ∈ Ω′2, E includes the identities ω(x+ y) = ω(x) + ω(y)

and either the identity ω(x∗y) = ω(x)∗ω(y) or the identity ω(x∗y) = ω(x)∗y.

Denote by Ω′1S the subset of those elements in Ω′1, which satisfy the identity
ω(x ∗ y) = ω(x) ∗ y, and by Ω′′1 all other unary operations, i.e. those which satisfy
the first identity from (d).

Let C be an object of C and x1, x2, x3 ∈ C:

(e) x1 + (x2 ∗ x3) = (x2 ∗ x3) + x1, for each ∗ ∈ Ω′2,

(f) For each ordered pair (∗, ∗) ∈ Ω′2 × Ω′2 there is a word W such that

(x1 ∗ x2) ∗ x3 = W
(
x1(x2x3), x1(x3x2), (x2x3)x1, (x3x2)x1,

x2(x1x3), x2(x3x1), (x1x3)x2, (x3x1)x2
)
,

where each juxtaposition represents an operation in Ω′2.

A category of groups with operations C satisfying conditions (a)-(f) is called a
“modified category of interest”, or “MCI” for short.

Remark 1. Let us fix an arbitrary modified category of interest C throughout this
section.

Definition 2.2. Let A,B be two objects of C. A morphism in C is a map f : A→ B
commutes with all possible w ∈ Ω′1, such that

f(a+ a′) = f(a) + f(a′),

f(a ∗ a′) = f(a) ∗ f(a′),

for all a, a′ ∈ A, ∗ ∈ Ω′2.
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Example 2.3. The categories of groups, (commutative) algebras, modules over
a ring, vector spaces, Lie algebras, Leibniz algebras, dialgebras are well-known
examples of modified categories of interest.

However, there exist other well-known algebraic categories that are not modified
categories of interest. For instance, the categories of Leibniz-Rinehart algebras,
Hopf algebras, racks (or quandles), etc.

As we underlined in the introduction, the following are the essential examples of
modified categories of interest (which are not categories of interest), and they were
the main motivation to define modified categories of interest.

Example 2.4. The categories of cat1-(commutative) algebras, cat1-Lie algebras
and cat1-Leibniz algebras are also modified categories of interest.

Definition 2.5. Let B be an object of C. A subobject of B is called an ideal if it
is the kernel of some morphism. In other words, A is an ideal of B if A is a normal
subgroup of B, and a ∗ b ∈ A, for all a ∈ A, b ∈ B and ∗ ∈ Ω′2.

Definition 2.6. Let A,B be two objects of C. An extension of B by A is a sequence

0 // A
i // E

p // B // 0

where p is surjective and i is the kernel of p. We say that an extension is split if
there exists a morphism s : B → E such that ps = 1B .

Definition 2.7. The split extension induces a set of actions of B on A correspond-
ing to the operations in C with being

b · a = s(b) + a− s(b),
b ∗ a = s(b) ∗ a,

for all b ∈ B, a ∈ A and ∗ ∈ Ω′2.
Actions defined by the previous equations are called derived actions of B on A.

Remark that we use the notation “ ∗ ” to denote both the star operation and the
star action.

Definition 2.8. Given an action of B on A, the semi-direct product A o B is a
universal algebra, whose underlying set is A×B, and the operations are defined by

ω(a, b) = (ω (a) , ω (b)),

(a′, b′) + (a, b) = (a′ + b′ · a, b′ + b),

(a′, b′) ∗ (a, b) = (a′ ∗ a+ a′ ∗ b+ b′ ∗ a, b′ ∗ b),
for all a, a′ ∈ A, b, b′ ∈ B, ∗ ∈ Ω′2.

Remark that, an action of B on A is a derived action, if and only if, AoB is an
object of C.

Theorem 2.9. Denote a general category of groups with operations of a modified
category of interest C by CG. A set of actions of B on A in CG is a set of derived
actions, if and only if, it satisfies the following conditions:

1. 0 · a = a,
2. b · (a1 + a2) = b · a1 + b · a2,
3. (b1 + b2) · a = b1 · (b2 · a),
4. b ∗ (a1 + a2) = b ∗ a1 + b ∗ a2,
5. (b1 + b2) ∗ a = b1 ∗ a+ b2 ∗ a,
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6. (b1 ∗ b2) · (a1 ∗ a2) = a1 ∗ a2,
7. (b1 ∗ b2) · (a ∗ b) = a ∗ b,
8. a1 ∗ (b · a2) = a1 ∗ a2,
9. b ∗ (b1 · a) = b ∗ a,

10. ω(b · a) = ω(b) · ω(a),
11. ω(a ∗ b) = ω(a) ∗ b = a ∗ ω(b) for any ω ∈ Ω′1S, and ω(a ∗ b) = ω(a) ∗ ω(b) for

any ω ∈ Ω′′1 ,
12. x ∗ y + z ∗ t = z ∗ t+ x ∗ y,

for each ω ∈ Ω′1, ∗ ∈ Ω′2, b, b1, b2 ∈ B, a, a1, a2 ∈ A and for x, y, z, t ∈ A ∪ B
whenever each side of 12 makes sense.

