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Abstract 

Since the bilevel formulation of the Continuous Network Design Problem (CNDP) has 

the characteristic of a non-convex optimization problem, heuristic methods are usually 

the preferred option for solving it. On the other hand, the computation time is crucial 

importance for solving the CNDP because the algorithms implemented on real sized 

networks require solving traffic assignment model many times, in which algorithms spend 

more time in comparison with the other parts of the solution process. Therefore, solving 

the CNDP with less number of traffic assignments can be assessed as one of the most 

important topics in the transportation field. Thus, the paper deals with analyzing the 

performance of recently developed heuristic methods in solving the CNDP. In this study, 

the capability of Harmony Search (HS), Artificial Bee Colony (ABC) and Differential 

Evolution (DE) algorithms for solving the CNDP is evaluated, and numerical calculations 

are performed on example test networks. The results obtained through the HS, ABC and 

DE algorithms on 18-link network are compared with those generated by two different 

heuristic methods, which are available in a previous study. Additionally, the performance 

of the proposed heuristics is compared on Sioux Falls city network with other major 

algorithms available in the literature. Numerical examples have clearly indicated that the 

DE shows good performance in comparison with the proposed algorithms in terms of both 

objective function value and required computational effort.  

 

Keywords: Differential evolution; harmony search; artificial bee colony; continuous 

network design problem. 

 

1. Introduction 

The Continuous Network Design Problem (CNDP) has been comprehensively studied 

in the literature for more than three decades. The CNDP deals with determining the 

optimal link capacity expansions by way of minimizing the network travel cost 

considering related budget. Since multiple objectives exist in the solution process of the 

CNDP, it can be formulated as bilevel programming model. It is clear that finding the 

global or near global optimum solution is a crucial importance in the CNDP because of 

the non-convex structure of the bilevel formulation. On the other hand, bilevel 

formulation of the CNDP is difficult to solve since the determining of the upper level 

objective function requires solving the lower level problem for each feasible set of upper 

level decision variables. In the CNDP, upper level objective function can be solved by 

minimizing the sum of network travel cost and investment cost of selected link capacity 

expansions. In the lower level, traffic assignment model is formulated, which can be static 

or dynamic. 

As for the evolution of solution methods to the CNDP, the first attempt to solve the 

CNDP has been performed by [1] using Hooke-Jeeves (HJ) and Powell’s method. In their 

study, the network design problem has been formulated as a nonlinear unconstrained 

optimization problem. In addition, the effect of type of investment function was also 

investigated. It has been found that the performance of two methods is approximately the 
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same for convex investment cost function whilst the HJ is better than the Powell’s method 

in the case of using concave investment function. A new formulation to solve the CNDP 

by expressing the traffic equilibrium problem with differential constraints has been 

presented by [2]. Equilibrium Decomposition Optimization (EDO) algorithm for solving 

the CNDP was proposed by [3]. Results showed that the EDO is more efficient than the 

HJ algorithm. The efficiency of the proposed approach relies on decomposition of the 

problem into a set of corresponding sub optimization problems. The other advantage of 

the EDO was reported that the computational cost of the proposed model does not depend 

on the number of links which are being considered for capacity expansion. Following the 

above mentioned studies, efficient heuristic methods for solving the CNDP have been 

developed by [4]. It has been reported that the proposed heuristic methods are robust and 

do not require initial lower and upper bounds on the decision variables. In addition, 

sensitivity-based heuristic algorithms were proposed for the CNDP in different studies [5-

8]. Furthermore, Simulated Annealing (SA) approach for solving the CNDP with 

variational inequality constraints was introduced by [9]. It has been found that the SA is 

more suitable for problems for which it is important to be found an exact global solution 

since the computational effort of the SA is intensive. Therefore, it was emphasized that its 

use by combining the projection method is preferable option for solving the CNDP. 

Unlike using classical lower level solution as in most studies, the Stochastic User 

Equilibrium (SUE) assignment procedure was embedded to the CNDP in [10]. In order to 

show the advantage for the use of SUE assignment, the generalized reduced gradient and 

sequential quadratic programming methods were combined with the SUE based on the 

logit model. The proposed solution procedure was tested on example test networks, and it 

has been found that the differentiable and tractable version of the CNDP could be created.  

