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ABSTRACT 
 
 

In this study, elastic spring-mass pendulum oscillations are investigated. In order to solve a nonlinear differential 
equation system, Simulation Technique based on Modelica Language such as Dymola, SimulationX etc., is used. 
It's assumed that the spring coefficient in this system is linear and spring mass is neglected. Under these 
conditions, kinematic behavior of the pendulum was investigated. The governing equation of the system 
possessing two nonlinear differential equations which interacts each other are solved simultaneously. The 
obtained results are compared with previous works and seemed good agreements with others. 
 
Keywords : Elastic pendulum, Nonlinear oscillation, Simulation technique, Modelica, Dymola. 

 
 

SİMÜLASYON TEKNİĞİ İLE ELASTİK KÜTLE-YAY SALINIMINLARININ 
İNCELENMESİ 

 
 

ÖZET 
 
 

Bu çalışmada, elastik kütle-yay sarkaç salınımları incelenmiştir. Sistemin lineer olmayan diferansiyel 
denklemlerini çözmek için Dymola, SimulationX gibi Modelica dili tabanlı Simülasyon Tekniği kullanılmıştır. 
Sistemdeki yayın direngenliği lineer ve kütlesi ihmal edilmiştir. Bu şartlar altındaki sarkacın kinematik davranışı 
incelenmiştir. Sistemi ifade eden genel denklem iki tane lineer olmayan ve birbirini etkileyen diferansiyel 
denklemden oluşmaktadır. Bu denklemler Simülasyon Tekniği ile çözülmüştür. Elde edilen sonuçlar önceki 
çalışmalarla kıyaslanmış ve uyumlu olduğu görülmüştür. 
 
Anahtar Kelimeler : Elastik sarkaç, Lineer olmayan salınım, Simülasyon Tekniği, Modelica, Dymola. 
 
 

1. INTRODUCTION 
 
 
Earlier, Nayfeh obtained the solution of the 
pendulum oscillations analytically and numerically 
by using Perturbation Techniques (Nayfeh, 1987). 
Most of nonlinear differential equations can be 
solved by different numerical methods, such as 
Finite Element Method (FEM), Finite Difference 
Method (FDM), Variational Iteration Method 
(VIM), Homotopy Perturbation Method (HPM) and 
etc. Most of them use more girds to solve system 

numerically except Differential Quadrature Method 
(DQM). Liu and Wu (Liu and Wu, 2000) solved 
Duffing Equation by using DQM and used Frechet 
Derivative in order to make system linear. He (He, 
1999; 2003) was proposed VIM and HPM to solve 
nonlinear differential equation (NDE) numerically. 
In VIM, the problems are initially approximated 
with possible unknowns. Than a correction function 
is constructed by a general Lagrange multiplier, 
which can be identified via the variational theory. In 
contrast to the traditional perturbation method, HPM 
does not require a small parameter in an equation. 
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Author used a Duffing equation with high order of 
nonlinearity to illustrate it’s effectiveness. The 
differential quadrature method is extended to solve 
second-order initial value problems by Fung (Fung, 
2001). NDE systems, which interacts each other, are 
not able to be solved easily above methods. For this 
reason, new numerical techniques such as, Genetic 
Algorithms (GAs), Artificial Neural Network 
(ANN), Fuzzy Logic (FL) etc. have been used 
recently.  ST is another alternative method in order 
to solve NDE. Although the problem construction is 
very easy, results are more correct when compared 
with others (Georgiou, 1999). Elastic pendulum 
oscillation behaviors were also investigated by 
Chang and Lee, who applied GAs to investigate 
double pendulum oscillations (Chang and Lee, 
2004). Girgin imposed Combining Method to study 
nonlinear pendulum oscillations (Girgin, 2008). 
Later, Lynch investigated three dimensional motion 
of the elastic pendulum assuming that amplitude is 
small (Lynch, 2002). Lynch and Hougton 

investigated three dimensional motion of the elastic 
pendulum in the case of resonance and derived 
suitable initial conditions using envelope dynamics 
(Lynch and Hougton, 2004). In addition to, 
Vetyukov et al. derived the non-linear equation of  
motion of the 2D floating rectangular frame and the 
deformation was interpolated by means of 
polynomial shape functions (Vetyukov et al., 2004). 

 
 

2. GOVERNING EQUATIONS OF THE 
SYSTEM 

 
 

Governing equation of the elastic pendulum is 
obtained by writing, equilibrium equation of the 
pendulum shown in Figure 1 at position 2. Coriolis 
acceleration is added to the system because 
pendulum mass is connected to spring instead of 
cord which causes to coriolis acceleration.  
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Figure 1. Force equilibrium of the elastic pendulum oscillating about point A. 
 
 
Writing Newton’s principle in r and  direction give 
us the governing equations; 
 

   
22

2

d r d kL r r g 1 cos
dt mdt
       

 
 (1) 

 

2

2

d dr2d gsindt dt
L r L rdt


 
  

 
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where; 
 

0L L   : static stable length of the spring with 
pendulum. 

0L  : free spring length. 
 : deflection because of mass. 
 
Equation (1) and (2) have two variables (r and ) 
and calculated from Figure 1.  
 



Investigation of Elastic Pendulum Oscillations by Simulation Technique, Z. Girgin, E. Demir 
 

Mühendislik Bilimleri Dergisi  2009  15 (1) 81-86 83 Journal of Engineering Sciences 2009  15 (1) 81-86    
 

The system is conservative because there is no 
damping. Therefore total energy (kinetic energy and 
potential energy) of the system is always constant 
and time invariant (holonomic). Equation (3) and (4) 
depict total energy of the pendulum at position 1 and 
2 as shown in Figure 1. 
 

