
 

P A M  
P A M U K K A L E   U N I V E R S I T Y   E N G I N E E R I N G  C O L L E G E 

 
J O U R N A L   O F   E N G I N E E R I N G   S C I E N C E S  

YIL  
CÝLT  
SAYI 
SAYFA  

: 2002 
: 8 
: 2 
: 211-217 

 

211 

 
ACOUSTIC WAVE MODELLING USING TWO DIFFERENT 

NUMERICAL METHODS 
 
 

Murat Sarý*, Ýsmail  Demir** 

*Pamukkale University, Faculty of Art and Science, Division of Mathematics, Kýnýklý/Denizli 
**Çanakkale Onsekizmart University, Faculty of Art and Science, Divisi  

 
 

Geliº Tarihi : 02.04.2002 
 
 

This paper analyses various 2D acoustic wave propagation problems in the time domain BEM through 
geophysical environments. To this end the existing BEM code for the boundary nodes is expanded to optional 
internal nodes. Using appropriate and predominant temporal variations for the field quantities the time-related 
kernels are obtained explicitly. The BEM and FDM solutions presented are generated using synthetic 
seismograms and are seen to be stable. The qualitative agreement between the two methods is excellent. 
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ÝKÝ FARKLI NÜMERÝK METOT KULLANARAK AKUSTÝK DALGA MODELLEMESÝ 
 
 

Bu makale, jeofiziksel ortamlardan geçen çeþitli iki boyutlu akustik dalga yayýlýmý problemlerini zaman-domain 
SEM yardýmýyla analiz eder. Bu, sýnýr noktalarý için mevcut olan SEM programlarýn
için geniþletilmesi ile baþarýlýr. Alan deðiþkenleri için uygun ve sýklýkla kullanýlan temporal deðiþimlerin 
benimsenmesi ile zamana baðlý kernellar açýk olarak elde edilir. Sunulan SEM ve SFM sonuçlarý sentetik 

 kullanýlmasýyla genelleþtirilir ve bu sonuçlarýn kararlý olduðu görülür. Ýki metot sonuçlarý 
arasýndaki niteliksel uyum mükemmeldir. 
 
Anahtar Kelimeler :  
 
 

1. INTRODUCTION 
 
Due to difficulties of obtaining an analytic solution 
to a dynamic problem, and because of advances in 
computer technology, numerical methods have 
become more and more popular over the last three 
decades. The finite element method (FEM) is 
probably the most popular and well studied to solve 
dynamic problems see for example                  
(Zienkiewicz, 1977). However the FEM, like the 
finite difference method (FDM), requires full-
discretization of the domain and in case of an 
infinite or semi-infinite domain a complete 
discretization is not practical. Another numerical 
technique called the boundary element method 
(BEM) only requires the discretization of the 
boundaries. Since the BEM has natural advantage 
over the domain approaches, the BEM has been used 
over the last three decades to tackle many different 
problems in various disciplines (Brebbia and 

Dominguez, 1992; Beskos, 1997). In this paper the 
BEM is used to ascertain the behaviour of acoustic 
waves governed by the scalar wave equation through 
single-layered bounded and unbounded media. 
 
The general time domain BEM formulation for the 
scalar wave equation was established by             
Mansur (1983). Since then many BEM formulations 
have been employed to analyse various problems in 
the time domain for example (Israil and Banerjee, 
1990; Wang and Takemiya, 1992;                     
Carrer and Mansur, 1994). 
 
Accuracy and numerical stability of the BEM 
solutions was discussed in (Sarý, 2000;                    
Meijs et al., 1989). So far in the BEM community, 
attentions were usually paid to singular integrals, 
variation of the field variables, use of time or 
frequency methods and lately stability of the BEMs. 
The minuses and pluses of the earlier works were 
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examined by Birgisson and Crouch, (1998) in the 
context of the 2D-elastodynamic problems.  
 
This work applies the best and commonest         
(Gallego and Dominguez, 1996; Richter, 1997; 
Bonnet, 1998) scheme, that is constant and linear 
time variations for the flux and potential, 
respectively. For the space approximation of the 
field variables constant elements are used. 
 
Physically, the paper focuses on the determination of 
the wave behaviour in homogeneous media of finite 
and infinite extent. Despite increased volume of 
research devoted to the analysis of wave propagation 
problems, most authors use the FDM to do their 
investigation. However, there is some literature that 
uses the BEM. Some of the few examples are 
(Ahmad and Banerjee, 1988; Cheung et al., 1993). 
Note that their investigations are not in the time 
domain. 
 
Consideration of the wave propagation problems in 
the BEM is a deep problem due to its structural 
complexity. The equation is solved for geophysical 
structures of finite and infinite extent. Synthetic 
seismograms generated from the solutions are 
presented. The sensitivity of the solutions to varying 
time steps is reported in Sari (2000). To solve our 
problem, a main program of Dominguez (1993) is 
expanded to internal potential variables. The present 
analysis shows that the BEM is capable of treating 
large-sized problems. A number of examples are 
presented and comparisons with the FDM results are 
also made. The FDM formulation can be found in 
(Demir, 1999). 