In order to avoid the disadvantages for the use of bilevel formulation, the CNDP was 

formulated as a single level problem by [11]. In addition to this improvement, a 

complicated implicit constraint was included into single level formulation. It has been 

shown that the value and the derivative of this constraint can be easily obtained, and this 

novelty encourages the application of existing nonlinear programming algorithms for the 

CNDP. The gradient based methods to solve the CNDP have been proposed by [12] and 

they were tested on several test networks. It has been found that the presented methods 

are able to produce better results in terms of the robustness to the initial values in 

comparison with the other methods and they also have computational efficiency for 

solving equilibrium assignment problems. Following the study made by [12], a new 

approach considering both symmetric and asymmetric user equilibria was developed by 

[13] in order to solve the CNDP. The original bilevel model was converted into a single 

level formulation by means of adding some constraints to the lower level problem and a 

relaxation scheme was proposed to solve it. The proposed solution algorithm was tested 

on different test networks and promising results were obtained. The SA and Genetic 

Algorithm (GA) methods to solve the CNDP were introduced by [14]. They emphasized 

that quality of the results are dependent on the demand level. Addition, it has been 

reported that the results obtained by [14] are different from those produced by [15] where 

the bilevel model was linear. For large scale application in solving the CNDP, GA was 

used by [16] because of its simplicity. The CNDP was solved on a large sized network 

under various budget scenarios. Results showed GA’s ability to handle large network 

design problems. Afterwards, a mixed-integer linear program formulation was developed 

to determine the global optimal solution of the CNDP by [17]. Although the finding of the 

global optimum solution is guaranteed in the mentioned study, computational effort 

depends on the linearization of the link travel time function and partition scheme. To 

overcome the disadvantages of using the bilevel formulation in solving the CNDP, it was 

converted into a single level formulation and global optimization method was proposed 

for solving it by [18]. Recently, the CNDP has been solved using harmony search, cuckoo 

search and differential evolution based algorithms, respectively [19-21]. In addition, a 
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comprehensive review of urban transportation network design problems was presented by 

[22]. This study provides an extensive comparison of the results of solution methods in 

various kinds of network design problems.   

In the light of above mentioned literature, it is clear that most of the solution 

approaches developed up to now are based on the heuristic approaches, and ensure 

finding at least local optimal solutions. Although some exact algorithms for the CNDP are 

available in the literature, they may not be suitable especially for large scale networks. 

Therefore, a powerful algorithm, which is able to find better near global solutions to the 

CNDP and more suitable for large scale networks, is still needed. Additionally, it is also 

crucial to compare the efficiency of the recent heuristic methods, and to find the most 

efficient ones because the computation time for solving the CNDP is considerably large. 

Thus, this paper deals with comparing the performance of Harmony Search (HS), 

Artificial Bee Colony (ABC) and Differential Evolution (DE) for the CNDP. Although so 

far various types of population based heuristic algorithms were used in solving the CNDP, 

the performance of the HS, ABC and DE algorithms needs also to be investigated because 

of their ability to handle such complex problems. For this purpose, a bilevel model has 

been proposed, in which the lower level problem has been formulated as User 

Equilibrium (UE) traffic assignment model and Frank-Wolfe method [23] is used to solve 

it. 

This paper is organized as follows. In Section 2, problem formulation for the CNDP is 

given. In the next section, the HS, ABC and DE approaches and their solution procedures 

on the CNDP are presented. In Section 4, numerical applications are conducted on 

example test networks. Finally, concluding remarks are given. 

 

2. Problem Formulation 

In the CNDP, the optimal link capacity expansions are determined by minimizing the 

total network travel cost considering related budget. The CNDP can be formulated as 

follows: 

min ( ) ( ( , ) ( ))a a a a a a

a A

Z , t x y x g y


 
y

x y            (1) 

s.t. Aauy aa  ,0               (1a) 

where Z is the upper level objective function; x is the vector of UE link flows which can 

be derived from the lower level problem; at is the travel time on link Aa , and 

described as a function of link flow ax and capacity expansion ay ; ( )a ag y is the 

investment function of link Aa ; A  is the set of links in the network; au is the upper 

bound of capacity expansion of link Aa ;   the conversion factor from investment cost 

to travel times. Note that the Eq. (1a) ensures that the positive-valued investment cost of 

link Aa  will not exceed the related budget.  

In the CNDP models, the users’ route choice behavior is generally characterized by the 

UE assignment. The UE assignment problem can be described to find the link flows, x, 

which satisfies the user-equilibrium criterion when Origin-Destination (O-D) demands 

have been assigned. On the other hand, network-wide congestion may be increased by 

way of applying capacity expansions or adding of new links to the network when the 

response of road users to those applications is not considered. Therefore, prediction of 

traffic flows is crucial in solving the CNDP. The UE assignment problem can be 

formulated as follows: 
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where z is the lower level objective function; R  is the set of origins; S is the set of 

destinations; rsK  is the set of paths between O-D pair SsRrrs  , ; rs
kf is the flow 

on path k between O-D pair SsRrrs  , ; rsD  is the demand of O-D pair 

,rs r R s S   ;
rs

ka, is the variable of link/path incidence matrix. The expressions, 

which are given in Eqs. (2a)-(2c), represent definitional, conservation of the flow and 

non-negativity constraints. 

