
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
2022, Volume 28, Number 3, 458–465
DOI: 10.7546/nntdm.2022.28.3.458-465

On complex Leonardo numbers

Adnan Karataş
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Abstract: In this study, we introduce the complex Leonardo numbers and give some of their
properties including Binet formula, generating function, Cassini and d’Ocagne’s identities. Also,
we calculate summation formulas for complex Leonardo numbers involving complex Fibonacci
and Lucas numbers.
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1 Introduction

Leonardo numbers and their some properties studied by Catarino and Borges in [5]. Also, the
authors give Binet formula for Leonardo numbers and study their relationships with Fibonacci and
Lucas numbers. The Leonardo sequence is very intertwined with Fibonacci and Lucas numbers,
for example, one can see this bond in their generating functions. Firstly, let us give definitions for
these sequences [10, 11]. Fibonacci numbers are defined as

Fn+2 = Fn+1 + Fn, n ≥ 0, (1)

where F0 = 0 and F1 = 1. Lucas numbers are defined as

Ln+2 = Ln+1 + Ln, n ≥ 0, (2)

where L0 = 2 and L1 = 1. Secondly, we need to give golden (α) and silver (β) ratios which are
defined as

α =
1 +
√
5

2
and β =

1−
√
5

2
. (3)
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Apart from theoretical sciences, these ratios are very popular and used in variety of different
areas. Especially, architectures and industrial designers benefit from them, see [1,9]. These ratios
are the roots of the characteristic equation of Fibonacci and Lucas sequences. These sequences
have same characteristic equation, because of their recurrence relation. The mentioned equation
is

C(x) = x2 − x− 1. (4)

Thirdly, we may recall the Binet formula which is used to get the n-th Fibonacci and the n-th
Lucas number as

Fn =
αn − βn

α− β
and Ln = αn + βn. (5)

Lastly, we mention about Fibonacci and Lucas numbers’ generating functions. The generating
function, is similar to the Binet formula, is used to obtain desired specific element of the sequence.
Fibonacci and Lucas numbers have the same generating function with the exception of initial
values.

F (t) =
F0 + (F1 − F0)t

1− t− t2
and L(t) =

L0 + (L1 − L0)t

1− t− t2
. (6)

Fibonacci and Lucas numbers are studied deeply even in different algebraic structures, for
instance see [4, 6–8]. As in the reference [7], Horadam defined the complex Fibonacci and
complex Lucas sequences as

CFn+2 = CFn+1 + CFn and CLn+2 = CLn+1 + CLn (7)

where CFn = Fn + iFn+1 and CLn = Ln + iLn+1 with n ≥ 0.
In the next section, we give the definition of Leonardo numbers. Also, we give some connections

that Leonardo numbers have with Fibonacci and Lucas numbers.

2 Leonardo numbers

Leonardo numbers are an integer sequence with following recurrence relation

Len+2 = Len+1 + Len + 1, n ≥ 2 (8)

where Len denote the n-th Leonardo number with initial values Le0 = Le1 = 1. Note that, every
Leonardo number is odd because of the initial values and recurrence relation.

In order to show relations of the Leonardo numbers with Fibonacci and Lucas numbers, we
state following proposition from [5] without proof.

Proposition 2.1. For n ≥ 0, the following statements hold true,

Len = 2Fn+1 − 1, (9)

Len = 2

(
Ln + Ln+2

5

)
− 1, (10)

Len+3 =
Ln+1 + Ln+7

5
− 1, (11)

Len = Ln+2 − Fn+2 − 1, (12)

where Fn and Ln are the n-th Fibonacci and the n-th Lucas numbers, respectively.

459



Now, let us give the Binet formula for Leonardo numbers using Equation (12).

Proposition 2.2. For n ≥ 0 the Binet formula for Leonardo numbers is

Len =
α(2αn − 1)− β(2βn − 1)

α− β
, (13)

where α =
1 +
√
5

2
and β =

1−
√
5

2
.

Proof. Let us prove the claim using the Binet formulas of Fibonacci and Lucas numbers in
Equation (12).

Len = Ln+2 − Fn+2 − 1

can be rewritten as

Len = (αn+2 + βn+2)−
(
αn+2 − βn+2

α− β

)
− 1.