Definition 2.10. A “crossed module” (C1, C0, ∂) in C is given by a morphism
∂ : C1 → C0 with a derived action of C0 on C1 such that

X1)
∂(c0 · c1) = c0 + ∂(c1)− c0 ,
∂(c0 ∗ c1) = c0 ∗ ∂(c1) ,

X2)
∂(c1) · c′1 = c1 + c′1 − c1 ,
∂(c1) ∗ c′1 = c1 ∗ c′1 ,

for all c0 ∈ C0, c1, c
′
1 ∈ C1, ∗ ∈ Ω′2. Without the second condition, we call it a

precrossed module.
A morphism between (pre)crossed modules (C1, C0, ∂) → (C ′1, C

′
0, ∂
′) is a pair

(µ1, µ0) of morphisms µ0 : C0 → C ′0 and µ1 : C1 → C ′1, such that the diagram

C1
∂ //

µ1

��

C0

µ0

��
C ′1

∂′
// C ′0

commutes and also

µ1(c0 · c1) = µ0(c0) · µ1(c1) ,

µ1(c0 ∗ c1) = µ0(c0) ∗ µ1(c1) ,

for all c0 ∈ C0, c1 ∈ C1 and ∗ ∈ Ω′2.

We denote the category of crossed modules by XMod, and similarly, of precrossed
modules by PXMod.

The following two are the characteristic examples of crossed modules in any
modified category of interest C.

Example 2.11. Let B be an object of C and A is an ideal of B. Then, the inclusion
map A ↪−→ B becomes a crossed module where the action is defined via conjugation,
namely

b · a = b+ a− b ,
b ∗ a = b ∗ a ,

for all a ∈ A and b ∈ B.

Example 2.12. Let B be an object of C. Then, we have a natural crossed module
0 → B with the trivial action. More generally, if A is an abelian object (i.e.
x+ y = y+x and x ∗ y = 0, for all x, y ∈ A and ∗ ∈ Ω′2), then the zero map A→ B
defines a crossed module with any derived action, for all B.
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Considering Example 2.3, the following well-known crossed module definitions
are particular examples of crossed modules in a modified category of interest.

Example 2.13. A crossed module of groups [5] is a group homomorphism ∂ : E →
G, together with a group action . of G on E such that

X1) ∂(g . e) = g + ∂(e)− g,
X2) ∂(e) . f = e+ f − e,

for all e, f ∈ E and g ∈ G.

Example 2.14. A dialgebra crossed module [9] is a dialgebra homomorphism ∂ :
D1 → D0 with a dialgebra action (via four bilinear maps) of D0 on D1, such that

X1) ∂(d0 Ba d1) = d0 a ∂(d1),
∂(d0 B` d1) = d0 ` ∂(d1),
∂(d1 Ca d0) = ∂(d1) a d0,
∂(d1 C` d0) = ∂(d1) ` d0,

X2) ∂(d1) Ba d′1 = d1 a d′1 = d1 Ca ∂(d′1),
∂(d1) B` d′1 = d1 ` d′1 = d1 C` ∂(d′1),

for all d1, d
′
1 ∈ D1, d0 ∈ D0.

Example 2.15. A Lie algebra crossed module [9] is a Lie algebra homomorphism
∂ : e→ g, together with a Lie algebra action . of g on e such that

X1) ∂(g . e) = [g, ∂(e)],

X2) ∂(e) . f = [e, f ],

for all e, f ∈ e and g ∈ g.

3. Colimits in XMod/C0. From now on, C will be a fixed MCI where E includes
the identity x + y = y + x. Remark that Lie algebras, (commutative) associative
algebras, dialgebras are all examples of C.

