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The evaluation of relativistic molecular integrals over exponential−type spinor orbitals requires the use 
of relativistic auxiliary functions in prolate spheroidal coordinates, and has been recently achieved (Bağcı 
and Hoggan (2015) [14]). This process is used in the solution of the molecular Dirac equation for 
electrons moving in a Coulomb potential. A series of papers on a method for fully analytical evaluation 
of relativistic auxiliary functions has been published [2, 3, 4] From the perspective of computational 
physics, these studies demonstrate how to deal with the integrals of the product of power functions 
with non−integer exponents and incomplete gamma functions. The computer program package used 
to calculate these auxiliary functions with high accuracy is presented. It is designed using the J ulia
programming language and yields highly accurate results for molecular integrals over a wide range 
of orbital parameters and quantum numbers. Additionally, the program package facilitates the efficient 
calculation of the angular momentum coefficients that arise from the product of two normalized Legendre 
functions centered at different atomic positions, and the determination of the rotation angular functions 
used for both complex and real spherical harmonics. Sample calculations are performed for two−center 
one−electron integrals over non−integer Slater−type orbitals, and the results prove the robustness of 
the package.

Program summary
Program Title: JRAF
CPC Library link to program files: https://doi .org /10 .17632 /942xsbvfdf .1
Developer’s repository link: https://github .com /abagciphys /JRAF.jl
Licensing provisions: MIT
Programming language: J ulia programming language
Supplementary material: An experimental version of the computer program package written in Mathema-
tica programming language [5].
External routines/libraries: Nemo computer algebra package for the J ulia programming language [6], Cuba
multidimensional numerical integration using different algorithms in J ulia [7].
Nature of problem: Relativistic molecular auxiliary function integrals result from the expression of a 
two−center two−electron Coulomb energy associated with a charge density. The Coulomb energy is 
transformed into kinetic energy integrals using Poisson’s equation and the single−center potential, 
considering that the Laplace expansion for the Coulomb interactions is expressed in terms of normalized 
non−integer Slater−type orbitals [1]. Using the resulting expression for the two−center two−electron 
integrals, relativistic auxiliary function integrals are derived in prolate ellipsoidal coordinates. These 
auxiliary functions are generalized to the entire set of physical potential operators for the Coulomb 
potential case.
The integral of the relativistic auxiliary functions have no closed−form solutions except that their 
parameters are integers. As such, the analytical evaluation of these functions is challenging. They are 
used in the solution of the matrix form representation of the molecular Dirac−Fock self−consistent field 
(SCF) equation.
Solution method: A criterion that considers the symmetry properties of two−center two−electron 
molecular integrals is initially proposed [2]. This obviates the need for the computation of incomplete and 
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complementary incomplete gamma functions, and utilizes their sum (P + Q = 1). The resulting form of 
the integral of the relativistic molecular auxiliary functions is expressed in terms of the convergent series 
representation of incomplete beta functions. Recurrence relationships are then derived for each of these 
sub−functions [3]. The algorithm for computation of the auxiliary functions is based on the vectorization 
procedure defined in [4].
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1. Introduction

The solution of the matrix form representation of the molecu-
lar Dirac equation requires the use of an exponential−type basis 
spinor when the nuclei are considered as point−like [1–3]. To 
avoid variational collapse [4,5], these types of basis spinors must 
be derived from L-spinors [6,7],

f β
nrκ (ζ, r) =

[
nr !(2γ + nr)

2Nnrκ (Nnrκ − κ)�(2γ + nr)

]
(2ζ r)γ e−ζ r

×
{
−(1 − δnr 0)L2γ

nr−1(2ζ r) + β

(
Nnrκ − κ

nr + 2γ

)
L2γ

nr (2ζ r)

}
. (1)

These are the solutions of the following Dirac−Coulomb differen-
tial equation defined for hydrogen−like atoms [7,8],

∂

∂r
f β
nrκ (ζ, r) = −β

κ

r
f β
nrκ (ζ, r)

+
(

βNnrκ − γ − nr

r
+ ζ

)
f −β
nrκ (ζ, r) , (2)

where Lp
q (x) are generalized Laguerre polynomials. nr is the radial 

quantum number, with nr = n − |κ |, and n is the principal quan-
tum number. κ = {±1,±2, ...} are the eigenvalues of an operator 
that commutes with the Dirac Hamiltonian, −β (σ .L + I), where 
L is the orbital angular momentum operator, σ = {σ1, σ2, σ3}, σi

are the Pauli spin matrices, I denotes the 2 × 2 identity matrix, 
and β = ±1 represent the Large− and Small-components of the 
wave−function, respectively. This nomenclature is preferred for 
positive energy solutions. The Small-component approaches zero 
in the non−relativistic limit and the Large-component becomes 
a solution of the corresponding non−relativistic equation, i.e., the 
Schrödinger equation. The exponent of the power functions γ is 
defined as

γ =
√

κ2 − Z 2

c2
. (3)

Z is the atomic number, c is the speed of light, and Nnrκ ,

Nnrκ =
√

n2
r + 2nrγ + κ2. (4)

Thus, the four−component form of the Dirac equation for a central 
Coulomb potential is free from the spin−angular component and is 
2

reduced to solve a system of differential equations given by Eq. (2)
with solution [Eq. (1)]. The Eq. (1) ensures that kinetic−balance
condition is fulfilled due to direct coupling between Large− and 
Small-components of the spinor.

However, the basis spinors derived from Eqs. (1), (2) such as 
the S-spinors [7] and Slater−type spinor orbitals [9] do not pose 
an addition theorem [10]. The power function rγ in Eq. (1) is 
non−analytic. This is because the exponent γ is a real number. 
As such, a meaningful power series about r = 0 cannot be ob-
tained. Consequently, obtaining compact form relations for rela-
tivistic molecular integrals is challenging [11,12] (Please also see 
the references). A recently proposed method in [13] for the nu-
merical treatment of molecular integrals facilitates the generation 
of successful results in the range of the parameters. In this method, 
the molecular integrals are expressed in terms of new relativis-
tic molecular auxiliary functions, derived in [14]. They are calcu-
lated using the numerical global-adaptive method based on the 
Gauss−Kronrod numerical integration extension [15,16].