 
 

2. THE INTEGRAL EQUATION 
 
The 2D governing wave equation corresponding to a 
homogeneous isotropic elastic body Ω  enclosed by 
the boundary B  is given by Morse and Feshbach, 
(1953), as follows: 
 

φ=+φ &&fc ii
2

,                                                       (1) 
 
In this equation φ, f and φ&&  are functions of position 
and time, and represent potential, body source and 
acceleration respectively, whilst c is the wave speed. 
In the above ii,φ  and φ&&  are the second derivatives of 

the potential φ  with respect to the direction ix  and 
the time t, respectively. 
 
For all points x of the boundary B  with time t∈�, 
the boundary conditions may be specified 

conveniently using the two known functions ),( txφ , 

),( txq  defined by: 
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with BB ⊆∈ 1x . Here, n is the outward unit 

normal vector at the position vector x, 1B  and 2B  

are parts of boundary 21 BBB +=  and where 

=∩ 21 BB ∅. Considering the domain Ω  bounded 
by its boundary B; the fundamental solutions and the 
actual states of the governing differential equation 
(1) can be combined through the use of the 
dynamical reciprocity theorem, to give the following 
time-domain potential boundary integral equation, 
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Where τ−= tt* . Equation (4) expresses the scalar 
potential field at any point of a medium as a function 
the field quantities on the boundary. Here iα  
depends only upon the local geometry of the body at 
the load point iy . In equation (4), zero body source 
and zero initial conditions are assumed. Also in the 
equation: 
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Where r is the distance between the load point iy  

and the field point x. In the above φ  and sφ  
represent the actual and fundamental solution states 
of the scalar potential respectively, whilst H stands 
for the Heaviside function. As can be seen from the 
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fundamental solutions (5) and (6) the disturbance 
sent initially from the load point iy  is received at 

the field point x at time *ctr <  and decays as *t  
increases. Here the upper limit +t  is used to avoid 
ending the integration at the peak of the Dirac delta 
function (Morse and Feshbach, 1953). 
 
Since the radiation conditions (Eringen and ªuhubi, 
1975) are automatically satisfied, the boundary 
integral equation (4) is valid for unbounded media as 
well as bounded media. These conditions ensure the 
uniqueness of the BEM solution (Bonnet, 1998). It 
may, therefore, be seen that there is no need to 
discretize an external boundary when it is of infinite 
extent. This makes the BEM advantageous over the 
domain techniques. The 2D fundamental solutions 
satisfy the causality, reciprocity and time translation 
properties. 

 
 

3. NUMERICAL FORMULATION 
 
 

In this work, linear line elements are used to 
approximate the boundary. Temporal variation of the 
kernels of equation (4) is used to obtain a numerical 
solution of the partial differential equation. The 
evaluation of the kernels is discussed in Sari (2000). 
In the corresponding work, the potential and its 
normal derivative are interpolated by linear and 
constant approximations in time, respectively. The 
choice of the time functions is also discussed in the 
previously mentioned work as well as the research 
of (Gallego and Dominguez, 1996; Birgisson and 
Crouch, 1998;  Mansur et al. (1998). 
 
In this analysis time is divided into n equal 
intervals, tnt ∆= . The approximations of the field 
quantities are: 
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where )(τηm  and )(τµm  are temporal interpolation 

functions. Moreover mφ  and mq  indicate the 
potential and flux, respectively, at time tmt m ∆=  at 
point x. The time interpolation functions used by us 
explicitly are: 
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The discretized form of equation (4) is: 
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Where 
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Use of equations (9) and (11) gives the effect of the 
load at the field point x at time ntt = . The effect in 
a categorized form can be found in                   
(Dominguez, 1993;  Sari, 2000). Also consideration 
of the integral (12) by using (8) gives the flux kernel 
explicitly in those works.  
 
3. 1. Discretization 
 
The boundary is discretized into a number of 
elements. Over each element, the co-ordinates are 
expressed by means of their nodal values by using 
linear elements whilst the field variables are 
represented by constant elements. The nodal values 
of the field variables on the boundary are 
approximated using the spatial interpolation function 

jψ  for the node j so that (7) becomes: 
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Where mjφ  and mjq  denote the potential and its 
normal derivative at node j for  time tmt m ∆=  

whilst jψ  is the spatial interpolation function for the 

field variables. When the boundary nodal quantities 
are constant over the element in approximation (13) 

1j =ψ . Using the spatial variations for the boundary 

node iy  with a set of discrete elements jB , j = 1, 

2,…, N on the boundary B , equation (10) can be 
written as: 
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In equation (14) n shows the final time, tnt ∆= , 

whilst niφ  denotes the unknown potential at the load 

point iy , at time step n. 
 
3. 1. 1. Regular Integrals 
 
Here, the fundamental idea is to solve equation (4) 
numerically by discretizing boundary values 
spatially and temporally. The boundary B  of the 
domain is  discretized, as opposed to the domain 
techniques in which the domain is also discretized, 
to integrate spatially the kernels nmU  and nmQ  over 
the all boundary elements. The regular integrals are 
evaluated using a standard Gaussian quadrature. The 
integration to be evaluated is expressed by means of 
the homogeneous co-ordinate 11 ≤ζ≤−  along the 
elements. To evaluate the integrals the differential is 
expressed, in the 21xx -plane, as 
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where J  is the Jacobian of the transformation. With 
the spatial discretization equation (14) takes the 
following form for the two-dimensional wave 
problems, 
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The boundary is divided into N elements and the 
field variables are assumed to be constant over each 
element and equal to the value at the mid-element 
node. 
 
