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The effect of the monomer feed ratio and applied potential on copolymerization: 
investigation of the copolymer formation of ferrocene-functionalized 
metallopolymer and EDOT

Rukiye Ayranci, Metin Ak  , Mehmet Karakus and Halil Cetisli

Department of Chemistry, Pamukkale University, Denizli, Turkey

ABSTRACT
In this study, we reported synthesis of ferrocene functioned conducting metallopolymer to enhance 
the understanding of properties of polymers. One of the crucial ways in the electrochromic 
polymer materials research was tuning color by means of copolymerization and change of polymer 
backbones and side groups. For this purpose, we synthesized copolymer of 4-(2,5-di(thiophen-2-
yl)-1H-pyrrol-1-yl)amido ferrocenyl dithiophosphonate with EDOT via potentiodynamic electrolysis. 
Spectral and electrochemical characterizations of the copolymer were investigated. In addition, 
the spectral properties of the copolymers prepared by different applied potentials and different 
monomer feed ratio were studied. For the first time, copolymer composition and the monomer 
reactivity ratios were approximately calculated by using the spectral data.

1.  Introduction

Metallopolymers containing transition metals in their 
backbone are interesting class of materials and they have 
been extensively studied in the last years. These met-
al-containing polymers have distinct physical and electro-
chemical properties.[1] These properties can be improved 
by the type of metal in the conjugated organic polymer 
chain. Thanks to their distinct properties, they have also 
been used in agricultural, medicinal, and technological 
field.[2–4] When the metal is incorporated into polymer 
structure, it achieves unique electrochemical and optical 
behavior via electron transfers within the organic matrix 
which would enable to use as optic-based material.[5] 
One of the ways to prepare new organic conducting met-
allopolymer is the combination of conductive polymers 
with dithiophosphonates. Conducting polymers play an 
important role in the technological areas such as polymer 
light emitting diodes,[6,7] gas sensors,[8] organic photo-
voltaic devices,[9] electrochromic devices,[10] organic 
transistors [11] fuel cells [12,13], and biosensors.[14–16] 
The combination of inorganic and organic components 
has made an immense area of new functional materials 
accessible — the next generation of electronic materials, 
sensors, electrocatalysis and photoelectronics.[17]

Electrochromism is one of the most investigated prop-
erties of conducting polymers. One of the crucial ways in 
the electrochromic polymer materials research is tuning 

color by means of copolymerization. The improvement of 
electrochromic property of polymers with copolymeriza-
tion is a facility and easy method.[18,19] The properties 
of the copolymers are determined by the structure and 
sequence of the repeating units of the monomers.[20,21]

EDOT has been revealed as an appropriate monomer in 
applications of electrochemical copolymerization due to 
the low band gap, excellent conductivity, unusual thermal 
stability, and good electrochemical and electrochromic 
properties.[22–24]

The chemical structure of a polymer depends on how 
the monomers distribute along the chain of the macro-
molecule. This distribution is the direct result of the reac-
tivity of each molecule in the solution. Determination of 
copolymer composition is an important step to control 
the physical and chemical properties of the material. The 
most common mathematical model in copolymerization 
is based on finding the relationship between copolymer 
composition and monomer feed composition which is 
able to find out the ratio of monomer reactivity param-
eters. The correct estimation of copolymer composition 
and stability with the monomer reactivity ratio is quite 
important for the evaluation of the physical chemical 
properties of copolymers with certain applications.[25] 
Generally, monomer reactivity ratios are calculated for the 
copolymers formed by poly-condensation reactions in the 
literature. Studies of monomer reactivity ratio calculation 
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allowed to stand on −18 °C. The resulting yellow–orange  
crystalline product was filtered and dried under vacuum. 
SNS-Fc (4-(2,5-di (thiophen-2-yl)-1H-pyrrol-1-yl)amido 
ferrocenyldithiophosphonate) was synthesized with 60% 
yield.

2.4.  Synthesis of copolymer SNS-Fc with EDOT

EDOT was used as the co-monomer for the synthesis 
of conducting copolymer P(SNS-Fc-co-EDOT), (Scheme 
1). A stock solution of 0.01 M SNS-Fc and 0.01 M EDOT 
were dissolved in 0.05 M TBAFP/DCM electrolyte-sol-
vent system for electrochemical synthesis of copolymer. 
Copolymer films were prepared electrochemically at the 
applied potential of 1.5 V. Short notations of A, B, C, D 
defined the copolymer films obtained from SNS-Fc/EDOT 
comonomer feed ratios of (4/1), (3/2), (2/3), and (1/4), 
respectively.

