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In this study, the authors obtained the soliton and periodic wave solutions for time fractional symmetric
regularized long wave equation (SRLW) and Ostrovsky equation (OE) both arising as a model in ocean
engineering. For this aim modified extended tanh-function (mETF) is used. While using this method,
chain rule is employed to turn fractional nonlinear partial differential equation into the nonlinear or-
dinary differential equation in integer order. Owing to the chain rule, there is no further requirement for
any normalization or discretization. Beta derivative which involves fractional term is used in considered
mathematical models. Obtaining the exact solutions of these equations is very important for knowing the
wave behavior in ocean engineering models.
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1. Introduction

Fractional calculus can be expressed as a generalized version
of known calculus. In the beginning, fractionalizing the differen-
tiation and integration seems to be a paradox. But by the time
the necessity of this process is understood. Fractional calculus has
neither geometrical nor physical explanation. So, a question can
be asked: “What is the advantage of fractionalizing the differen-
tiation or integration?”. The answer is quite hard but can be ex-
plained as follows. By taking the global correlation into evaluation
the historical dependence of the evolution of system analysis can
be stated easily with fractional calculus. The theoretical mathe-
matical models coincide with the experimental results when frac-
tional calculus is used while establishing the model. In addition
to these, fractional calculus has clearer physical importance and a
simpler representation with a nonlinear model. Due to these ad-
vantages, fractional calculus became a very popular topic nowadays
[16-24]. There are many different definitions of fractional calculus.
The most popular ones are Griinwald-Letnikov, Riemann-Liouville,
Caputo, Weyl, Hadamard, Atangana-Baleanu, Caputo- Fabrizio, con-
formable, etc. that are given in Oldham and Spanier [1], Miller and
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Ross [2], Podlubny [3] and Khalil et al. [4]. Each one has many dif-
ferent properties. Common property satisfied by all of them is lin-
earity [1-3]. As a result of such diversity, the following questions
arise. “What is the advantages of these derivatives over the other
ones?” or “What is the advantages and disadvantages of these frac-
tional operators?”. For instance, initial/boundary value problems
modelled by using the Riemann-Liouville operator must contain its
conditions in the Riemann-Liouville sense. Caputo annihilated this
disadvantage by his fractional operator named Caputo fractional
derivative [3]. In addition to these, the derivative of a constant is
not zero when the Riemann-Liouville fractional operator is used.
Despite that, the derivative of constant is zero by using both Ca-
puto and conformable derivatives. Also, Caputo, Riemann-Liouville,
Griinwald-Letnikov and some other derivatives do not satisfy chain
rule, the formula of the derivative of the product of two func-
tions, formula of the derivative of the quotient of two functions,
the propertyDPD*(f) = DP+® and so on [4]. After then Atangana
expressed some basic criteria that fractional derivative operators
must provide that need to be satisfied for the operator to be called
fractional derivative [5]. Also, a new fractional operator that satis-
fies sixteen criteria be called fractional derivative was introduced
by Atangana in his book called beta derivative with a fractional
term [5].
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Definition 1. [5] Let a e R and g: [a, o] — R be a function. Then
B—derivative of gis defined as:

g<t+£ (t+ﬁ)]iﬂ)—g(t)

&

forallt >0, B =0,
forallt >0,0< B <1

(D7 = { lim
&)

where I" the gamma-function

o0

r(v) = / v-Tetdr.

0

Atangana has proven some basic theorems by using this
new fractional operator. He represented partial S derivative,
B—divergence, f—gradient, f—curl, Clairaut’s theorem for partial
B-derivative, Green’s theorem for S-derivative, Stokes’s theorem
for B-derivative, etc [5]. He expressed the fractional beta integral
of a function as follows.

Definition 2. [5] Let f:[a,b] - R be a continuous function on
(a,b). The B—integral of the function fis given as follows.

t

-1
AP (f()) =/(x+ %ﬁ)) Fx)dx.
0

Recently, this new operator attracted great attention. A lot of
studies are made using beta derivatives with fractional term.

In this study the analytical results for the Ostrovsky Equation
(OE)

ubf D2u — DD’ Dyu + u?DPu =0,

arising as a model of nonlinear waves in a rotating ocean and the
analytical results for (1 + 1)-dimensional symmetric regularized
long wave (SRLW) equation

DPPu + D2u + uDf Deu + D uDyu + D D2u = 0,

that the scientists benefit from while studying physical oceanogra-
phy, dam breaking problems, river flooding, breakwater construc-
tion and control, coastal engineering and wave propagation in
tsunami estimation.

Beta derivative is used as a tool in many studies. For instance,
Zafar et al. [6] obtained the exact solutions of the DNA Peyrard-
Bishop equation by three distinct methods. Gurefe [7] used the
Kudryashov method to obtain the analytical solutions of some non-
linear fractional partial differential equations with beta derivative.
Zahran and Khater [8] employed modified extended tanh-function
method to Bogoyavlenskii equations with beta fractional deriva-
tive. Atangana and Algahtani [9] modlled the spread of river blind-
ness disease with beta derivative. Sub equation method is applied
to some optical solitons by Martinez et al.[10]. Also, some other
works can be seen in the literature [11-13].