   
2

21
1 1 0 1

dr1 1E m k r mg L r
2 dt 2

        
 

 (3) 

 

     2
2 2 0 2

1E k r mg L r cos
2

         (4) 

where iE  denotes total energy at position i.  
 
In order to investigate behaviors of the elastic 
pendulum, some parameters must be given. For this 
reason, natural frequency of spring and natural 
frequency of pendulum are given in Equation (5) 
respectively. 
 

2 2
s p

k gve
m L

     (5) 

 
Furthermore, dimensionless parameter   is given 
by, 
 

p

s


 


 (6) 

 
Spring constant (k) and the free length of the spring 
 0L  values are calculated by, 
 

0
0

L mg1 , L L , k
L

      


 (7) 

 
 

3. NORMALIZED SOLUTION 
 
 

Results are given in normalized form; hence they 
can be compared with other works. Following 
transformations are used for normalization in 
Equation (1) and (2). 
 

pr R L ve t       (8) 
 
where R and   are normalized position and time 
parameters. p  is given Equation (5). 
 
When the above transformations are applied, 
following equations are obtained in dimensionless 
form. 

   
22

2 2

d R d 11 R R 1 cos 0
dd
          

 (9) 

 

2
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d dR2d sind d 0
1 R 1 Rd


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Equation (9) and (10) were solved simultaneously in 
Dymola and their simulation scheme is depicted in 
Figure 2. 
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Figure 2. Dimensionless simulation scheme of R and 

  given in Equation (9) and (10). 
 
For stable oscillations, the suitable value of R, 
depends on initial   angle, is obtained with 
simulation by making feedback. Stable and instable 
oscillations are given in Figure 3 with continuous 
and dashed lines respectively. 
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Figure 3. Stable and instable oscillation paths. 
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Initial angles  0  are taken from o10 to o180  by 

taking o10  step size. Initial angular velocity  d 0
d



 

and relative velocity  dR 0
d

 are taken 0 and 

corresponding initial relative position  R 0  values 

depend on initial angle  0  are taken from      
Table 1. 
 

Table 1. Computed initial radial position  R 0  

values depend on initial angle  0  for 
dimensionless stable oscillations for 0,1  . 

 

 0  R (0)   0  R (0) 

10 -0,000161  110 -0,013684 
20 -0,000639  120 -0,015220 
30 -0,001418  130 -0,016601 
40 -0,002468  140 -0,017785 
50 -0,003755  150 -0,018740 
60 -0,005229  160 -0,019428 
70 -0,006851  170 -0,019856 
80 -0,008559  180 -0,020000 
90 -0,010299  190 -0,019856 
100 -0,012030  200 -0,019428 
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Figure 4. Dimensionless linear velocity diagram 
versus linear position (R) for 0,1   (present work). 
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Figure 5. Dimensionless linear velocity diagram 
versus linear position (R) for 0,1              

(Georgiou’s work) . 

-3 -2 -1 0 1 2 3

-2

-1

0

1

2

3

4



R

 
 
Figure 6. Dimensionless linear position (R) diagram 

versus angular position () for 0,1  . 
 
This present work shown in Figure 4 was compared 
with (Georgiou, 1999) shown in Figure 5 and good 
agreement was seemed. 
  
As shown in Figure 4, one can realize that although 
it is symmetric about R axis, it is asymmetric about 
R axis. The shape changes from circle to the one 
sided stretched ellipse like a balloon. Similarly, in 
Figure 6 is symmetric about R  axis and it is 
asymmetric about   axis. In contrast with Figure 7 
and 8 are symmetric in all axes.  
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Figure 7. Dimensionless angular velocity diagram 
versus angular position () for 0,1  . 
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Figure 8. Dimensionless linear velocity diagram 
versus angular velocity for 0,1  . 
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It’s note that pendulum oscillation  ,   . If  
  values exceed this interval, these figures changes 
rapidly because pendulum is rotating about A in 
Figure 1 instead of oscillations.  

 
 

4. EFFECT OF   ON THE 
PENDULUM OSCILLATION 

 
Oscillation paths in x-y plane are shown in Figures 
9,10 and 11 for 0.1  , 0.3   and 0.4   values 
respectively. Although Figure 9 shows smoothness, 
Figure 11 shows different behavior oscillations for 
  o0 150   because of weak stiffness of the spring. 

This stage can be investigated later for scientists. 
 
Initial angles  0  are taken o50 - o90 - o110 - o150 -

o170 . 
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Figure 9. x-y position of the elastic pendulum in 
Cartesian coordinate system for 0,1  . 
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Figure 10. x-y position of the elastic pendulum in 
Cartesian coordinate system for 0,3  . 
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Figure 11. x-y position of the elastic pendulum in 
Cartesian coordinate system for 0, 4  . 

 
 

5. CONCLUSION 
 
 

In this paper, ST is used to analyze the elastic 
pendulum motion. It can be clearly seen that initial 
value NDEs can be easily solved by ST and the 
more  values cause to instability in the system. 
Advantages of ST can be arranged as follows: 
 

1. Problem construction is easy. 
2. Results are correct. 
3. There is no analytical procedure for a new 

problem construction. 
 

Disadvantage: 
 

1. It is suitable for only initial value problems. 
 
From now one, it can be extended to two and three 
dimensional problems for scientists. Also it gives a 
new technique to solve NDE systems and opens a 
new area for pendulum oscillations. 
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