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Abstract
Rogue waves are very mysterious and extra ordinary waves. They appear suddenly even in 
a calm sea and are hard to be predicted. Although nonlinear Schrödinger equation provides 
a perspective, it alone can neither detect rogue waves nor provide a complete solution to 
problems. Therefore, some approximations are still mandatory for both obtaining an exact 
solution and predicting rogue waves. Such as Kundu–Mukherjee–Naskar (KMN) model 
which allows obtaining lump-soliton solutions considered as rogue waves. In this study the 
functional variable method is utilized to obtain the analytical solutions of KMN model that 
corresponds to the propagation of soliton dynamics in optical fiber communication system.
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1 Introduction

Wave motion is very predictable in basic level and can be explained very deterministic 
way. However, it becomes much more complicated with taking the nonlinear interactions 
into account. This type of systems called nonlinear or dynamical systems. Although, 
there has been some development in the mathematical field to understand the behavior 
of a nonlinear system we are still far from predicting the behavior of such systems deter-
ministically. The first studies on this issue date back almost 150 years to Riemann and 
stokes. And the studies are continuing with increasing importance and interest (Rezaza-
deh et al. 2018, 2019; Rezazadeh 2018). In the last decade this interest increased more 
than before (Kundu et  al. 2021; Yang et  al. 2021; Alam et  al. 2021; Ma et  al. 2021; 
Alam and Osman 2021; Gómez-Aguilar et al. 2021; Barman et al. 2021). Many different 
analytical methods are applied to understand and explain physical behavior of the non-
linear systems. (Barman et al. 2021; Osman et al. 2018; Liu et al. 2019a, b; Ding et al. 
2019; Ekici et al. 2016; Eslami and Mirzazadeh 2016)

The basic idea is concentrated on two types of wave behaviors which are hyperbolic 
(Pettersson et  al. 2019) and dispersive. Hyperbolic wave behavior can be formulated 
mathematically in terms of hyperbolic partial differential equations. Klein-Gordon 
(Kurt 2019) is a prototype for hyperbolic wave equation. Dispersive waves cannot be 
characterized easily. Nonhyperbolic waves generally categorized as dispersive waves. 
However, classification is made on the type of solution rather than on the equations. 
Korteweg-DeVries equation (Kurt et  al. 2017) can be a good example for dispersive 
waves. There are many equations developed for determining the wave behavior of a 
dynamical system (Gao et al. 2020; Rezazadehd et al. 2018; Raza et al. 2019a, b; Tas-
bozan et al. 2019; Atilgan et al. 2019; Kurt 2019; Kurt et al. 2017; Seadawy et al. 2019, 
2020; Ali et al. 2018a, b; Raslan et al. 2017; Sedeeg et al. 2019; Sulaiman et al. 2019a, 
b; Sulaiman and Bulut 2019, 2020).

For a small intersection of a spatiotemporal system the dynamics can be assumed as 
linear. However, they must be evaluated in terms nonlinear dynamics due to significant 
modulation of the wave amplitude originated from cumulative nonlinear interactions. 
Nonlinear Schrödinger (NLS) equation is a very common equation which is providing a 
canonical design of involucre dynamics of a quasi-monochromatic planar wave propa-
gating in a weakly nonlinear dispersive medium when dissipative effects are insignifi-
cant (Liu et al. 2018; El-Dessoky and Islam 2019; Seadawy and Cheemaa 2019).

NLS is employed for many situational models such as propagation of a wave in a Kerr 
type (Zhang et al. 2011a, b) or non-Kerr type (Liu 2010) medium. Most of them are not 
fully integrable which means exact solutions cannot be obtained directly. Only approximate 
numerical solutions with no stable solitons can be obtained (Zhang and Simos 2016a, b). 
Approximations cannot predict rogue waves which can be defined as “localized and iso-
lated surface waves, apparently appear from nowhere, make a sudden hole in the sea just 
before attaining surprisingly high amplitude and disappear again without a trace” KMN 
(Kundu et al. 2014). They proposed a model to by extension of NLS to have an integrable 
form which allows lump-soliton can be considered as rogue wave model;

and then, they replaced the conventional amplitude-like nonlinear term with the a current-
like nonlinear term which allows them to obtain a fully integrable form of NLS;

(1.1)iqt = d1qxx − d2qyy + 2iq
�

√

d1j
x −

√

d2j
y
�

, ja ≡ qq∗
a
− q∗qa.
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In this study the wave solutions of KMN model

which describes the propagation of soliton dynamics in optical fiber communication 
system.

Yıldırım (Yıldırım 2019) obtained dark, bright and singular solitons by using trial equa-
tion technique for KMN model. Rivzi et al. (Rizvi et al. 2020) used csch method, extended 
Tanh–Coth method and extended rational sinh-cosh method to get the exact solutions of 
KMN model. Talarposhti et al. (Talarposhti et al. 2020) employed Exp-function method to 
yield the optical soliton solutions of considered KMN model.

This work is structured as follows: In Sect.  2, mathematical analysis of KMN model 
is given. In Sect.  3, we demonstrate the structure of the functional variable method. In 
Sect. 4, we apply this method to find some wave solutions of the equation written above. 
In Sect. 5, we give the results and discussion, Sect. 6 gives the conclusion of the whole 
research.