 

3. Heuristic Methods 
 
3.1. Harmony Search Algorithm 

The HS algorithm is a meta-heuristic method developed by [24] and based on the 

musical process of searching for a perfect state of harmony. During the recent years, the 

HS has been successfully applied to solve complex optimization problems. In the HS, four 

algorithm parameters are used to manage the solution process. The first one of them is 

Harmony Memory Size (HMS) which defines the number of existed solution vectors in 

the Harmony Memory (HM). The second one is Harmony Memory Considering Rate 

(HMCR) that defines the rate of selecting the values from the HM. The other one is Pitch 

Adjusting Rate (PAR) that sets the rate of adjustment for the pitch chosen from the HM 

and the last one is number of improvisations (NI) that defines the number of iterations 

[25]. The phases of the HS algorithm for solving the CNDP can be given as: 

 

Initialization: The HM is filled with randomly generated link capacity expansions as 

shown in Eq. (3). 
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where ya is capacity expansion on link Aa ; N is the number of candidate links for 

capacity expansion in a given road network. 

 

Improvisation: In this step, a new solution vector ),....,,( 21 Nyyyy  is created considering 

the HS operators which are the memory consideration, pitch adjustment and random 
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selection. In the memory consideration, the value of the first decision variable )( 1y  for the 

new solution vector is randomly selected from any value in the HM range ( HMS
1

1
1 yy  ). 

Values of the other decision variables ),....,( 2 Nyy  are selected in the same way. The value 

of (1-HMCR) represents the rate of selecting a value according to the upper and lower 

bounds of link capacity expansions as shown in Eq. (4). 
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After improvisation step, the pitch adjustment operator is applied to the new solution 

vector considering the parameter of PAR, which varies between 0-1 as follows: 

 


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
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PAR ofy probabilitwith 0,1rand

i

i
i

y

bwy
y        (5) 

The parameter of bw is defined to find possible neighborhood solutions. The pitch 

adjusting process is carried out only after a value has been chosen from the HM. The 

value (1-PAR) represents the rate of doing nothing. Using parameter values ranged 

between 0.70 and 0.95 for HMCR, 0.20 and 0.50 for PAR, and 10 and 50 for HMS was 

recommended by [26]. Hence, in this study, HMCR, PAR and HMS are selected for all 

experiments as 0.90, 0.40 and 10, respectively. 

 

Update: After determining the objective function values in HM using Eq. (1), the solution 

vector which gives the worst objective function value is removed from the HM. Finally, 

solution processes of the HS are repeated until a predetermined stopping criterion is met 

or maximum number of improvisations is reached. The steps of the HS on the CNDP are 

summarized as follows: 

Step 0:  Input the HS control parameters.  

Step 1: Generate the HM with capacity expansions ay  for each link Aa  by giving the 

upper and lower bounds.  

Step 2: A new vector is created by way of memory consideration, pitch adjustment and 

random selection.  

Step 3: Solve the UE assignment problem by using Frank-Wolfe method using populated 

capacity expansions in HM.  

Step 4: Find the value of the upper level objective functions in HM for resulting capacity 

expansions at Steps 1-2 and the equilibrium link flows obtained from Step 3. 

Step 5:  The new solution vector is compared with the vector giving the worst objective 

function value.  

Step 6: Check the termination criterion. If the relative error between the average and best 

objective function values in HM is less than a predetermined value, the algorithm is 

terminated. Else go to Step 7. 

Step 7:  Terminate the algorithm if maximal number of improvisations is reached. Else go 

to Step 2.  

 

3.2. Artificial Bee Colony Algorithm 

The ABC algorithm is a population-based metaheuristic proposed by [27]. It is inspired 

by the foraging behavior of honeybee swarm. The foraging behaviors of honeybees have 

recently been one of the most interesting research areas in swarm intelligence. The 

foraging bees consist of three categories employed, onlookers and scouts. In the ABC, the 

position of a food source describes a possible solution to the given optimization problem 

while the nectar amount of a food source represents the quality of the solution [28]. To 
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adapt this concept to the CNDP, the ABC algorithm randomly creates link capacity 

expansions as number of SN, where SN denotes the number of solution vectors. Each 

initial solution vector, y, is N-dimensional vector where N is the number of links in a 

given road network. At the first step, employed bees share their information about nectar 

sources (i.e. the quality of objective function values) with onlooker bees waiting on the 

dance area. Onlooker bees are responsible for making decision about the choice of a food 

source. At the second step, an onlooker chooses a food source area depending on the 

nectar information. It is clear that the higher nectar amount of a food source increases the 

probability of choice of that food source. The new food source is determined by the bees 

by way of visual comparison of positions of food sources. At the last step, when a food 

source is abandoned by the bees, a new food source is randomly determined by a scout 

bee and is replaced with the abandoned one. Solution steps are repeated until a 

predetermined stopping criterion is met or maximum cycle number (MCN) is reached.  

In order to find a candidate food source, which denotes the new value of capacity 

expansion ay  on link Aa  for jth solution vector in memory, the following equation is 

used. 

