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ABSTRACT

Alpha (a) method is a novel method for step-index waveguides depending on normalized propagation constant.
In this work the electric fields in the active region and cladding layers (CLs) for a double symmetric step-index
waveguide are studied. Having obtained equivalent normalized frequency, equivalent normalized propagation
constant, equivalent barrier potential, equivalent abscissa and ordinate of the EEV and equivalent refractive
index of double symmetric step-index waveguide we have equivalent step index waveguide of double symmetric
step-index waveguide and found its some parameters are compared with the parameters of double symmetric
step-index waveguide

Keywords: Normalized frequency, Normalized propagation constant, Barrier potential, Energy eigenvalue

BIR IKILi ADIM KIRILMA IND/SLi DALGA KILAVUZUNDA TE MODU J/CIN ELEKTR/K ALAN
ANALIZI

OZET

Alfa metodu, ad:m kizIma indisli dalga kilavuzlar:nda normalize yay:im sabitine bagl: olan yeni bir hesaplama
metodudur. Bu ¢alzsmada bir ikili simetrik ad:m kezlma indisli dalga kilavuzu icin aktif ve gémlek bélgelerindeki
elektrik alanlar: incelenmistir. Zili simetrik ad:m kizzima indisli dalga kilavuzunun esdeger normalize frekansz,
esdeger normalize yay:im sabiti, esdeger ¢ukur potansiyeli, enerji 6zdegerinin esdeger apsis ve ordinat: ve
esdeger kirzlma indisi elde edilerek, ikili simetrik ad:m kizlma indisli dalga kilavuzunun egdeger adim kirzlma
indisli dalga kilavuzu elde edilmis ve bulunan baz: parametreleri ikili simetrik ad:im kizIma indisli dalga
kilavuzunun parametreleri ile karsilaszirlmesar.

Anahtar Kelimeler: Normalize frekans, Normalize yay:/rm sabiti, Cukur potansiyeli, Enerji zdegeri

1. INTRODUCTION fraction of aluminium being replaced by gallium in the
GaAs material. GaAs and AlAs semiconductors have
If thin layer of a narrower-band material, “region 117,  almost identical lattice constant [1]. Different values

which is called active region (AR), is sandwiched of refractive indices can be obtained by doping. It is
between two layers of a wider-band material, “regions  also noted that the refractive indices of materials are
I, 111", which are also called cladding layers (CLs), a  depend on the wavelength of the field. The usual
asymmetric single step-index waveguide (ASSIWG) relationship between the refractive indices in the three
is obtained, as depicted in Figure-1. Here, N, N _and  regions in the ASSIWG shown in Figure-1 is given by

n,, are refractive indices of the regions. The regions MyIny )y - If the refractive indices N, N, and N,

are formed dissimilar materials, such as p-GaAs (p- are taken as n;) nj =ny; then the wave guide is
type Gallium Arsenide) and n-AlGa;.As (n-type called symmetric single step-index waveguide
Aluminium Gallium Arsenide), with x being the (SSSIWG).

TEMiZ, UNAL, KARAKILING
9


mailto:mustafatemiz@yahoo.com
mailto:mustafatemiz@pau.edu.tr
mailto:mehmetunal@pau.edu.tr
mailto:okarakilinc@pau.edu.tr

A Novel Study of Electric Fields for TE Mode in a Double Step-index Waveguide

Additional semiconductor layer can be accommodated
in the AR in the ASSIWG in Figure-1. So, a double
active regions in the ASSIWG can be constructed at
the right and left hand sides of the region b as shown
in Figure-2, which can called a double asymmetric
step-index waveguide (DASIWG). Region b is second
cladding layer (SCL) of the first (F) ASSIWG
(FASSIWG) and first cladding layer (FCL) of second
(S) ASSIWG (SASSIWG) from the left side to the
right side. So, FASSIWG and SASSIWG give

FSSSIWG and SSSSIWG if n;,) n, =n;, in the
double symmetric step-index waveguide (DSSIWG).

