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An approximation method for the solution
of nonlinear integral equations
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Abstract

A Chebyshev collocation method has been presented to solve nonlinear integral
equations in terms of Chebyshev polynomials. This method transforms the integral
equation to a matrix equation which corresponds to a system of nonlinear algebraic
equations with unknown Chebyshev coefficients. Finally, some examples are presented
to illustrate the method and results discussed.
� 2005 Elsevier Inc. All rights reserved.

Keywords: Chebyshev polynomials and series; Collocation method; Nonlinear integral equation
1. Introduction

A Chebyshev-matrix method for solving nonlinear integral equations have
been presented by Sezer and Doğan [7].
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In this study, Chebyshev collocation method, which is given by Akyüz and
Sezer [1], is developed for nonlinear integral equation of Fredholm and Vol-
terra types in the forms

yðxÞ ¼ f ðxÞ þ k
Z 1

�1

Kðx; tÞ½yðtÞ�2 dt ð1:1Þ

and

yðxÞ ¼ f ðxÞ þ k
Z x

�1

Kðx; tÞ½yðtÞ�2 dt; ð1:2Þ

where k is a real parameter. We assume that these equations have solution as
truncated Chebyshev series defined by

yðxÞ ¼
XN
j¼0

0ajT jðxÞ; �1 6 x 6 1; ð1:3Þ

where Tj(x) denote the Chebyshev polynomials of the first kind, aj are
unknown Chebyshev coefficients, N is chosen any positive integer and

P0

is a sum whose first term is halved. To obtain the Chebyshev polynomial
solution of (1.1) and (1.2) it is assumed that f(x) and K(x, t) are defined on
[�1,1].

If the integrals are bounded in the range [0,1], then solution can be obtained
by means of the shifted Chebyshev polynomials T �

j ðtÞ.
2. Fundamental relations

We suppose that kernel functions and solutions of equations (1.1) and (1.2)
can be expressed as a truncated Chebyshev series. Then (1.3) can be written in
the matrix form

yðxÞ ¼ T ðxÞA; ð2:1Þ
where

T ðxÞ ¼ T 0ðxÞ T 1ðxÞ � � � T N ðxÞ½ �; A ¼ a0
2

a1 � � � aN
� �T

.

Besides, [y(t)]2 function can be written in the matrix form [7]

½yðtÞ�2 ¼ T ðtÞB ð2:2Þ

in which

T ðtÞ ¼ T 0ðtÞ T 1ðtÞ � � � T 2NðtÞ½ �; B ¼ b0
2

b1 � � � b2N
� �T
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and the elements bi of the column matrix B consist of ai and a�i = ai as follows:

bi ¼

ai
2

� �2

2
þ

PN� i
2

r¼1

ai
2�r

� �
ai

2þr

� �
for even i;

PN�i�1
2

r¼1

aiþ1
2 �r

� �
ai�1

2 þr

� �
for odd i.

8>>>>><
>>>>>:

Kernel function K(x, t) can be expanded to univariate Chebyshev series for
each xi in the form

Kðxi; tÞ ¼
XN
r¼0

00krðxiÞT rðtÞ;

where a summation symbol with double primes denotes a sum with first and
last terms halved, xi are the Chebyshev collocation points defined by

xi ¼ cos
ip
N

� �
; i ¼ 0; 1; . . . ;N ð2:3Þ

and Chebyshev coefficients kr(xi) are determined by means of the relation

krðxiÞ ¼
2

N

XN
j¼0

00Kðxi; tjÞT rðtjÞ; tj ¼ cos
jp
N

� �
;

which is given in [2]. Then the matrix representation of K(xi, t) can be given by

Kðxi; tÞ ¼ KðxiÞT ðtÞT; ð2:4Þ

where

KðxiÞ ¼ k0ðxiÞ
2

k1ðxiÞ � � � kN�1ðxiÞ kN ðxiÞ
2

h i
.