The integral of the relativistic molecular auxiliary functions is 
derived based on the procedure given in [17,18] for the solution 
of the Poisson’s equation using spectral forms [19] (and reference 
therein), wherein the Coulomb energy is expressed as a kinetic 
energy−like integral using Green’s theorem. The potential in the 
resulting expression satisfies Poisson’s equation. It is solved as a 
partial differential equation in spherical coordinates. The poten-
tial is expanded to a new set of functions, called spectral forms, 
which involves incomplete gamma functions. The series represen-
tation of incomplete gamma functions is computationally unstable 
[20–23]. The convergence rate can be considerably slow depend-
ing on the values of the parameters. This leads to the imposition 
of certain restrictions on the set of functions used for the expan-
sion.

The aforementioned procedure was applied to a general set of 
functions wherein the parameters were not restricted [14]. A sym-
metry feature of the two−center two−electron molecular integrals 
was identified using a criterion in [24,25], which obviates the need 
for immediate expansion of incomplete gamma functions or the 
use of the relations for the normalized complementary incom-
plete and normalized incomplete gamma functions as P = Q − 1, 
Q = P − 1. Their conditional convergence [20,22] resulted in re-
strictions for the set of functions used.

Criterion. Let P [n4 − n1, z] and Q
[
n′

4 − n′
1, z

]
; then n4 − n1 = a ±

c, n′ − n′ = a ± d, where a ∈R, {c,d} ∈Z holds.
4 1
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Finally, the following relationship for the relativistic molecular 
auxiliary function (RAF) integrals are obtained in prolate spheroidal 
coordinates,{
Pn1,q

n2n3n4 (p123)

Qn1,q
n2n3n4 (p123)

}

= pn1
1

(n4 − n1)n1

∞∫
1

1∫
−1

(ξν)q (ξ + ν)n2 (ξ − ν)n3

×
⎧⎨
⎩

P
[
n4 − n1, p1 f k

i j (ξ, ν)
]

Q
[
n4 − n1, p1 f k

i j (ξ, ν)
]
⎫⎬
⎭ ep2ξ−p3νdξdν, (5)

where,

f k
i j (ξ,μ) = (ξμ)k (ξ + ν)i (ξ − ν) j , (6)

represent the elements required to generate a potential. For a 
Coulomb potential, it has the form i = 1, k = j = 0; f 0

10 (ξ, ν) =
(ξ + ν). For any value of f k

i j , the identified criterion is valid. This 
indicates that an analytical solution can be obtained for Eq. (5)
considering a Coulomb potential. The RAF integrals are analo-
gous to the radial two−component spinor, and are a result of the 
two−center two−electron interactions. Spherical symmetry results 
in the term (ξν)q , which can be easily eliminated because q ∈ Z . 
They have a two−component form. For an arbitrarily potential, the 
validity of the criterion leads to the representation of a two−elec-
tron interaction as a one−electron interaction.

A computer program based on previously published analytical 
computational methods [24,26,27] for RAFs is presented. This is 
the only algorithm that enables highly accurate calculations of the 
molecular integrals involving power functions with non−integer 
exponents. This algorithm has been successfully utilized in several 
analyses. The history of the usage of non−integer principal quan-
tum numbers is comprehensively discussed in [27].

In Section 2, we briefly describe the analytical method used to 
obtain solutions. The details of the implementation process are dis-
cussed in Section 3. This section also describes the J R A F package, 
including its features, usage, and the details of a comprehensive 
test run. In Section 4, the efficiency of the computer program pack-
age is discussed using benchmark results of molecular auxiliary 
functions and two−center molecular integrals. Code written by the 
author in Mathematica [28] is used to perform calculations, and 
the results are compared with those obtained using the numerical 
global−adaptive strategy.

2. Convergent series representation of RAF

According to the criterion presented in the previous section and 
the following property of the normalized incomplete gamma func-
tions,

P [a, z] = γ (a, z)

� (z)
, Q [a, z] = �(a, z)

� (z)
, P + Q = 1, (7)

the problem of evaluation of the RAFs is reduced to the following 
form:

Pn1,q
n2n3n4 (p123) +Qn1,q

n2n3n4 (p123) =Gn1,q
n2n3n4 (p123) , (8)

Gn1,q
n2n3n4 (p123) = pn1

1

(n4 − n1)n1

×
∞∫

1

1∫
−1

(ξν)q (ξ + ν)n2 (ξ − ν)n3 ep2ξ−p3νdξdν. (9)
3

The integrals in Eq. (9) are also the sum of two integrals that in-
volve Appell’s functions.

Gn1,q
n2n3(p123) = pn1

1

�(n1 + 1)

∞∑
s=0

ps
3

�(s + 1)

(
1

q + s + 1

)

×
{

J q+s+1,q+s+2;q
n2n3 (p2) + (−1)s J q+s+1,q+s+2;q

n3n2 (p2)
}

, (10)

where

J s,s′;q
n2n3 (p)

=
∞∫

1

F1

(
s;−n2,−n3; s′; 1

ξ
,−1

ξ

)
ξn2+n3+qe−pξdξ. (11)

The definition of Appell’s hypergeometric functions used here [29]
is as follows:

F1 (α;β1, β2;γ ; x, y) = �(γ )

� (α)� (α − γ )

×
1∫

0

uα−1 (1 − u)γ −α−1 (1 − ux)−β1 (1 − uy)−β2 du. (12)

The analytical expression used for the computation of Eq. (9) based 
on the vectorization procedure is explicitly proposed in [27] as

Gn1,q
n2,n3 (p123)

= pn1
1

�(n1 + 1)

1

22q

∑
s1,s2,s3

(−1)s1+s2+s3 Fs1 (q)
1

2s2
Fs3 (s2)

×
{

1

2−s2

(
ps2

3

�(s2 + 1)
2n2+n3+2q+s2+1

× Bn2+2q−2s1+2s2−2s3+1,n3+2s1+2s3+1

× E−(n2+n3+2q+s2+1) (p2) − ls2,−s2
n2+2q−2s1+2s2−2s3,n3+2s1+2s2

(p302)

− ls2,−s2
n3+2s1+2s2,n2+2q−2s1+2s2−2s3

(p302)

)}
. (13)