My My Ny

/‘A

0

Active region

Figure 1. Regions of an asymmetric single step-index
waveguide (ASSIWG)
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Figure 2. Active regions at the right and left hand
sides of the region b in the DASIWG

The DASIWG has one-dimensional potential energy
V(x) [1, 2] in the conduction and valence band, as
shown in Figure-3. Active region of the DASIWG
consists of the active region 1 (AR™), which has

refractive index n"(l) , and the active region 2 (AR®),

which has refractive index n"(z) and nm(l) or

nl(z) (region b). Note that refractive index nm(l) for

FASSIWG must be equal to refractive index nl(z) for

the SASSIWG. If any electron or hole exists in the
DASIWG, whether thermally produced intrinsic or
extrinsic as the result of doping, it attempts to lower
their energy states. Solid circle and open circle in
Figure-3 represent electron and hole, respectively.
There is different barrier Potentials [3] in the structure
of DASIWG as V,, V,@.

V(X)
A
(2) (2) (2)
n= N>l Ny
€] o | w @)
n o n™y Le@y, N
AR® AR®
-a a b+a b+a+d b+a+2d
0 X
v, ®
Vo(l)
o
O

Figure 3. The one-dimensional potential energy V(x)
in the conduction and valence band for the DASIWG

In this manner the electronic structure can be
represented by the simple one-dimensional the
Schrodinger wave equation. It can be shown that the
solution of this equation is a plane electric field wave
described an electron (or hole). For each of the layers
I, I and I11, the wave equation of electric field [1] is
given by the scalar Hemholtz equation

[V2 +n%k, Je(x,y,z) = 0 (1)

in the Cartesian coordinate system. Here the electric
field is e(x,y,2) = E, (x,y)exp[j(cot—BZz)], where i

represents the 1, 11 or 11l layer [1]. That is, the field has
a time-harmonic dependence of the type e'. In the
harmonic variation Eq.(1) gives the following
equation

o*  o* 2 2 2
[a—2+y+ni XYk, —B; JEi(xy)=0 (2)
X
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which describes the field for each of the three layers
[3]. E;(x.y), nixy), ko and P, in Eq.(2) are
respectively transverse electric field phasor of the
mode in the i layer against axis z, index of refraction
in the i" region, free space wave number for free space
and phase constant of the electric field. TE mode for
electromagnetic field in the AR and CLs obeys the
same type of scalar wave equation. There is not more
detail analysis in terms of the electric field in the
DASIWG in the literature from point of view of the
alpha method [4]. Therefore, in this paper the
properties of the electric field in the DASIWG will be
studied.

2. ELECTRIC FIELD COMPONENTS INTE
MODE IN THE AR AND CLS

The DASIWG in Figure-2 includes two wells at the
right and left hand sides of the region b, each of these
wells have the widths of 2d and 2a, respectively. The
carriers are allowed to exist in a certain confined
(bound) states within the wells in the DASIWG and
are described by a wave function such as electric field
wave. The quantum states for carriers can be described
by solving the Schrodinger wave equation. The
electric field waves for the regions and the energy
eigenvalues (EEVs) in the AR® FSSIWG in
DASIWG in Figure-2 for the SSSIWG getting

n,) N, =ny, are[5,6,7] respectively

E.%—A Yexp |_0h(1) (X + a)JF(z,oa,t) 3)

yl

E ®_a0 cos((x,,(l)X—e(l)) F(z, »,1) (4)

yll

E yli Y= AIII exp l_ Oy v (X - a)J F(Z1 ®, t) (5)

F(z,0,1) =exp[j(ot-5,2)], ©)
232 2
hm
po_nrm n=1,2.3, ... 7
" 8m'a? )
eiu) _ Vou) _ Enu) @®
EQ=PE®, E"=""  i123.. @
8ma

where n, i, mx, V. ® and 7 represent mode number

of the field, quantum energy level in the well,
effective mass of carrier in the conduction or valance
band, barrier potential for AR® and the normalised
Planck constant as 7 =1.05459x10™* Js. Propagation
constants mentioned above in the fields for i=lI, I, I,
are defined by

@
2 n 2 2
a.“’=\/ﬁz“’ - ()2 =B, -k a0

@

a @) — ((L)n“ )2 —B )2

c
o _ w2 w?
(x‘u - kll _Bz (11)
0, =B Ly =B -k
c
m=2nC/k,C(l)=(xu(l)a, n(l)zou,m(l)a (12)
where ki(l), i=LILIT ny, ny and ny, represent the

wave number in the i layer of the FSSIWG of
DASIWG, the refractive indices of the regions I, 1l
and Il and c is the speed of the light [1]. We can
calculate wave vectors, propagation constants, phase
constant, effective indice, enery eigen value, barrier
potential, zeta, eta and amplitude of the active region
field for A =1.55x10° m, n,;=4.5, n,=4.7, 2a=6000
A° in the FSSSIWG, if we take

|(1/2):0c |(1/2)—0c|,”|(1/2) for the symmetric case

a I =

(See Table | and Figure-6). Because of (;(1)<1.57
there is not solutions for odd electric field [8].

