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*e aim of this article is firstly to improve time-dependent Lagrangian energy equations using the super jet bundles on
supermanifolds. Later, we adapted this study to the graph bundle. *us, we created a graph bundle by examining the graph
manifold structure in superspace. *e geometric structures obtained for the mechanical energy system with superbundle co-
ordinates were reexamined with the graph bundle coordinates. *us, we were able to calculate the energy that occurs during the
motion of a particle when we examine this motion with graph points. *e supercoordinates on the superbundle structure of
supermanifolds have been given for body and soul and also even and odd dimensions. We have given the geometric interpretation
of this property in coordinates for themovement on graph points. Lagrangian energy equations have been applied to the presented
example, and the advantage of examining the movement with graph points was presented. In this article, we will use the graph
theory to determine the optimal motion, velocity, and energy of the particle, due to graph points. *is study showed a physical
application and interpretation of supervelocity and supertime dimensions in super-Lagrangian energy equations utilizing
graph theory.

1. Introduction

Many of the problems based on Lagrangian energy equations
in classical mechanics may be solved using Euclidian space.
It is well known that modern differential geometry has an
important role too. Many of these problems have not been
calculated in superspace before. One reason may be the
difficulty that the metric structure of superspace differs from
Euclidean space. Using jet bundles and working with bundle
coordinates is one of the most convenient ways to obtain the
time-dependent Lagrangian energy equations. *erefore, in
this study, supercoordinate structure will be formed on jet
bundles and superenergy equations will be obtained by using
this.

Mathematicians, working in superspace, assume that
there is a natural phenomenon with supergeometry and
supersymmetry for explaining physical phenomena occur-
ring in even- and odd-dimensional Euclid space. *us, we
prefer to solve Lagrangian energy equations on the

superspace, which is based on a jet bundle structure. In-
clusion of time dimension for solving Lagrangian energy
equations on superspace is an important parameter that
improves the super-Lagrangian system for which we propose
to take time derivative coordinates on the jet bundle.

On the other hand, graph theory is the most suitable
method for planning a movement that completes a path as
soon as possible. In this study, we will compare the graph
bundle structure and the bundle structure that we use in
calculating energy equations in the mechanical system. We
will combine these two bundle structures and adapt them in
the superspace. We will be able to define the motion
depending on time with graph points and also form a graph
vector field with graph vectors. *us, we will combine the
geometric concepts used in calculating Lagrangian energy
equations with graph theory, and we will calculate the energy
equation with a completely new approach. A study has been
done on the graphs of the logarithmic spiral curve in [1]. In
[2], using the graph theory, the study of Euler–Lagrange
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energy structure in neural networks has been examined.
Cangül et al. [3, 4] is a basic resource on graph theory. Graph
manifold structure is defined in [5–7]. Topological prop-
erties of the graph manifold are investigated in [8]. Graph
bundle structure is examined in [9].

Aycan [10] proved the Lagrange energy equations on the
jet bundle structure containing the time dimension. Also, in
[11], Lagrangian energy equations are developed by forming
jet bundles on a complex space. Lagrangian equations are
solved with real bundles by [12–14]. Mechanical systems
with time parameter were investigated in [15, 17]. *e other
studies [18–24] showed the fundamental of supergeometric
structures. But none of them could be solved with superjet
bundles that include the time dimension in the superspace.
*us, the main contribution of this study is to obtain super-
Lagrange energy equations with bundle structures struc-
tured with body and soul and also even and odd dimensions,
and we will form it with a graph bundle with time di-
mension. *e advantage of this solution method is that the
energy equations found in superspace can be projected or
comparable with energy equations in real space.

In previous studies, super-Lagrangian equations in
supermanifolds have not been studied for superderivative
coordinates. *ere for this study improves this equation in
superderivative coordinates with body and soul and also
even and odd dimensions.

A brief introduction of Lagrangian systems is given in
the following way.

If M is an m-dimensional configuration manifold and
L: TM⟶ R is a regular Lagrangian function, then there is
a unique vector field εL on TM and ΩL is a 2-form on TM,
such that

iεL
ΩL � dEL

, (1)

where EL is Lagrangian energy associated with L [12, 15]. *e
Euler–Lagrange vector field εL is a semispray or second-order
differential equation on M since its integral curves are the
solutions of the Euler–Lagrange equations [12, 15]. *e triple
(TM, ΩL, L) is called the Lagrangian system on the tangent
bundle TM [12]. *e coordinate system on TM is (qi, vi). For
created to time-dependent Lagrange systems are used jet
bundles. When studying energy systems, it will be very
convenient for obtaining energy equations with the jet bundle
structure because themotion depends on time and therefore to
take the time as a coordinate. At the same time, the jet bundle
J(R, M) is the velocity space of the manifold M. J(R, M) is
isomorphic to R × TM. *e coordinate system on J(R, M) is
(t, qi, vi). On jet bundles, then there is a unique vector field (or
semispray) εL and a 2-form called as Poincaré–Cartan 2-form
ΩL again so that they provide the following equations:

iεL
ΩL � 0,

iεL
dt � 1.

(2)

Here, L: R × TM � J(R, M)⟶ R is the Lagrangian
function. *e triple (J(R, M), ΩL, εL) is called the time-
dependent Lagrangian system. *e Euler–Lagrange vector
field εL is locally expressed as

εL �
z

zt
+ vi

z

zqi

+ εi

z

zvi

.

εi � εi t, qi, vi( 􏼁.

(3)

We have to define Poincaré–Cartan 1-form to get
Poincaré–Cartan 2-form. *e Poincaré–Cartan 1-form on
J(R, M) associated with L is

αL � dJL + Ldt. (4)

*e Poincaré–Cartan 2-form associated with L is

ΩL � ddJL
+ dL∧dt. (5)

When solving equation (2),

d
dt

zL

zvi

􏼠 􏼡 −
zL

zqi

� 0, (6)

is obtained. Equation (2) is called as time-dependent
Euler–Lagrange energy equation. *e same equation would
be found if the solution is made in equation (1) because the
Lagrange energy equation is similar. When we work in
different spaces in our previous work, we have seen that the
obtained Lagrange energy equation can be reduced to (6). In
this study, we will obtain the energy equation by creating the
necessary geometric structures to obtain the Lagrange en-
ergy equation in superspace and compare it with equation
(6).

2. Bundles on Superspace

In this section, we will define a bundle in superspace by using
the bundle definitions in real space and graph theory. *en,
we will form the geometric structures required for the so-
lution of the mechanical system firstly with the jet bundle
coordinates and then graph bundle coordinates. With the
solution of this mechanical system, we will obtain the La-
grangian energy equation.

Definition 1. Let (E, π, M) be a bundle. Here, E is called the
total space,π is the projection, and M is the base space. *is
bundle is denoted by π or E. For each point p ∈M, the
subset π− 1(p) of E is called as fiber over p.*e set of fibers is
shown as Ep. So the bundle (E, π, M) can also be called a
fibrous manifold. F is the typical fiber of the bundle, and for
the map t: E⟶M × F, (F, t) is called a trivialization.

*e first jet manifold ofπ is the set
j1p∅ : p ∈M,∅∈ Γp(π)􏽮 􏽯 and denoted by J1E or J1π. Here,
∅: M⟶ E is a section of π. If it is satisfying the condition
π ∘∅ � idM, then the set of all sections of π will be denoted
by Γ(π). ϕ,ψ ∈ Γp(π), if ϕ(p) � ψ(p) and (zϕα/zxi)|p �

(zψα/zxi)|p and this is an equivalence relation and the
equivalence classes containing∅ are called the first jet at the
p-point. *ese are denoted by j1p∅. Also, the triple
(J1E, π1, M) is the first jet bundle and denoted by J1E . Here,
π1: J1E⟶M is a surjective submersion. TM is the tangent
bundle of the manifoldM. (TM, pr1

,M) is named as tangent
bundle. At the same time, J1E is isomorphic to TM,
J1E � TM, that is, the first jet is also a tangent vector [10].
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Let (U, u) be an adapted coordinate system on E,
whereu � (xi, uα). *e induced coordinate system on J1E is
denoted by (xi, uα, ui

α), where xi(j1p∅) � xi(p), uα(j1p∅) �

uα(∅(p)), and new functions ui
α(j1p∅) � (zuα/zxi)(p) are

known as derivative coordinates.
We will define the superbundle with these properties.