)( k
i

j
i

j
i

j
i

j
i yyyv                    (6) 

where j
iv is the candidate food source,  SNj ,....,2,1 , which can replace the old one in the 

memory. 
j

i  is a random number generated within the range [-1,1] where  Ni ,....,2,1  

and the value of  SNk ,...,2,1  is randomly chosen index. Note that k must be different 

from j to avoid that old and new locations coincide, in order to find food sources having 

more nectar amount than the old one. The parameter j
i controls the production of 

neighbour food sources around j
iy , and represents the visual comparison of two food 

positions carried out by a bee. If a parameter value determined using Eq. (6) exceeds the 

constraint of the capacity expansions, the parameter is set to its upper or lower bounds 

depending on which constraint has been exceeded. After each candidate food source j
iv  is 

generated, its performance is compared with that of the old one in terms of the nectar 

amount (i.e. the quality of objective function values). If the new food source produces 

better nectar than the old source, it is replaced with the old one in the memory. Otherwise, 

the old one is saved in the memory. In other words, a greedy selection mechanism is 

carried out for selection between the old and the candidate location.  

For making decision about the choice of a food source, an onlooker bee decides taking 

the probability value, 
jp , for jth solution vector into account as follows: 

  





SN

m

m

j
j

Z

Z
p

1

                     (7) 

where Z is the value of upper level objective function on the CNDP. In this way, the 

employed bees exchange their information with the onlookers. In order to share the 

information of nectar amount of the food sources, the employed bees use a proportional 

selection method known as “roulette wheel selection” [29].  

As mentioned above, the food source abandoned by the bees is replaced with a new 

food source by the scouts at the third step of the cycle. This is simulated by generating a 

random location and replacing the abandoned one with it. If a location cannot be further 

improved in a predetermined number of cycles, then that food source is assumed to be 

abandoned. This operation can be performed using Eq. (8).  

   )(1,0rand minmaxmin
jjjj

i yyyy                 (8) 
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The value of predetermined number of cycles, called ‘‘limit”, is an important control 

parameter of the algorithm, and it can be determined as N*SN [28]. The steps of the ABC 

algorithm on the CNDP can be summarized as follows: 

Step 0: Input the ABC parameters.  

Step 1: Initialize the capacity expansion ay  for each link Aa  by giving the upper and 

lower bounds.  

Step 2: Generate new solutions for the employed bees by using Eq. (6).  

Step 3: Solve the UE assignment problem using capacity expansions obtained at Steps 1-

2.  

Step 4: Find the value of the upper level objective functions for resulting capacity 

expansions at Steps 1-2 and link flows in Step 3. Apply greedy selection process for the 

employed bees. 

Step 5: Calculate the probability values for the employed bees by using Eq. (7). 

Step 6: Generate new solutions for the onlookers from the solutions at Step 5 depending 

on probability values.  

Step 7: Solve the UE assignment problem using capacity expansions obtained at Step 6.  

Step 8: Find the value of the upper level objective functions for resulting capacity 

expansions at Step 6 and link flows at Step 7. Apply greedy selection process for the 

onlookers. 

Step 9: Determine the abandoned solution for the scout bee, if exists, and replace it with a 

new randomly produced solution by using Eq. (8). 

Step 9.1: Solve the UE traffic assignment problem using capacity expansions 

obtained at Step 9.  

Step 9.2: Find the value of the upper level objective functions for resulting capacity 

expansions at Step 9 and link flows at Step 9.1.  

Step 10: Memorize the best solution vector of capacity expansions achieved so far. 

Step 11: Check the termination criterion. If the relative error between the average and best 

objective function values in the memory is less than a predetermined value, the algorithm 

is terminated. Else go to Step 12. 

Step 12: Terminate the algorithm if maximum cycle number is reached. Else go to Step 2. 

 

3.3. Differential Evolution Algorithm 

The DE algorithm is a relatively simple, fast and powerful heuristic algorithm, which is 

proposed by [30] to solve complex optimization problems. In the DE, mutation, crossover 

and selection steps are used to control the solution process. In the mutation process, new 

solution vectors are generated by adding the weighted difference of two randomly chosen 

vectors to a third vector [31]. Then, crossover operator is applied to the mutant vector, 

and then a new solution vector is obtained. In the selection step, the objective function 

value of a newly created solution vector is compared with that produced by the parent 

vector. If the new solution vector generates better functional value than the parent, it is 

replaced with the parent vector. This process is applied to the all solution vectors in the 

population, and then a new population is created for the next generation. Three algorithm 

parameters are used to control the optimization process of the DE. The first parameter is 

the number of populations (NP) that represents the number of solution vectors used in the 

solution process. The mutation factor (F), which is the second parameter and 

recommended to set between 0.5-1 by [30]. The third one is the crossover rate (CR) that is 

the probability of mixing the variables of the mutant and target vectors. The 

recommended range of the crossover rate is [0.8, 1] by [30]. In this study, parameters F 

and CR are selected as 0.8 for all numerical applications. The solution procedure of the 

DE on the CNDP can be explained as below: 
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Initialization: At generation t, the initial solution vector,
t j

iy   y , where 

 Ni ,...,2,1 and  NPj ,...,2,1 , is filled with randomly generated capacity expansions 

for a set of selected links in a given road network by considering upper and lower bounds. 