So, the evanescent electric fields in Eqgs.(3) and (5) are
obtained varying exponentially according to x in the
CLs and the electric field in Eq.(4) travels in the z
direction inside the ARY of the FSSIWG for 6=2i 1t /2
or 8=i+1)xn/2, i=0, 1, 2, 3,..., cosinusoidally or
sinusoidally, respectively. Figures-4 and 5 show the
variations of the fields of the regions of the FSSSIWG
against the axis x.
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Figure 4. The variations cgf )the fields of the regions of
the FSSSIWG against the axis x: (a) for A =1.55x10°
m, 6,=0, n=ny==n,;; 3.5, n;=3.7, 2a=4000 A°, (b)
n=ny,=n,;;;=3.5, N;=3.7, 2a=1000 A°, (c) The figure
in only ARW at (b), (d) for A =1.55x10° m,
n=ny=n,=4.5, n,=4.7, 2a=6000 A°

Referring to Figure-3, in the x-V(x) coordinate system
the electric fields in the AR® and CLs of the
SASSIWG are given by

E,? =A Zexpla ,“[(x - (b +a)]} Fz,o1)

Yi

A, Pexpfa " Ix - (b + )]} Fz, o t)  (13)

Ey“(Z) :A(Z) Cos{a”(Z)[X—(b'i' a+ d)]_ez} F(Z, W, t)

(14)
E,” =A,"exp{-a,[x-(b+a+2d)]} Fz,o1)
(15)
232 2
/]
B v=1,2,3 ..., (16)
8md
) ) ) .
e =V -E, i=1,2,3, ... (17)
@] - @]
e, =je (18)
(2) 7127'52
. = (19)
8m'd
where
)
0 =B =y =Bk
2 ’ (Dn @ 2)2 ' 2 2
a‘u(): (T“)Z_Bz() = kII(Z) _BZ(Z) (21)
2 22 O)n @ 2)2 22
0, =B, —(=) =B."-k,”, (@

Here k.”, i=LILIIL v, jand V@ are respectively

the wave number in the i layer of the SSSIWG, mode
number, quantum energy level and barrier potential

for AR® in DASIWG. The figure of E , ® in Eq.(14)
for }\,21.55X10_6 m, n|=n|||==n|,|||=4.5, n,=4.76,
2d=5000 A° and 6, =0 is shown in Figure- 5. Because

of {® <1.57 there is not solutions for odd electric field

here also [8].
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Figure 5. The variations of the fields of the regions of
the SSSSIWG against the axis x variable
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We can also calculate wave numbers, propagation
constants, phase constants, effective indices, enery
eigen values, barrier potentials, zetas, etas and
amplitudes of the fields in AR® in the FSSSIWG and

AR® in the SSSSIWG for the DSSIWG in Figure-6
for A =1.55x10° m, n,,,=4.5, n,=4.7, 2a=6000 A° and
n.n=4.5, ny=4.76, 2a=5000 A° respectively.

Table 1. Wave vectors, Propagation constants, Phase constant, Equivalent indices, Enery eigen values, Barrier potantial,

Zetas, Etas and Amplitudes for A =1.55x10"° m, nm=4.5, ny=4.7, 2a=6000 A’ in the FSSSIWG and X =1.55x10° m,
nn=4.5, n,=4.76, 2a=5000 A’ in the SSSSIWG.