After necessary calculations, we get

Len =
αn+3 − βn+3 + αβn+2 − βαn+2 − α + β − αn+2 + βn+2

α− β
,

which is equal to

Len =
α(2αn − 1)− β(2βn − 1)

α− β
,

where we used the fact that both α2 − αβ − α and β2 − αβ − β are equal to 2.

For more identities involving Leonardo numbers see [3]. Also other studies about Leonardo
numbers can be listed as [2,12,13]. In the next section, we define the complex Leonardo numbers
using the given background.

3 Complex Leonardo numbers

As we have given the definitions before with (7), the complex Fibonacci and Lucas numbers are
defined by Horadam in [7]. Using (7) with authors’ definition about Leonardo numbers in [5],
we define complex Leonardo numbers as follows.

Definition 3.1. For n ≥ 1, n-th complex Leonardo numbers are defined by

Cn = Len + iLen+1. (14)

It is important to note that, we denote the n-th complex Leonardo number with Cn. Using the
recurrence relation and definition of complex Leonardo numbers we get

Cn = (Len−1 + Len−2 + 1) + i(Len + Len−1 + 1) = Cn−1 + Cn−2 + ε, (15)

where n ≥ 2 and ε = 1 + i.
Now let us start with the Binet formula for the complex Leonardo numbers.
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Theorem 3.1. For n ≥ 0, the Binet formula for n-th complex Leonardo number Cn is

Cn =
2ααn+1 − 2ββn+1

α− β
− ε. (16)

where α and β are golden and silver ratios, α = 1 + iα and β = 1 + iβ.

Proof. Using definition of complex Leonardo numbers and the Binet of the sequence, we get

Cn =
α(2αn − 1)− β(2βn − 1)

α− β
+ i

(
α(2αn+1 − 1)− β(2βn+1 − 1)

α− β

)
.

Making necessary calculations we have

Cn =
2αn+1(1 + iα)− 2βn+1(1 + iβ) + (1 + i)(β − α)

α− β
,

which is equal to Equation (16) with α = 1 + iα, β = 1 + iβ and ε = 1 + i.

Our Binet formula is compatible with earlier result in [2].
In the next theorem, we give generating function for complex Leonardo numbers.

Theorem 3.2. The generating function for the complex Leonardo numbers is

g(t) =
C0 − t(1− i) + t2(1− i)

1− 2t+ t3
. (17)

Proof. To prove this claim, we write g(t) as

g(t) = C0t
0 + C1t

1 + C2t
2 + · · ·+ Cnt

n + . . . .

Now, calculating 2tg(t) and −t3g(t) as

2tg(t) =
∞∑
n=0

2Cnt
n+1 and − t3g(t) = −

∞∑
n=0

Cnt
n+3.

If we use above terms, then

(1− 2t+ t3)g(t) = C0 − t(1− i) + t2(1− i)

is obtained. After calculations we get the desired result

g(t) =
C0 − t(1− i) + t2(1− i)

1− 2t+ t3
.

Binet formula and the generating function are two important equations which are used to
obtain the desired element of the sequence. Therefore, these equations are always stated in the
integer sequence studies. Another equation which is generally studied is the Cassini identity. In
the next theorem, we give this famous identity.
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Theorem 3.3. Cassini identity for complex Leonardo numbers is

C2
n − Cn−1Cn+1 = −Len−2 − Len+2Len−1 − 8(−1)n+1 + i(LenLen+1 − Len−1Len+2), (18)

where Len is the n-th Leonardo number.

Proof. In order to prove the claim, we use definition of the n-th complex Leonardo number as

Cn = Len + iLen+1.

After explicitly stating the equation as

Le2n − Len−1Len+1 − (Le2n+1 − LenLen+2) + i(LenLen+1 − Len−1Len+2).

