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Abstract

The aim of this paper is to obtain boundedness conditions for the maximal function
Mf and to prove the necessary and sufficient conditions for the fractional maximal oparator
M, in the Lorentz-Morrey spaces £, ,(R") which are a new class of functions. We get
our main results by using the obtained sharp rearrangement estimates. The obtained results
are applied to the boundedness of particular operators such as the Bochner-Riesz operator
B’ and the Schrédinger-type operators V7 (-A+V)” and V’V(-A+V)” in the Lorentz-
Morrey spaces L, (R"), where the nonnegative potential V belongs to the reverse Holder
class B_(R").
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1. Introduction

Let B(x,r) the open ball centered at x of radius r for x e R" and
| B(x,r)| is the Lebesgue measure of B(x,r). The fractional maximal
operator is defined at f € L*(R") by

M, f(x):= sug? | B(x,7) |}1 .[BW) [ f(y)|dy,0<a<n

where the supremum is taken over all the balls centered at x of radius r.
Note that in the case o =0 we get the classical Hardy-Littlewood maximal
operator M := M. It is well known that for the maximal operator M the
rearrangement inequality

of T(O)<(MFY () <Cf (1), te(0,)

holds, (see [4], Chapter 3, Theorem 3.8) where f isthe non-increasing
rearrangement of f such that f (t):=inf{A>0: d (1) <0}, df(/i) denotes
the distribution function of f given by d (4):=[{x €(0,):| f(x)| > 4}| for

all t>0, and £ (t):= Hﬂ £ (s)ds.

The Lorentz-Morrey spaces £, ,(R") are a new class of functions
and introduced by Mingione in [18] as follows.

Definition 1.1 : Let 1<p<e, O<g<e, 0<A<n, and fel  (R")
Then the Lorentz-Morrey space EM; LR") is the set of all measurable
functions fon R" iff

A

1l = 9P 7 o, o
v xeR",r>0 !

Mingione [18], studied the boundedness of the restricted fractional
maximal operator M, , in the restricted Lorentz-Morrey spaces
L, ., (B), where B, is a ggiven ball and B is any other ball contained in
B, and containing x. The author derived a general non-linear version,
extending a priori estimates and regularity results for possibly degenerate
non-linear elliptic problems to the various spaces of Lorentz and Lorentz-
Morrey type considered in [1, 3, 18] and [22]. In [22], Ragusa studied
some embeddings between these spaces. Note that the spaces £ (R")
and L (R") defined by Mingione and Ragusa respectively, coincide,
thus Z’:q JRY)=L ‘ﬂ(]R"). The local variant of Lorentz-Morrey spaces
L. L(RY) replacilfi';;' by B(0,r) instead of B(x,r), so called the local
Morrey-Lorentz spaces L;f ".2(R") are introduced and the basic properties
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of these spaces are given in [2]. Recently, in [3, 11] and [12], the authors
studied the boundedness of some classical operators of harmonic analysis
in these spaces.

In this paper, first, we give some basic properties of Lorentz-
Morrey spaces £, (R"). Furthermore, we get the sharp rearrangement
inequalities which we use while proving our results. Next, in section 3, we
obtain the boundedness conditions for the maximal function Mf in the
Lorentz-Morrey spaces £, ,(R") and we get the necessary and sufficient
conditions for boundedness of the fractional maximal operator M_ in the
spaces £, (R"). Finally, insection 4, we apply these results to the Bochner-
Riesz operator B’ and the Schrédinger-type operators V7 (-A+V)™ and
V’V(-A+V)” in the Lorentz-Morrey spaces L, (R"), respectively,
where the nonnegative potential V belongs to the reverse Holder class
B_(R").

Throughout the paper, we denote by ¢ and C for positive constants,
independent of appropriate parameters and not necessary the same at
each occurrence. If pe[l,o], the conjugate number p’ is defined by

LIS Finally, for non-negative expressions A , A, we use the symbol
pp

A, = A, to express that cA, <A, <CA, for some positive constants c and
C independent of the variables in the expressions A, and A,.

2. Preliminaries

The Lorentz space LM(R") is the collection of all measurable
functions of fon R" such the quantity

1
U:(t;f*a))q%]q, 0<geem0<qeos

supt;f*(t), O<p<oo,g=oco,

t>0

||f||Lp'q(R") =

is finite. If 1< p<e0,1<g<eco, then

AN, g, SIS

*

Lp,q(R™)

p
<_r
< s

Lp,q(R" Lp,qg(®")

For more detail useful references about Lorentz spaces considered in
[4].