Then their corresponding objective function values are calculated using Eq. (1). Note that 

N represents the number of links in road network. 

Mutation: The mutation is performed by adding the weighted difference vector between 

two solution vectors to a third vector. Combining three different randomly chosen 

solution vectors to create a mutant vector, 
t j

im   m , can be defined as given in Eq. (9). 

 )( ,3,2,1, t
i

t
i

t
i

tj
i yyFym                   (9) 

where t
iy ,1 , t

iy ,2  and t
iy ,3

 are randomly selected capacity expansions for jth solution vector 

within the range [0,NP] at generation t, and 
t

i

t

i

t

i yyy ,3,2,1  . 

Crossover: The search process of the DE is completed with the crossover operator. At this 

step, each member of the trial vector,
tj

ir
,

, is chosen from the mutant vector with the 

probability of CR or from the target vector with the probability of (1-CR) as given in Eq. 

(10). 

 
 
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or 0,1 rand if,

,

,
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i

rand
tj

itj
i

y

jjCRm
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As can be seen from Eq. (10), CR is compared with the output of a uniform random 

number generator,  0,1 rand , to determine either mutant vector or target vector will 

provide the member of the trial vector. If the random generated number within the range 

[0,1] is less than or equal to CR at generation t, the trial parameter is chosen from the 

mutant vector, 
tj ,

m ; otherwise the parameter is chosen from the target vector, 
tj ,

y . 

Additionally, the constraint, 
randj j , where randj is the uniformly distributed random 

number in the range [1,NP], ensures that at least one member of the trial vector is 

inherited from the mutant vector. 

Selection: At this step, the trial vector, 
t

r , is compared with the parent individual t
y  by 

way of determining the objective function values and the best one enters to the generation 

t+1. 





 



otherwise,

)()( if,1

t

ttt
t ff

y

yrr
y               (11) 

Termination: Mutation, crossover and selection steps of the DE are repeated until a 

predetermined stopping criterion is met or maximum number of generations is reached. 

The procedure of the DE algorithm on the CNDP can be summarized as: 

Step 0:  Input the DE parameters.  

Step 1: Initialize the capacity expansion ay  for each link Aa  by giving the upper and 

lower bounds.  

Step 2: Solve the UE assignment problem using capacity expansions generated at Step 1.  

Step 3: Find the value of the upper level objective functions using Eq. (1) for resulting 

capacity expansions at Step 1 and link flows at Step 2.  

Step 4: Find a mutant vector using Eq. (9) by considering capacity expansion ay  for each 

link Aa . 
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Step 5: Apply crossover operator to obtain the trial vector by using Eq. (10). 

Step 6: Solve the UE assignment problem using capacity expansions (trial vector) created 

at Step 5.  

Step 7: Find the value of the upper level objective functions using Eq. (1) for resulting 

capacity expansions at Step 5 and link flows at Step 6. 

Step 8: Apply selection process. In this step, trial vector is compared with the parent 

vector in terms of the objective function value obtained at Step 7. The best one enters the 

next generation. 

Step 9:  Check the termination criterion. If the relative error between the average and best 

objective function values in the memory is less than a predetermined value, the algorithm 

is terminated. Else go to Step 10. 

Step 10:  Terminate the algorithm if maximum number of generations is reached. Else go 

to Step 4.  

 

4. Numerical Applications 
 

4.1. 18-link Network 

Before applying the proposed heuristics to Sioux Falls city network, 18-link network is 

considered in order to show their ability in solving the CNDP. The chosen test network is 

adopted from [14] as shown in Figure 1. The travel demand for this network includes 

three cases and can be seen in Table 1. 

 

 

Figure 1. Test Network 

Table 1. Travel Demands 

Case q16 q61 Total demand 

1 5 10 15 

2 10 20 30 

3 15 25 40 

The link travel time function is defined as shown in Eq. (12) and its corresponding 

parameters for the 18-link network are taken from [14].  
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
                (12) 

where  , are the parameters and a  is the capacity of link Aa . The upper level 

objective function for the 18-link network is defined as: 

min ( ) ( ( , ) )a a a a a a

a A

Z , t x y x d y


 
y

x y             (13) 
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s.t. Aauy aa  ,0                (13a) 

where ad is the cost coefficient and au is upper bound for capacity expansion of link 

Aa , and is set to 20. The parameters used in the proposed methods are given in Table 

2.  