2  Mathematical analysis

In order to get started, the following hypothesis is selected:

where P(ξ) represents the amplitude portion and

and the phase portion of the soliton is defined as

Here, �1 and �2 are the frequencies of the soliton in the x-and y-directions respectively 
while � is the wave number of the soliton and finally �0 is the phase constant. Also, the 
parameters �1 and �2 in (2.2) represent the inverse width of the soliton along x-and y-direc-
tions respectively, while �2.3 represents the velocity of the soliton. Inserting (2.1) along 
with (2.2) and (2.3) into (1.1) and decomposing into real and imaginary parts, the follow-
ing pair of equations, respectively yield

Equation (2.4) is transformed into the following one

(1.2)iqt + qxy + 2iq
(

qq∗
x
− q∗qx

)

= 0.

(1.3)iqt + �qxy + i�q(qq∗
x
− q∗qx) = 0.

(2.1)q(x, y, t) = P(�) exp
[

iΦ(x, y, t)
]

,

(2.2)� = �1x + �2y − �t,

(2.3)Φ(x, y, t) = −�1x − �2y +�t + �0.

(2.4)��1�2P
�� − (� + ��1�2)P − 2��1P

3 = 0,

(2.5)� = −�(�1�2 + �2�1).

(2.6)P�� =
� + ��1�2

��1�2

P +
2��1

��1�2

P3.
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3  The functional variable method

This section presents the brief descriptions of the functional variable method (Zerarka 
and Ouamane 2010; Eslami et al. 2017; Bekir et al. 2015). While applying this method 
discretization or normalization is not needed, this is the main advantage of the method. 
Also, nonlinear partial differential equation is converted into nonlinear ordinary differ-
ential equation by the help of wave transform and chain rule. This process makes the 
solution easier and faster.

Suppose that a the NLEE, say in two independent variables to x and t  is given by

where G is a function of u, ut, uxx,… and the subscripts denote the partial derivatives of 
u(x, t) with respect to x and t.

A transformation u(x, t) = U(�), � = x − �t converts the NLEE (3.1) to a nonlinear 
ODE

where F is a function of U,U� ,U�� ,… and its derivatives point out the ordinary derivatives 
with respect to � and where and � is constant to be determine.

Then we make a transformation in which the unknown function U is considered as a 
functional variable in the form:

and some successive derivatives of U are

where ‘‘′” stands for d

dU
.

The ODE (3.2) can be reduced in terms of U, F3.4 and its derivatives upon using the 
expressions of Eq. (3.4) into Eq. (3.2) gives

by integrating of Eq. (3.5), Eq. (3.5) can be written with respect to H , and it is found the 
appropriate solutions by using Eq. (3.3) for the investigated problem.

4  Solutions to the Eq. (1)

In this Section we obtain wave solutions of the KMN model by using the functional 
variable method described in Sect. 3.

(3.1)G(u, ut, uxx,… , ) = 0,

(3.2)F(U,U� ,U�� ,… , ) = 0,

(3.3)U� = Ω(U),

(3.4)

U�� =
1

2
(Ω2)�,

U��� =
1

2
(Ω2)��

√

Ω2,

U���� =
1

2
[(Ω2)���Ω2 + (Ω2)��(Ω2)�],

⋮

(3.5)H(U,Ω,Ω�,Ω��, ,…) = 0.
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Following Eq. (3.4), it is easy to deduce from Eq. (2.6) an expression for the function 
Ω(U)

Integrating Eq. (4.1) and setting the constant of integration to Ξ yields

or

Using Eqs. (2.1), (2.2) and (2.3), we obtain the following wave solutions of the KMN 
model.

If 𝜔+𝛼𝜗1𝜗2
𝛼𝜒1𝜒2

> 0,
𝛽𝜗1

𝛼𝜒1𝜒2

< 0 and Ξ = 0 , we obtain the following bright soliton solutions

If 𝜔+𝛼𝜗1𝜗2

𝛼𝜒1𝜒2

> 0,
𝛽𝜗1

𝛼𝜒1𝜒2

< 0 and Ξ = 0 , we obtain the following singular soliton 
solutions

If 𝜔+𝛼𝜗1𝜗2
𝛼𝜒1𝜒2

< 0,
𝛽𝜗1

𝛼𝜒1𝜒2

> 0 and Ξ = 0 , we obtain the following periodic wave solutions

If 𝜔+𝛼𝜗1𝜗2
𝛼𝜒1𝜒2

< 0,
𝛽𝜗1

𝛼𝜒1𝜒2

> 0 and Ξ = −
(�+��1�2)

2

4���1�1�2

 , we obtain the following dark soliton 
solution

(4.1)
1

2
(Ω2)� =

� + ��1�2

��1�2

P +
2��1

��1�2

P3.

(4.2)Ω2 =
� + ��1�2

��1�2

P2 +
��1

��1�2

P4 + Ξ,

(4.3)Ω = P� = ±

√

� + ��1�2

��1�2

P2 +
��1

��1�2

P4 + Ξ.