We denote by L, ,(R") Morrey space given in [19];
0<A<nl<p<e, fel , if fel(R") and

p.AY
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!
= sup r p”fHLp(B(x,V))<oo.

xeR™,r>0

1 £1|

p,2(R")

Morrey spaces appeared to be useful in the study of local behavior
properties of the solutions of second order elliptic PDEs. For more
information about Morrey-type spaces see [5, 6, 10, 13] and [14].

The Lorentz-Morrey spaces £, ;(R") areavery natural generalization
of the Lorentz spaces L, (R") and Morrey spaces L, ,(R").

Remark 2.1 : As a consequence by Lemma 2.2 (ii), if g=p then
L ,RY=L (R"), if 1=0 then £, (R")=L, (R"), and A=n,p=g,
then Ep’p,n(R”)ELm(R”). If <0 or A>n, then EP,M(R")EB, where 6
the set of all functions equivalent to 0 on R".

Lemma 2.2 : [4], [8], [21]
(i) Let 0< p <oo, then jRn £ 0| dx = j:( £10)" dt holds.
(ii) Forany t>0, sup‘E‘=tjE|f(x)| dx = [} f*(s)ds.

(iii) For any t>0, (f+g) (1)< f° [é] +g (%] holds.

Lemma 2.3 : Let 0 < o < n. Then there exist a positive constant C, depending on
o and n such that

1-Z .
supt (M, f Zy) (VS C [ | f(x)ldx 2.1)
>0 R
and
sup(M, f Zy,,)) ()< C sup £ f(@). (2.2)
t>0 >

Proof : The estimate (2.1) follows from (Theorem 1.1, in [7]). For the
estimate (2.2), for every B(x,r) c R", we get

24 L N T o "
sup|Bx,n)|" " [ 1 f)ldy<|Banl [0 f o vdr

r>0

<! supt;f*(t).

- t>0
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Hence the proof is completed. O

Lemma 2.4 : Let 0 < o <n. Then there exist a positive constant C, depending
only on nand o, such that

(M, f Xy) ()SC sup T (f X yry) (@), >0 (2.3)

<T<oo

holds for all feL*(R"). Inequality (2.3) is sharp in the sense that for all
@ e M*(0,00;1) there exists a function f on R" such that f =¢ ae. on
(0,00) and

(M, f X)) ()2 ¢ sup 77 (f 2y, (2), £>0, (2.4)

t<T<oo

where M (0,0;1) is the set of all non-negative and non-increasing measurable
functions on (0,0) and c is a positive constant which depends only on n and «.

Proof : To prove the inequality (2.3), we may suppose that

Sup T; (fZB(x,r) )H (T) <o,

t<T<eo

otherwise there is nothing to prove. Then by Lemma 2.2 (i)
t £
[ lf 2 @) dx = [ (F 240, (98

holds for all Ec R" with |E| <t. In particular, if we put
E={x:|f)]> (f 240.,)) O}

then |E|<t and so f e L,(E). Then the function
8,(x) =max{| f(0)| - (f 25,,,)" (1), 0} sgn f(x),
belongs to L, (R"). Also the function
I, () = min{| F(0)], (f Zy.,)) B} sgn F(3),

holds
() (@) =min{(f 2., @), (f Zpr,) (O}, T €(0,0).

Thus
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7>0 O<z<t t<T<oo0

sup 7" (h,) (7) = maX{SUP E'(f X)) (B, S0P 77 (f Zsu,r))*(f)}
(2.5)

=sup 7" (f Zy)) (D) S sUp 7" (F 2y,) (1)

t<T<oo0 t<T<oo

which together with the inequality (2.4) implies that h e WL,.
Furthermore, since f =h, +g, and ‘

(8 ()= Zon O Zsge)) @)= (F 230, (1)), T € (0,0). (2.6)

By using Lemma 2.2 (iv), Lemma 2.3, the inequalities (2.5) and (2.6),

we get

(M, f) ()< (M,g,) [%) +(Mh) (é]

2
tn L
S (Ej JRngt(y)dwsngﬂ (1) (7)

2

S [ ) @)= (F ) (8 dr

+ sup T;(f//tlg(x,y))wr (T)

0<7<eo

S Sup TZ(f/?B(Jc,r))H (T)

