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1 Introduction

Horadam first described complex quaternions in 1963 [7]. Halici defined and studied Fibonacci
quaternions in [6]. The author gave some identities including the Fibonacci quaternions. In [1],
the authors derived some equalities involving terms of the Horadam sequence using a special
matrix. In [2], the author studied Binet-like formulas for the generalized Fibonacci and Lucas
numbers by using some matrix methods. In [3], the author investigated quaternion group algebra
and representations of the quaternions. Shannon and Deveci investigated some variations on
Fibonacci matrix graphs and quaternions sequences [4, 11]. In 2004, Mc Laughlin derived a
new formula for the powers of any 2 × 2 matrix A. Here, the author studied the relationship of
yn = Tyn−1 − Dyn−2 linear recurrence relation involving matrices that the values D and T are
the determinant and trace of matrix A, respectively [9]. For n ≥ 0, the author derived the n-th
power of matrix A as
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An = ynA0 + yn−1A1, A0 = I2, A1 = A− TI2, (1)

An =

(
yn − dyn−1 byn−1
cyn−1 yn − ayn−1

)
, (2)

where y−1 = 0, y0 = 1, y1 = T . The author used this formula together with an existing formula
for the n-th power of any 2-dimensional matrix, various matrix identities, formulae for the powers
of special matrices, etc, to derive various combinatorial identities. In [12], Williams obtained the
powers of the matrix A as

An = αn (A− βI)
α− β

− βn (A− αI)
α− β

, α 6= β (3)

and
An = αn−1 (nA− (n− 1)αI) , α = β (4)

where α and β are the eigenvalues of the matrix A. Melham and Shannon gave some summation
identities using generalized matrices [10].

In this study, we both gave the powers of the Fibonacci quaternion matrix and examined some
of its properties. We also obtained some fundamental identities involving Fibonacci quaternions
using this new matrix.

Fibonacci numbers are the sequence of numbers {Fn}{n≥0} defined by the linear recurrence
relation

F0 = 0, F1 = 1, Fn+2 = Fn+1 + Fn. (5)

The Binet formula for the Fn is given by Fn =
αn − βn

α− β
where α =

1 +
√
5

2
and β =

1−
√
5

2
are

the roots of the characteristic equation [8]. It should be noted that other than the use of the Binet
formula and generating function to produce Fibonacci numbers, matrices are also widely used.
The n-th Fibonacci quaternion Qn [6] is

Qn = Fn + Fn+1i+ Fn+2j + Fn+3k. (6)

Using this type quaternions we define the following matrix that has not been studied before.

Q =

(
Q2 Q1

Q1 Q0

)
. (7)

The remainder of the paper is organized as follows. In Section 2, we begin by the powers of the
Fibonacci quaternion matrix Q. We examined and compared some matrix methods to calculate
the positive powers of this matrix and then, we gave some fundamental properties of the matrix
Q. In Section 3, we briefly explained what has been done.
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2 The Fibonacci matrix

We first calculated the powers of the Fibonacci quaternion matrix in the following theorem.

Theorem 2.1. For n ≥ 1, we have

Qn =

(
yn − yn−1Q0 yn−1Q1

yn−1Q1 yn − yn−1Q2

)
(8)

where

yn =

bn2 c∑
i=0

(
n− i
i

)
T n−2i(−D)i. (9)

Proof. From induction method, for n = 1

Q1 =

(
y1 − y0Q0 y0Q1

y0Q1 y1 − y0Q2

)
=

(
T −Q0 Q1

Q1 T −Q2

)
=

(
Q2 Q1

Q1 Q0

)
(10)

is obtained. Also, for n = 2,

Q2 =

(
y2 − y1Q0 y1Q1

y1Q1 y2 − y1Q2

)
. (11)

On the other hand, let us calculate the square of the matrix Q. Here when paying attention
to matrix multiplication, we considered both the quaternion product rules and the order of the
product. Also, we made the indices of the products from small to large. Then,