Quantity Symbol Value Symbol Value
Wave number kM(1/m) 1.824150573052138x10” | k@(1/m) 1.824150573052138x10’
Wave number kn(1/m) 1.905223931854455x10” | k,©(1/m) 1.929545939495150x10"
Wave number K™ (1/m) 1.824150573052138 x10” | k@ (1/m) 1.824150573052138x10’
" (] 6
Propagation constant o, (1/m) 4.485684534194733x10 a,? (1/m) 5.058758055697320x10
" (] 6
Propagation constant | ¢ ® (1/m) 3.180239927133927x10 o,? (U/m) | 3.737805356020452x10
Propagation constant | ¢ ® (1/m) 4.485684534194733x10° o, 2 (Um) 5.058758055697320x10°
Phase constant B ) wm) 1.878493803708062x107 | § @ (1/m) | 1.892996472217334x10"
m 4
YA
Effective index n @ 4.63405940362834 n,® 4.66983606003808
ef €
Phase velocity v (mfs) 6.473805660866337x10" | v@ (m/s) 6.424208390680713x10’
Enery eigen value E D uev) 0.92510857713645 E, @ (uev) | 1-33355981930746
Barrier potential Vo @ (peV) 1.02133197399615 v, @ (uev) | 1:33639068510496
Zeta C(l) 0.95407197814018 (@ 0.93445133900511
Eta @ 1.34570536025842 0@ 1.26468951392433
Impedance ZaP(Q) | 17.55528665775979 Z",0® (Q) | 17.28732711454359
Amplitude AW 1.493437127025004x10° | A® 1.626783325125536x10°
Maximum Intensity | SP(W/m?) 6.352372638104545x10° | S® (W/m?) | 7.654231245153252x10"
of Poynting vector
W, @ e et 13 |
Lo, +a, =k "~k " =3.0235291734450x10", I P oy
2 2 2 2 45 47 =
0% v, @ =k, @ —k @ =3.9562221945577x10%] N e
a a b+a b+a+2d
If b=0 then E =0, E,“ =0 and we get the electric v v,
field waves E,”, E,", E,” and E ,“for Figure-7
as
E,"=Aexp [a LS+ a)] F(z, 0,1) (23)

A =1.55x10° m,
=45, n,M=4.7, 2a=6000 A° in the FSSSIWG and

Figure 6. Energy-band diagram for

(N Oy nO®
Eyio =A70C08(ay X=07) Fz0,)  (24) 3’21 56¢10% m, n,,@=4.5, ny@=4.76, 2a=5000 A in the
SSSSIWG.
F(z, »,t) =exp[j(cot - Bzz)], (25)
E,.._ =A?,cos{a, “[x—(@+d)]-0,} F(z,0,1)
(26)

2 2 2

(27)
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n®= [n,® =476 | n?=45
45 47
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a a a+2d
Vo ® Vo
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Figure 7. Energy-band diagram for A =1.55x10° m,
n®=4.5, n,MY=4.7, 2a=6000 A° in the FSSSIWG and
A =1.55x10° m, n;@=4.5, n,®=4.76, 2a=5000 A° in
the SSSSIWG

3. CONTINUITY OF THE FIELDS
CONDITIONS

For continuity of the fields at the boundaries x = +a,

and x=b+a+d in Figure-3, the parameters can be
taken [6,7] as

@

a .
¢ :a,,(l)a:—\/Zm (Vo(l)—Erl )
/]
. (28)
* 1
=—4/2m ei()
/]
d .
C(z) _ OL“(Z)d :—\/Zm (VO(Z) 'EV(Z))
/]
(29)

d - ’
=—./2m ej
h

which are the optical phase changes across the widths
a and d of the AR™ and AR® in the DASIWG

respectively. The amplitudes [5,6,7] A/®, A®@,
An@® and Ay®@ can be found in terms of
o, a,”, 09 09 a d A® and B?. we

obtain A/ and A,® from boundary conditions for
Eq.(3), Eq.(4) and Eq.(13), Eq.(14) at x=-a and x=b+a
as

A" =Avcos (o,"a+0%)

= Acos ({» +0%) (30)

A
(31)

and Ay and By, boundary conditions for Eq.(4),
Eq.(5) and Eq.(11), Eq.(12) at x=a and x=b+a+2d

TEMiZ, UNAL,

A

o &
=A%cos (¢ —0,)

® = A%cos (a,"a-0,)
(32)

() )
A, =A%o0s (o, d-09)

—A® @ _ 6@ (33)
= cos ({9 —0).

If we take for even field [6,7]

0

12)

= mn/2 , m=0, 2, 4, 6,.., m=2i, i=0, 1, 2, 3,..,
(34)

where m is mode number, then the coefficients in
Egs.(3)-(5) and Egs.(13)-(15) become:
AL = AOCos(c @ + mmf2)
= AD%cos(¢ @ +im) = (-1)' A® cosg
€
= A® cost ® cos(ma/2 )

e
NS cosg @ cos(ir)

(2 @]
T =A%cos (a, d+0?)=A%cos ((?® +0?)