0 ≤ s1 ≤ q, 0 ≤ s2 ≤ N , 0 ≤ s3, ≤ s2, N is used to indicate the up-
per limit of the summation. Bn,n′ represent the beta functions. The 
vectorization procedure runs faster than the corresponding code 
containing loops. Eq. (13) contains four indices. One of them, (s4), 
is in a sub−function that belongs to the ln1,q

n2,n3 (p) auxiliary func-
tion.

ln1,q1
n2n3 (p123) = pn1

1

�(n1 + 1)
e−p2

×
∞∫

1

(2ξ)n2+n3−q1+1 Bn2+1,n3+1

(
ξ + 1

2ξ

)
e−p3ξdξ, (14)

ln1,q1
n2n3 (p123) = pn1

1

�(n1 + 1)
e−p2

×
∑

s4

(−n2)s4

(n3 + s4 + 1) s4!mn2+q1−s4
n3+s4+1 (p3) , (15)

where Bn,n′ (z) are the incomplete beta functions [30] and

mn1
n2 (p) = 2n1 e−p

∞∫
0

(1 + v)n1 vn2 e−pvdv. (16)
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The integral on the left−hand side is the confluent hyper−geomet-
ric function of the second type [30],

U (α,β, z) = 1

�(α)

∞∫
0

vα−1 (1 + v)β−α−1 e−xvdv. (17)

For the auxiliary functions mn1
n2 (p), we have

mn1
n2 (p) = 2n1 U (n2 + 1,n1 + n2 + 2, p)� (n2 + 1) e−p . (18)

3. JRAF package

3.1. Package overview

Code was written in the vector form instead of the scalar form 
using the same time for several vector elements to exploit the 
advantages of modern multi−core processors, resulting in a sig-
nificant improvement in the performance of sections of code con-
taining loops. The developed algorithm for computing Eq. (13) was 
optimized based on the vectorization procedure. The relativistic 
Gn1,q

n2,n3 (p123) auxiliary functions were represented in terms of three 
vectorized sub−functions as follows:

By re−writing Eq. (13) in a simpler form wherein all the terms 
in parentheses are expressed as a single function, we have

Gn1,q
n2,n3 (p123)

= pn1
1

�(n1 + 1)

1

22q

∑
s1,s2,s3

(−1)s1+s2+s3
1

22s2
Fs1 (q) Fs3 (s2)

×J s2,s2,0
n2+2q−2s1+2s2−2s3,n3+2s1+2s3

(p32) , (19)

Eq. (19) in vector form is written as

Algorithm 1: Method of computation for RAF.

for s1 in 0 : q do
for s2 in 0 : N do

for s3 in 0 : s2 do
for s4 in 0 : N + 2q + 2s2 do
L3[s1, s2, s3] += L1[s1, s2, s3, s4] +L2[s1, s2, s3, s4]

end
J3[s1, s2, s3] = 2n2+n3+2q+2s2B[s1, s2, s3] − 2s2L3[s1, s2, s3]
J2[s1, s2] += (−1)s3 (1/22s2 )Fs3 (s2)J3[s1, s2, s3]

end
J1[s1] += (−1)s1+s2 Fs1 (q + 1)J2[s1, s2]

end
J += J1[s1]

end
G=(pn1

1 /� (n1 + 1))(1/22q)J

B and L3 are three− and four−dimensional vectors, respec-
tively. Considering Eq. (13) and the Algorithm 1, it is easy to 
establish the functions used for these vectors. To store the ele-
ments of B and L3 vectors, the derived recurrence relationships in 
previously reported works [27] facilitate the use of only two sum 
indices instead of three or four. The Algorithm 1 is not used for di-
rect computation of the J vector, but to re−shape and collect all 
its stored elements.

Because they have only one sum index, additional reduc-
tion is not required for the integral of the exponential functions 
E−n (p) in B. The assigned vector of the beta functions B [s1, s2, s3]
with three sum indices is represented using two sum indices as 
B[s2, s1 + s3]. It is computed based on the following initial values 
and recurrence relationships
4

B [1,1] = Bn2+2q,n3 , B [1,2] = Bn2+2q−2,n3+2

B [2,1] = Bn2+2q+2,n3 , B [2,2] = Bn2+2q,n3+2,

for the row elements, B [s2,1], B [s2,2],

Bz+2s,z′ = (z + 2s − 1) (z + 2s − 2)

(z + z′ + 2s − 1) (z + z′ + 2s − 2)
Bz+2s−2,z′ , (20)

and then, for the column elements, B [s2, s1 + s3],

Bz−2s,z′+2s =
(
z′ + 2s − 1

) (
z′ + 2s − 2

)
(z − 2s) (z − 2s + 1)

Bz−2s+2,z′+2s−2. (21)

The elements of the ln1,q1
n2n3 (p123) auxiliary functions in Eq. (15) are 

stored in memory using a series of vectors, the last of which is 
L3[s1, s2, s3]. Using a minor manipulation, as shown in the fol-
lowing, a more efficient implementation of the computation is 
achieved for ln1,q1

n2n3 (p123),

ln1,q
n2n3 (p123) = pn1

1

�(n1 + 1)
e−p2 (−n2)q

∑
s4

(−n2 − q)s4

(n3 + s4 + 1) s4!
× (

mn2+q1−s4
n3+s4+1 (p3)

/
(−n2 + s4)−q

)
. (22)

There are two types of mn1
n2 (p) functions and six types of Pochham-

mer symbols with an equal number of each of the L vectors 
(L1, L2). The modified form of ln1,q1

n2n3 (p123) facilitates the storage 
of the elements of the vectors for both Pochhammer symbols and 
the mn1

n2 (p) auxiliary functions within the same loop. This also re-
duces the number of summation indices from four to two. The 
assigned vectors for the computation of the Pochhammer sym-
bols arise from Eq. (22), from the left to the right hand−side, and 
are referred to as p11, p12, p13 for L1 and p21, p22, p23 for L2. 
Similarly, the assigned vectors for the computation of the mn1

n2 (p)

auxiliary functions are referred to as m1 for L1 and m2 for L2. By 
considering Eq. (15) and Eq. (22), the recurrence relationships for 
the Pochhammer symbols, mn1

n2 (p) are derived as

p11 [1,1] = p11 [1,2] = p12 [s5,1] = p13 [1,1] = p13 [1,2] = 1

p11 [2,1] = (−n2 + 2q + 2) p11 [2,2] = (−n2 + 2q + 1)

p12 [s5,2] = − (−n2 + 2q + N − s5)

p13 [2,1] = (−n2 + 2q + 2) p13 [2,2] = (−n2 + 2q + 3) .