2.5.  Scan rate investigations in cyclic voltammetry

P(SNS-Fc-co-EDOT) copolymer (1/4 feed ratio) was electro-
chemically synthesized by applying 1.5 V constant poten-
tial on the ITO electrodes. The resulting polymer film was 
washed by DCM to remove unreacted monomers, and 
different scan rates in cyclic voltammetry were taken in 
monomer-free electrolytic solution.

2.6.  Spectroelectrochemical properties

For investigation of spectroelectrochemical properties of 
P(SNS-Fc) and copolymers, a silver wire used as the ref-
erence electrode, PT wire used as the counter electrode, 
and indiumtinoxide (ITO)-coated glass slide used as the 
working electrode in the cell.

Maximum wavelength (λmax) of copolymers prepared 
four different monomer feed ratio were measured in 
TBAFP 0.05 M/DCM solvent system at 1.5  V constant 
potentials. Copolymer composition was measured by 
observing λmax differences of copolymers obtained 
spectroelectrochemical studies. Monomer reactivity 
ratios and color change of the copolymers were deter-
mined. Eg values of P(SNS-Fc), copolymers and PEDOT 
were measured by absorption spectroscopy of the con-
jugated polymer films. Since the absorption spectrum 
reveal information on electronic transition, the onset of 
absorption is considered as the band gap of semiconduc-
tor or conjugated polymers. Eg can be calculated accord-
ing to the following equation Eg = 1240/(λonset) (eV) where 
the unit of λonset is nm.

for the conductive polymers are limited.[26] Among most 
important study is calculation of composition of soluble 
polythiphone copolymers that obtained via grignard 
methathesis polymerization reactions.[27,28]

However, estimation of copolymer composition and 
determination of monomer reactivity ratios are especially 
difficult for the insoluble conducting polymers.

In this research, we reported the synthesis of fer-
rocene-functionalized inorganic–organic conducting 
polymer (SNS-Fc) and its copolymer with EDOT via poten-
tiodynamic and constant potential electrolysis techniques. 
Spectral and electrochemical properties of the copolymers 
prepared by different applied potentials and different 
monomer feed ratio were investigated. For the first time, 
copolymer composition and the monomer reactivity ratios 
were approximately calculated by using the spectral data 
in conducting polymers. Therefore, this study is novel and 
significant for determination of copolymer reactivity ratios 
in the conducting polymers.

2.  Experimental

2.1.  Materials

Thiophene, dichloromethane (DCM), and Aluminum 
chloride were purchased from Merck. Acetonitrile, tolu-
ene, succinyl chloride, hydrochloric acid, sodium bicar-
bonate, ethanol, p-phenylene diamine, propionic acid, 
tetrabutylammonium hexafluorophosphat (TBAFP), and 
3,4-Ethylenedioxythiophene (EDOT) were bought from 
Sigma Aldrich.

2.2.  Instrumentation

The three electrode system connected to Iviumstat 
Electrochemical Potentiostat – Galvanostat Device 
(Netherlands) was used for chronocoulometry and cyclic 
voltammetry (CV) studies. For spectroelectrochemistry 
studies, we used Agilent 8453 UV-visible spectrometer 
coupled with Gamry Reference 600 potentiostat. An NMR 
spectrum of monomer was recorded by Bruker Ultra Shield 
Plus 400 MHz NMR spectrophotometer.

2.3.  Synthesis 4-(2,5-di (thiophen-2-yl)-1H-pyrrol-1-
yl)amido ferrocenyldithiophosphonate

The monomer SNS-Fc was synthesized by similar method 
in the literature.[13] [FcP(=S)(µ-S)]2 (0.21  g, 0.39  mmol) 
and 4-(2,5-di (thiophen-2-yl)-1H-pyrrol-1yl) aniline (0.25 g, 
0.78  mmol) dissolved in toluene (25  mL) and refluxed. 
The reaction mixture was filtered and the solution was 
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3.  Result and discussion

3.1.  Copolymerization

The redox behaviors of SNS-Fc, EDOT and SNS-Fc-co-EDOT 
were investigated in an electrolyte solution containing 0.05 
M TBAFP/DCM electrolyte/solvent couple with 250 mV/s 
scan rate by cyclic voltammetry. Firstly, homopolymer 