Definition 2. A superbundle is a triple (E∗, π∗, M∗) where
E∗ and M∗ are supermanifolds and π∗: E∗ ⟶M∗ is a
surjective submersion. *is bundle is denoted by π∗ or E∗.
*e first superjet manifold of π∗ is denoted by J1π∗ or J1E∗.
It is the set j1p∅: p ∈M∗,∅∈ Γp(π∗)􏽮 􏽯. Here, ∅ is a map,
and ∅: M∗ ⟶ E∗ is called as supersection of π∗. If it
satisfies the condition π∗ ∘∅ � idM∗ , then the set of all
supersections of π∗ will be denoted by Γ(π∗). *e equiva-
lence classes containing ∅ are called the first jet at the p-
point and denoted by j1p∅. Also, ϕ,ψ ∈ Γp(π), if ϕ(p) �

ψ(p) and (zϕα/zxi)|p � (zψα/zxi)|p, and this is an equiv-
alence relation and the equivalence classes containing∅ are
called the first jet at the p-point. *en, the first superjet
bundle is the triple (J1E∗, π1, M∗) and denoted by J1E∗.
J1E∗ is isomorphic to TM∗, J1E∗ � TM∗, that is, the first
superjet is also a supertangent vector.

*e induced coordinate system on J1E∗ will be obtained
as follows.

In this paper, we accept the manifold E∗ as a super-
manifold with m + n dimension, and the manifold M∗ is a
supermanifold with m-dimension. Let us show the
adapted coordinate system onM∗ is (xi). Since this is a
superspace coordinate, its open representation will be
made as follows:

xi � xib
+ xis

� xib
+ xise

+ xiso
, (1≤ i≤m), (7)

where xib
is the body part of xi and xis

is the soul part of xi. On
the other hand, xis

has even and odd parity. We will
show the even parity of xis

as xise
and the odd parity of xis

as
xiso

. We show the adapted coordinate system onE∗ is (xi, uα).
Similarly, the open representation of uα is taken as follows:

u
α

� u
αb + u

αs � u
αb + u

αse + u
αso , (1≤ α≤m + n), (8)

where uαb is the body part of uα and uαs is the soul part of uα.
On the other hand, uα has also even and odd parity. We will
show the even parity of uαs as uαse and the odd parity of uαs as
uαso . For simplicity, the body indexes symbolize as b and the
soul indexes symbolize as s. Also, we will obtain the de-
rivative coordinates of superjet bundle J1π∗ as follows. *e
important point to be considered here is that the derivatives
of the soul and body parts must be taken separately within
themselves. We saw that the results were very different from
what was desired in all the examinations we made by using
the mixed derivatives for body and soul parts. So, the co-
ordinates of J1π∗ are shown as follows:

xi, uα, u
i
α􏼐 􏼑 � xib

, xis
, u

αb , u
αs , u

α;b,s

i;b,s􏼐 􏼑. (9)

Here, we denote the derivative coordinates u
α;b,s
i;b,s dis-

tinctly as follows:

u
α;b

i;b � (zuαb/zxib) (derivative of body coordinates
according to body coordinates).
u
α;s
i;s � (zuαs/zxis)(derivative of soul coordinates

according to soul coordinates).
Here, u

α;s
i;s has also even and odd parity too. We will

show the even parity of u
α;s
i;s as u

α;se

i;se
and the odd parity

of u
α;s
i;s as u

α;so

i;so
.

Also,
u
α;se

i;se
� (zuαse /zxise

) (derivative of even soul coordinates
according to even soul coordinates).
u
α;so

i;so
� (zuαso /zxiso

)(derivative of odd soul coordinates
according to odd soul coordinates).

If these more explicit representations of derivative co-
ordinates are used, we can write the adapted coordinate
system of superjet bundle as

xib
, xise

, xiso
, u

αb , u
αse , u

αso , u
α;b
i;b , u

α;se

i;se
, u

α;so

i;so
􏼒 􏼓. (10)

If we want to create a time-dependent jet bundle, we
must take the real space as the base space. So, the triple we
will use is (J1E, π, R) and its coordinated system is (t, xi, _xi).
*e adapted coordinate system onE is (xi), on R is (t), and
also on J1E is ( _xi):

_xi �
dxi

dt
. (11)

Accordingly, time-dependent jet bundle structure can
also be formed in superspace. *e supertime-dependent jet
bundle structure will be shown as (J1E∗, π∗, R∗). So, the
coordinates of this bundle are shown as follows:

t, xi, _xi( 􏼁 � tb, tse
, tso

, xib
, xise

, xiso
, _xib

, _xise
, _xiso

􏼒 􏼓. (12)

*e simple notation of the derivative coordinates here is

_xib
�
dxib

dt
,

_xise
�
dxise

dt
,

_xiso
�
dxiso

dt
.

(13)

Now we define graph manifold. M is a three-manifold.
Class M consists of 3-dimensional, connected, closed, ori-
entable manifold. Associated with every M is its graph G. *e
vertex setV ofG is the set ofmaximal blocks inM, and the set E
of the oriented edges of G can be identified with the set of
boundary components of all maximal blocks. Namely, an
edgee ∈ E is directed from a vertex x to a vertex y, if the
boundary torus Te ⊂ zMx is attached in M where to the
boundary torus T− e ⊂ zMy, where the minus sign means
reserve edge orientation. *e incompressible torus in M that
results from gluing the boundary tori Te and T− e will be
denoted asT|e|.*e set of the edges coming out from a vertex is
denoted by zx, and if e ∈ zx, then we write e− � x, (− e)+ � x.
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Definition 3. Let B and F be graphs. A graph G is graph
bundle with fiber F over the base graph B if there is a
mapping p: G⟶ B which satisfies the following
conditions:

(1) It maps adjacent vertices of G to adjacent or identical
vertices in B

(2) *e edges are mapped to edges or collapsed to a
vertex

(3) For each vertex v ∈ V(B), p− 1(v) � F, and for each
edge e ∈ E(B), p− 1(e) � K × F

A mapping satisfying just the two conditions above is
called a graphmap. For a given graphG, there may be several
mappings pi: G⟶ Bi with the above properties. In such
cases, we write (G, pi, Bi) to avoid confusion. Now we in-
troduce an equivalence relation δ∗ defined among the edges
of a graph. With this relation can be recognized graph
bundles [9].

An induced cycle of four vertices is called a chordless
square. With this definition, we can define an auxiliary
binary relation δ. For any e, f ∈ E(G), we set eδf if at least
one of the following conditions is satisfied:

(1) e and f are opposite edges of a chordless square
(2) e and f are adjacent and there is no chordless square

spanned on e and f [9]

By δ∗, we denote the reflexive and transitive closure of δ.

Since δ is symmetric, δ∗ is an equivalence relation. Any pair
of adjacent edges which belong to distinct δ∗-equivalence
classes spans a chordless square.

If we take graph manifolds instead of E andMmanifolds
in the bundle definition given in Definition 1, and a π is also
a graphmap, a graph bundle is obtained when the conditions
given in Definition 3 are provided. So, we can obtain the
energy equation on a graph bundle. Nowwe have defined the
graphs in superspace. So, we can create the supergraph
bundle given by Definition 2. Since graph manifolds are
usually taken 3-manifold, we will take the superspace in 3
dimensions in this study. In addition, since the graph
manifolds are real, we will take the body parts of the
supernumbers as real numbers in this study because if the
body part of the number is real, it corresponds to a real
number, and if the body part of the number is complex, it
corresponds to a complex number.