For the column elements of the p12 [s5, s6] vector, we have

(− [n2 + 2q + N − s5])s6
= [− (n2 + 2q + N − s5) + s6]

× (− [n2 + 2q + N − s5])s6−1 ; (23)

for the row elements of the p13 [s2, s7], we have

(− [n2 + 2p] − 2s2) s2

= −
(

n2 + 2q + 2s2

n2 + 2q + s2

)
(−n2 − 2q − 2s2 + 1)

× (− [n2 + 2q] − 2s2 + 2)s2−1 ; (24)

and for the column elements of the p13 [s2, s7], we have

(− [n2 + 2q] − 2s2 + s7)s2
= −

(
n2 + 2q + s2 − s7 + 1

n2 + 2q + 2s2 − s7

)
× (− [n2 + 2q] − 2s2 + s7 − 1)s2

, (25)

p11 [s2,1] = p13 [s2,1] , p11 [s2,2] = p13 [s2,2]

p11 [s2, s5] = p13 [s2, s5] .

All the four sum indices explicitly appear in the mn1
n2 (p) auxiliary 

functions. These auxiliary functions involve confluent hyper−ge-
ometric functions. An efficient approach for the accurate calcula-



A. Bağcı Computer Physics Communications 273 (2022) 108276
tion of hyper−geometric functions with different parameters using 
variable regimes has been investigated and reported in the litera-
ture. It is not advantageous to directly use Eq. (18). The symmetry 
properties identified in previous studies [24,26,27] facilitate the 
circumvention of the computation of hyper−geometric functions 
and allow for the derivation of recurrence relations with only two 
sum indices. The derived relationships are also consistent with the 
vectorization procedure used in this investigation.

m1 [1,1] = mn2+2q
n3+1 (p2) m1 [1,2] = mn2+2q−1

n3+2 (p2)

m1 [2,1] = mn2+2q+1
n3+1 (p2) m1 [2,2] = mn2+2q

n3+2 (p2)

for the row elements, m1 [s2,1], m1 [s2,2],

m1
(n2+s2)+2q−s7
n3+s7+1 (p)

= 2
[(n2 + s) + n3 + 2q + p + 1]

p
m1

(n2+s2)+2q−(s7+1)
n3+s7+1 (p)

+ 4
[s7 − (n2 + s2) − 2q + 1]

p
m1

(n2+s)+2q−(s7+2)
n3+s7+1 (p) , (26)

and for the column elements, m1 [s2, s7],

m1
(n2+s2)+2q−s7
n3+s7+1 (p) = 1

4

(n3 + s7)

((n3 + s2) + 2q − s7 + 1]

× m1
(n2+s2)+2q−(s7−2)
n3+s7+1 (p)

+ 1

2

[(n2 + s2) − n3 + 2q − 2s7 − p2 + 1]

((n2 + s2) + 2q − s7 + 1]

× m1
(n2+s2)+2q−(s7−1)
n3+s7

(p) . (27)

The elements of vectors p21, p22, p23 and m2 are only obtained by 
exchanging the indices n2 and n3. The new indices s5, s6, s7 are 
defined by Eqs. (23)–(27) to ensure that all the elements of the 
vectors that appear in the Algorithm 1 are stored in the memory. 
The range of these new indices is given as 0 ≤ s5 ≤ 2N + 2q, 0 ≤
s6 ≤ 3N + 2q, 0 ≤ s7 ≤ N + 4q + 4s1.

3.2. Installation and usage

The Mathematica notation is used in the JRAF package for 
the basic and special mathematical functions and angular mo-
mentum coefficients such as Legendre, Laguerre polynomials, hy-
pergeometric functions, spherical harmonics, angular momentum 
coefficients related to the product of two spherical harmonics lo-
cated on different centers, Clebsch−Gordan and Gaunt coefficients, 
and rotated angular functions, among others. As such, users of the 
Mathematica programming language can easily navigate the pack-
age. These functions are installed when the JRAF package is loaded 
by typing “using JRAF”. The package is installed using J ulia′s pack-
age manager as

using Pkg
Pkg . add ( path=" https : / / github . com/Nemocas /Nemo. j l . g i t " )
Pkg . add ( path=" https : / / github . com/ abagciphys / JRAF . j l . g i t " )

Some additional packages such as Legendre. jl [31], SphericalHar-
monics.jl [32], and W igner S ymbols. jl [33] are required but only 
for testing. Note that, a program code for computation of relativis-
tic atomic structures and processes ( J AC) that recently has been 
constructed, optionally can be used for computation of the Wigner 
symbols and rotation matrices [34,35]. The Nemo computer alge-
5

bra package [36] is used for accuracy. It is based on C libraries 
such as F LI NT , ANT IC , Arb, Pari, and Singular. It forms the ba-
sis of J R A F through ccall, an ordinary function in J ulia [37]. The 
following syntax for ccall was routinely used in our code,

ccall((symbol, library), RetT ype, (ArgT ype1, ...), Arg1, ...)

In the Listing 1, we show how to call the Clebsch−Gordan and 
Gaunt coefficients [38,39], coefficients related to the product of 
two spherical harmonics located on different centers [38], and ro-
tated angular functions [40], as examples.

ClebschGordanG(l1,m1, l2,m2, L, M)

GGauntG(l1,m1, l2,m2, L, M)

RotaD(λ, l1,m1, l2,m2, θ,φ) / / for complex spher ica l harmonics
Rotad(λ, l1,m1, l2,m2, θ,φ) / / for r e a l spher ica l harmonics
SphP C G(q,α,β, l1, λ1, l2, λ2,�)

{l1,m1, l2,m2, L, M, λ1, λ2, λ,�} ∈ Z
{θ,φ} ∈ R ∨ ArbF ield

Listing 1: Some angular momentum coefficients available in the 
JRAF package.