We study real and imaginary parts separately and calculate the identity using the Binet formula
for Leonardo numbers

LHS =
(α(2αn − 1)− β(2βn − 1)

α− β

)2
−
(α(2αn+1 − 1)− β(2βn+1 − 1)

α− β

)2
+
α(2αn − 1)− β(2βn − 1)

α− β
α(2αn+2 − 1)− β(2βn+2 − 1)

α− β

− α(2αn−1 − 1)− β(2βn−1 − 1)

α− β
α(2αn+1 − 1)− β(2βn+1 − 1)

α− β

for the real part. The imaginary part of the equation can be written using Binet formula

LHS =
α(2αn − 1)− β(2βn − 1)

α− β
α(2αn+1 − 1)− β(2βn+1 − 1)

α− β

− α(2αn−1 − 1)− β(2βn−1 − 1)

α− β
α(2αn+2 − 1)− β(2βn+2 − 1)

α− β
.

Making necessary calculations and using Leonardo number identities we get the

C2
n − Cn−1Cn+1 = −Len−2 − Len+2Len−1 − 8(−1)n+1 + i(LenLen+1 − Len−1Len+2),

the desired result.

Another well-known identity for sequences is d’Ocagne’s identity. Now, we give it for
complex Leonardo numbers.

Theorem 3.4. D’Ocagne’s identity for complex Leonardo numbers is

CmCn+1 − Cm+1Cn = 2(−1)n+1(Lem−n−1 + 1) + Lem−1 − Len−1
− i(2(−1)n(Lem−n + 1) + Lem − Len),

(19)

where m > n and n > 0.
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Proof. For this proof we can utilize the Leonardo number identities instead of Binet formula.
Firstly, we write the identity explicitly.

CmCn+1 − Cm+1Cn = (Lem + iLem+1)(Len+1 + iLen+2)

− (Lem+1 + iLem+2)(Len + iLen+1).

Secondly, making multiplications and using properties of complex Leonardo numbers we get
following equation.

CmCn+1 − Cm+1Cn = LemLen+1 − Lem+1Len)

− i(LemLen+2 − Lem+2Len).

Finally, using d’Ocagne’s identity for Leonardo numbers we can get

CmCn+1 − Cm+1Cn = 2(−1)n+1(Lem−n−1 + 1) + Lem−1 − Len−1
− i(2(−1)n(Lem−n + 1) + Lem − Len),

which completes the proof.

In the next theorem, we state some summation formulas.

Theorem 3.5. For positive integer n, we have following summation formulas for complex
Leonardo numbers.

n∑
j=0

Cj = Cn+2 − (n+ 2)ε− 2i. (20)

n∑
j=0

C2j = C2n+1 − nε− 2i. (21)

n∑
j=0

C2j+1 = C2n+2 − (n+ 2)ε. (22)

Proof. Let us prove the Equation (21). Other equations may be proven accordingly. Using the
definition of complex Leonardo numbers we can restate the formula as

n∑
j=0

C2j+1 =
n∑

j=0

Le2j+1 + iLe2j+2.

Applying the summation formulas for Leonardo numbers, we can rearrange the equation as

n∑
j=0

C2j+1 = Le2j+2 − (n+ 2) + iLe2n+3 − i(n+ 2),

which completes the proof.

In the next theorem, we use the complex Fibonacci CFn, Lucas CLn and Leonardo Cn

numbers for summation formulas.
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Theorem 3.6. For n ≥ 0, we have following summation equations

n∑
j=0

CFj + Cj = CFn+1 + Cn+2 − (n+ 3)ε− 2i (23)

and
n∑

j=0

CLj + Cj = CLn+1 + Cn+2 − (n+ 3)ε− 4i, (24)

where CFj and CLj are the j-th complex Fibonacci and complex Lucas number, respectively.

Proof. Let us prove only the Equation (23). For non-zero integer n,

n∑
j=0

CLj + Cj =
n∑

j=0

CLj +
n∑

j=0

Cj.

n∑
j=0

CLj + Cj =
n∑

j=0

Lj + iLj+1 +
n∑

j=0

Lej + iLej+1.

Using summation formulas in [5], we get following explicit form

n∑
j=0

CLj + Cj = CLn+1 + Cn+2 − (n+ 3)ε− 4i,

which ends the proof.

4 Conclusion

In this paper, the complex Leonardo numbers are introduced, including Binet formula, generating
function, Cassini and d’Ocagne’s identities. Furthermore, summation formulas involving complex
Fibonacci and Lucas numbers are presented. More identities can be obtained in the future studies.
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