Q2 =

(
Q2

1 +Q2
2 Q1Q2 +Q0Q1

Q1Q2 +Q0Q1 Q2
0 +Q2

1

)
. (12)

For the elements A(2, 2) of the matrices (11) and (12) by using the recurrence relation yn =

Tyn−1 −Dyn−2 we get

y2 − y1Q2 = (T 2 −D)− TQ2 = −19 + 2i+ 4j + 6k (13)

and
Q2

0 +Q2
1 = (i+ j + 2k)2 + (1 + i+ 2j + 3k)2 = −19 + 2i+ 4j + 6k, (14)

respectively. Where

T = Q0 +Q2 = 1 + 3i+ 4j + 7k, D = Q0Q2 −Q2
1 = −2− 2i− 4j − 3k.

Now, Assume that for n = k, the claim is true. Then

Qk =

(
yk − yk−1Q0 yk−1Q1

yk−1Q1 yk − yk−1Q2

)
(15)
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and so for n = k + 1

Qk+1 =

(
yk − yk−1Q0 yk−1Q1

yk−1Q1 yk − yk−1Q2

)(
y1 − y0Q0 y0Q1

y0Q1 y1 − y0Q2

)
(16)

is written. Thus, we have

Qk+1 =

(
A B

C D

)
, (17)

where

A = (yk − yk−1Q0)(y1 −Q0) + yk−1Q
2
1,

B = (yk − yk−1Q0)Q1 + yk−1Q1(y1 −Q2),

C = yk−1Q1(y1 −Q0) +Q1(yk − yk−1Q2),

D = Q1yk−1Q1 + (yk − yk−1Q2)(y1 − y0Q2).

If we pay attention to element A of the matrix (17), then we have

A = ykQ2 − yk−1(Q0Q2 −Q2
1) = ykQ2 − yk−1D. (18)

That is, the a11 = a element of the matrix

QkQ = Qk+1 =

(
yk − yk−1Q0 yk−1Q1

yk−1Q1 yk − yk−1Q2

)(
Q2 Q1

Q1 Q0

)
is

a = (yk − yk−1Q0)Q2 + yk−1Q
2
1 = ykQ2 − yk−1D, (19)

where yk = Tyk−1 −Dyk−2, y1 = T, y2 = T 2 −D.
Thus, the claim is proven.

For the yn recurrence relation containing T and D values, algebraic operations are given in
the following corollary.

Corollary 2.1. For two different integers m and n, the following equalities are satisfied:

yn + ym = T (yn−1 + ym−1)−D(yn−2 + ym−2). (20)

and
ynym = T 2(yn−1ym−1) +D2(yn−2ym−2)− TD(yn−2ym−1 + yn−1ym−2). (21)

Proof. The proof of the above equations can be easily seen by direct calculations. For example,

y2y3 = T 5 − 3T 3D + 2TD2,

y2 + y3 = T 3 + T 2 − 2TD −D.

It is well known that Cassini’s identity is a special case of Catalan’s identity and gives
information about the n-th terms of sequences. In the following theorem, we give Cassini’s
identity for the elements yn, n ≥ 1.
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Theorem 2.2. For n ≥ 1, we have

y2n − yn−1yn+1 = (−1)n(2Q1 − 3k)n. (22)

Proof. If we use the inductive method and write n = 1, 2 then we have

det(Q) = y21 − y0y2 = T 2 − (T 2 −D) = D = −(2Q1 − 3k) (23)

and
det(Q2) = y22 − Ty2y1 +Dy1y1 = D2 = (2Q1 − 3k)2, (24)

respectively. And for n = k, we assume the claim is true. Then

det(Qk) = y2k − yk−1yk+1 = (−1)k(2Q1 − 3k)k. (25)

Thus, we obtain

det(Qk+1) = det(Qk) det(Q) = DkD = (−1)k+1(2Q1 − 3k)k+1. (26)

So, the proof is completed.