A vertex in superspace will have the body part and the
soul part as well as soul even and soul odd parts. Since
graphs are formed by combining vertex and edges, we need
to consider soul odd and soul even parts for vertex when
defining graphs in superspace. Lines joining points called
vertex in graph theory are called edges. In the mechanical
system we have introduced to calculate the energy equa-
tion during the motion of a moving particle, these vertex
points become the points that the object passes through
during its motion. Edges also correspond to the paths
formed by the movement of the object between these
vertex points. It can also be regarded as a vector geo-
metrically because it is a directional line segment. *e
combination of all the paths that can occur as the direction

of motion changes again forms a graph in superspace.
E: X⟶ Y (X and Y are vertex and E is edge), and (E, X)
is a graph. We will denote the parity with (w) for the
graphs. In superspace, if |w| � 1, the number is odd, and if
|w| � 0, the number is even. When defining geometric
structures in superspace, the sign of odd parts must be
negative. *is is a necessity for the study to give correct
results. Physically, it can be explained with direction. In
geometry, the positive direction is counterclockwise di-
rection, and the negative direction is on the contrary of it,
that is, clockwise direction. In the graph manifold defi-
nition, we said that the minus sign is related to the ori-
entation. *erefore, when defining the graph theory in
superspace, the concept of direction should be determined
by examining the soul odd and soul even parts of the
vertices. A supernumber can consist of body, soul odd and
soul even parts or just body, and soul even or soul odd
parts. It is related to whether this number is an odd or an
even number. *erefore, since the vertex points will be
points in the 3-dimensional superspace we are working
with, the movements between soul even and body parts of
these vertex points will show the positive direction and the
movements between the soul odd parts will show the
negative direction. So, the movement between the soul
even and body parts of vertex points is picturing coun-
terclockwise direction and the movement between the soul
odd parts of vertex points is picturing clockwise direction.

For example, let the vertex point only consist of body and
soul even parts. Consider the movement from this point to
another vertex point consisting of body and soul odd parts.
Since the movement will first be from the body part to the
body part, it will occur in the (+) direction (counterclock-
wise) and then it will happen in the (− ) direction (clockwise)
because it will be in the direction from the soul even part to
the soul odd part. *is can be seen in the graph manifold
graph given in Figure 1.
Γ(V∗, E∗) get a graph on theM supermanifold. Here, V∗

is the set of vertexes and E∗ is the set of edges. Let any two
subsets of V∗ be Vi, Vj, also

E∗ � Vi × Vj, (i, j � 1, 2, 3). (14)

According to this, any open subset of Vi × Vj is UVi×Vj

and an open subset of Rm × Rne × Rno is URm×Rne ×Rno . Here m
is body dimension, ne is soul even dimension, and no is soul
odd dimension.*e coordinate neighborhood system (atlas)
can be obtained for the differential structure on a graph
manifold in superspace by defining homeomorphisms on
these sets as follows:

β∗: UVi×Vj
⟶ URm×Rne ×Rno , (15)

to be one to one, so the pair (UVi×Vj
, β∗) is called a

supergraph coordinate neighborhood in M. According to
this,

(1) ∪ Vi×Vj
UVi×Vj

� M

(2) For ∀Vi1
× Vj1

, Vi2
× Vj2

to be Vi1
× Vj1
∩

Vi2
× Vj2
≠∅, hence β∗o(β∗)

− 1 function to be
differentiable
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*e collection Vi × Vj that meets the above conditions is
called a supergraph atlas in M.

Accordingly, we can picture the differential structure of a
supergraph manifold in (Figure 1).

In Figure 1,

V1 is the open subset of vertexes that have a body part
(b)
V2 is the open subset of vertexes that have a soul even
part (se)

V3 is the open subset of vertexes that have a soul odd
part (so)

According to this,

(1) In region 1, the x and y vertexes only consist of the
body part, i.e., x � xb and y � yb

(2) In region 2, the x and y vertexes consist of the body
part and soul even part, i.e., x � xb + xse

and
y � yb + yse

(3) In region 3, the x and y vertexes only consist of the
soul even part, i.e., x � xse

and y � yse

(4) In region 4, the x and y vertexes consist of the body
part and soul odd part, i.e., x � xb + xso

and
y � yb + yso

(5) In region 5, the x and y vertexes consist of all parts
for a supernumber, namely, the body part, soul
even part, and soul odd part, i.e., x � xb + xse

+ xso

and y � yb + yse
+ yso

(6) In region 6, the x and y vertexes consist of the soul
even part and soul odd part, i.e., x � xse

+ xso
and

y � yse
+ yso

(7) In region 7, the x and y vertexes only consist of the
soul odd part, i.e., x � xso

and y � yso

Now we define the homeomorphisms shown in Fig-
ure 1 as follows:

βb,b: V1(1) × V1(1)⟶ ∪Rm where domain is the
edge e(xb, yb)

βse,se
: V2(3) × V2(3)⟶ ∪Rne where domain is the

edge e(xse
, yse

)

βso,so
: V3(7) × V3(7)⟶ ∪Rno where domain is the

edge e(xso
, yso

)

654

7

β b
,s e

,s o

β 1
b,

s e

β 1
b,

s e,
s o

β 2
b,

s e,
s o

β 3
b,

s e,
s o

β 4
b,

s e,
s o

β 5
b,

s e,
s o

β 6
b,

s e,
s o

β 2
b,

s e

β 1
b β 4
b β 1

s e β 1
s o β 1

b,
s o

β 2
b,

s o

β 2
s e,

s o

β 1
s e,

s o

β 4
s o

β 4
s e

β3so

βb,so

β2so

β2b

β3b

β b,b

βb,se

βse,so

β s o,
s o

β s e,s
e

β3se

β2se

Rm × Rne × Rno

Rm × Rne × Rno

Rm × Rne × Rno

Rm × Rne × Rno

Rm × Rne × Rno

∪ (Rne × Rno)

∪ (Rm × Rne × Rno)

∪ (Rm × Rno)

∪ (Rm × Rne)

∪Rne ∪Rno∪Rm

V3

V2
V1

1 2 3

Figure 1: Differentiable structure of a supergraph manifold: definition set and homeomorphisms.
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βb,se
: V1V2(2) × V1V2(2)⟶ ∪ (Rm × Rne ) where

domain is the edge e(xb + xse
, yb + yse

)

βb,so
: V1V3(4) × V1V3(4)⟶ ∪ (Rm × Rno ) where

domain is the edge e(xb + xso
, yb + yso

)

βse,so
: V2V3(6) × V2V3(6)⟶ ∪ (Rne × Rno ) where

domain is the edge e(xse
+ xso

, yse
+ yso

)

βb,se,so
: V1V2V3(5) × V1V2V3(6)⟶ ∪ (Rm × Rne ×

Rno ) where domain is the edge e(xb + xse
+ xso

,

yb + yse
+ yso

)

Here, thirty-one distinct homeomorphismmaps can be
defined between the body, soul even, and soul odd parts
of the supersets, as follows:

β1b: V1(1) × V2V3(6)⟶ ∪ (Rm × Rne × Rno ) where
domain is the edge e(xb , yse

+ yso
)

β2b: V1(1) × V1V2(2)⟶ ∪ (Rm × Rne ) where do-
main is the edge e(xb , yb + yse

)

β3b: V1(1) × V1V3(4)⟶ ∪ (Rm × Rno ) where do-
main is the edge e(xb , yb + yso

)

β4b: V1(1) × V1V2V3(5)⟶ ∪ (Rm × Rne × Rno )

where domain is the edge e(xb , yb + yse
+ yso

)

β1se
: V2(3) × V1V3(4)⟶ ∪ (Rm × Rne × Rno ) where

domain is the edge e(xse
, yb + yso

)

β2se
: V2(3) × V1V2(2)⟶ ∪ (Rm × Rne ) where do-

main is the edge e(xse
, yb + yse

)

β3se
: V2(3) × V2V3(6)⟶ ∪ (Rne × Rno ) where do-

main is the edge e(xse
, yse

+ yso
)

β4se
: V2(3) × V1V2V3(5)⟶ ∪ (Rm × Rne × Rno )

where domain is the edge e(xse
, yb + yse

+ yso
)

β1so
: V3(7) × V1V2(2)⟶ ∪ (Rm × Rne × Rno ) where

domain is the edge e(xso
, yb + yse

)

β2so
: V3(7) × V1V3(4)⟶ ∪ (Rm × Rno ) where do-

main is the edge e(xso
, yb + yso

)

β3so
: V3(7) × V2V3(6)⟶ ∪ (Rne × Rno ) where do-

main is the edge e(xso
, yse

+ yso
)

β4so
: V3(7) × V1V2V3(5)⟶ ∪ (Rm × Rne × Rno )

where domain is the edge e(xso
, yb + yse

+ yso
)

β1b,se
: V1V2(2) × V3(7)⟶ ∪ (Rm × Rne × Rno )

where domain is the edge e(xb + xse
, yso

)

β2b,se
: V1V2(2) × V1V2V3(5)⟶ ∪ (Rm × Rne × Rno )

where domain is the edge e(xb + xse
, yb + yse

+ yso
)

β1b,so
: V1V3(4) × V2(3)⟶ ∪ (Rm × Rne × Rno )

where domain is the edge e(xb + xso
, yse

)