3. The method for solution of nonlinear Fredholm integral equations

In this section, we consider Fredholm equation in (1.1) and approximate to
solution by means of finite Chebyshev series defined in (1.3). The aim is to find
Chebyshev coefficients, that is, the matrix A. For this reason, firstly, the Cheby-
shev collocation points defined by (2.3) are substituted into Eq. (1.1) and then
it is obtained a matrix equation of the form

Y ¼ F þ kI ð3:1Þ
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in which I(x) denotes the integral part of Eq. (1.1) and

Y ¼

yðx0Þ
yðx1Þ
..
.

yðxN Þ

2
66664

3
77775; F ¼

f ðx0Þ
f ðx1Þ
..
.

f ðxN Þ

2
66664

3
77775; I ¼

Iðx0Þ
Iðx1Þ
..
.

IðxN Þ

2
66664

3
77775; T ¼

T ðx0Þ
T ðx1Þ
..
.

T ðxNÞ

2
66664

3
77775.

When Chebyshev collocation points are put in relation (2.1), the matrix Y

becomes

Y ¼ TA; ð3:2Þ
where the blocked matrix T is defined above. In similar way, substituting the
relations (2.2) and (2.4) in I(xi) and for i = 0,1, . . . ,N, j = 0,1, . . . , 2N using
the relation

Z ¼
Z 1

�1

T ðtÞTT ðtÞdt ¼
Z 1

�1

T iðtÞT jðtÞdt
� �

¼ zij
� �

;

whose entries are given in [3] as

zij ¼
1

1�ðiþjÞ2 þ
1

1�ði�jÞ2 for even iþ j;

0 for odd iþ j;

(

we have

IðxiÞ ¼ KðxiÞZB. ð3:3Þ
Therefore, we get the matrix I in terms of Chebyshev coefficients matrix in

the form

I ¼ KZB; ð3:4Þ
where

K ¼ Kðx0Þ Kðx1Þ � � � KðxNÞ½ �T.

Finally using the relation (3.2) and (3.4), we have the fundamental matrix
equation

TA� kKZB ¼ F ; ð3:5Þ
which corresponds to a system of (N + 1) nonlinear algebraic equations with
the (N + 1) unknown Chebyshev coefficients. Thus the unknown coefficients
aj can be computed from this equation and consequently the solution of
Fredholm integral equation is found in the form of truncated Chebyshev series.

If the integral is bounded by the range [0,1], the solution of integral
equation is defined as
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yðxÞ ¼
XN
j¼0

0a�j T
�
j ðxÞ; 0 6 x 6 1; ð3:6Þ

where T �
j ðxÞ denote the shifted Chebyshev polynomials and the Chebyshev

collocation points in [0,1] are

xi ¼
1

2
1þ cos

ip
N

� �� �
; i ¼ 0; 1; . . . ;N . ð3:7Þ

If the previous procedure is used, the fundamental matrix equation becomes

T �A� � kK�Z�B� ¼ F ; ð3:8Þ
where T = T* and Z = 2Z*.
4. The method for solution of nonlinear Volterra integral equations

We now consider the nonlinear Volterra integral equations in (1.2). To ob-
tain the solution of this equation in terms of Chebyshev polynomials we first
define the integral part of (1.2) by J(x) and then following the previous proce-
dure we obtain

TA ¼ F þ kJ . ð4:1Þ
Using the relations (2.2) and (2.4) in J(xi), and then for i = 0,1, . . . ,N,
j = 0,1, . . . , 2N

ZðxiÞ ¼
Z xi

�1

T ðtÞTT ðtÞdt ¼
Z xi

�1

T iðtÞT jðtÞdt
� �

¼ ½zijðxiÞ�;

where

zijðxÞ ¼
1

4

2x2 � 2 for iþ j ¼ 1;
T iþjþ1ðxÞ
iþjþ1

� T iþj�1

iþj�1
� 1

iþjþ1
þ 1

iþj�1
þ x2 � 1 for ji� jj ¼ 1;