(P(SNS-Fc)) and PEDOT were synthesized potentiody-
namically via potential swept between −0.5/1.5  V and 
−1.5/1.5 V, respectively (Scheme 1). There is an increase 
in the intensity of the current as the number of cycles for 
P(SNS-Fc) (Figure 1(a)). EDOT was polymerized by cyclic 
voltammetry between −1.5 and 1.0  V. EDOT polymeri-
zation was preceded successfully after each cycle. The 

Figure 1.  (a) P(SNS-Fc), (b) P(EDOT) and (c) P(SNS-Fc-co-EDOT) Cyclic Voltammetry Graphs in 0.05 M TBAFP/DCM electrolyte/solvent 
couple with 250 mV/s scan rate.

Figure 2. (a) Cyclic voltammetry of P(SNS-Fc-co-EDOT), (b) peak current vs. scan rate for P(SNS-Fc-co-EDOT).

Figure 3. Optoelectrochemical spectra of (a) P(SNS-Fc) and (b) PEDOT.

Table 1. Eg, λmax, f1 and F1 values of different monomer feed ratios and Fineman–Ross values for copolymerization at 1.5 V constant 
potential.

Polymer Monomer feed ratio f1 F1 λmax (nm) Eg (eV) f
2

i
/F1

f1(1 − F1)/F1

P(SNS-Fc) 1:0 1.00 1.00 435 2.31 – –
Copolymer A 4:1 0.80 0.98 437 2.18 0.65 0.016
Copolymer B 3:2 0.60 0.88 454 2.00 0.41 0.081
Copolymer C 2:3 0.40 0.60 503 1.71 0.27 0.26
Copolymer D 1:4 0.20 0.26 560 1.68 0.15 0.57
P(EDOT) 0:1 0 0 600 1.63 – –
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3.2.  Scan rate dependence of P(SNS-Fc-co-EDOT)

P(SNS-Fc-co-EDOT) film was characterized by peak cur-
rents versus scan rate dependence. Copolymer film was 
prepared by constant potential and investigated by CV 
at different scan rates in monomer-free electrolytic solu-
tion. Scan rate showed a linear dependence as anodic and 
cathodic peak currents as shown in (Figure 2). Linearty of 
the anodic and cathodic peak currents of the voltammetric 
response with scan rate indicated that both anodic and 
cathodic charge-transport processes within copolymer 
films are not diffusion-controlled.

appearance of reversible redox couples after first scan and 
an increase in the redox couple currents demonstrate the 
formation of a conjugated polymer on the electrode sur-
face. PEDOT showed one broad redox couple in a mono-
mer-free electrolyte solution (Figure 1(b)). The copolymer 
CV graph is different in terms of shape and potential values 
from EDOT and SNS-Fc. These results proved the copolym-
erization between SNS-Fc and EDOT (Figure 1(c)).

Figure 4. Optoelectrochemical spectra of copolymers synthesized (a) 4:1, (b) 3:2, (c) 2:3, (d) 1:4 SNS-Fc and EDOT momomer feed ratios.
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of the copolymers were between the range of PEDOT 
and the homopolymer. In addition, band gaps (Eg) of 
homopolymers and copolymers were calculated. These 
are all dependent on EDOT how to enter a polymer back-
bone structure, the conjugation of the polymer, and their 
effects on the polymer backbone. The band gap energies 
and absorption maxima of the copolymers were found 
to be different than the ones for PEDOT and P(SNS-Fc). 
In addition, the λmax values of the copolymers were red-
shifted compared to that of the homopolymer, which is 
due to increase in conjugation length and the influence of 
high electron density resulting from the incorporation of 
EDOT into SNS-Fc units. Therefore, as the amount of EDOT 
increases in the copolymer, the maximum wavelength of 
the π–π* transition increases and the electronic band gaps 
for these copolymers (measured as the onset of the π–π* 
transition) decrease (Table 1). The spectroelectrochemistry 

3.3.  Spectroelectrochemical calculation of 
reactivity ratios and copolymer composition

Spectroelectrochemical properties of P(SNS-Fc), PEDOT, 
and theirs copolymer films were investigated. The com-
positions of copolymer were determined by using max-
imum absorption wavelength values of homopolymer 
and copolymers. Maximum absorption wavelengths (λmax) 
of π-π* transitions for P(SNS-Fc) and PEDOT were found  
435 nm and 600 nm respectively, from optoelectrochem-
ical spectra of the polymers (Figure 3a and b). λmax values 
of copolymers were obtained between that of P(SNS-Fc) 
and PEDOT (Figure 3).