(4.4)

q±
1
(x, y, t) = ±

√

−
� + ��1�2

��1
sech

(
√

� + ��1�2

��1�2

(

�1x + �2y + (�(�1�2 + �2�1))t
)

)

× exp
[

i
(

−�1x − �2y +�t + �0
)]

.

(4.5)

q±
2
(x, y, t) = ±

√

� + ��1�2

��1
csch

(
√

� + ��1�2

��1�2

(

�1x + �2y + (�(�1�2 + �2�1))t
)

)

× exp
[

i
(

−�1x − �2y +�t + �0
)]

.

(4.6)

q±
3
(x, y, t) = ±

√

−
� + ��1�2

��1
sec

(
√

−
� + ��1�2

��1�2

(

�1x + �2y + (�(�1�2 + �2�1))t
)

)

× exp
[

i
(

−�1x − �2y +�t + �0
)]

,

(4.7)

q±
4
(x, y, t) = ±

√

−
� + ��1�2

��1
csc

(
√

−
� + ��1�2

��1�2

(

�1x + �2y + (�(�1�2 + �2�1))t
)

)

× exp
[

i
(

−�1x − �2y +�t + �0
)]

.
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If 𝜔+𝛼𝜗1𝜗2
𝛼𝜒1𝜒2

< 0,
𝛽𝜗1

𝛼𝜒1𝜒2

> 0 and Ξ = −
(�+��1�2)

2

4���1�1�2

 , we obtain the following singular dark 
soliton solutions

If 𝜔+𝛼𝜗1𝜗2
𝛼𝜒1𝜒2

> 0,
𝛽𝜗1

𝛼𝜒1𝜒2

> 0 and Ξ = −
(�+��1�2)

2

4���1�1�2

 , we obtain the following periodic wave 
solutions

5  Results and discussion

Figure 1 shows the graphs obtained from the space–time mapping of the solution  q1. It can 
be seen from the figure that the waves have a spatiotemporally extended homoclinic breather 
wave structure. In this respect, it can be concluded that this  q1 solution can be useful in exam-
ining the dynamic behavior of rogue waves. It can also be seen that breather waves extend 
periodically along with time while extending at a certain angle with the X-axis spatially.

Figure 2 shows the graphs obtained from the space–time mapping of the solution  q4. Inter-
estingly, although this solution seems to be the solution of heteroclinic waves at first glance, a 
careful look reveals the difference of the situation. This solution shows the existence of peri-
odically extended homoclinic waves both spatially and temporally.

Figure 2 shows the graphs obtained from the space–time mapping of the solution  q5. From 
this solution, the existence of singular waves extended in time can be seen Fig. 3.

(4.8)

q±
5
(x, y, t) = ±

√

−
� + ��1�2

2��1
tanh

(
√

−
� + ��1�2

2��1�2

(

�1x + �2y + (�(�1�2 + �2�1))t
)

)

× exp
[

i
(

−�1x − �2y +�t + �0
)]

.

(4.9)

q±
6
(x, y, t) = ±

√

−
� + ��1�2

2��1
coth

(
√

−
� + ��1�2

2��1�2

(

�1x + �2y + (�(�1�2 + �2�1))t
)

)

× exp
[

i
(

−�1x − �2y +�t + �0
)]

.

(4.10)

q±
7
(x, y, t) = ±

√

� + ��1�2

2��1
tan

(
√

� + ��1�2

2��1�2

(

�1x + �2y + (�(�1�2 + �2�1))t
)

)

× exp
[

i
(

−�1x − �2y +�t + �0
)]

,

(4.11)

q±
8
(x, y, t) = ±

√

� + ��1�2

2��1
cot

(
√

� + ��1�2

2��1�2

(

�1x + �2y + (�(�1�2 + �2�1))t
)

)

× exp
[

i
(

−�1x − �2y +�t + �0
)]

.
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6  Conclusion

In this article functional variable method is applied to KMN model successfully to get 
the wave solutions of considered model. This model was first suggested not only to 
express the oceanic rogue waves but also to model the optical fiber communication. The 
solutions show that considered method fit well for nonlinear KMN model with com-
plex structure. By the help of this work it is seen that functional variable method can 
be used as a powerful tool to obtain the exact solutions of nonlinear partial differential 
equations.

Fig. 1  a 3D-plot for q+
1
 b the contour plot for q+

1
 c 2D-plot for q+

1
 at t = 0, t = 0.5, t = 1, t = 1.5, t = 2 . 

Respectively, when � = 3, � = 1, �1 = −2, �2 = 1, � = 2, �1 = 1, �2 = 1, �1 = 1, �2 = 2, � = 2, �0 = 1 and 
y = 0.5
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Fig. 2  a 3D-plot for q−
4
 b the contour plot for q−

4
 c 2D-plot for q−

4
 at t = 0, t = 0.5, t = 1, t = 1.5, t = 2 . 

Respectively, when � = −4, � = 1, �1 = 0.5, �2 = 1, � = 2, �1 = 1.75, �2 = 1.5, �1 = 1, �2 = 0.5, � = 2, �0 = 0 
and y = 1.5
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