T iþjþ1ðxÞ
iþjþ1

þ T 1�i�jðxÞ
1�i�j þ T 1þi�jðxÞ

1þi�j þ T 1�iþjðxÞ
1�iþj þ 2 1

1�ðiþjÞ2 þ
1

1�ði�jÞ2

h i
for even iþ j;

T iþjþ1ðxÞ
iþjþ1

þ T 1�i�jðxÞ
1�i�j þ T 1þi�jðxÞ

1þi�j þ T 1�iþjðxÞ
1�iþj � 2 1

1�ðiþjÞ2 þ
1

1�ði�jÞ2

h i
for odd iþ j;

8>>>>>>>>>>><
>>>>>>>>>>>:

we have

JðxiÞ ¼ KðxiÞZðxiÞB; i ¼ 0; 1; . . . ;N

or compact notation

J ¼ KZB; ð4:2Þ
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where K and Z are (N + 1)-by-(N + 1)2 and (N + 1)2-by-(2N + 1) matrices
respectively and can be written by the blocked matrices as follows:

K ¼

Kðx0Þ 0 � � � 0

0 Kðx1Þ � � � 0

..

. ..
. . .

. ..
.

0 0 � � � KðxN Þ

2
66664

3
77775; Z ¼

Zðx0Þ
Zðx1Þ
..
.

ZðxN Þ

2
66664

3
77775; J ¼

Jðx0Þ
Jðx1Þ
..
.

JðxNÞ

2
66664

3
77775.

Inserting the relation (4.2) in (4.1), the fundamental matrix equation of
Volterra type is obtained

TA� kKZB ¼ F . ð4:3Þ
Unknown Chebyshev coefficients are computed from this nonlinear algebraic
system and thereby we get Chebyshev series approach.

In addition, when the range is taken as [0,1], it is followed the above proce-
dure using the Chebyshev collocation points in (3.7). Therefore the fundamen-
tal matrix equation is obtained as

T �A� � kK�Z�B� ¼ F ; ð4:4Þ

where T = T* and Z ¼ 2Z�. Solving this nonlinear system, unknown coeffi-
cients a�j are found.
5. Accuracy of solution

We can easily check the accuracy of the solutions obtained in the forms (1.3)
and (3.6) as follows.

The solution (1.3) or the corresponding polynomial expansion must satisfy
approximately the (1.1) or (1.2) for �1 6 xi 6 1, i = 0,1, . . . ,N, that is

DðxiÞ ¼ yðxiÞ � f ðxiÞ � kIðxiÞ ffi 0

or

jDðxiÞj ffi 10�ki ; ð5:1Þ
where ki are positive integers.

If max 10�ki ¼ 10�k (k any positive integer) is prescribed, then the truncation
limit N is increased until the difference jD(xi)j becomes smaller than the pre-
scribed 10�k at each of the points xi. Thus, we can get better the solution
(1.3) by choosing k appropriately so that 10�k is very close to zero.

In the similar way, accuracy of the solution (3.6) for nonlinear Fredholm
and Volterra integral equations in the range 0 6 x 6 1 can be checked.
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6. Illustrations

In this section, we consider five problems. All results were computed using
Mathcad 2000 professional.

Example 1. Let us first consider the nonlinear Fredholm integral equation

yðxÞ ¼ x2 � 8

15
x� 7

6
þ
Z 1

0

ðxþ tÞ½yðtÞ�2 dt

and seek the solution y(x) as a truncated Chebyshev series

yðxÞ ¼
X2

j¼0

0a�j T
�
j ðxÞ 0 6 x 6 1; ð6:1Þ

so that

f ðxÞ ¼ x2 � 8

15
x� 7

6
; Kðx; tÞ ¼ xþ t; k ¼ 1; N ¼ 2.