(35)

A =A®cos ((”+mn/2) =
H e
Accos({? .ir) = (-1)'A@ cos; @ (3p)
or
e e
A,(Z) = A® cos;Pcos(mn/2) =
A®" cost @cos(im) =(~1)' A? cost? (37)
A O pf W
W= cos(¢ ™ — mm/2)
_ A(l)eCOS(C o _ in) = (—1)iA(1)eCOSC @
= A®  costccos(mn /2) = A cost @ cos(in)
® e 1€
= A, =Ay :A|,|||() (38)
A% =A%cos((” — mn/2) (39)
— A(z)eCOS(C @ —ITE) — (_1)|A(Z)ECOSC (2)
A, = A(Z)ecosc @ cos(mn/2)
= A @ cost @ cos(in)
_ ®° (20 0
- A| = A||| = AI,III(Z) (40)
KARAKILING
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A" = AP cost @cos(mm2) = AP cost (2)cos(in)

(@) © (2)0 @°
AI =A, =

(41)
and by taking for odd field [6,7] 0,, = mn/2
m=1, 3, 5,..., or m=(2i+1), i=0, 1, 2, 3,...,

@
I

(42)

A = A(l)OCOS(C O+ mn/2)

= APCcos[c @ + 20 + )2

= A %sing Dsin[(2i +1)n/2] (43)

@

;= A(Z)OCOS(C @ +mn/2)

A
=B@ cos[C @ + (2i +1)n/2]

= A®@%sinC @sin[2i +1)n/2] (44)

®m°

u =AY cosc @ - mni2)

A
= AD%cos[c @ - (2i +1)n/2]

= ADsing Dsin[(2i +1)n/2]

= AD%sing Vsin[2i +1)n/2] = A,(l)O

@° @°

=A n =A L1 (45)
@

A, "= AP%0s @) -mn/2)

= A cos[c @ — (2i + )u/2]

= A®’sing @sinf2i +)m2]=A 7

@° —A @°

=A 11l 1,1 (46)

The coefficients [5,6] A®, A®¢ and A®° are
respectively given by

)
AD 20,
- ()] . ()] (1)
20, a+sin(2a, 'a)Cos20
(47)

B ZC(” /a
20" +sin2¢®Cos26™

Ao | 28002 e | 262
209 +sin2g® 20 —sin2¢®

(48)

The coefficients A?, A®¢ and A®° are also

respectively given by

@

A(Z) — 2all
(@) . (@) 2
2a, d +sin(20, " d)Cos20
(49)
B 20%/d
202 + sin2¢®Cos26®
V207 +sin2e® 2¢® —sin2¢®
(50)

We can calculate the ratio of the field amplitude A ®
in the AR® of FSSSIWG to the field amplitude A®
in the AR® of SSSSIWG for A =155x10° m,
n|=n|||=n|,|||=4.5, n||=4.7, 2a=6000 A0 and
n=ny=n,;;=4.5, n,=4.76, 2d=5000 A° respectively in
the DSSIWG as A ™ /A ® =0.91803075674491.

4. EFFECTIVE INDEX AND PHASE VELOCITY

Egs. (10)-(12) and Egs. (20)-(22) state a very
important point about each electric field in the regions
of the DSSSIWG, which have guided field
distributions. One expects a high peak transverse
electric field in the immediate vicinities of the AR®

and AR®. These properties are obtained for condition

112) 12) 12)
N (ng (N,
(1/2)

sides of the Egs.(39)-(41) real [1]. Here n_ =~ is

effective index of refraction and given by

nef(m) =B,/k,, which is also effective index of

(1/2)

which makes the right-hand

refraction. In the case of symmetry n stands for

12) (112) w2 12)
;o orn, ,(n, =n,, ) koand A

are the wave number of the free space and wavelength
of the interested in field. Here (1/2) means that

(1/2)—>(1) or (2) such as n “(n,“¢n" or

w2 _

n =ny,

@ @ @
M <nef <n|| and

n,” =B Ik, . Effective indices for inside the AR®
and AR® in FSSSIWG and SSSSIWG are respectively

n, " =4.63405940362834 and

@
ne =B,/K, or

n,” =4.66983606003808 which obey actually that
4.5( 4.63405940362834( 4.7 and
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4.5( 4.66983606003808( 4.76  respectively  for

n“(l) =4.7 and n“(Z) =4.76. Effective indices, phase

constants and the phase velocities of insides the AR®
and AR® can also be calculated [8] by the other

formulas ne=n,, /1—2A(1—a) . B, =Koner, and v=c/ne.