Table 2. Parameters for HS, ABC and DE on all Example Test Networks 

Parameters of HS Value 

HMCR 0.90 
PAR 0.40 

HMS 10 
Maximum number of improvisations 20000 

Parameters of ABC  

SN 10 
MCN 500 

Parameters of DE  

F 0.80 
CR 0.80 
NP 10 

Maximum number of generations  250 

Common parameters for HS, ABC and DE  

Stopping criterion 
310

best average

best

Z Z

Z




  

  

The HS, ABC and DE algorithms for finding optimal link capacity expansions are 

tested on 18-link network, where the upper level optimization problem is solved through 

the proposed heuristics, and UE traffic assignment is performed by way of the Frank-

Wolfe method at the lower-level. The comparison of computation times for the proposed 

heuristics is conducted in terms of the number of UE assignments (NUE) since the 

process of UE assignment is the most time consuming part of the algorithms. In order to 

demonstrate stochastic behavior of the proposed heuristics, they are run for 20 times. The 

average number of UE assignments and average objective function values are also 

reported. Results are compared with those produced by SA and GA algorithms taken from 

[14] on the same network, and they are given in Table 3. As it seen from Table 3, the link 

capacity expansions produced by the algorithms are different from each other although 

the resulting values of Z generated by some algorithms are very close. The reason is that 

each method leads to a different solution to the CNDP since it has multiple local optima 

due to the non-convexity of the bilevel formulation. Among the compared algorithms, the 

DE shows steady convergence towards the optimum or near optimum for all demand 

cases and achieved good solutions in terms of the objective function value and the number 

of UE assignments. For case 1, the convergence graph of the HS, ABC and DE algorithms 

can be seen on a logarithmic scaled x axis in Figure 2. 
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Figure 2. Convergence of the HS, ABC and DE for Case 1 

In case 1, the DE algorithm converges to the value of 189.40 after 1250 UE 

assignments while the ABC achieves almost same near optimal value. However, the ABC 

needs much more UE assignments than the DE in order to reach that near optimal value as 

shown in Figure 2. The DE initially starts with a randomly generated memory considering 

upper and lower bounds of capacity expansions and picked up the best Z which is about 

750. It easily locates the best Z after a few hundred UE
 
assignments and reached near 

optimal value after only 750 UE assignments. Additionally, the HS algorithm reached to 

the value of 190.61 after 13087 UE assignments while SA and GA produced the value of 

205.89 and 191.26 after 15000 and 50000 number of UE assignments, respectively [14]. 

In comparison with the results generated by the ABC and DE algorithms, it has been 

found that the HS, SA and GA are also capable of finding near optimal values of Z, but 

their computational effort are much more intensive. In case 2, the DE reached to the value 

of 487.80 after 2150 UE assignments as shown in Figure 3. Although the DE slightly 

outperformed than the ABC, the required number of UE assignments are nearly same for 

both algorithms. On the other hand, the HS reached to the value of 491.75 after 8185 UE 

assignments for case 2. 

Although the values of Z produced by the HS, ABC and DE algorithms are quite close 

for all demand cases, the HS required much more UE assignments than the ABC and DE 

in order to reach to the near optimal value of Z. In addition, as it can be seen in Table 3, it 

is remarkable that the results produced by the SA and GA are not as good as those 

generated by the other compared algorithms in terms of both objective function value and 

required number of UE assignments.  

To investigate the capability of the HS, ABC and DE algorithms in solving the CNDP 

under heavy demand condition, case 3 has been considered and the corresponding 

convergence histories of the proposed heuristics are given in Fig. 4.
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Table 3. Results of the Heuristics on 18-link Network 

 Case 1 Case 2 Case 3 

 HS ABC DE SA GA HS ABC DE SA GA  HS ABC DE SA GA 

y1 0 0 0 0 0 0.96 0.60 0 0 0  1.39 3.87 1.43 0 0 

y2 0 0 0 0.47 0 2.07 1.97 2.15 1.73 2.20  8.22 7.18 8.80 9.12 11.98 

y3 0 0.03 0 0.65 0 9.50 9.96 10.58 11.77 10.61  16.15 13.29 16.28 18.12 16.24 

y4 0.03 0 0 0 0 0.03 0 0 0 0  0 0 0 0 0 

y5 0 0 0 0 0 0 0 0 0 0  0.03 0 0 0 0 

y6 5.06 5.15 5.14 6.53 4.47 8.86 8.47 6.82 4.75 6.68  9.49 13.93 10.24 4.98 5.40 

y7 0 0 0 0.80 0 0 0 0 0.14 0  0.02 0.05 0 0.11 0 

y8 0 0 0 0.25 0 0 0 0 0.78 0  3.31 2.69 3.41 1.58 6.04 

y9 0.02 0 0 0 0 0 0 0.02 0 0  0.09 0 0 0 0 

y10 0.14 0 0 0 0 0.13 0 0 0 0  0.11 0 0 0 0 

y11 0 0 0 0 0 0 0 0 0 0  0.24 0 0.06 0 0 

y12 0 0 0 0 0 0.15 0.16 0 0 0  0.14 2.69 0 0 0 

y13 0 0.03 0 0 0 0 0 0 0 0  0.43 0 0 0 0 

y14 0 0 0 0.84 0 1.57 1.28 1.33 5.94 1.22  13.04 12.15 11.24 11.66 12.28 

y15 0 0.02 0 0.14 0 0.34 0.07 0.11 1.51 6.30  0.32 0.15 0 2.97 0.82 

y16 7.82 7.38 7.32 7.34 7.54 19.41 19.88 19.88 18.45 11.93  19.91 20.00 20.00 19.71 19.99 