β2b,so
: V1V3(4) × V1V2V3(5)⟶ ∪ (Rm × Rne × Rno )

where domain is the edge e(xb + xso
, yb + yse

+ yso
)

β1se,so
: V2V3(6) × V1(1)⟶ ∪ (Rm × Rne × Rno )

where domain is the edge e(xse
+ xso

, yb)

β2se,so
: V2V3(6) × V1V2V3(5)⟶ ∪ (Rm × Rne × Rno )

where domain is the edge e(xse
+ xso

, yb + yse
+ yso

)

β1b,se,so
: V1V2V3(5) × V1(1)⟶ ∪ (Rm × Rne × Rno )

where domain is the edge e(xb + xse
+ xso

, yb)

β3b,se,so
: V1V2V3(5) × V3(7)⟶ ∪ (Rm × Rne × Rno )

where domain is the edge e(xb + xse
+ xso

, yso
)

β4b,se,so
: V1V2V3(5) × V1V2(2)⟶ ∪ (Rm × Rne ×

Rno ) where domain is the edge e(xb + xse
+ xso

,

yb + yse
)

β5b,se,so
: V1V2V3(5) × V1V3(4)⟶ ∪ (Rm × Rne ×

Rno ) where domain is the edge e(xb + xse
+ xso

,

yb + yso
)

β6b,se,so
: V1V2V3(5) × V2V3(6)⟶ ∪ (Rm × Rne ×

Rno ) where domain is the edge e(xb + xse
+ xso

,

yse
+ yso

)

According to the transformations we have defined
above, the edges obtained by combining the vertex on a
graph manifold can be depicted as follows. *us, the graph
manifold can be shown in Figure 2. Considering each of
the above β maps, edges are depicted linearly between
vertexes with the same part, and edges between vertexes
with different parts are depicted as curves because when
combining vertexes with different parts, the coordinate
order must be considered (body, soul even, and soul odd).
*ese couplings are shown in Figure 2. *e orientations in
this graph will be determined as such: in vertexes, in the
orientation from even parity to even parity, counter-
clockwise, that is, positive orientation is taken; in the
orientation from even parity to odd parity or from odd
parity to even parity, clockwise, that is, negative orien-
tation is taken.

Definition 4. Let M∗ and F∗ be supergraph manifolds. A
supergraph G∗ is a supergraph bundle with fiber F∗ over the
base supergraph M∗ if there is a mapping π∗g: G∗ ⟶M∗

which satisfies the following conditions:

(1) It maps adjacent vertices of G∗ to adjacent or
identical vertices in M∗ according to the orientation
properties for the graph manifold (Figure 2)

(2) Under the same conditions expressed above, the
edges are mapped to edges or collapsed to a vertex

(3) For each vertex x ∈ V(M∗), π∗g− 1(x) � F∗, and for
each edge e ∈ E(M∗ ), π∗g− 1(e) � K∗ × F∗

A mapping satisfying just the two conditions above is
called a supergraph map. We can also define this map π∗g as
vertex-edge transformation, and in other words, the values
created by the combination of each vertex we receive will
turn into the edges formed by the combination of vertexes
that these vertexes will correspond with this transformation.
*e subset π∗g− 1(e) of G∗ is also called supergraph fiber. p∗

is also a covering submersion.
*e equivalence class defined among the edges can be

defined as supergraph bundles. For any e, f ∈ E(G∗), we set
eδ∗f if at least one of the following conditions is satisfied:

(1) e and f are opposite edges between the body, soul
even, or soul odd parts of the vertex that have a
chordless square

(2) e and f are adjacent according to directions in Fig-
ure 2 and there is no chordless square spanned on e
and f

Since δ∗ is symmetric, it is an equivalence relation.
Consequently, the triple (G∗, π∗g, M∗) is called a supergraph
bundle. *e dimensions of supergraph manifolds are as
follows:

boy M∗ � m � (mb + mse
+ mso

)

boy G∗ � m + n � (mb + mse
+ mso

+ nb + nse
+ nso

)
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Get the supergraph coordinate system on the superopen
subset

UVi×Vj
⊂ G
∗
,

y
∗g

: UVi×Vj
⟶ R

mb+nb × R
mse

+nse × R
mso

+nso ,

pr
∗ g
1 : R

mb+nb × R
mse

+nse × R
mso

+nso⟶ R
mb × R

mse × R
mso ,

(16)

x, y ∈ UVi×Vj
, where x and y are each edge; for instance, edge

x is the combination of vertex xi∗ ∈ Vi and xj∗ ∈ Vj.

π∗g(x) � π∗g(y) � p⟹pr
∗g
1 y
∗g

(x)( 􏼁 � pr
∗g
1 y
∗g

(y)( 􏼁.

(17)

If this proposition is true, then y∗g is called a supergraph
adapted coordinate system.

*e representation of this in graph theory is edge lines
that can be orientable to the vertex from which they started,
namely, point x. Since the first jets are identical to tangent
vectors, the same identification is made for the first jets.
*en, TG∗ � Jπ∗g. *ence, the necessary jet bundle to install
time-dependent mechanical systems for supergraphs on the
supergraph bundle (G∗, π∗g, M∗) will be (Jπ∗g, π∗g, M∗).
*erefore, the coordinates of a graph jet bundle are
expressed as follows, considering the coordinate systems we
have given above:

(x, y, u) � xb + xse
+ xso

, yb + yse
+ yso

, ub + use
+ uso

􏼐 􏼑, x ∈M
∗
, y ∈ G

∗
, u ∈ Jπ∗g. (18)

*e coordinate u corresponds to an oriented edge e that
can be written as ı(e) � x for the initial vertex. For x, y
vertexes, u � (x, y)⟹y − x � u, that is, u is also a di-
rectional line segment (geometrically a vector) from x to y
which is corresponding to an edge. In graph theory, this

coordinate corresponds to the derivative coordinate for the
jet bundle. According to the derivative coordinate definition,
u component can be expressed as follows, but for the graph
manifold structure, the explanations given next to it will be
taken into consideration:

zyb

zxb

� ub: it corresponds to the e xb, yb( 􏼁 edges which are the combination of xb andyb vertexes,

zyse

zxse

� use
: it corresponds to the e xse

, yse
􏼐 􏼑 edges which are the combination of xse

andyse
vertexes,

zyso

zxso

� uso
: it corresponds to the e xso

, yso
􏼐 􏼑 edges which are the combination of xso

andyso
vertexes.

(19)

Here, as we explained in the bundle definition, the
derivative of the body part with respect to the body part, the
derivative of the soul even part with respect to the soul even
part, and the derivative of the soul odd part with respect to
the soul odd part will be taken. Mixed derivatives cannot
be taken between parts. *e components of edge coordi-
nates (derivative coordinates) should also be expressed in
this way. For example, when we get the following
map, β3b,se,so

: V1V2V3(5) × V3(7)⟶ ∪ (Rm × Rne × Rno )

where domain is the edge e(xb + xse
+ xso

, yso
), a coordi-

nate of the graph jet bundle will take the form
(xb + xse

+ xso􏽼√√√√√􏽻􏽺√√√√√􏽽
x

, yso􏽼√􏽻􏽺√􏽽
y

, − xb􏽼√􏽻􏽺√􏽽
ub

, − xse􏽼√􏽻􏽺√􏽽
use

+ (yso
− xso

)
􏽼√√√√􏽻􏽺√√√√􏽽

uso􏽼√√√√√√√√√√􏽻􏽺√√√√√√√√√√􏽽
u

).

Definition 5. Γ(V, E) be a graph with finite vertex set V and
edge set E. Given an oriented edge e, that can be written as
ı(e) � x for the initial vertex. Star(x) � e|ıt(e)n � qx􏼈 􏼉 is the

tangent space of the graph manifold at a point x. Elements of
this space are called tangent vectors [6].