5. EVEN AND ODD FIELDS

If the phase angles of 6, and 6, in the electric fields

in Egs.(4) and (11) are taken as zero, then these
electric fields in the DASIWG become the least even
and odd mode. By ignoring F(z,o,t), we have the

least even mode (6, corresponds to m=0 and upper

latter (e) denotes even). When 6,=6,=0 occurs for

the even field, then we obtain
(xl(llz):am(l/z):(x',l”(l/z) for the symmetric case.

We have the even fields, ignoring F(z,o,1),

Eeyl @ _ Ael(l) exp [a n (6] (X + a)J (51)
Et, = A° cos(a, ") (52)
e ® _ ae O @

Eu ™ =Aw exp [_ o (X - a)J’ (53)
where A%®  and A® are given by
E(X)®=EmXx)® at X=-a and
E° (X) ® =E°,u (x) @ atx=aboundaries as

A% = A% = A% =A% cos W (54)

in the AR® and CLs for the FSSSIWG.

In the AR® and CLs for the SSSSIWG we obtain the
even fields as, ignoring F(z,®,t),

E%,” =A° Pexpla ,, “Ix - (b + )T}
(55)
E%n” = A% cos (o, P [x - (b+a+d)]}
(56)
Efun® = AuZexp{-a,, " [x - (b +a+2d)[}
(57)
where  A%? and A%, @Pare given by

E 9y| (X) @ = E ey" @ (X) and E ey" (X) @ = E ey||| 03] (X)
at x=b+a boundaries as

2 v 2
Ael =Ae||| =Ae|,|||()

e(2) e(2)
= A""cos (o, 7d) = A® cos ¢? (58)

in the AR® and CLs for the FSSSIWG.

6. CONTINUITY CONDITIONS ON THE EVEN
AND ODD FIELDS

If the phase angles of 6, and6, in the electric fields in
Eqgs.(4) and (13) are taken as w/2, then these electric
fields become the least odd mode (6, corresponds to
m=n/2 and upper latter (0) denotes odd). When
6,=6,=90° occurs for the odd fields, then you obtain

(x,(llz):(x“,(l/z):(x,’,“(m) for the symmetric case

also. Ignoring F(z,®,t) we have

Euyl(l) = Aul(l) exp |_0L“" Y (X + a)J

=A°"sinC © exp [a,(l) (X + a)J (59)
E%" =A™ sin (a,”x) (60)
E 0yul o= Au @ exp |__ Oy ® (X - a)J (61)

where A% @ and A%, @ are given by

E° (X)W =E°, (x) ® and
E (X) @ =E°u (x) ® atx=a boundaries as

. 1) .
A Z e, ® 2 a0, ® = Alsinga, Ya) = A*Psing®
(62)

in the AR® and CLs for the FSSSIWG

2 2 2

E%,? =A% P expla 1P 1x - (0 + a)}
(63)

E°® = A° @sin{o, “Ix—(b+a+d)}  (64)

E%n " =A% expf =0y “x-b+a+2d)}
(65)

o @ o @ .

where  A° and A%, are given by

E(¥)@=E" () @and E°y(x)®=E"yu (x)?

at x=a boundaries as

AU|(2) = Aum @ = AU|,|||(2) = A°(2)sin(a,,(2)a) = Ao(Z)SinC(z)
(66)
in the AR® and CLs for the DSSIWG.

When 6,=6,=0 occurs for the even field, then we

w) _

. W)
obtain o, = =

(1/2)
o, =a, forthe DASIWG. We
have following expressions, ignoring F(z,,t),
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E¢io™® = AP exp [a,," (x + a)J (67)
1 () 1
Eeyuo( Y =AY COS(Guo( )X) (68)
e e@
%o = A% ocos {a,, [x—(a+d)I} (69)

@ @ @

Eey|||0 = Ae|||0 EXp{—(XmO [X —(a+2d)]}

(70)
1

where the coefficients A%, ™ and A )o have

relations

A° |o(1) = Ae(l)o Cos §||o(1) (71)