y17 0 0 0 0 0 0 0 0 0 0  0.25 0.03 0 0 0 

y18 0 0.02 0 0 0 0.04 0 0 0 0  0.10 0 0 0 0 

Zbest
 

190.61 189.59 189.40 205.89 191.26 491.75 489.01 487.80 505.39 515.09  734.00 736.38 728.14 739.54 744.39 

Zaverage
 

191.11 190.78 190.56 NA
* 

NA 492.02 490.69 488.41 NA NA  735.15 737.41 729.47 NA NA 

NUEbest
 

13087 4305 1250 15000 50000 8185 2175 2150 42500 50000  4356 1620 1240 22500 50000 

NUEaverage
 

12910 4231 1020 NA NA 8090 2098 1810 NA NA  4216 1591 1120 NA NA 
*NA: not available.
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Figure 3. Convergence of the HS, ABC and DE for Case 2 
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Figure 4. Convergence of the HS, ABC and DE for Case 3 

The DE algorithm achieved good solution with less computational efforts especially 

with respect to the HS, SA and GA. The SA and GA need much more UE assignments, 

namely 22500 and 50000, than the other compared algorithms to reach to the near optimal 

value of Z. The DE reached to the value of 728.14 and 1240 UE assignments are needed 
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to reach to this value, as shown in Figure 4. The ABC is also capable of finding near 

optimal value of Z but it needs little more number of UE assignments in comparison with 

the DE. Although the HS slightly outperformed than the ABC in terms of the objective 

function value for case 3, it needs much more UE assignments with respect to the ABC. 

The numerical experiments performed on the 18-link network show that the DE is much 

more efficient and effective method than other compared algorithms in terms of the 

objective function value and required number of UE assignments in solving the CNDP for 

all demand levels. On the other hand, it may be emphasized that the ABC algorithm also 

achieves acceptable solutions although it requires more UE assignments in comparison 

with the DE in all cases for the test network. 

 

4.2. Sioux Falls city Network 

In order to compare the performance of the HS, ABC and DE algorithms on the 

realistic test network, the city of Sioux Falls is chosen since it is probably the most used 

test network for the CNDP. The other reason for choosing this network is that readers 

may have opportunity to compare performance of the proposed heuristics with other 

existing methods. The Sioux Falls network consists of 24 nodes and 76 links. The link 

parameters of the network and the travel demands between the 552 O-D pairs are adopted 

from [3]. The dashed links 16, 17, 19, 20, 25, 26, 29, 39, 48 and 74 of the network are 

candidates for capacity expansion as shown in Figure 5. The upper level objective 

function for the Sioux Falls network is formulated as in Eq. (14). The results of the 

proposed heuristics are compared with those produced by major algorithms available in 

literature. The compared algorithms are given in Table 4 and the corresponding results are 

tabulated in Table 5-6. For this example network, the computational performance of the 

algorithms is compared by considering the number of Frank-Wolfe iterations since the 

literature supports such evaluation for fair comparison [16].  

2min , ( ( , ) 0.001 )a a a a a a

a A

Z( ) t x y x d y


 
y

x y           (14) 

s.t. Aauy aa  ,0               (14a) 

Table 4. The Compared Algorithms on Sioux Falls Network 

Methods References 

Hooke-Jeeves algorithm (HJ) Abdulaal and LeBlanc [1] 

Equilibrium Decomposed Optimization (EDO) Suwansirikul et al. [3] 

Genetic Algorithm (GA) Mathew and Sarma [16] 

Simulated Annealing algorithm (SA) Friesz et al. [9] 

Augmented Lagrangian algorithm (AL) Meng et al. [11] 

Gradient Projection method (GP) Chiou [12] 

Conjugate Gradient projection method (CG) Chiou [12] 

Quasi-NEWton projection method (QNEW) Chiou [12] 

ParaTan version of gradient projection method (PT) Chiou [12] 

Harmony Search (HS) algorithm This paper 

Artificial Bee Colony (ABC) algorithm This paper 

Differential Evolution (DE) algorithm This paper 
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Figure 5. Sioux Falls Network 