Also, recently some studies on the wave profiles analysis of dif-
ferent mathematical models are made. For instance, Varsoliwala
and Singh [25] expressed the mathematical modelling of atmo-
spheric internal waves phenomenon and its solution. Kumar et. al.
[26] obtained the abundant closed-form wave solutions and dy-
namical structures of soliton solutions to BLMP equation. Fahim
et. al. [27] studied on wave profile analysis of a couple of (3+ 1)-
dimensional nonlinear evolution equations. Kim et. al. [28] stated
the analytical solution for one-dimensional nonlinear consolidation
of saturated multi-layered soil.

To the best of our knowledge, it is firstly seen in the literature
that the exact solutions of these equations have been obtained by
using beta derivative.
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2. Considered method

In this part a short explanation of the mETF [8] is given. Con-
sider the following nonlinear partial differential equation:

P(u, DPu, Dy, D®Pu, Dyus, ...) =0, (1)

where szﬂ )u means two times sequential beta derivative of func-

. . . c( %ﬂﬁt)ﬁ
tion u(x,t). By using the wave transformationy = kx + —5——,
Eq. (1) turns into a nonlinear ordinary differential equation (NODE)
as

P(u, v, u",u”, ..)=0.

(2)

where the prime shows integer order differentiation of function u
with respect to new independent variable x. In the wave transform
¢ denotes the harmonic wave frequency and k indicates the wave
number. The new step is that the solution we are regarding in the
form

u(g) =Ao+ Z¢j(Aj+Bj¢_2j)~

i=1

(3)

where
¢' =b+ ¢ (4)

the parameter b can be evaluated later and ¢ = ¢(x), ¢’ = %. By
the balancing procedure the parameter m can be evaluated. Putting
the Egs. (3) and (4) into Eq. (2) will produce a nonlinear alge-
braic equation system with respect to A;, Bj, b, ¢,k (j=1,2,..,m)
by vanishing all the coefficients of¢/. By using computer software,
the values of constants Aj, B;, b, k,c (j=1,2,..,m) can be exam-
ined. Considering these values and the following solution cases for
Eq. (4)
Case 1. When b < 0 Hyperbolic function solution

¢(x) = —v/—btanh (v=by).

¢ (x) = —v/=bcoth (v=by).

Case 2. When b = 0 Rational function solution
1
d(x) = —.
X
Case 3. When b > 0 Hyperbolic function solution
¢(x) = vbtan (Vby).
¢ (x) = —vbcot (vby).
After than putting the values of Aj, B;, b, k,cand the above

mentioned cases in Eq. (3) respectively concludes the exact solu-
tions for Eq. (1).

3. Applications of considered method

In this section, the exact solutions for OE equation [15] and
SRLW equation [14] is obtained by using mETF where Df u means
beta derivative of unknown function u(x, t) with fractional term.

3.1. Solutions for SRLW equation

Consider the (1+1) dimensional SRLW equation

DPu + D2u + uDf Deu + D uDyu + D D2u = 0. (5)

Using the chain rule [5] and the transformationy = kx +

c(rdg+0)” o o .
LB "~ for beta derivative concludes the following differential

equation

(k2% + ku)u” + ke(u')? + k2c2u™ =0 (6)
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where u dependent variable and xis new independent variable. 0o
With the help of the balancing procedure in Eq. (6) m =2 is ob-

0.5
tained. Hence the auxiliary solution of the equation can be orga- xl0
nized as

15 Y
W0 = G0+ @b (0 + @2 G0 + a3 (S 00) " +aa(@00)) 2 2

| / /
Subrogating the Eq. (7) into Eq. (6) and regarding Eq. (4) lead ,
to an equation involving the function ¢(x) and its powers. Van- |
ishing all the coefficients of the powers yields an equation system |/
with respect to variables b, k, c, ag, a;, ay, as, as. Solving this sys-

s 410000
tem with the aid of symbolic computer software, following solu- ? 2 1 0
tion sets yields.

/ 4
Set 1:

Fig. 1. Graphical representation of the u;(x,t) for =08 ,c=05, k=08, b=
—8bc2k? — 2 — |2 -1
a=— g A= 0, a, =0, a3 =0, as = —12b%ck.
0o
Set 2: ; — Bo
o —8bc%k? — ¢ — k?

.1
,, 0155
o=——g A= 0, a, = —12ck, a3 =0, az = —12b?ck. \ 5 -—

12
Substituting the solution sets in Eq. (7), the solution cases for
Eq. (4) and wave transformation the exact solutions for SRILW ]
equation can be evaluated as follows
Solutions For Set 1. 2
—8bc2k? — ¢ — k? 4
o0 = =g =:
b 2
o v +t 4 2 o
+ 12bckcoth? | v/—b (r(mﬂ)mx :

Fig. 2. Graphical simulation of the soliton solution of uy(x,t) for § =05 ,c=
0.5, k=0.8, b=-1.5.