A = A, —COS S (72)

cos C,,O

which are respectively found at the boundaries x=-a
and x=a+d of the equations Efyi0 ()W =E 0 (x) @

and E =E

yIIO yIIIO

When 6,=6,=90°" occurs for the odd fields, then you

1/2) w2 1/2)

obtain o, =a, =o., for the DASSIWG

also, ignoring F(z,®,t),

E%® = A% exp la,” (x + a)] (73)
® o ®
E'yio =A" osin(o, X) (74)
@ @ . @
E'io =A" osinfa,, [x-(a+d)]} (75)
E%mo = Ao exp{-o,, [X-(a+2d)}  (76)
Here the equations Eoym(l) = Eoy“o(l) and
Eoy“O(l): Eoy“O(Z) at the boundaries x=-a at x=a
and x=a+d give respectively the cofficients A%,
@
and A g
1 @ . 1
A% = A ging, O )
o® 0@ _ sin{,,@
A o=A" o= Sinc,l:,(z,(l) (78)

7. EQUIVALENCE OF DSSIWG AS A SSSIWG

Parametric coordinates { and n of the EEVs for
carriers such as electrons or holes in the normalized
coordinate system (-m, the normalized frequency

(NF) V and normalized propagation constant (NPC)
a [8-9] are important parameters in the DSSIWG.

The normalized frequencies (NFs) V& and V@

FSSSIWG and SSSSIWG of the DSSIWG can be
respectively defined [7] by

ve =2 omv© Zak,

~dk 0, o,

% " (79)

V@ = 2m V, (2)

mlm

@? @?
:kod N, =Ny

and equivalent normalized frequency for DSSIWG by

V:l (V(l) + V(Z) )
2

o
V———\IZmV 2mV
11 (1) @
=— V d? 82
h\/z( ) (82)

=12
[E Em*v(l) (2) ma e.+2md e.]
AT o ® 2
II

f @7
IIII I 1}

(83)

and equivalent barrier potential Referring to Egs.(28)
and (29) equivalent abscissa of the EEV is given by

(1)

c=——J2m v g, )+
1 =

——\/Zm V@ g, =2 Fme® +

n\2
d [1 « @
—.[—m e; 84
h‘/z i (84)
or
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1 _m'a? m°d?
C = \/E[ hz ei + hz ej] (85)
and equivalent ordinate
101 .02 1a> ..o d . 0o
W _ = 1,0 @P meE"~ .—mE.
n 2\/4[11 +n®] \/th ey ME)
(86)
or
2
n=yV-g =
* 2
al ~ @ d (2)2 md
\/[; -m'y, +—J ] —[ €]
2 h 7
(87)
2,2
V*h
Vo (88)
2m” (a+d)
and equivalent refractive index of the AR
V32 2
n, = 2 5 0 (89)
k, (a+d)

for the DSSIWG in Figure-7. Note that Note that
VO =v® gives v=Vv® o v=v? (¥ =(?
gives { =¢" or {=C® and n® =n® gives n=1"
or n=n®. For example, from Table 1 for abscissas,
ordinates we can obtain the following values
Vv=0.5(V® +Vv?)=1.61103074702189,

£=0.94426165857265, n =1.30519743709137, and

normalized propagation constant
0=0.656330381679475 and n, =4.55764618707711.

A new equivalent step index wave guide (ESIWG) of
the DSSIWG is defined by these normalized
frequencies, equivalent abscissa, equivalent ordinate,
and normalized propagation as shown in Figure- 8.

n=4.5 nu=4.5

ni=4.55764618707711
AR

2a+2d

Figure 8. Equivalent step index wave guide

8. EXPRESSINS OF FIELDS FOR ESIWG

Field expressions and EEV for carriers of the ESIWG
are given by

E, =Aexp [, (x +a+d)]Fz o1 (90)
E,, =Acos(a,Xx—0) F(z,0,1) (91)
EyIII = A |||exp [_ am [X - (a + d )]] F(Z' , t)
(92)
E,o = ”th"; ., n=1,2,3, ..., (93)
8m'a

The ESIWG contains the normalized frequency
V=1.61095326736701, normalized  propagation
constant o =0.65633038167949, normalized abscissa

£ =0.944394637337171, normalized ordinate
1n=1.30510122159518, refractive index
n,=4.55764067749070 for AR, EEV
E.=0.27443539876539 eV, barrier potential

V,=0.28864647569620. The variations of Egs.(90)-
(92) for the ESIWG against to axis x are in Figure-9
and Figure-10.