Table 5. Comparison of Algorithms on Sioux Falls Network 

 HJ EDO SA AL GP CG 

Initial value of ya 1.0 12.5 6.25 12.5 12.5 12.5 

y16 3.8 4.59 5.38 5.5728 4.8693 4.7691 

y17 3.6 1.52 2.26 1.6343 4.8941 4.8605 

y19 3.8 5.45 5.50 5.6228 1.8694 3.0706 

y20 2.4 2.33 2.01 1.6443 1.5279 2.6836 

y25 2.8 1.27 2.64 3.1437 2.7168 2.8397 

y26 1.4 2.33 2.47 3.2837 2.7102 2.9754 

y29 3.2 0.41 4.54 7.6519 6.2455 5.6823 

y39 4.0 4.59 4.45 3.8035 5.0335 4.2726 

y48 4.0 2.71 4.21 7.3820 3.7597 4.4026 

y74 4.0 2.71 4.67 3.6935 3.5665 5.5183 

Zbest 81.77 83.47 80.87 81.75 82.71 82.53 

Zaverage - - - - - - 

 108 12 3900 2700 9 6 

Note: The upper bound for y was set to 25 except HJ.  denotes the number of Frank-Wolfe iterations 

performed. Zaverage was obtained for 20 runs in HS, ABC and DE. 
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Table 6. Comparison of Algorithms on Sioux Falls Network (continued) 

 QNEW PT GA HS ABC DE 

Initial value of ya 6.25 12.5 - - - - 

y16 4.9776 5.0237 5.17 5.8057 5.9129 5.1546 

y17 5.0287 5.2158 2.94 2.8516 1.9505 1.6531 

y19 1.9412 1.8298 4.72 4.4821 4.8668 5.8942 

y20 2.1617 1.5747 1.76 2.2265 1.7556 1.2921 

y25 2.6333 2.7947 2.39 4.5586 2.5498 2.5883 

y26 2.7923 2.6639 2.91 3.1673 2.9854 1.6994 

y29 5.7462 6.1879 2.92 3.1774 3.6906 3.3243 

y39 5.6519 4.9624 5.99 4.7492 3.7716 5.1140 

y48 4.5738 4.0674 3.63 2.6648 3.0216 3.2682 

y74 4.1747 3.9199 4.43 5.4052 4.9115 4.5044 

Zbest
 

83.08 82.53 81.74 81.80 81.78 81.60 

Zaverage
 

- - - 81.97 82.02 81.76 

 5 7 77 27 32 23 

Note: The upper bound for y was set to 25 except GA.  denotes the number of Frank-Wolfe iterations 

performed. Zaverage was obtained for 20 runs in HS, ABC and DE. 

 

From Tables 5-6, it can be observed that the DE algorithm produces the best solution in 

terms of objective function value among the compared algorithms except SA. Besides the 

results generated by the DE and SA algorithms are quite close, the DE needs much less 

computational efforts in solving the traffic assignment problem in comparison with the 

SA. In addition, the difference of the best and average objective function values obtained 

by the DE is not significant. This result shows that the DE is indeed a powerful method in 

solving the CNDP, as well as robust. Although the HS algorithm is not as good as the DE 

in solving the CNDP, it produced better results than many of the compared algorithms. 

The HJ, SA, AL and GA algorithms produce slightly better results than the HS in terms of 

the objective function value, but they need more computational efforts in solving the 

traffic assignment problem in comparison with the HS. The objective function value 

achieved by the ABC algorithm is quite close to that generated by the HS with almost the 

computational effort. In comparison with other algorithms, the ABC is able to produce 

good results in solving the CNDP and performs better than many of the other compared 

algorithms such as EDO, GP, CG, QNEW and PT in terms of the objective function 

value. 

 

5. Conclusions 

The CNDP can be described as one of the most difficult problems in transportation 

science because of its non-convex structure. The methods developed so far to solve the 

CNDP are generally based on the heuristic approaches. Therefore, it is crucial importance 

to seek for the most efficient ones between the available heuristic methods in the literature 

in solving the CNDP. In this paper, the HS, ABC and DE algorithms were employed to 

solve the CNDP which was modeled as a bilevel programming model. The upper level 

objective function has been solved by minimizing the sum of the network travel cost and 

total investment costs of link capacity expansions while the lower level problem was 

formulated as user equilibrium traffic assignment model. The Frank-Wolfe method was 

used to solve the traffic assignment problem at the lower level. Numerical comparisons 

were conducted on 18-link and Sioux Falls test networks. Results showed that the DE 

produced better solutions than those generated by other compared algorithms in all 

demand cases for 18-link network, as well as with less number of UE assignments. In 

particular, for case 3, which represents heavy demand condition, the DE algorithm 

achieved substantially better results in comparison with the HS, ABC, SA and GA. For 
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Sioux Falls network, the DE algorithm performed better than other compared algorithms 

in terms of objective function value except SA. Although the SA produced slightly better 

results, it needs much more computational effort in solving the traffic assignment 

problem. The HS and ABC methods are also able to produce good results in solving the 

CNDP. All these experiments may imply that the DE algorithm has the potential for large 

network applications for the CNDP due to its simplicity and robustness. 
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