We can also give the powers of the Q matrix and some equalities by examining the eigenvalues
of this matrix. The eigenvalues of Q differ from each other and they are as below.

λ1 =
T +
√
T 2 − 4D

2
(27)

and

λ2 =
T −
√
T 2 − 4D

2
. (28)

Where D = Q0Q2 − Q2
1 and T = Q0 + Q2 are the determinant and trace of the Q matrix,

respectively. We would like to point out here that since the quaternion product is not abelian, we
multiplied by writing quaternions with small indices first during multiplication throughout the
study.

Corollary 2.2. For n ≥ 1, the following equality is true:

Qn = QnQ−Qn−1DI (29)

where Qn =
λn
1 − λn

2

λ1 − λ2
.

Proof. Since the eigenvalues of the Qn matrix are λn1 and λn2 , the trace of the matrix Qn

Tr(Qn) = (T 2 − 2D)yn−2 − TDyn−3. (30)

The powers of matrix Q with different eigenvalues are

Qn = λn1
Q− λ2I
λ1 − λ2

+ λn2
Q− λ1I
λ2 − λ1

. (31)
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Detailed information on properties of the elements of matrix Q can be found in [5,6]. If necessary
actions are taken for the second side of equation (31) and by using the equalities

λ1 + λ2 = T, λ1λ2 = D

and
λ1 − λ2 =

√
T 2 − 4D,

the following equality is obtained:

Qn = QnQ−Qn−1DI.

Where Qn in this formula is calculated as

Qn =
λn1 − λn2
λ1 − λ2

=
1

2n−1

bn−1
2 c∑

k=0

(
n

2k + 1

)
T n−2k−1(T 2 − 4D)k. (32)

Thus, the proof is completed.

According to the last result, let us just say that, the calculation of Qn depends on the calculation
of the Qn and the determinant of the matrix Q. We can take the Pell matrix as an example.
When the n-th power of the well-known Pell matrix P is calculated, the (1, 2) element of the
matrix found gives the n-th Pell number. And for the Binet formula of Pell sequence, typing
T = 2, D = −1 in the formula (32), the following combinatorial equality is found:

Pn =
1

2n−1

bn−1
2 c∑

k=0

(
n

2k + 1

)
2n−2k−18k. (33)

Indeed, for example if we take n = 4, then this formula gives the value P4 = 12.

Now, using the result in Corollary 2.2 we give the following Theorem.

Theorem 2.3. For n ≥ 1, the following equality is satisfied:

Qn = yn−1Q− yn−2DI. (34)

Proof. To see the accuracy of the claim, we first prove that the equation below is correct:

Qn = yn−1. (35)

For n = 1, 2

Q1 = 1 = y0, Q2 = λ1 + λ2 = T = y1

is obtained, respectively. Also, for n = 3, since λ1 + λ2 = T, λ1λ2 = D

Q3 = λ21 + λ22 + λ1λ2 = T 2 −D

is obtained. Now, assume that this claim is true for n: Qn = yn−1. For n+ 1, we write

Qn+1 = λn1 + λn−11 λ2 + λn−21 λ22 + · · ·+ λ1λ
n−1
2 + λn2 = Tyk−1 −Dyk−2 = yk. (36)
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Thus, we have
Qn = yn−1.

From the equality Qn = QnQ−Qn−1DI , we get

Qn = yn−1Q− yn−2DI.

Thus, the correctness of the desired equality is satisfied. Finally, let us check this last equality
for n = 1 and n = 2, respectively. Then

Q1 = y0Q− y−1DI = Q

and

Q2 = y1Q− y0DI =

(
TQ2 −D TQ1

TQ1 TQ0 −D

)
is written. If we write matrix elements explicitly then, we get

Q2 =

(
TQ2 −D TQ1

TQ1 TQ0 −D

)
=

(
Q2

1 +Q2
2 Q1Q2 +Q0Q1

Q1Q2 +Q0Q1 Q2
0 +Q2

1

)
,

where

y1 = T, y2 = T 2 −D, yn = Tyn−1 −Dyn−2, T = Q0 +Q2, D = Q0Q2 −Q2
1.