Our results of this work are suitable found results in
ref. [10]. Because, for values A=0.5145x10° m,
nn=1.55, n;=1.57, 2a=1 pm=10000 A’ in ref. [10],
we have achieved normalized frequency as
V=3.0506106640935 in our method. Whereas, V has
given by Popescu as 3.05061, as shown in ref. [10]. It
is seen that the normalized frequency V found in our
method is more sensitive than the normalized
frequency in ref [10].

9. RESULTS AND DISCUSSIONS

In this novel study the variations of the fields of the
regions of the FSSSIWG, SSSSIWG of the DSSIWG
are studied and wave vectors, propagation constants,
phase constant, equivalent indices, energy eigen
values, barrier potentials, zetas, etas and amplitudes
are obtained. Continuity conditions at the boundaries
in the DSSIWG are investigated and then we have
constituted the ESIWG getting equivalent refractive
index for AR of the ESIWG. We have seen that
V=0.5(VY +Vv®?), k=0.5[k,V+k,@],
k|||:O.5[k|||(1)+k|||(2)], here.

Impedance Z',,, and phase velocity of the AR fleld
for ESIWG are larger than the impedances Z" ",

Z™,® and phase velocities v, v@ of the AR,
AR @ for the DSSIWG, respectively.

On the other hand, the amplitude of the electric field,
A, the effective index ne , phase constant f,, the
EEV E,, barrier potential V, and maximum intensity
of Poynting vector [8] in the AR of ESIWG are
smaller than the amplitudes A, A® | of the electric

fields, the effective index n,” n,®, the phase
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constants B,” B.?, the EEVs E,%, E,@, barrier
potentials Vo, V,@ and maximum intensities S®, S

of Poynting vectors in the AR®, AR® of the
DSSIWG, respectively. 10807

1070

Region |l
1100 T

1090+

Consequently, the AR width 2a of step-index wave
guide larger is, transferred energy in travel direction
smaller is. Therefore, to great the transferred energy in 1}
travel direction like quantum well laser AR width

must be small. The importance of the quantum well

1060 -

1040+

arises from this subject. il
1020+
Region | Region |l Region [l
4500 T 1100 4500 T . ) ) ) ) ) ) ) ) )
- 2500 -2000 -1500 1000 500 0 500 1000 1500 2000 2500
4000 1 14000 g x(tm)
1020 R
3500 R 3500 1 A o )
o7 1 Figure 10. The variation of the only AR field of the
£ 30 1 1060 {300 1 ESIWG against to axis X.
=
w00 {1050 12500
1040 R
2000 R 2000
1030 R
1500 R 1500
1020 R
1000 L 1010 L 1000 L
-5000 o 8000 -5000 o 8000 -5000 o 5000

() () x{m)
Figure 9. The variations of the fields of the regions of
the ESIWG against to axis x for

n, =4.55764618707711, 0.=0.656349097706842,
£=0.944414341349384 and n =1.3051826001382,

E;=0.27443539876539.
V=1.61103074702189

Table I1: Wave vectors, Propagation constants, Phase constant, Equivalent indice, Enery eigen value, Barrier
potential, Zeta, Eta and Amplitudez for A =1.55x10° m, n,=4.5, n,=4.55764618707711, 2a=5500 A’ in the

ESIWG.

Quantity Symbol Value

Wave number k, (1/m) 1.824150573052138x10"=0.5[k,+k,”’]

Wave number kn(1/m) | 1.847518423094579x10"=0.5[k,P+k,**
with %4 error]

Wave number ki(1/m) | 1.824150573052138x10"=0.5[K,\ " +k;;']

Propagation constant a, (1/m) | 2.373059272978546x10°

Propagation constant a, (U/m) | 1.717116984271607x10°

Propagation constant o,y (1/m) 2.373059272978546x10°

Phase constant B, (1/m) | 1.839521518302283 x10’

Effective index Nt 4,53791860970661

Phase Velocity v 6.610960349934436x10’

Enery eigen value Ei(ueV) 0.27443543900888

Barrier potential V, (ueV) | 0.28867428390716

Zeta ¢ 0.944414341349384 =0.5[ L D+ )]

Eta n 1.3051826001382=0.5[ 1 "+ 1 @]

Amplitude A 1.099908675780402x10°

Impedance Z™,a(Q) | 18.30702245219

Maximum Intensity of Poynting vector S(W/m?) | 3.304194055085877x10"

o, +a,” =k, —k “=8.57990105074348x10"
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