Refer to the math. jl, special_ f unctions. jl, angular_coef f icients. jl
files for the entire mathematical expressions and radial_coeffi-
cients.jl for the coefficients related to the normalized STO and 
STSO used in the package for the computation of the two−cen-
ter one−electron overlap, and nuclear attraction and kinetic en-
ergy integrals over Slater−type orbitals with non−integer principal 
quantum numbers. These integrals are included in the JRAF pack-
age to verify the efficiency of the RAFs. The auxiliary functions 
expressed as the series representation of beta functions are as fol-
lows:

AuxiliaryG(n1,q,n2,n3, p1, p2, lim) / / for p3 = 0
AuxiliaryG(n1,q,n2,n3, p1, p2, p3, lim) / / for p3 �= 0
AuxiliaryGr(n1,q,n2,n3, p1, p2, p3, lim) / / for p3 �= 0

{n1,n2,n3, p1, p2, p3, } ∈ R ∨ ArbF ield
{q, lim} ∈ Z

Listing 2: Relativistic molecular auxiliary functions based on the 
analytical method.

The results for Eq. (9) using Eq. (13) can be obtained with 
AuxiliaryG (it is found in gaux_p123_bsrep. jl). In this case, it is 
advantageous to compute the auxiliary functions separately de-
pending on the parameter p3. The results for Eq. (9) based on an 
analytical method using a recurrence strategy can be obtained with 
AuxiliaryGr (please see [27]). Note that, the Cuba multidimen-
sional numerical integration library [41] is also available for use 
by JRAF. The list of functions can be found in cgaux_p123_num. jl, 
and is defined as follows:

Cuhre AuxiliaryG(n1,q,n2,n3, p1, p2, lim) / / for p3 �= 0
V egasAuxiliaryG(n1,q,n2,n3, p1, p2, p3, lim) / / for p3 �= 0
Suave AuxiliaryG(n1,q,n2,n3, p1, p2, p3, lim) / / for p3 �= 0

{n1,n2,n3, p1, p2, p3, } ∈ R ∨ ArbF ield
{q, lim} ∈ Z

Listing 3: Relativistic molecular auxiliary functions based on the 
numerical integration approximation.

Finally, the two−center one−electron integrals in both the lined−
up and nonlined−up molecular coordinate systems can be found 
in a file called sto_mol_integ_one_elect. jl.
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T woCenter O verlap(n1, l1,m1,n2, l2,m2, ρ, τ , θ,φ, x, lim) / / A n a l y t i c a l
C T woCenter O verlap(n1, l1,n2, l2, λ,ρ, τ , lim) / / Numerical via Cuhre
C T woCenter O verlap(n1, l1,m1,n2, l2,m2, ρ, τ , θ,φ, x, lim) / / Numerical via Cuhre
V T woCenter O verlap(n1, l1,n2, l2, λ,ρ, τ , lim) / / Numerical via Vegas
V T woCenter O verlap(n1, l1,m1,n2, l2,m2, ρ, τ , θ,φ, x, lim) / / Numerical via Vegas
ST woCenter O verlap(n1, l1,n2, l2, λ,ρ, τ , lim) / / Numerical via Suave
ST woCenter O verlap(n1, l1,m1,n2, l2,m2, ρ, τ , θ,φ, x, lim) / / Numerical via Suave
T woCenter O verlapRec(n1, l1,n2, l2, λ,ρ, τ , lim) / / RAF recurrence
T woCenter O verlapRec(n1, l1,m1,n2, l2,m2, ρ, τ , θ,φ, x, lim) / / RAF recurrence

{n1,n2,n3, ρ, τ , θ,φ, } ∈ R ∨ ArbF ield
{l1,m1, l2,m2, λ, x} ∈ Z
{lim} ∈ Z / / for a n a l y t i c a l evaluation
{lim} ∈ R / / for numerical integrat ion approximation

Listing 4: Functions for two−center one−electron overlap integrals 
in both lined−up and nonlined−up molecular coordinate systems.

The functions for the two−center one−electron nuclear attraction 
and kinetic energy integrals are similarly retrieved.

4. Results and discussion

In this study, a computer code for the computation of RAFs and 
two−center one−electron integrals is presented. Molecular aux-
iliary functions are used in both the solutions of the Schrödinger 
and Dirac equations for molecules when the radial part of non−in-
teger Slater−type orbitals are considered as a basis set. As stated 
in Section 1, non−analytic evaluation near the origin model is con-
siderably different from that near the polynomial model, which 
leads to multi−center integrals with non−integer power functions 
for analytical evaluation via the addition theorem. Analytical rela-
tions are available for the product of two−functions centered at 
different positions. However, obtaining a compact form expression 
of multi−center integrals using non−integer power functions is 
thought to be nearly insurmountable. This problem is encountered 
in studies on various non−linear models for physical, chemical, 
Table 1
Comparative values of relativistic molecular auxiliary functions.

n1 q n2 n3 p1 p2

1.1 10 2.1 3.1 4.1 5.1

2.1 10 1.1 3.1 4.1 5.1

3.1 10 2.1 1.1 4.1 5.1

4.1 10 3.1 2.1 1.1 5.1

5.1 10 4.1 3.1 2.1 1.1

6.1 10 5.1 4.1 3.1 2.1

a Mathematica numerical global-adaptive method.
b Series representation in terms of incomplete beta functions (Eq. (13)).
c Cuba numerical integration algorithm based on J ulia programming language.
d Cuba numerical integration algorithm based on Mathematica programming language

6

and engineering applications. To date, the preference is to either 
empirically treat or approximate using an analytical function [42].

The molecular integrals over Slater−type orbitals that arise in 
the molecular SCF equation are within the scope of the problem-
atic non−linear model. However, accurate values of these inte-
grals can be achieved using RAFs and their analytical expression 
in terms of incomplete beta functions.