Definition 3.1. Consider the subcategory XMod/C0 of crossed modules with a
fixed codomain C0. Its objects will be called crossed C0-modules, and the morphism
between (E, ∂E) and (D, ∂D) is defined by a morphism1 µ : E → D such that the
following diagram commutes

E
∂E //

µ
��@

@@
@@

@@
@ C0

D

∂D

>>}}}}}}}}

and also

µ(c0 · e) = c0 · µ(e),

µ(c0 ∗ e) = c0 ∗ µ(e),

for all c0 ∈ C0, e ∈ E, ∗ ∈ Ω′2.
A crossed C0-module ∂ : E → C0 will be denoted by (E, ∂E) for short.

1In full, it is a tuple (µ, idC0 ).
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Proposition 1. Let µ, µ′ : (E, ∂E) → (D, ∂D) be two crossed C0-module mor-
phisms. Then,

I = {µ(e)− µ′(e) | e ∈ E}
is an ideal of D.

Proof. For all d ∈ D, we have

d+ µ(e)− µ′(e)− d = d+ µ(e)− d+ d− µ′(e)− d
= ∂D(d) · µ(e) + ∂D(d) · µ′(−e)
= µ(d · e) + µ′(d · (−e))
= µ(d · e)− µ′(d · e) ∈ I ,

and

d ∗ (µ(e)− µ′(e)) = d ∗ µ(e)− d ∗ µ′(e)
= ∂D(d) ∗ µ(e)− ∂D(d) ∗ µ′(e)
= µ(d ∗ e)− µ′(d ∗ e) ∈ I ,

from which I becomes an ideal of D.

Proposition 2. Let I be the ideal given in Proposition 1. Then (I, ∂D) is a crossed
C0-module with the action induced from that of C0 on D.

Proof. We only prove that the action of C0 on I is well-defined. Let c ∈ C0 and
µ(e)− µ′(e) ∈ I. Then we have

c · (µ(e)− µ′(e)) = c · µ(e)− c · µ(e)

= µ(c · e)− µ′(c · e) ∈ I ,

and, similarly,

c ∗ (µ(e)− µ′(e)) = µ(c ∗ e)− µ′(c ∗ e),
that completes the proof.

Theorem 3.2. Any pair of parallel morphisms µ, µ′ : (E, ∂E) → (D, ∂D) has a
coequalizer.

Proof. Consider the diagram

(E, ∂E)
µ−−→−→
µ′

(D, ∂D)
p−→ (D/I, ∂D) .

We obviously have p µ = p µ′ since

p(µ(e)) = µ(e) + I

= µ′(e)−µ′(e) + µ(e)︸ ︷︷ ︸
∈ I

+I

= µ′(e) + I

= p(µ′(e)) ,

for all e ∈ E.
Let q : (D, ∂D)→ (F, ∂F ) be a morphism such that q µ = q µ′. Define

q′ : (D/I, ∂D) −→ (F, ∂F )
d+ I 7−→ q(d).
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Then we have

∂F (q′(d+ I)) = ∂F (q(d))

= ∂D(d)

= ∂D(p(d))

= ∂D(d+ I),

and

q′(c · (d+ I)) = q′(c · d+ I)

= q(c · d)

= c · q(d)

= c · (q′(d+ I)),

and, similarly,

q′(c ∗ (d+ I)) = c ∗ q′((d+ I)),

for all c ∈ C0 and d+ I ∈ D/I. Hence, we obtain that

q′ : (D/I, ∂D) −→ (F, ∂F )

is a crossed C0-module morphism.
Morever, let h : (D/I, ∂D) → (F, ∂F ) be a crossed C0-module morphism such

that h p = q. We have

h(d+ I) = hp(d)

= q(d)

= q′p(d)

= q′(d+ I),

for all d+ I ∈ D/I, that proves q′ is unique and completes the proof.

Proposition 3. Let (D, ∂D) and (E, ∂E) be two crossed C0-modules. Then, the set
of actions of D on E defined via ∂D is a set of derived actions.

Proof. We show that the set of actions defined by

d · e = ∂D(d) · e ,
d ∗ e = ∂D(d) ∗ e ,

satisfies the conditions in Theorem 2.9, as follows:
2) For all d ∈ D, e, e′ ∈ E, we have

d · (e+ e′) = ∂D(d) · (e+ e′)

= ∂D(d) · e+ ∂D(d) · e′

= d · e+ d · e′,

11) For all d ∈ D, e ∈ E and w ∈ Ω′1, we have

w(d ∗ e) = w(∂D(d) ∗ e)
= w(∂D(d)) ∗ e
= ∂D(w(d)) ∗ e
= w(d) ∗ e,
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and the other conditions follow immediately.