Geometrically, a tangent vector is a vector that is
tangent to a curve or surface at a given point. Tangent
vectors are described in the differential geometry of
curves in the context of curves in Rn. More generally,
tangent vectors are elements of a tangent space of a
differentiable manifold. Consider a fixed point X and a
moving point P on a curve. As point P moves toward X,
the vector from X to P approaches the tangent vector at X
(Figure 3). *e line that contains the tangent vector is the
tangent line. In this work, we will denote the tangent
space of the graph manifold, that is, the set Star (x) with
TS. Additionally, a tangent vector vp on the manifold M
is a map vp: C∞(M)⟶ R (p ∈M). We have special
tangent vectors (z/zxk)(p), 1≤ k≤ 3􏼈 􏼉 (called the partial
derivatives), (z/zxk)|p: C∞(M)⟶ R, (z/zxk)|p(f) �

(z(f ∘∅− 1)/zuk)|∅(p) ((U,∅) local coordinate system for

Journal of Mathematics 7



M at p). (z/zxk)(p)􏼈 􏼉 tangent vectors system is the base
for the tangent manifold TM.

*e base for the graph tangent manifold TM is denoted
in the same way, and this vector system is denoted as
(z/zxb), (z/zxse

), (z/zxso
)|p􏽮 􏽯.

A vector bundle is a special class of fiber bundle in which
the fiber is a vector space V. If (E, f, B) is a bundle with fiber
Rn, to be a vector bundle, all of the fibers f− 1(x) (x ∈ B) need
to have a coherent vector space structure. Also, a vector bundle
is a total space E along with a surjective map f: E⟶ B to a
basemanifoldB. Any fiberf− 1(x) is a vector space isomorphic
to V. So, each point x of the manifold M corresponds to a
vector. In graph theory, it is an orientable graph for each xi

vertex, formed by vectors accepted as edges between these
vertices. For example, in Figure 2, the system of edges formed
between for a finite number of some paths x and y vertices on
the graph manifold becomes a vector bundle.

While defining the geometric structures in Section 3 in
graph theory, we will make use of the definitions and ex-
planations given in this section.

3. Lagrangian Mechanical Systems for
Superspace with Superjet Bundle and
Supergraph Bundle

In this section, we will first obtain Lagrangian mechanical
systems with superjet bundle structure. *us, we will have
time-dependent Lagrange energy equations in superspace.

*en we will construct these geometric structures for
supergraph bundle. We will compare the time-dependent
Lagrangian energy equation obtained from the solution of
themechanical system for graph bundle coordinates with the
previous equation. *us, the Lagrangian energy equation
will be obtained for the graph bundle.

Definition 6. Let J be a tensor field of type first-order co-
variant and first-order contravariant such that
J: T(J1E∗)⟶ T(J1E∗) by

J
z

zxib

􏼠 􏼡 �
z

z _xib

,

J
z

zxise

⎛⎝ ⎞⎠ �
z

z _xise

,

J
z

zxiso

⎛⎝ ⎞⎠ �
z

z _xiso

,

J
z

z _xib

􏼠 􏼡 � J
z

z _xise

⎛⎝ ⎞⎠J
z

z _xiso

⎛⎝ ⎞⎠ � 0,

J
z

zt
􏼠 􏼡 � _xib

z

z _xib

+ _xise

z

z _xise

_xiso

z

z _xiso

.

(20)

We will write this tensor field in coordinates as follows:

J � dxib
+ _xib

dtb􏼐 􏼑 ×
z

z _xib

+ dxise
+ _xise

dtse
􏼒 􏼓 ×

z

z _xise

− dxiso
+ _xiso

dtso
􏼒 􏼓 ×

z

z _xiso

. (21)

*is tensor field is named as super almost tangent
structure and provides the condition

J
2

� 0. (22)

Definition 7. A semispray in superspace is a vector field over
the total manifold E∗ and defined as follows:

ε �
z

ztb

+
z

ztse

−
z

ztso

+ _xib

z

zxib

+ _xise

z

zxise

− _xiso

z

zxiso

+ εib

z

z _xib

+ εse

z

z _xise

− εso

z

z _xiso

. (23)

If we calculate the J-directional derivative J(ε) of the
semispray ε, we can obtain the Liouville vector field V:

V � J(ε) � 2 _xib

z

zxib

+ 2 _xise

z

zxise

− 2 _xiso

z

zxiso

. (24)

To set up and solve the Lagrangian mechanical system, we
have to create Poincaré–Cartan 1-form and Poincaré–Cartan
2-form in superspace. Firstly, we must write the differential
operator d with supercoordinate system as follows:

d �
z

ztb

dtb +
z

ztse

dtse
−

z

ztso

dtso
+

z

zxib

d _xib
+

z

zxise

d _xise
−

z

zxiso

d _xiso
+

z

z _xib

d _xib
+

z

z _xise

d _xise
−

z

z _xiso

d _xiso
. (25)
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Now let us form the Poincaré–Cartan 1-form αL first,

αL � dJL + L dt � _xib

zLb

z _xib

dtb + _xise

zLse

z _xise

dtse
− _xiso

zLso

z _xiso

dtso
+

zLb

z _xib

d _xib
+

zLse

z _xise

d _xise
−

zLso

z _xiso

d _xiso
+ Lbdtb + Lse

dtse
− Lso

dtso
.

(26)

By differentiating Poincaré–Cartan 1-form, we get
Poincaré–Cartan 2-form as follows:

ΩL � ddJL + dL∧ dt � dxib
∧ dtb􏼐 􏼑 −

z
2
Lb

ztbz _xib

+ _xib

z
2
Lb

zxib
z _xib

+
zLb

zxib

􏼠 􏼡

+ dxise
∧ dtse

􏼒 􏼓 −
z
2
Lse

ztse
z _xise

+ _xise

z
2
Lse

zxise
z _xise

+
zLse

zxise

⎛⎝ ⎞⎠ + _dxiso
∧ dtso

􏼒 􏼓 −
z
2
Lso

ztso
z _xiso

+ _xise

z
2
Lso

zxiso
z _xiso

+
zLso

zxiso

⎛⎝ ⎞⎠

+ d _xib
∧ dtb􏼐 􏼑 _xib

z
2
Lb

z _xib
z _xib

+
zLb

z _xib

􏼠 􏼡 + d _xise
∧ dtse

􏼒 􏼓 _xise

z
2
Lse

z _xise
z _xise

+
zLse

z _xise

⎛⎝ ⎞⎠ + d _xiso
∧ dtso

􏼒 􏼓 _xiso

z
2
Lso

z _xiso
z _xiso

+
zLso

z _xiso

⎛⎝ ⎞⎠

+ d _xib
∧ dxib

􏼐 􏼑
z
2
Lb

z _xib
z _xib

􏼠 􏼡 + d _xise
∧ dxise

􏼒 􏼓
z
2
Lse

z _xise
z _xise

⎛⎝ ⎞⎠ + d _xiso
∧ dxiso

􏼒 􏼓
z
2
Lso

z _xiso
z _xiso

⎛⎝ ⎞⎠.

(27)

Theorem 1. 9e Euler–Lagrange energy equation in super-
space will be obtained as follows:

_xib

z
2
Lb

ztbz _xib

+ _xise

z
2
Lse

ztse
z _xise

+ _xiso

z
2
Lso

ztso
z _xiso

− _xib

zLb

zxib

− _xise

zLse

zxise

− _xiso

zLso

zxiso

� 0. (28)

xb

xso

yso

yse

yb,se

yb,so

xb,so

xb,se

yse,so

yb,se,so

xb,se,so

xse,so

yb

xse

Figure 2: Figure of a graph manifold: vertexes and edges.
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Proof. Euler–Lagrange energy is obtained by solving the
dynamical equation iεΩL � ΩL(ε) � 0. *us, let us set up
and solve this dynamical equation using the geometric

concepts we have defined above according to the super-
coordinate system in superspace:

ΩL(ε) � −
z
2
Lb

ztbz _xib

+ _xib

z
2
Lb

zxib
z _xib

+
zLb

zxib

+ _εib

z
2
Lb

z _xib
z _xib

􏼠 􏼡dxib
+ −

z
2
Lse

ztse
z _xise

+ _xise

z
2
Lse

zxise
z _xise

+
zLse

zxise

+ _εise

z
2
Lse

z _xise
z _xise

⎛⎝ ⎞⎠dxise

+
z
2
Lso

ztso
z _xiso

− _xise

z
2
Lso

zxiso
z _xiso

−
zLso

zxiso

− _εiso

z
2
Lso

z _xiso
z _xiso

⎛⎝ ⎞⎠dxiso

+ _xib

z
2
Lb

ztbz _xib

− _xib
􏼐 􏼑

2 z
2
Lb

zxib
z _xib

− _xib

zLb

zxib

− _xib
_εib

z
2
Lb

z _xib
z _xib

− _εib

zLb

z _xib

􏼠 􏼡dtb

+ _xise

z
2
Lse

ztse
z _xise

− _xise
􏼒 􏼓

2 z
2
Lse

zxise
z _xise

− _xise

zLse

zxise

− _xise
_εise

z
2
Lse

z _xise
z _xise

− _εise

zLse

z _xise

⎛⎝ ⎞⎠dtse

+ − _xiso

z
2
Lso

ztso
z _xiso

+ _xiso
􏼒 􏼓

2 z
2
Lso

zxiso
z _xiso

+ _xiso

zLso

zxiso

+ _xiso
_εiso

z
2
Lso

z _xiso
z _xiso

+ _εiso

zLso

z _xiso

⎛⎝ ⎞⎠dtso

+ _xib

z
2
Lb

z _xib
z _xib

+
zLb

z _xib

− _xib

z
2
Lb

z _xib
z _xib

􏼠 􏼡d _xib
+ _xise

z
2
Lse

z _xise
z _xise

+
zLse

z _xise

− _xise

z
2
Lse

z _xise
z _xise

⎛⎝ ⎞⎠d _xise

+ − _xiso

z
2
Lso

z _xiso
z _xiso

−
zLso

z _xiso

+ _xiso

z
2
Lso

z _xiso
z _xiso

⎛⎝ ⎞⎠d _xiso
.

(29)

By equalizing equation (29) to zero, then the following
equations are obtained:

(1) −
z
2
Lb

ztbz _xib

+
z

zxib

_xib

zLb

z _xib

+ Lb􏼠 􏼡 +
z

z _xib

_εib

zLb

z _xib

􏼠 􏼡 � 0,

(2) −
z
2
Lse

ztse
z _xise

+
z

zxise

_xise

zLse

z _xise

+ Lse

⎛⎝ ⎞⎠ +
z

z _xise

_εise

zLse

z _xise

⎛⎝ ⎞⎠ � 0,

(3)
z
2
Lso

ztso
z _xiso

−
z

zxiso

_xiso

zLso

z _xiso

+ Lso

⎛⎝ ⎞⎠ −
z

z _xiso

_εiso

zLso

z _xiso

⎛⎝ ⎞⎠ � 0,

(4) _xib

z
2
Lb

ztb z _xib

− _xib

z

zxib

_xib

zLb

z _xib

+ Lb􏼠 􏼡 − _εib

z

z _xib

_xib

zLb

z _xib

+ Lb􏼠 􏼡 � 0,

(5) _xise

z
2
Lse

ztse
z _xise

− _xise

z

zxise

_xise

zLse

z _xise

+ Lse

⎛⎝ ⎞⎠ − _εise

z

z _xise

_xise

zLse

z _xise

+ Lse

⎛⎝ ⎞⎠ � 0,

(6) − _xiso

z
2
Lso

ztso
z _xiso

+ _xiso

z

zxiso

_xiso

zLso

z _xiso

+ Lso

⎛⎝ ⎞⎠ + _εiso

z

z _xiso

_xiso

zLso

z _xiso

+ Lso

⎛⎝ ⎞⎠ � 0,

(7) _xib

z
2
Lb

z _xib
z _xib

+
zLb

z _xib

− _xib

z
2
Lb

z _xib
z _xib

􏼠 􏼡 � 0,

(8) _xise

z
2
Lse

z _xise
z _xise

+
zLse

z _xise

− _xise

z
2
Lse

z _xise
z _xise

⎛⎝ ⎞⎠ � 0,

(9) − _xiso

z
2
Lso

z _xiso
z _xiso

−
zLso

z _xiso

+ _xiso

z
2
Lso

z _xiso
z _xiso

⎛⎝ ⎞⎠ � 0.

(30)
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Equation (30) is a system of nonlinear equations. For the
solution of this nonlinear equation system, some special
conditions are required. Among the different assumptions
made, the most appropriate conditions for the general so-
lution of the Lagrangian energy equation are determined as
follows:

_εib
� − _xib

,

_εise
� − _xise

,

_εiso
� − _xiso

.

(31)

We have seen that the general structure of the Lagrange
equation shows similarities in different spaces in our pre-
vious articles. For this reason, the minus sign here has been
accepted in order to create the similarity with the general
energy equation, and another reason for this comes from the
concept of parity in superspace. As a result of our study, it
can be said that the choice of derivative coordinates on the
coordinate system of the base manifold will be the most
appropriate choice for the solution. *ese conditions are
written in equation (30). *en, a common solution of all
these equations is sought. *is solution cannot be deter-
mined at random. For all equations, a linear relation is
determined that will give the most appropriate solution to
the standard structure of the energy equation. Among the
many linear relations that can be formed for solution, the
most accurate relation as shown in the following equation is
taken:

− _xib
(1) − _xise

(2) + _xiso
(3) +(4) +(5) − (6) − _xib

(7) − _xise
(8) + _xiso

(9) � 0. (32)

Unlike the conditions we present for the solution here, the
signs between the body, even, and odd coordinates are
opposite. *e necessity of working by taking a sign change

originating from parity in the odd part in the superspace is
seen in our study. When the above solution is made, the
following equation is obtained:

_xib

z
2
Lb

ztbz _xib

+ _xise

z
2
Lse

ztse
z _xise

+ _xiso

z
2
Lso

ztso
z _xiso

− _xib

zLb

zxib

− _xise

zLse

zxise

− _xiso

zLso

zxiso

� 0. (33)

*is equation is called the Euler–Lagrange energy
equation in superspace.

Now, we will form the mechanical system with super-
graph bundle coordinates. When doing this, we will use the
bundle structure, coordinate system, and properties for
supergraph bundle that we obtained in Section 2. Here, just
differently, we have to work with time because we are
studying to obtain the time-dependent Lagrangian energy
equation. Actually, the coordinate u corresponds to an edge
between x and y vertexes, u � (x, y). On this edge, which we
can think of geometrically as a vector from x to y, the moving
particle performs this motion in a time interval t. So

physically time will be a natural parameter in the 3-di-
mensional supergraph bundle that we are working with. *e
coordinates of the supergraph bundle are the same as (19),
and only the time relation will be considered. Since only the
explication of the edge coordinate is different in bundle
coordinates, it will be sufficient to get the geometric
structures that form the mechanical system that we have
obtained in the first part of Section 3 according to the graph
bundle coordinates for the graph bundle because the proofs
are similar.

*e super almost tangent structure for supergraph
bundle is as follows:

J � dyb + ubdxb( 􏼁 ×
z

zub

+ dyse
+ use

dxse
􏼐 􏼑 ×

z

zuse

− dyso
+ uso

dxso
􏼐 􏼑 ×

z

zuso

. (34)

*e semispray with supergraph bundle coordinate is
given by

x  p

Figure 3: Tangent vector: the vector from X to P.
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ε �
z

zxb

+
z

zxse

−
z

zxso

+ ub

z

zyb

+ use

z

zyse

− uso

z

zyso

+ εib

z

z ub

+ εse

z

zuse

− εso

z

zuso

. (35)

If we calculate the J-directional derivative J(ε) of the
semispray ε, we can obtain the Liouville vector field V:

V � J(ε) � 2ub

z

zyb

+ 2use

z

zyse

− 2uso

z

zyso

. (36)
□

Theorem 2. Euler–Lagrange energy equation in superspace
with supergraph bundle coordinate will be obtained as follows:

ub

z
2
Lb

zxb z ub

+ use

z
2
Lse

zxse
zuse

+ uso

z
2
Lso

zxso
zuso

− ub

zLb

zyb

− use

zLse

zyse

− uso

zLso

zyso

� 0. (37)

Proof. We know that the Euler–Lagrange energy can be
obtained by solving the dynamical equation
iεΩL � ΩL(ε) � 0. To solve this dynamic equation with

graph bundle coordinates, in the proof of *eorem 1, it is
sufficient to make the following arrangement in coordinates:

t, xi, _xi( 􏼁 � tb, tse
, tso

, xib
, xise

, xiso
, _xib

, _xise
, _xiso

􏼒 􏼓 � (x, y, u) � xb, xse
, xso

, yb, yse
, yso

, ub, use
, uso

􏼐 􏼑. (38)

Since equation (29) will be obtained in the same way as
the graph bundle coordinates, a system similar to system
(30) is obtained. When system (30) is solved under
conditions,

_εib
� − ub,

_εise
� − use

,

_εiso
� − uso

,

(39)

by the linear relation which is similar to the linear relation
we presented in the proof of *eorem 1,

− ub(1) − use
(2) + uso

(3) +(4) +(5) − (6) − ub (7) − use
(8) + uso

(9) � 0, (40)

time-dependent Euler–Lagrange energy equation (37) is
obtained.