The efficiency of molecular auxiliary functions is investigated 
and the results are presented in Tables 1, 2, 3 and 4. In these ta-
bles, the results for the RAFs, overlap,

Snlm,n′l′m′
(
ζa, ζb, �Rab

)
=

∫
χ∗

nlm

(
ζ,�ra

)
χn′l′m′

(
ζ ′,�rb

)
dV , (28)

nuclear attraction,

abb Vnlm,n′l′m′
(
ζa, ζb, �Rab

)

=
∫

χ∗
nlm

(
ζ,�ra

)( 1

rb

)
χn′l′m′

(
ζ ′,�ra

)
dV , (29)

and kinetic energy integrals,

Tnlm,n′l′m′
(
ζa, ζb, �Rab

)

=
∫

χnlm

(
ζ,�ra

)(−1

2
∇2
)

χn′l′m′
(
ζ ′,�rb

)
dV , (30)

are presented depending on the upper limit of the summation 
that emerges owing to the convergent series representation of the 
molecular auxiliary functions, respectively. The two−center kinetic 
energy integrals are expressed in terms of the overlap integrals us-
ing the following simple relationships,
p3 Results

6.1

9.69169 58617 01844 36783 81836 63826 82002 E+02 (50)a

9.69169 58617 01844 36783 81836 63798 73602 E+02 (50)b

9.69169 58617 01843 73631 52810 48132 44179 E+02 (50)c

9.69169 58617 0185 E+02 (Infinity)d

6.1

9.43636 92168 48006 16284 17343 75719 57719 E+02 (50)a

9.43636 92168 48006 16284 17343 75681 35383 E+02 (50)b

9.43636 92168 47990 79571 54805 79589 58620 E+02 (50)c

9.43636 92168 48009 E+02 (Infinity)d

6.1

1.59485 76412 79536 55278 49760 57498 92476 E+02 (50)a

1.59485 76412 79536 55278 49760 57504 35474 E+02 (50)b

1.59485 76412 79541 95537 59700 39698 33024 E+02 (50)c

1.59485 76412 795398 E+02 (Infinity)d

6.1

6.05958 87737 18998 83565 42985 28782 66716 E+00 (50)a

6.05958 87737 18998 83565 42985 28798 04857 E+00 (50)b

6.05958 87737 19026 73460 92830 01347 72555 E+00 (50)c

6.05958 87737 190095 E+00 (Infinity)d

6.1

8.50162 73995 71398 04513 17797 38998 36005 E+14 (50)a

8.50162 73995 71398 04512 35340 82353 96903 E+14 (50)b

8.50162 73995 71364 31329 82516 24001 81878 E+14 (50)c

8.50162 73995 71381 E+14 (Infinity)d

1.1

1.95595 04573 51400 77878 61630 61785 09184 E+10 (50)a

1.95595 04573 51400 77878 61630 61641 47748 E+10 (50)b

1.95595 04573 51391 05460 12281 34753 10798 E+10 (50)c

1.95595 04573 51397 E+10 (Infinity)d

.
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Table 2
Values of two-center overlapped integrals over the Slater−type orbitals in nonlined−up molecular coordinate systems.

type n l m n′ l′ m′ ρ τ θ ϕ res

1 50.1 0 0 50.0 0 0 5.10 0 0◦ 0◦

9.57914 65146 38189 77903 14416 92566 55702 E−01a

−5.10432 33568 13500 38729 06834 33981 54978 E+16 (30)b

−2.70455 22526 89687 52079 97164 43375 18666 E+09 (40)b

9.57913 71708 13494 95901 01001 22241 05008 E−01 (50)b

9.57914 65146 38189 77898 62614 20408 55424 E−01 (60)b

9.57914 65146 38189 77903 14416 92556 67193 E−01 (70)b

9.57914 65146 38189 77903 14416 92566 55702 E−01 (80)b

9.57914 65146 38211 44252 10226 33627 19002 E−01 (50)c

1 50.1 0 0 50.0 0 0 5.10 10−6 0◦ 0◦

9.57914 73920 88121 67589 59783 29819 91146 E−01 (50)d

−5.10429 82498 37206 08667 15067 85366 75895 E+16 (30)b

−2.70454 10725 23248 29668 21926 93662 21983 E+09 (40)b

9.57913 80484 77706 30925 99760 61461 93883 E−01 (50)b

9.57914 73920 88121 67585 07987 82376 09265 E−01 (60)b

9.57914 73920 88121 67589 59783 29810 02649 E−01 (70)b

9.57914 73920 88121 67589 59783 29819 91146 E−01 (80)b

9.57914 73920 88150 53757 09690 24516 12353 E−01 (50)c

1 50.0 0 0 50.1 1 -1 10.0 2/10 10−6◦ 10−6◦

−5.26144 97645 26770 93240 04629 61400 30620 E−17 (50)d

1.02182 38512 81616 09620 88561 63090 97826 E−07 (40)b

−5.26144 97645 26770 93240 07525 42183 27960 E−17 (60)b

−5.26144 97645 26770 93240 04629 61400 30620 E−17 (80)b

−5.26144 97645 26756 96648 13695 34144 74157 E−17 (50)c

1 50.3 3 -3 50.2 2 1 16.0 20/23 30◦ 30◦

2.77810 18374 83364 88927 46276 56594 39028 E−28 (50)d

2.61264 19016 44693 10366 80298 53932 26153 E−14 (40)b

2.77810 18374 83364 88925 72746 98162 53995 E−28 (60)b

2.77810 18374 83364 88927 46276 56594 39020 E−28 (80)b

2.77810 18374 83309 78968 56287 04133 23295 E−28 (50)c

1 50.4 4 -3 50.5 5 -4 27.0 20/45 10◦ 10◦

8.66395 11416 12200 19257 50998 80389 09852 E−04 (50)a

−4.06946 77711 02151 27793 04509 57504 79365 E−02 (40)b

8.66395 11416 12200 19257 50992 67155 12351 E−04 (60)b

8.66395 11416 12200 19257 50998 80389 09852 E−04 (80)b

8.66395 11416 06330 64405 25589 40831 78706 E−04 (50)c

a Ref. [13].
b Series representation in terms of incomplete beta functions (Eq. (13)).
c Cuba numerical integration algorithm using J ulia programming language.
d Mathematica numerical global-adaptive method.
∇2Ylm (θ,ϕ) = − l (l + 1)

r2
Ylm (θ,ϕ) , (31)

− 1

2
∇2χnlm

(
ζ,�r)

= −1

2
ζ 2

[
χnlm

(
ζ,�r) − 4

(
�(2n − 1)

� (2n + 1)

)
χn−1lm

(
ζ,�r)

+ 4 (n + l) (n − l − 1)

(
�(2n − 3)

� (2n + 1)