3. 1. 2. Improper Integrals 
 
A singularity exists if and only if the load and field 
points coincide at the first time step. In the case of 
singular integrations, which arise when the field 
point is on the element being integrated, the integrals 
are treated analytically. In that case, the fundamental 
flux solution is zero since 0nr =∂∂ / . The integral 
of the potential fundamental solution can be found in 
(Dominguez, 1993). 
 
After evaluation of the regular and singular 
integrals, for each element j, one can write, 
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With, 
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Taking all boundary elements, equation (17) can be 
rewritten in a more abbreviated form: 
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Where nmG  and nmH  are square matrices which are 
calculated by spatial integration for each element 
and mφ  and mq  are the column vectors of boundary 
nodal quantities.  
 
At time t, there are as many unknowns as the 
number of equations in the matrix equation (21). If 
the boundary quantities mφ  and mq  are known for 
the time m = 1, 2,…, n-1, then for each time step n, 
the solution can be found. The details of the solution 
procedure used here can be found in                  
(Dominguez, 1993; Sarý, 2000). 
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4. NUMERICAL RESULTS 
 

The examples presented below have been taken to 
demonstrate the usefulness of the boundary element 
implementation. To justify the BEM results, the 
FDM solutions of the problems were obtained. Also 
Reynolds (1978) used the FDM to obtain similar 
results. In the examples, the dynamical behaviour of 
the two-dimensional rock structures is examined. 
The boundary conditions are taken to be 
homogeneous and inhomogeneous for external and 
internal boundaries, respectively. 
 
Consider the acoustic problem of solving equation 
(1) for a medium of finite and infinite extent. The 
geometries of the problem are shown in Figures 1 
and 4, respectively. The wave speed for seawater is 
1500 m/s. As can be seen from Figure 1, the 
receivers are accommodated in a horizontal line at 
10 m below the top boundary. 
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Figure 1. Physical the geometry of the medium used 
to generate seismograms  
 
The seismograms correspond to the physical 
geometries of Figures 1 and 4 have time (in seconds) 
on the horizontal axis. All displacement values 
received at the selected receiver points are 
positioned on the vertical axis. The number of 
receivers used is 120. The distance between the 
adjacent receivers is equal. The vertical axis shows 
the length of the topside of the physical model in 
Figures 3 and 5, and its unit is meters (m). To obtain 
the synthetic seismograms the boundary elements 
used are uniform with 4 m element length and the 
total elapsed time is 1 s with 0.004 s the time 
increment. The source position is (180.445). In this 
work, the source is taken as an internal boundary, 
which is a small square. The Dirichlet boundary 
condition is prescribed for the sides of the small 
square with the length being 4 m. The Neumann 
boundary condition, 0n =∂φ∂ / , is specified for the 
topside. While the boundary quantities are defined 
using the Dirichlet boundary conditions for the other 
sides in Figure 2. 

The results obtained from the BEM are in very good 
qualitative agreement on comparison to those found 
using the FDM to simulate a medium of infinite 
extent on the sides. Sari (2000) dealt with the 
quantitative differences between the BEM results 
and the FDM results. As expected there is no 
reflection from the sides or bottom, when the sides 
and the bottom at infinity. 
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Figure 2. Definition of the boundary conditions of 
the problem 
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Figure 3. Synthetic seismograms generated from the 
BEM and FDM solutions of the 2D acoustic wave 
equation for a medium of finite extent (from left to 
right, respectively) 
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Figure 4 Physical model showing the medium of 
infinite extent used to generate the seismograms. 
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Figure 5 Synthetic seismograms generated from the 
BEM(*) and FDM solutions of the 2D acoustic wave 
equation for a medium of infinite extent (from left to 
right, respectively) 
 
(*) : The BEM results in Figure 5 submitted in a paper to an 

International Journal 
 

 
5. CONCLUSIONS AND FUTURE 

WORK 
 
 

In this paper the time-domain 2D BEM has been 
used for solving 2D transient acoustic wave 
propagation problems in bounded and unbounded 
geophysical structures. The results have been 
compared with the FDM solutions. Since the 
structure of the BEM is profoundly intricate, it is 
believed that the BEM results presented here are 
important. 
 
It is also concluded that to increase the numerical 
stability of the results for the time domain direct 
BEM, an increase in the number of elements is 
suggested. However it should not be forgotten that if 
the elements’ size is taken to be very small then the 
desired stability might not be obtained. An 
alternative way to increase the stability of the 
solution is to use high order spatial variation of the 
field variables.  
 
A possible improvement to this approach includes 
the coupling of the BEM with the FEM. This would 
retain the advantages of the BEM, but not require 
the fundamental solutions and evaluation of singular 
integrals. 
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