Equation (37) can be written more simply depending on
the supergraph bundle coordinates, so that

u
z
2
L

zx zu
􏼠 􏼡 − u

zL

zy
� 0,

u
z

zu

zL

zx
􏼠 􏼡 − u

zL

zy
� 0.

(41)

Equation (41) represents again the Lagrangian energy
equation on the supergraph bundle.

We will give an example to investigate the geometric and
physical results of this study. □

Example 1. In this example, we will define a logarithmic
spiral curve in superspace and obtain the energy equation for

a particle moving on it (Figure 4). *e reason we prefer the
logarithmic spiral curve is the equiangular spiral has a lot
longer history in the science of mathematics. For example, a
hawk follows a logarithmic spiral as it approaches its prey
from the air. Tropical hurricanes take the form of a loga-
rithmic spiral.

*e logarithmic spiral is given by (t, a(t) eb(t)θ

cos θ, a(t) eb(t)θ sin θ) in parametric form.
Its parametric representation is given by (here t is time

parameter, r is the distance from the origin, and θ is the angle
from the x-axis)

x(θ) � r(θ)cos θ � ae
bθ cos θ,

y(θ) � r(θ)cos θ � ae
bθ sin θ.

(42)

*e coordinate system of the jet bundle structure for the
superlogarithmic spiral curve is expressed as
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t, a(t)e
b(t)θ cos θ, a(t)e

b(t)θ sin θ, ate
b(t)θ cos θabt e

b(t)θ cos θ, ate
b(t)θ sin θabte

b(t)θ sin θ􏼐 􏼑

�

tb, tse
, tso

, ab(t) e
bb(t)θ cos θ, ase

(t)e
bse

(t)θ cos θaso
(t) e

bso
(t)θ cos θ, ab(t)e

bb(t)θ sin θ,

ase
(t) e

bse
(t)θ sin θaso

(t) e
bso

(t)θ sin θ, atbe
bb(t)θ cos θ + abbtbe

bb(t)θ cos θ, atse
e

bse
(t)θ cos θ + ase

btse
e

bse
(t)θ cos θ,

atso
e

bso
(t)θ cos θ + aso

btso
e

bso
(t)θ cos θ atbe

bb(t)θ sin θ + abbtbe
bb(t)θ sin θ,

atse
e

bse
(t)θ sin θ + ase

btse
e

bse
(t)θ sin θ, atso

e
bso

(t)θ sin θ + aso
btso

e
bso

(t)θ sin θ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
(43)

Firstly, we write the Lagrangian energy equation with
these superbundle coordinates. With logarithmic spiral
bundle coordinates, if we write and solve equation (33) that
we have obtained in Section 3, we obtain Lagrangian energy
equations of the particle:

rtb

z
2
Lb

ztb zrtb

+ rtse

z
2
Lse

ztse
zrtse

+ rtso

z
2
Lso

ztso
zrtso

− rtb

zLb

zrb

− rtse

zLse

zrse

− rtso

zLso

zrso

� 0.

(44)

Here, the Lagrangian energy function is represented as

L � L(r, t) � Lb rb, tb( 􏼁 + Lse
rse

, tse
􏼐 􏼑 + Lso

rso
, tso

􏼐 􏼑. (45)

Similar to other spaces, the general equation of La-
grangian energy is the same in superspace even in different
motion models.

For the solution of this Lagrangian energy equation, we
can take the following assumptions:

zLb

ztb

� λb,

zLse

ztso

� λse
,

zLso

ztso

� λso
.

(46)

We reorganize equation (44) with these assumptions:

rtb

zλb

zrtb

−
zLb

zrb

􏼠 􏼡 + rtse

zλse

zrtse

−
zLse

zrse

⎛⎝ ⎞⎠ + rtso

zλso

zrtso

−
zLso

zrso

⎛⎝ ⎞⎠ � 0.

(47)

Since the radius cannot be equal to zero,

zλb

zrtb

−
zLb

zrb

� 0,

zλse

zrtse

−
zLse

zrse

� 0,

zλso

zrtso

−
zLso

zrso

� 0.

(48)

If these equations are solved, we can obtain the
following:

Lb �
rbcb + kb

lntb
,

Lse
�

rse
cse

+ kse

lntse

,

Lso
�

rso
cso

+ kso

lntso

,

(49)

where cb, cse
, cso

, kb, kse
, kso

are constants. Also, the La-
grangian energy function is given by

L �
rb(θ) cb + kb

lntb
+

rse
(θ) cse

+ kse

lntse

+
rso

(θ) cso
+ kso

lntso

. (50)

We can write this equation for a superpoint briefly as
follows: L � (r.c + k/lnt), (c, k is constant)

L �
a(t)e

b(t)
· c + k

ln t
. (51)

(a)

mse

mso
mso

mb

mb

mse

(b)

Figure 4: Motion of a particle on a logarithmic spiral. (a) General view of the movement and (b) the direction of the movement according to
the body, soul even, and soul odd parts.
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It is seen that energy depends on radius and time.
Now we write and solve the Lagrangian energy equation

with supergraph bundle coordinates.
It is best to determine the turning points of the

movement on this curve with graph points because using
graph points helps to determine the most appropriate
movement according to the increase or decrease in the
curvature value of the curve. a0 is the starting point and an is
the destination point (Figure 5). *is segmentation can be
taken with the preferred number of points in accordance
with the movement. Figure 5 shows the vertex points
through which the moving particle passes and the rela-
tionship between the arc length and the length between these
points.

In Figure 5, the interpretation of the movement formed
by graph points according to the parts is shown.*e position
of the vertex and edges according to the body, soul odd, and
soul even parts for the movement on the logarithmic spiral
with supergraph coordinates is shown in more detail in
Figure 5. While building this, we used the β transformations

we defined for the differentiable structure of the graph
manifold. At the starting point, we assume that the move-
ment starts from the body part. At the next points, move-
ment will take form between these vertex points, depending
on whether the number is an even supernumber or an odd
supernumber (that is, it can only have soul even or soul odd
part, or it can have body and soul even or body and soul odd
part) or every part (from body, soul even, and soul odd
parts). *e energy value will also be calculated according to
the occurrence of the movement.

Graph bundle coordinates according to the parameter-
ization in (54) are given by

xb(θ), xse
(θ), xso

(θ), yb(θ), yse
(θ), yso

(θ), ub(θ), use
(θ), uso

(θ)􏼐 􏼑.

(52)

Since we will work with the graph space structure, we
have said before that we will take the time as a natural
coordinating of the physical structure. So, we can write the
coordinate structure in more detail as follows:

t, a(t) e
b(t)θ cos θ, a(t)e

b(t)θ sin θ, a(t)e
b(t)θ sin θ − a(t) e

b(t)θ cos θ􏼐 􏼑

� tb, tse
, tso

, ab(t)e
bb(t)θ cos θ, ase

(t)e
bse

(t)θ cos θ, aso
(t)e

bso
(t)θ cos θ, ab(t)e

bb(t)θ sin θ,􏼐 􏼑

ase
(t) e

bse
(t)θ sin θ aso

(t)e
bso

(t)θ sin θ, ab e
bb(t)θ sin θ − ab(t)e

bb(t)θ cos θ, atse
e

bse
(t)θ

sin θ − ase
(t)e

bse
(t)θ cos θ, atso

e
bso

(t)θ sin θ − aso
(t)e

bso
(t)θ cos θ.

(53)

We rewrite equation (37) according to these coordinates
and solve it similarly to the solution of the equation we have
obtained with the superbundle coordinates:

1
cos θ

rb

z
2
Lb

zrbzrb

+ rse

z
2
Lse

zrse
zrse

+ rso

z
2
Lso

zrso
zrso

⎡⎣ ⎤⎦ − (1 − cot θ) rb

zLb

zrb

+ rse

zLse

zrse

+ rso

zLso

zrso

􏼢 􏼣 � 0. (54)

When the Lagrangian energy function is calculated from
this equation, the following energy equation is obtained:

L �
1

ε(θ)
e
ε(θ)rb(t)

cb + kb + e
ε(θ)rse

(t)
cse

+ kse
+ e

ε(θ)rso
(t)

cso
+ kso

􏽨 􏽩.