B
CQhe212 _ 2 12 C(%-H)
uy(x, t) = w + 12bcktanh? (\/ —-b #

_Qhe212 _ 2 _ 12
uz(x,t) = W — 12bckeot? | /b

B
_Qh212 _ 2 12 C(%-&-f)
us(x, t) = M—]Zbcktanz \/E((ﬁ;g +kx | |.

ck
Solutions For Set 2.

—8bc2k? — ¢ — k2

B
c(% +t)
us(x,t) = — + 12bckeoth? | /=b (ﬂ)# + kx

B
(i +1) , . . . I
+ 12bcktanh? /—b 3 T kx glg i._G;aphlcal representation of the solution us(x,t) for 8 =03 ,c=0.5, k=

3.2. Solutions for OF Equation

% +kx Regard the OE as
ub? D2u — DyuD’ Dyu + 12DPu =0 (8)
B
c(% +t) Using the chain rule [5] and the transformationy =
— 12bcktan? \/B + +kx | |,

C(%ﬁ)ﬂ)ﬁ A .
k(x — #), for beta derivative concludes the following
differential equation
LeF us give ‘the graphical representations for the above- K2 — u't) + u?u =0 9)
mentioned equations.
Figs. 1 and 2 indicate the soliton solution and Figs. 3 and 4 rep- where u dependent variable and xis new independent variable.
resent the periodic wave solution of the SRLW equation. With the help of the balancing procedure in Eq. (8) m =2 is ob-
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0o

Fig. 4. 3D graphics of the periodic wave solution of us(x, t) for § =0.5,c=2, k=
5 b=2.

B | 15000
l B
| %g 10000
J s_'E: 5000
= =
30 35 40 45 sg

Fig. 5. 3D graphical simulation for double soliton solution of u;(x,t) for g =
09,c=0001, k=1, b=1.

0.10
¢ A
0}5/ 7
~ I ; /1
0.00 r /|
1000-—_47*,|_7 g
B N
) |
500 z ?
/
0 7/,
5
0
x 5

Fig. 6. Graphical representation of the cuspon solution of u;(x,t) for =09 ,c=
0.001, k=1, b=1.

tained. Hence the auxiliary solution of the equation can be orga-
nized as

Y (X) = a0+ a1 (x) + & (x) + a3 (d(x)) " +aa(P(x)) >
(10)

Subrogating Eq. (10) into Eq. (9) and regarding Eq. (4) leads to
an equation involving the function ¢ () and its powers. Vanish-
ing all the coefficients of the powers yields an equation system
with respect to variables b, k, ¢, ag, ay, az, as, a4. Solving this system
with the aid of symbolic computer software, following solution set
yields.

Set 1:

—12bk?, a; =0, ay, = —6k?, a3 =0, a, = —6b*k?.

do
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Substituting the solution set in Eq. (10), the solution cases for
Eq. (4) and wave transformation the exact solutions for OE equa-
tion can be evaluated as follows:

Solutions For Set 1.

B
fof (LAY
up(x, t) = 6bk?coth? | v/—bk| x — (rip +)°

B
B
(g +t
+ Gbkztanhz \/Tbk X — (r()ﬁ) _ 12bk2,
B
(g +t
Uy (x, t) = —6bk?cot? [ v/bi [ x (TW‘B)
B
(g +t
- 6bk2tan2 \/Bk X — (r(ﬁ)ﬁ) _ 12bk2

The graphical representations for obtained results can be given
as follows.

In Fig. 5 double soliton solution is obtained. When the Fig. 6 is
considered it is seen that a cuspon solution is obtained.

4. Conclusion

In this article, the periodic wave solutions and soliton solu-
tions for OE and SRLW equations are obtained. Both of these equa-
tions are arising as a mathematical model in ocean engineering.
Our work reported here is a first step towards understanding the
structural and physical behaviour of ocean models. We hope that
our work will be very useful in better understanding the wave oc-
curring at coastal and harbor regions of the oceans. We believe
our manuscript is very timely and will interest the broad range of
scientists working on ocean engineering models. A soliton or soli-
tary wave is a self-reinforcing wave packet that continues its shape
while it propagates at a constant velocity. Solitons are caused by
a cancellation of nonlinear and dispersive effects in the medium.
Solitons are the solutions of an extensive class of weakly nonlin-
ear dispersive partial differential equations describing physical and
engineering systems. A periodic travelling wave is a periodic func-
tion of one-dimensional space that moves with constant speed.
Consequently, it is a special type of spatiotemporal oscillation that
is a periodic function of both space and time. Periodic travelling
waves play a fundamental role in many mathematical equations,
including self-oscillatory systems, excitable systems and reaction-
diffusion-advection systems.
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