For N = 2, the Chebyshev collocation points in [0,1] are found from (3.7) as

x0 ¼ 1; x1 ¼ 0.5; x2 ¼ 0

and the fundamental matrix of the problem is defined by

T �A� � K�Z�B� ¼ F ; ð6:2Þ
where

T � ¼
1 1 1

1 �1 1

1 0 �1

2
64

3
75; A� ¼

a�0=2

a�1
a�2

2
64

3
75; F ¼

� 7
10

� 71
60

� 7
6

2
64

3
75; K� ¼

1.5 0.5 0

1 0.5 0

0.5 0.5 0

2
64

3
75;

Z� ¼
1 0 � 1

3
0 � 1

15

0 1
3

0 � 1
5

0

� 1
3

0 7
15

0 � 19
105

2
64

3
75; B� ¼

1
2
ða

�2
0

2
þ a�21 þ a�22 Þ

a�0a
�
1 þ a�1a

�
2

a�2
1

2
þ a�0a

�
2

a�1a
�
2

a�2
2

2

2
666666664

3
777777775
.

If these matrices are substituted in (6.2), it is obtained nonlinear algebraic sys-
tem. This system yields the solution

a�0 ¼ �1.25; a�1 ¼ 0.5; a�2 ¼ 0.125.

Substituting these values in (6.1) we have

yðxÞ ¼ x2 � 1;

which is the exact solution.
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Example 2. Let us find the Chebyshev series solution of Fredholm integral
equation

yðxÞ ¼ 1

2
� 1

8
xþ

Z 1

�1

sin
1

4
xðt þ 1Þ

� �
½yðtÞ�2 dt. ð6:3Þ

Using the procedure in Section 3 for the interval [�1,1] and taking N = 3 and
5, the matrices in Eq. (3.5) are computed. Hence, a nonlinear algebraic system
is gained. For a0 = 1, a1 = 0, ai = 0 and a0 = 1, a1 = 5, ai = 0, 2 6 i 6 N, this
system is approximately solved using the Mathcad 2000 Professional. Starting
from these approximations, that is obtained two different solutions of (6.3)
given in Tables 1 and 2, respectively.

The numerical solution of (6.3) in Chebyshev series was given by Shimasaki
and Kiyono [8] and Sezer and Dogan [7]. A comparison of these solutions with
the our solution is given in Tables 1 and 2.
Example 3. Let us find the Chebyshev series solution of nonlinear Volterra
integral equation in [0,1]

yðxÞ ¼ ex � 0.5ðe2x � 1Þ þ
Z x

0

½yðtÞ�2 dt;

with the exact solution y(x) = ex.
Let us suppose that y(x) is approximated by a truncated Chebyshev

polynomial of degree six (N = 6). Using the procedure in Section 4 for [0,1], we
find the approximate solution of this equation.

Taking h = 0.1, different variable transformation methods in combination
with the Trapezoidal quadrature rule were applied to this equation in [4]. The
absolute errors found by presented method are compared with the errors given
by variable transforms of Korobov, Sidi and Laurie in Table 3.
Table 1
Comparison of Chebyshev coefficients in the first solution

i Shimasaki–Kiyono�s
N = 20, ai

Sezer–Doğan�s
N = 3, ai

Presented method
N = 3, ai

Presented method
N = 5, ai

0 0.9999995 1 1 1
1 �0.0022401 �0.002180 �0.0022381 �0.0022392
2 �0.0000002 0 0 0
3 �0.0006414 �0.000656 �0.0006416 �0.0006414
4 0.0 0
5 0.0000013 0.0000013

ai = 0.0 (6 6 i 6 20).



Table 2
Comparison of Chebyshev coefficients in the second solution

i Shimasaki–Kiyono�s
N = 20, ai

Sezer–Doğan�s
N = 3, ai

Presented method
N = 3, ai

Presented method
N = 5, ai

0 1.000001 1 1 1
1 5.088390 5.088420 5.0882234 5.088392
2 0.0000004 0 0 0
3 �0.0397466 �0.040228 �0.0397288 �0.0397468
4 �0.0000001 0
5 0.0001007 0.0001007
6 0.0
7 �0.0000001
8 �0.0000001

ai = 0.0 (9 6 i 6 20).