)
χn−2lm

(
ζ,�r)

]
. (32)

The solution of the two−center nuclear attraction integrals is de-
rived based on the single−center potential [9],

Vnlml,n′l′ml′
(
ζ, ζ ′, �Rab

)
=
∑
LM

√
4π

2L + 1
C L|M|(lm, l′m′)

× R L
nn′
(
ζ, ζ ′, Rab

)
Y ∗

LM

(
θRab ,ϑRab

)
. (33)

Here, the single-center potential R L
nn′
(
ζA, ζ ′

A, R AB
)

is determined 
as

R L
n,n′

(
ζ, ζ ′, Rab

)= (
2ζ
)
�
[
n + n′ + L + 1

] 1(
2ζ Rab

)L+1

×
{

P
[
n + n′ + L + 1,2ζ Rab

]

+
(
2ζ Rab

)2L+1

(n + n′ − L)2L+1
Q
[
n + n′ − L,2ζ Rab

]}
, (34)
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where C L|M|(lm, l′m′) are the Gaunt coefficients [38,39], and ζ =
ζ + ζ ′ , Ylm are the spherical harmonics, �Rab = �ra −�rb .

The algorithm for the JRAF package described in the previ-
ous section was also incorporated into the computer code writ-
ten in the Mathematica programming language, which is a high-
level symbolic programming language that can handle real num-
bers with any number of digits. This programming language is 
suitable for modeling scientific and mathematical problems be-
fore a comprehensive analysis is performed because it has a close 
correspondence with mathematical notations. However, a com-
puter code that contains loops is more efficient for languages 
other than Mathematica. The computational time is slightly im-
proved when the Table[] functions are used instead of the For[]
or Do[] functions; however, this does not facilitate the computa-
tion of molecular auxiliary functions using the Algorithm 1. Alter-
natively, Mathematica facilitates the use of the Compile[] func-
tion. Similar to the machine code of a computer, the compiled 
function is evaluated using an object (CompiledF unction). All the 
parameters in an expression are now numbers (or logical vari-
ables). They can be executed quickly but the output is limited 
to $Machine Precision$ effective decimal digits (approximately 16-
digits) [28]. The Compile[] works smoothly for a “light” function (a 
function with a few parameters and loops). However, the analytical 
evaluation of relativistic auxiliary functions contains too many pa-
rameters and loops. To yield accurate results, the Compile[] should 
be carefully investigated, thus allowing for the fast calculation of 
RAF with $Machine Precision$ using Mathematica. Nevertheless, 
the details of this process are beyond the scope of the present 
study.
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Table 3
Values of the two-center nuclear attraction integrals over Slater−type orbitals in nonlined−up molecular coordinate systems.

type n l m ζ n′ l′ m′ ζ ′ θ ϕ R res

1 3 2 2 12.40 3 2 2 10.60 0◦ 0◦ 6.10
1.60316 72157 86609 47251 23680 94620 56587 E−01a

1.60316 72157 8661 E−01b

1 2 1 0 7.60 2 1 1 1.50 45◦ 180◦ 2.30
2.00987 04344 05018 34280 46705 43909 12301 E−03a

2.00987 04338 7478 E−03b

1 2 1 1 6.70 2 1 1 4.10 135◦ 20◦ 0.20
2.27254 38442 77127 02657 62876 23189 48019 E−00a

2.27254 38442 7713 E−00b

1 3 1 0 8.60 2 1 1 7.40 54◦ 40◦ 4.00
−5.42130 98741 10278 47958 74788 89372 12572 E−04a

−5.42130 98726 8004 E−04b

1 4 3 2 15.9 5 3 3 10.7 40◦ 30◦ 15.5
−4.65385 67668 26447 16066 78116 15770 87299 E−06a

−4.65385 67668 26447 16066 78116 1577 E−6c

1 10 9 -7 12.5 10 8 -8 10.2 80◦ 240◦ 100.7
−1.58615 18962 96097 54713 29402 95391 08373 E−06a

−1.58615 18962 96097 54713 29402 9539 E−6c

1 50 31 -20 13.3 50 31 20 12.9 126◦ 320◦ 33.0
−2.17756 64084 23336 65954 73693 38926 92479 E−42a

−2.17756 64084 23336 65954 73693 3893 E−42c

1 50 31 -20 13.3 50 31 20 12.9 126◦ 320◦ 33.0
−2.17756 64084 23336 65954 73693 38926 92479 E−42a

−2.17756 64084 23336 65954 73693 3893 E−42c

1 2.3 1 1 3.70 2.5 1 1 2.50 120◦ 180◦ 12.5
6.87155 38290 49764 44379 09182 31770 99366 E−02a

6.87155 38290 93 E−2d

6.87155 37746 8 E−02e

1 6.4 5 5 8.1 6.8 5 4 13.8 36◦ 108◦ 8.70
2.45289 05630 72333 96494 37330 60231 29083 E−05a

2.45289 05631 23 E−5d

2.45289 05630 7 E−05e

1 14.6 13 12 21.70 13.2 11 11 10.9 162◦ 288◦ 0.03
1.21881 82739 66978 02109 80527 89163 70013 E−05a

1.21881 82740 27 E−5d

1.21881 82732 2 E−05e

1 20.6 18 15 13.80 25.6 16 14 9.50 20◦ 60◦ 14.30
−1.15016 84587 27269 63624 02716 36736 45953 E−05a

−1.15016 84587 28 E−5d

−1.15017 1141 06 E−05e

a Eq. (13)).
b Ref. [43].
c Ref. [44].
d Ref. [45].
e Ref. [46].