Concentration of the monomer solutions was pre-
pared according to determined monomer feed ratios. 
Table 1 shows the comparison of properties of PEDOT, 
homopolymer, and co-polymers. Maximum wavelengths 

Figure 7. Optoelectrochemical spectra of the copolymers synthesized by different applied potentials (a) 1.0 V, (b) 1.3 V, and (c) 1.5 V.

Table 2. Effect of applied potential on copolymerization.

Polymer λmax Eg (eV)
P(SNS-Fc) 435 2.31
Copolymer I (1.0 V) 425 2.26
Copolymer II (1.3 V) 440 2.10
Copolymer III (1.5 V) 560 1.68
P(EDOT) 600 1.63
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colors. Using a maximum wavelength of the π–π*, elec-
tronic transitions corresponding to Eg values (energy band 
gap) of the copolymers were found (Figure 5).

The product of the monomer reactivity ratios for a given 
binary copolymerization system is often used to show the 
sequencing in the resultant copolymerization type and 
copolymer composition.[29–31] In a monomer pair, the 
reactivity ratios of unity, a product of the reactivity ratios, 
and also approximation unity of the monomers are in the 
same manner incorporated into the growing chain. As a 
result, this copolymerization is said to be ideal (random). 
When the product of the reactivity ratios is disparate (i.e. 
r1 = r2 = 1), excessive alternating behavior occurs. If the value 
of reactivity ratio of one monomer thoroughly exceeds the 
other (i.e. r1 ≫ r2), the consecutive homopolymerization of 
one monomer is followed by homopolymerization of the 
second that consists of a blocky type copolymer.[32] In 
this work, copolymer compositional plots were obtained 
from the spectroelectrochemical experimental data. 
The correlation between the copolymer composition, F 
and the feed monomer molar ratio, f, is given in Table 1. 
In order to determine the reactivity ratio of SNS-Fc and 
EDOT, Fineman–Ross copolymerization equations was 
used.[33] In the Fineman–Ross method, the equation fi/Fi 
(1 − Fi) = r2 − r1 (f 2

i
/Fi) is used. The Fineman–Ross plot for 

the copolymerization of SNS-Fc with EDOT performed at 
1.5 V constant potential is depicted in Figure 5. A plot of 
f1(1 − F1)/F1 as ordinate and f 2

i
/F1 as absciss a is a straight 

line whose slope is rSNS-Fc and whose intercept is rEDOT. 
The monomer reactivity ratios were calculated to be; r1 
(SNS-Fc) = 1.03 and r2 (EDOT) = 0.61.

This result indicates that SNS-Fc shows higher activity as 
compared to EDOT and (SNS-Fc) enter copolymer structure 

results demonstrated that as the potential of the polym-
erization rises, the amount of PEDOT of the copolymer 
composition rises. As a result, considerable changes in the 
optical properties of copolymers were obtained. Figure 4 
shows spectroelectrochemical spectra of homopolymers 
and copolymers about different feed ratios and their redox 
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Switching time of P(SNS-Fc-co-EDOT) was found as 1.98 s 
at 560 nm and 2.22 at 1000 nm, respectively (Figure 8).

4.  Conclusion

In this study, ferrocene-functionalized conducting metal-
lopolymer was synthesized and its spectroelectrochemical 
properties were investigated. Copolymerization of SNS-Fc 
and EDOT has been studied by electrochemical methods. 
Due to the combined properties of monomers, there is an 
improvement in the electrochemical properties of the copol-
ymer with the incorporation of EDOT. Electropolymerization 
is controlled by applying potential values and monomer 
feed ratio. As applied copolymerization potentials were 
increased, maximum wavelengths of obtaining copoly-
mers were red shifted. This is due to increasing EDOT in the 
copolymer composition as applied potential increase and 
band gap (Eg) of the copolymer decreases. Electrochromic 
properties of homopolymers and copolymers were com-
paratively investigated. We also approximately calculated 
copolymer composition and the monomer reactivity ratios 
by using the spectral data. It was found that feed ratio of the 
SNS-Fc was decreasing, reactivity ratios is close to unity so it 
can be said to be ideal copolymerization. In higher feed ratio 
of SNS-Fc, reactivity ratio is greater than unity. This indicates 
that copolymer contains more SNS-Fc than EDOT.
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