Table 3
Error analysis of Example 3

x Korobov�s Sidi�s Laurie�s Presented method

0.1 0.12E�4 0.66E�8 0.12E�6 0.36E�7
0.2 0.31E�4 0.34E�7 0.27E�6 0.63E�7
0.3 0.60E�4 0.11E�6 0.47E�6 0.35E�7
0.4 0.11E�3 0.30E�6 0.71E�6 0.88E�7
0.5 0.18E�3 0.71E�6 0.95E�6 0.23E�7
0.6 0.29E�3 0.15E�5 0.12E�5 0.70E�7
0.7 0.49E�3 0.31E�5 0.13E�5 0.69E�7
0.8 0.82E�3 0.62E�5 0.11E�5 0.14E�7
0.9 0.14E�2 0.12E�4 0.27E�6 0.12E�7
1 0.25E�2 0.23E�4 0.20E�5 0.86E�7
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Example 4. Let us consider the nonlinear Volterra integral equation in [�1,1]

yðxÞ ¼ ex � ðxþ 1Þ sin xþ
Z x

�1

e�2t sin x½yðtÞ�2 dt.

The analytical solution is y(x) = ex. Let us suppose that y(x) is approximated
by a truncated Chebyshev series

yðxÞ ¼
X7

j¼0

0ajT jðxÞ; �1 6 x 6 1.

Using the procedure in Section 4 for the interval [�1,1], we find the approx-
imate solution of this equation. The same example has been solved by Sezer [6]
using Taylor polynomials. Taking N = 7, a comparison of these solutions with
the exact solution is given in Table 4.



Table 4
Comparison of solutions for Example 4

x Taylor solution y(x) Presented method y(x) Exact solution ex

�1.0 0.367879 0.367879 0.367879
�0.8 0.449329 0.449328 0.449329
�0.6 0.5488117 0.5488142 0.5488116
�0.4 0.670320 0.670324 0.670320
�0.2 0.8187291 0.8187269 0.8187308
0.0 0.9999898 0.9999877 1
0.2 1.221358 1.221395 1.221403
0.4 1.491666 1.491835 1.491825
0.6 1.821644 1.822138 1.822119
0.8 2.224291 2.225541 2.225541
1.0 2.715301 2.718277 2.718282

Table 5
Comparison of solutions for Example 5

x Iteration method y(x) Haselgrove�s solution y(x) Presented method y(x)

0.0 0.2791588 0.2793876 0.2791565
0.1 0.3608004 0.3609945 0.3607984
0.2 0.4437933 0.4439571 0.4437913
0.3 0.5280324 0.5281694 0.5280301
0.4 0.6134208 0.6135344 0.6134181
0.5 0.6998697 0.6999627 0.6998664
0.6 0.7872971 0.7873723 0.7872932
0.7 0.8756278 0.8756874 0.8756232
0.8 0.9647925 0.9648387 0.9647873
0.9 1.0547276 1.0547622 1.0547218
1.0 1.1453743 1.1453990 1.145368
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Example 5. Our last example is nonlinear Fredholm integral equation

yðxÞ ¼ xþ 0.5

Z 1

0

e�xt½yðtÞ�2 dt.

Using the procedure in section three for interval [0,1], for N = 6 approxi-
mate solution of this equation are found. Besides, taking N = 6, this equation
was solved by Chebyshev Iteration method and Haselgrove�s method [5].
Obtained results are compared with the results of Iteration method and Hasel-
grove�s results in Table 5. For N = 6, whereas an estimated accuracy of order
was found 10�6 by Chebyshev Iteration methods, the accuracy of solution by
presented method is found 10�9 using (5.1).
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