Table 4
Values of the two-center kinetic energy integrals over Slater−type orbitals in nonlined−up molecular coordinate systems.

type n l m ζ n′ l′ m′ ζ ′ θ ϕ R Results

1 1 0 0 1.186 1 0 0 1.186 90◦ 30◦ 3.987
−1.07207 65660 76439 40215 59332 79505 56130 E−02 (50)a

−1.07207 65660 76439 40215 59332 79505 56130 E−02 (80)b

−1.07207 65660 74842 01283 38921 43031 49166 E−02 (50)c

1 1 0 0 1.186 2 1 1 1.30 90◦ 60◦ 2.30
1.15661 13009 97389 64535 81162 75999 84072 E−01 (50)a

1.15661 13009 97389 64535 81162 75999 84072 E−01 (80)b

1.15661 13009 97461 23292 16521 15937 81041 E−01 (50)c

1 1 0 0 1.186 2 1 -1 1.30 90◦ 60◦ 2.30
−2.00330 95379 35818 54671 06227 20618 33457 E−01 (50)a

−2.00330 95379 35818 54671 06227 20618 33457 E−01 (80)b

−2.00330 95379 35942 54000 78568 60495 71228 E−01 (50)c

1 2.3 1 1 3.70 2.5 1 1 2.50 120◦ 180◦ 1.25
3.66326 74787 88443 63447 78669 22664 05272 E−10 (50)a

3.66326 74787 88443 63447 78669 22664 05272 E−10 (80)b

3.66334 77209 84055 85402 83225 17994 93054 E−10 (50)c

1 4.1 3 -3 3.70 4.1 2 1 2.50 30◦ 30◦ 1.25
2.71140 81788 45886 25040 50731 46689 43726 E−09 (50)a

2.71140 81788 45886 25040 50731 46689 43726 E−09 (80)b

2.71487 57993 01783 90462 07294 91264 51556 E−09 (50)c

1 7.5 4 -3 3.70 8.5 5 -4 2.50 10◦ 10◦ 1.25
3.87720 87457 41408 48188 62888 17585 50270 E−07 (50)a

3.87720 87457 41408 48188 62888 17585 50270 E−07 (80)b

3.86118 82223 84108 35612 97071 46519 19932 E−07 (50)c

a Mathematica numerical global-adaptive method.
b Series representation in terms of incomplete beta functions (Eq. (13)).
c Cuba numerical integration algorithm using J ulia programming language.
Two approximations are considered based on the perspective 
of numerical integration. The Cuba multidimensional numerical 
integration library and the global−adaptive method using the 
Gauss−Kronrod numerical integration extension were utilized. The 
Mathematica global−adaptive method enables the achievement 
of a high accuracy to an arbitrary number of digits at the cost 
8

of the C P U time. As supplementary material, we incorporated a 
Mathematica package (C M R A F ) with our main J R A F package 
for comparison. The Cuba library consists of four algorithms for 
multidimensional integration: vegas, suave, divonne and cuhre. 
These algorithms are significantly faster than the Mathematica
global−adaptive method but are relatively less accurate. They are 
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Fig. 1. Results for the two−center kinetic energy integrals based on the upper limit 
of the summation (N), where (n = 7.5, l = 4, m = −3, ζ = 3.70), (n′ = 8.5, l′ = 5, 
m′ = −4, ζ ′ = 2.50) and (θ = 100, ϕ = 100, R = 1.25). The purple line represents the 
CPU time required for the computation. The blue line represents the numerical val-
ues of the kinetic energy integral K E based on the Eq. (13). The green line indicates 
the difference (�K E) between the benchmark value obtained via Mathematica nu-
merical integration and the analytical solution. The results for K E and �K E are 
multiplied by 1010. (For interpretation of the colors in the figure(s), the reader is 
referred to the web version of this article.)

available in both the J R A F and C M R A F packages and are invoked 
in an almost identical manner. The results obtained using these 
numerical approximations are presented in Tables 1, 2, 3 and 4. In 
these tables, the values in parentheses represent the AccuracyGoal
for the Mathematica global−adaptive method, the upper limit of 
the summation for the analytical solution via a series representa-
tion of incomplete beta functions (13), and the required accuracy 
(N represents E−N) for the Cuba numerical integration algorithm, 
respectively.

In Table 1, the upper limit of the summation (N) for the ana-
lytical solution was selected as 50. Based on this table, it is ev-
ident that for this fixed upper limit of the summation and the 
given values of the parameters, the results obtained for the ana-
lytical solution of molecular auxiliary functions are accurate to at 
least 20−digits. The Cuba library is utilized in both the J ulia and 
Mathematica platforms and the computation results are almost 
identical. They are accurate to approximately 10−12 digits and are 
calculated using the Cuhre multidimensional numerical integration 
algorithm. Numerical results are presented in Table 2 for the over-
lapped integrals in the non−lined up molecular coordinate system. 
They are obtained depending on the upper limit of the summation 
(N). It should be at least N = 70 to achieve satisfactory preci-
sion. The benchmark values for the two−center nuclear attraction 
integrals and two−center kinetic energy integrals with non−in-
teger principal quantum numbers are presented in Tables 3 and 4, 
respectively, for the first time. The solution for the two−center nu-
clear attraction integrals does not require the use of the relativistic 
auxiliary function. It can be derived using only the single−center 
potential, expanded in terms of the non−integer Slater−type or-
bitals. For Table 3, the values found in the literature are preferred 
for comparison. The benchmark results presented in Table 4 for the 
kinetic energy integrals are compared to those obtained using the 
Mathematica global−adaptive method. This is because the analyti-
cal method derived in [24,26], and [27] is the only method to yield 
accurate results to date.

The details of the computations are summarized in Fig. 1. In 
this figure, the numerical values (K E), difference between the 
9

Mathematica numerical global−adaptive method and the analyti-
cal solution obtained using Eq. (13) (�K E), and CPU time required 
for computation of the two−center kinetic energy integrals are 
presented. The results were obtained using a personal computer 
(PC) with an Intel i7−4930k multi−core processor. The J ulia pro-
gramming language supports multi−threading, and facilitates the 
simultaneous scheduling of tasks on more than one thread. Nev-
ertheless, the J R A F package was run on a single−core to acquire 
reliable CPU times. The results are expressed in atomic units (a.u.)

The computer code written for the molecular integrals [Eqs. 
(28)–(30)] was based on the equations given in [9,25]. The results 
indicate that the code presented in this study for relativistic aux-
iliary functions based on the analytical method using the series 
representation of beta functions allows for arbitrary precision in 
floating-point calculations.

The elimination of the restriction on the principal quantum 
number leads to new features [9,25,27] (see also references) and 
a wide range of applications in physics and chemistry. However, 
the analytical method used for the computation of molecular aux-
iliary functions is open for improvement. We intend to improve the 
computation method for auxiliary functions, broaden the range of 
application, and update the J R A F package accordingly in our fu-
ture studies.
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