0<7<oo

and the inequality (2.3) follows. Furthermore, the inequality (2.4) exist
for all te(0,00). Let @ e M*(0,00;4), where M"(0,o0;1) is the set of
all non-negative and non-increasing measurable functions on (0, ).

n), where @, is the volume of the unit ball in R,

Putting f(x)=¢@(®, |x

o, =[B0,7)

; and yeB(x,r), we have (f;(m/r))*:(p(o,oo). Moreover,

denote by B(x, y|) the ball with centered x and having radius |y| Then,

7

for |y| > |x
(M, f) () =5up BN [, 1 F)ldy

>1BGlyD I [ 1 f)ldy

B(x|y))
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_ c(a),, G [ )*(r)drj
=cH(w, |y "),

where H is the Hardy operator given in [23] defined as
H(t)= t%_ljé(p(r)dz',t € (0,0). Consequently,
(M, f)(x)=c sup H(7),

>0 |x"
n

thus the inequality (2.4) follows on taking rearrrangements. Hence the
proof is completed. O

3. Main Results

In this section, we characterize the boundedness conditions of
maximal operators M and prove the necessary and sufficient conditions
for the fractional maximal oparator M, in the Lorentz-Morrey spaces

L, .,(R") by using the obtained sharp rearrangement estimates.

Theorem3.1:Let 1<p<eo,1<q<coand 0<S A<n andforall fe L, (R"),
then maximal operator M is bounded in the Lorentz-Morrey spaces L, ., (R").

Proof : Let 1<p<oo,1<g<oco. Then by using definition of the spaces
L (R"), Lemma 2.2 (ii) and Lemma 2.3, we get

p.q;A
Z’ J—

||Mf|| L —sug)r_” t” "(Mf) (t)

Lq(O/w)

_A

=supr” j:[t"(Mf)*(t)] at

>0

1

A q

1 q
ol > ” dt
~supr ” J‘O [tr’(f%(x,r)) (t)] "

>0

= Supr "f" (B(x r))

<EA.
p-1 / Gy i ®")
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Hence the maximal operator M is bounded on the Lorentz-Morrey
spaces L . (R"). O

P4

Theorem 3.2 : Let 0 < « < n. Then the following statements are equivalent:

. -1 .
() If 1<psg<e,lsusss<e,l<p<—=,0<A<n, then the fractional
maximal operator M, is bounded from Lorentz-Morrey space L, ,(R")

to another one Eq/s/ L(R") such that

M, SIAL s
" af ‘Cq,s;/l(Rn)N fﬁp,u;l(R”)

n

(if) For all @ € M*(0,00;1) there exists a positive constant C such that

Sos

1
A - a g F
Sul(f; rf jo tsup T" IO¢(0)da t1 dt

(3.1)

r>0

Al vy u
<Csupr’ {_[0 o' () dt} .

L 101 o
@n) R Eave

Proof : (i) < (ii).
(i) Assume that the fractional maximal operator M  is bounded from

£ ) 10 £, &) Then i fl, o S, ol
For every @=(fx,.,) )eM 0,21), (fr,.,) =¢ ae on
(0,0), and from Lemma 2.4

1
S s

sup r ¢ [ j:[sup r%’ljo’( f;(B(x,r))'(O')daj tqldt]

r>0 <T<oo
1
A a i ff
:su(})) rf IO [sup " (f Xser) (T)J 1 dt
r> t<T<oo

1
A

<supr ! D:((Ma o) t;_]dt]s

r>0
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A
Ssupr”

r>0

[ (F ey @ fz_ld’f}u

holds.

(ii) Conversely, for every ¢ = (f;(B(m Y(t)e M+(0,oo;i«), (f;(BW))* =@
a.e. on (0,%), and from Lemma 2.4

A

P, =527 [IJ((MC,fr(t))S wdtr

r>0 t<T<o0

P Co T
Ssupr’ [IO (supf (f Xoeer) (r)J t1 dt}

r>0 <7<

=C sup ri {jg [sup T J (f X ) (a)dajl t dt}

1
2

Ssupr’ [f:((f L) O t”'ldt]ll
=1, e

holds.
(if) & (iif) The equivalence of (if) and (iii) follows from the same
proof method in [20]. Hence the proof is completed. O

4. Some Applications

4.1 The estimate of Bochner-Riesz operator in the spaces L,  (R")

Let 8> (n—1)/2, B (f)"(&)=(1-r*|£F) f(€), and B’ (x)=r"B’(x /1)
for r>0. The maximal Bochner-Riesz operator is defined by (see [16] and

(171)
B;..(f)(x)=sup| B} (f)()]

It is clear that (see [9])
B, .(f)(x) < Mf(x). (4.1)
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Since the maximal operator M is bounded on the Lorentz-Morrey
spaces £, ,(R"), then from Theorem 3.1 we get the following statement.