Proposition 4. With the assumptions in Theorem 3.2, C0 acts on E oD compo-
nentwise, i.e.

c · (e, d) = (c · e, c · d) ,

c ∗ (e, d) = (c ∗ e, c ∗ d) ,

for all c ∈ C0 and (e, d) ∈ E oD.

Proof. Since C0 acts on D and E, we have the split extensions

0 // D // X // C0
sD

ii // 0

and

0 // E // X ′ // C0
sE

jj // 0

Consequently, we have the following split extension

0 // E oD // X ′ ×X // C0

(sE ,sD)
mm

// 0

with (sE , sD)(c) = (sE(c), sD(c)), from which we get the derived actions

c · (e, d) = (c · e, c · d),

c ∗ (e, d) = (c ∗ e, c ∗ d),

for all c ∈ C0 and (e, d) ∈ E oD.

Proposition 5. Let (D, ∂D), (E, ∂E) be two crossed C0-modules. Then

∂ : E oD −→ C0

(e, d) 7−→ ∂E(e) + ∂D(d)

is a precrossed C0-module.

Proof. First of all, ∂ is a morphism in C since

∂((e, d) + (e′, d′)) = ∂(e+ d · e′, d+ d′)

= ∂E(e+ d · e′) + ∂D(d+ d′)

= ∂E(e) + ∂E(d · e′) + ∂D(d+ d′)

= ∂E(e) + ∂E(∂D(d) · e′) + ∂D(d+ d′)

= ∂E(e) + ∂D(d) + ∂E(e′)− ∂D(d) + ∂D(d) + ∂D(d′)

= ∂E(e) + ∂D(d) + ∂E(e′) + ∂D(d′)

= ∂(e, d) + ∂(e′, d′),

and

∂((e, d) ∗ (e′, d′))

= ∂(e ∗ e′ + d ∗ e′ + e ∗ d′, d ∗ d′)
= ∂E(e ∗ e′ + d ∗ e′ + e ∗ d′) + ∂D(d ∗ d′)
= ∂E(e ∗ e′) + ∂E(d ∗ e′) + ∂E(e ∗ d′) + ∂D(d ∗ d′)
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= ∂E(e ∗ e′) + ∂E(∂D(d) ∗ e′) + ∂E(e ∗ ∂D(d′)) + ∂D(d ∗ d′)
= ∂E(e) ∗ ∂E(e′) + ∂D(d) ∗ ∂E(e′) + ∂E(e) ∗ ∂D(d′) + ∂D(d) ∗ ∂D(d′)

= (∂E(e) + ∂D(d)) ∗ ∂E(e′) + (∂E(e) + ∂D(d)) ∗ ∂D(d′)

= (∂E(e) + ∂D(d)) ∗ (∂E(e′) + ∂D(d′))

= ∂(e, d) ∗ ∂(e′, d′),

for all (e, d), (e′, d′) ∈ E oD.
On the other hand, since ∂E and ∂D are crossed modules, we have

∂(c · (e, d)) = ∂(c · e, c · d)

= ∂E(c · e) + ∂D(c · d)

= c+ ∂E(e)− c+ c+ ∂D(d)− c
= c+ ∂E(e) + ∂D(d)− c
= c+ ∂(e, d)− c ,

and

∂(c ∗ (e, d)) = ∂(c ∗ e, c ∗ d)

= ∂E(c ∗ e) + ∂D(c ∗ d)

= c ∗ ∂E(e) + c ∗ ∂D(d)

= c ∗ (∂E(e) + ∂D(d))

= c ∗ ∂(e, d) ,

for all c ∈ C0 and (e, d) ∈ E o D, which proves that (E o D, ∂) is a precrossed
C0-module.

Proposition 6. For a given precrossed C0-module ∂ : A→ C0, let P be the smallest
ideal containing the set

{(∂(a) ∗ a′)− a ∗ a′, (∂(a) · a′)− a′ | a, a′ ∈ A} .
Then,

∂ : A/P −→ C0

a+ P 7−→ ∂(a)

is a crossed C0-module with the action

c · (a+ P ) = c · a+ P

c ∗ (a+ P ) = c ∗ a+ P

for all c ∈ C0, (a+ P ) ∈ A/P .

Proof. Since the crossed module conditions are already satisfied, we only need to
prove that the action of C0 on A/P is well-defined.