In the multiplication here and throughout the entire article, we just sorted the indices from
least to greatest and did the multiplication.

Now, with the help of this above Theorem, we will give the following Theorem without proof.

Theorem 2.4. For n ≥ 1, we have

bn−1
2 c∑

i=0

(
n

2i+ 1

)
(2Q0+Q1)

n−2i−1(5Q2
1)

i = 2n−1
bn−1

2 c∑
i=0

(
n− 1− i

i

)
(λ1+λ2)

n−2i−1(−λ1λ2)i (37)

where λ1, λ2 are the eigenvalues of the matrix Q.

Theorem 2.5. For the integers n ≥ 1, we have

bn2 c∑
k=0

(
n− k
k

)
n

n− k
T n−2k(−D)k =

1

2n−1

bn2 c∑
k=0

(
n

2k

)
T n−2k(T 2 − 4D)k, (38)

where T and D are the trace and determinant of the matrix Q, respectively.

Proof. Using the equation λn1 + λn2 = 2yn − Tyn−1, we get the following identity:

2yn − Tyn−1 = 2

bn2 c∑
k=0

(
n− k
k

)
T n−2k(−D)k − T

bn2 c∑
k=0

(
n− k
k

)
n− 2k

n− k
T n−2k(−D)k, (39)
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where (
n− 1− k

k

)
=

(
n− k
k

)
n− 2k

n− k
.

If we make the necessary calculations, then we get

2yn − Tyn−1 =
bn2 c∑
k=0

(
n− k
k

)
n

n− k
T n−2k(−D)k, (40)

where

yn =

bn2 c∑
i=0

(
n− i
i

)
T n−2i(−D)i.

Also, we get

λn1 + λn2 =
1

2n

(
n∑

k=0

(
n

k

)
T n−k(

√
T 2 − 4D)k +

n∑
k=0

(
n

k

)
T n−k(−

√
T 2 − 4D)k

)
(41)

and

λn1 + λn2 =
1

2n−1

bn2 c∑
k=0

(
n

2k

)
T n−2k(T 2 − 4D)k. (42)

Thus, with the help of equalities (40) and (42), we have the desired equation.

For example, when n = 3, if calculations are made for the right and left sides of equality (42)
then

T 3 − 3TD = T 3 − 3TD

is obtained.

3 Conclusion and suggestions

Using the equalities and properties given in this work, various and different identities including
quaternions can be found more quickly and easily. This method is advantageous to use in future
studies due to the use of matrices.
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[4] Deveci, Ö., & Shannon, A. G. (2018). The quaternion-Pell sequence. Communications in
Algebra, 46(12), 5403–5409.

[5] Flaut, C., & Savin, D. (2019). Some remarks regarding l-elements defined in algebras
obtained by the Cayley–Dickson process. Chaos, Solitons & Fractals, 118, 112–116.

[6] Halici, S. (2012). On Fibonacci Quaternions. Advances in Applied Clifford Algebras, 22(2),
321–327.

[7] Horadam, A. F. (1963). Complex Fibonacci numbers and Fibonacci quaternions. The
American Mathematical Monthly, 70(3), 289–291.

[8] Koshy, T. (2001). Fibonacci and Lucas Numbers with Applications. Wiley-Interscience
Publications.

[9] Mc Laughlin, J. (2004). Combinatorial identities deriving from the nth power of a 2 × 2

matrix. Integers, 4, 1–15.

[10] Melham, R. S.,& Shannon, A. G. (1995). Some summation identities using generalized
Q-matrices. Fibonacci Quarterly. 33(1), 64-73.
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