Theorem 4.1: Let 1<p<oo,1<g<oeo and 0< A <n, and there exist a positive
constant C independent of f and for all fe L, ,(R"). Then the Bochner-Riesz
operator B’ is bounded on the Lorentz-Morrey spaces L, ,R").

Proof : The idea of proofs of Theorem 4.1 is based on the inequality (4.1)
in which the maximal Bochner-Riesz operator BJ,* dominated by the
operator M. Hence, the proof is step by step the same as in the proof of
Theorem 3.1. O

For the case 4=0, from Theorem 4.1 we get the following statement.

Corollary 4.2 : Let 1<p <eo,1<g<oo and 0< A <n. Then the Bochner-Riesz
operator B? is bounded on the Lorentz spaces L, (R").

4.2 The estimates of Schridinger-type operators VY (~A+VY™? and
V'V(=A+ V)7 in the spaces L, ,(R")

When V is a non-negative polynomial, Zhong ([26]) proved that the
operators V5(=A+V)* and V*?V(-A+V)™*, keN, are bounded on
L (R"), 1<p<eo. Shen [24] studied the Schrodinger operator —~A+V,
assuming the nonnegative potential V' belongs to the reverse Holder
class Bq(R") for g2n/2 and he proved the LP(R") boundedness of the
operators (~A+V)”, V*(=A+V)", V(-A+V) ? and V(-A+V)™".

We give the boundedness of the Schrodinger-type operators

T,=V'(-A+V)’, 0<y< B <],

and

T, =V'V(-A+V) 7, OS}/S%SﬁSl,ﬂ—}/Z%

from the Lorentz-Morrey spaces EW; B QR") to another one EM; LR"). Note
that the operators V(-A+V)™ and V*V(-A+V)™ in [15] are the special
case of 7, and 7,, respectively.

It is worth pointing out that we need to establish pointwise estimates
for 7,, 7T, by using the estimates of fundamental solution for the
Schrodinger operator on R" in [15]. Then we prove the boundedness of
the Schrodinger-type operators V7’ (=A+V)? and V'V(-A+V)” in the
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Lorentz-Morrey spaces £, ,(R") by using boundedness of the fractional
maximal operators M_ in these spaces.

The following two pointwise estimates for 7, and 7, are proved in
[25] with the potential V € B_.

Theorem A : [25] Suppose that VeB_ and 0<y < B <1. Then for any
feC/(R")

|7, f(0)| S M, (),

where o =2(B—7y).

I/\
IN

Theorem B : [25] Suppose that VeB_, 0<y
Then for any f e C;(R")

N\»—\

B <1 and -

I,f()| < M, f(x),

where o =2(f—y)-1.

From Theorem 3.2 and by using Theorems A and B we get the
following two statements, respectively.

Theorem 4.3 : Let VeB_, 0<y < <1. Then the following statements are

equivalent:
(@) If 1<p<q<oo1<u<s<oo1<p<2(ﬁ ,0<A<n.  Then the
Schrodinger-type operator T, is bounded from o (RY) to L (RY),
such that there is a positive constant C the inequality

IZAH, e SCIS
q,s; ’

2R Ly u:a®")

holds for all feCj(R")NL, ,(R").
(i1) The inequality (3.1) holds for all ¢ € M(0,00;1).

_1_2
(lll) Lt (ﬁj’)

Theorem 4.4 : Let VeB_, 0<y< % <P, B-y>2 % Then the following
statements are equivalent:
() If 1<ps<g<eo,lSuss<e,l<p<, 7 ,0<A<n. Then the

2(/3
Schrodinger-type operator T, is bounded from L R to L (R,
such that there is a positive constant C the inequality
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7T
175,

S;

<C
aSCIFL,

holds for all f e C;(R")N [,p,q;l(R").

(ii) The inequality (3.1) holds for all ¢ € M*(0,0;1).

(iif) %— 1_ 21

q n-1

Proof : The idea of proofs of Theorem 4.3 and Theorem 4.4 are based on

the Theorem A and Theorem B in which the Schrodinger-type operators

7, and 7, dominated by the operator M, respectively. Hence, the proofs

are step by step the same as in the proof of Theorem 3.2. O
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