(55)

Here, ε(θ) � cos θ − cot θcosecθ.
We can write this equation for a superpoint briefly as

follows:

L � e
r(t)

c + k (c, k is constan t),

L �
1

ε(θ)
e
ε(θ)a(t)eb(t)

c + k.

(56)

When we think of equations (56) and (51) without the
constants, we will see an exponential map formed between
these equations. *is is a transformation that we interpret as

a vector flow in differential geometry. Namely, X is a tangent
vector and ∅X is a flow of X.

exp : TpM⟶M,

exp(tX) � ∅X(t).
(57)

*e geometrical interpretation of this is that instead of
calculating the energy value with superbundle coordinates,
when we calculate the energy on the parts of each vertex
point and take it as the linear sum of the energy values we
find, the energy value we will find as the result of equation
(56) and the energy value we will calculate with (50)
equation will correspond to the same Lagrangian energy.
Since the derivative coordinate corresponds to the edge
coordinate, as it physically corresponds to the path between
two vertexes for movement, it will be sufficient to calculate
the energy formed between each vertex depending on the
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edge coordinate on these points. *e exponential map states
that the energy of the moving particle passing through these
vertexes can be calculated with a vector flow corresponding
to derivative coordinates between each vertex.

ε(θ) � 0 in equation (56) is a result that affects the
physical explanation of the motion. If θ � (π/2), the orbit is

circular (if θ � (π/2), this corresponds to a Fibonacci spiral,
which is not the curve we prefer to study in this example). In
this case, there is no slipping and deviation in motion; it goes
completely linear. If 0≤ θ≤ (π/2), the rotation will be less for
the orbit more closed. If (π/2)≤ θ ≤ π, since the movement
occurs at a great angle, there will be more turns.

For example, as shown in Figure 6, the first point has only
the body part, the second point has body and soul even parts,
the third point has only soul even part, the fourth point has
soul even and soul odd parts, and the fifth point has body, soul
even, and soul odd parts.*e last point has only the body part
like the beginning. *en the Lagrangian energy generated by
these six points is calculated by the following equation:

L �
1

ε(θ)
e
ε(θ)a1b(t)eb1b(t)

+ e
ε(θ)a2b(t)eb2b(t)

+ e
ε(θ)a2se

(t)e
b2se

(t)

􏼒 􏼓 + e
ε(θ)a3se

(t)e
b3se

(t)

􏼒 􏼓 + e
ε(θ)a4se

(t)e
b4se

(t)

− e
ε(θ)a4so

(t)e
b4so

(t)

􏼒 􏼓􏼔

+ e
ε(θ)a5b(t)eb5b(t)

+ e
ε(θ)a5se

(t)e
b5se

(t)

− e
ε(θ)a5so

(t)e
b5so

(t)

􏼒 􏼓 + e
ε(θ)a6b(t)eb6b(t)

􏼕c + k.

(58)

4. Conclusion and Discussion

In this study, firstly Lagrangian energy equations in
superspace have been obtained by defining necessary geo-
metric structures. It is advantageous to use bundle structures
for proofs in the presence of time-dependent Lagrangian
energy because the solution of mechanical systems is more
convenient with bundle structures. In this study, the bundle
structure was established in the superspace, and the time-
dependent energy equation was calculated with these
superbundle coordinates. On the other hand, graph theory is
the most suitable method for planning a movement that
completes a path as soon as possible. For this reason, we
formed the graph manifold structure in superspace and
formed a supergraph bundle with supergraphmanifolds. We
have figured thirty-one topological maps that constitute the
differential structure of the graph manifold. It is known that
supercoordinates consist of body, soul even, and soul odd
parts. We adapted this coordinate structure to graph theory
and examined it. In addition, we proved the jet bundle
required for time-dependent mechanical systems and the
derivative coordinate with graphs and interpreted geomet-
rically. *us, we have obtained the time-dependent La-
grangian energy equation with the supergraph bundle. We
compared the energy equation obtained with the superjet
bundle with the energy equation obtained with the super-
graph bundle. In addition, we show the application of our
study on an example and give the physical explication. We

showed the vertex and edges on the figure and showed how
to write an energy equation with these coordinates.

*e following conclusions can be drawn from this study:

(1) For Lagrangian equations obtained by using jet
bundles in superspace, the negative definition in
coordinates comes from odd parity. Although all
obtained geometric structures for superspace con-
tain this negative term, the resulting Lagrange energy
equation is independent of this term. *is is an
interesting result because the negative term is ex-
pected to affect the result due to odd parity. But when
working with supergraph bundles, odd parity affects
the direction. *e negative term is not used in the
equations of geometric structures. It is explained by
orientation on graph.

(2) *e general form of the Lagrange energy equation is
shown by equation (6). It can be expressed as
(z2L/zt z _qi) − (zL/zqi) � 0.

Lagrangian energy equation calculated in superspace
is shown in (33). *is equation can be written for
shortness as (z2L/zt z _xi) − (zL/zxi) � 0 (if _xi ≠ 0).
Lagrangian energy equation calculated with super-
graph bundle is shown in (37). *is equation can be
written as (z/zu)(zL/zx) − (zL/zy) � 0 (if u≠ 0)
In our previous work [11], we showed that the La-
grangian energy equation obtained in complex space

a2b,2se,2so

a3b,3se,3so

a3b,3se

a4b,4se,4so

a4b,4so

a4b,4se

a3se,3so
a4se,4so

a4so

a3so

a4se

a2b,2se

a2b,2so

a3b,3so

a,2so

a1b

a2b a3se

a3b

a4b

Figure 5: *e position of coupling the vertex and edges according
to the body, soul odd, and soul even parts for the logarithmic spiral.

(x1b) (x6b)

(x3se)

(x5b, x5se, x5so)

(x2b, x2so)
(x4se, x4so)

Figure 6: An example of different orientations that can occur
between six points for the movement.
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is similar to its general form in Euclid space. In this
study, it is seen that the Lagrangian energy equations
obtained in superspace are also similar to the general
equation. *e energy equation in superspace can be
projected by equations in Euclidean space or even
complex space. *e given example supports this
subject.

(3) When working with the supergraph bundle, the
derivative coordinate corresponds to the edge co-
ordinate, making it easier to calculate the obtained
energy equation. Equation (58) is an example of this.
*is can be seen in the given example. Supergraph
manifolds obtained by proving the differential
structure will be beneficial for the studies. *is study
is informative of the combination of graph theory
with differential geometry.

(4) Here, it is possible to associate the movement on the
curve with the vertexes by using edges to calculate
the arc length. (Δa2/Δa1) � · · · � (Δai/Δai− 1) � s

(arc length), Δai � ai − ai− 1.
If ai and ai− 1 are vertexes, the length Δai � ei cor-
responds to an edge.

(5) In this article, while the physical interpretation of
Lagrangian equations is made, the effect of the parts
of coordinates in superspace on this motion is
shown. *is matter is shown in the figures. *is
study could lead to further research. One of the
interesting conclusions of this study is if the moving
object continues to move without stopping at a
certain speed, the energy becomes stable after a
certain time. *is is compatible with the nature of
Lagrangian energy.

(6) As a result of given examples, we can see that La-
grangian energy value increases and approaches a
fixed value based on time. Obviously, the stabiliza-
tion of superenergy is analogous to the speed of light.
In addition, as shown in the example, it is useful to
use graph points to determine the most suitable path
when calculating the energy of a moving particle.
*us, we can evaluate the energy for each vertex
separately and examine even an infinite motion as if
it is finite.

Data Availability

Data analyzed in this study were a re-analysis of existing
data, which are openly available at locations cited in the
reference section. Further documentation about data pro-
cessing is available at [Journal of Mathematic] at doi.org/
10.1155/2021/5528123.

Additional Points

Summary. Our study focuses on obtaining the Lagrangian
energy equations in superspace with superjet bundle co-
ordinates. *erefore, the solution method is completely
different. In addition, it is more advantageous to work with
bundles in mechanics. In our study, these differences are

interpreted with given examples. In the examples, we will use
the graph theory to determine the optimal motion, velocity,
and energy of the particle, due to graph points. *ese as-
sumptions will be useful for similar studies (https://1drv.ms/
b/s!Ah4SvAdAlNDmggMghTVu-a7Pk-9C).
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