Let p = ∂(a) · a′ − a′ ∈ P . Then we have

c · p = c ·
(
∂(a) · a′ − a′

)
= c · (∂(a) · a′)− c · a′

= (c+ ∂(a)) · a′ − c · a′

= (c+ ∂(a)− c) · (c · a′)− c · a′

= ∂(c · a) · (c · a′)− c · a′ ∈ P ,
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and similarly, by Proposition (3.10) in [4], we have

c ·
(
∂(a) ∗ a′ − a ∗ a′

)
= ∂(a) ∗ a′ − a ∗ a′ ,

for all c ∈ C0, ∗ ∈ Ω′2.

Remark 2. We have the functor

( )
cr

: PXMod→ XMod

which assigns the crossed module ∂̄ : A/P → C0 for a given precrossed module
∂ : A→ C0.

Theorem 3.3.
((

(E o D)/P, ∂̄
)
, iE , iD

)
is the coproduct of crossed C0-modules

(E, ∂E) and (D, ∂D) where

iE(e) = (e, 0) + P, iD(d) = (0, d) + P,

for all e ∈ E, d ∈ D.

Proof. Consider the diagram

(E, ∂E)

iE

&&NN
NNN

NNN
NN

JE

##

(D, ∂D)

iD

xxppp
ppp

ppp
pp

JD

{{

(E oD/P, ∂̄)

(X, ∂X)

in XMod/C0. Define

h : E oD/P −→ X

(e, d) 7−→ JE(e) + JD(d).

First of all, h is a morphism in C since

h
(
(e, d) + (e′, d′)

)
= h(e+ d · e′, d+ d′)

= JE(e+ ∂D(d) · e′) + JD(d+ d′)

= JE(e) + JE(∂D(d) · e′) + JD(d+ d′)

= JE(e) + ∂D(d) · JE(e′) + JD(d+ d′)

= JE(e) + (∂XJD(d)) · JE(e′) + JD(d+ d′)

= JE(e) + JD(d) + JE(e′)− JD(d) + JD(d) + JD(d′)

= JE(e) + JD(d) + JE(e′) + JD(d′)

= h(e, d) + h(e′, d′),
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and

h(e, d) ∗ h(e′, d′)

= h((e, d) ∗ (e′, d′))

= h(e ∗ e′ + d ∗ e′ + e ∗ d′, d ∗ d′)
= JE(e ∗ e′ + d ∗ e′ + e ∗ d′) + JD(d ∗ d′)
= JE(e ∗ e′) + JE(d ∗ e′) + JE(e ∗ d′) + JD(d ∗ d′)
= JE(e ∗ e′) + JE(∂D(d) ∗ e′) + JE(e ∗ ∂D(d′)) + JD(d ∗ d′)
= JE(e ∗ e′) + ∂D(d) ∗ JE(e′) + JE(e) ∗ ∂D(d′) + JD(d ∗ d′)
= JE(e ∗ e′) + ∂X(JD(d)) ∗ JE(e′) + JE(e) ∗ ∂X(JD(d)) + JD(d ∗ d′)
= JE(e) ∗ JE(e′) + JD(d) ∗ JE(e′) + JE(e) ∗ JD(d′) + JD(d) ∗ JD(d′)

= (JE(e) + JD(d)) ∗ JE(e′) + (JE(e) + JD(d)) ∗ JD(d′)

= (JE(e) + JD(d)) ∗ (JE(e′) + JD(d′))

= h(e, d) + h(e′, d′),

for all (e, d), (e′, d′) ∈ E oD/P .
Since JE , JD are morphisms in XMod/C0, we have

∂Xh (e, d) = ∂X(JE(e) + JD(d))

= ∂XJE(e) + ∂XJD(d)

= ∂E(e) + ∂D(d)

= ∂̄ (e, d) ,

and

h(c · (e, d)) = h(c · e, c · d)

= JE(c · e) + JD(c · d)

= c · JE(e) + c · JD(d)

= c · (JE(e) + JD(d))

= c · h(e, d) ,

for all c ∈ C0, (e, d) ∈ E oD/P , that yields h is a crossed C0-module morphism.
On the other hand, it is easy to prove that h is unique.

Remark 3. A category D is said to be (finitely) “cocomplete” if it has all (finite)
colimits. On the other hand, the cocompleteness can be characterized in several
ways as follows. For a category D, the following are equivalent:

• D is finitely cocomplete.
• D has coequalizers and coproducts.
• D has pushouts and the initial object.

Consequently, recalling Theorems 3.2 and 3.3, we already proved the following:

Corollary 1. The category XMod/C0 is (finitely) cocomplete.
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