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A B S T R A C T   

The diagnosis of disease and the monitoring of patient in cancer research are related to biomarkers. Carbohydrate 
antigen 19-9 (CA 19-9) as the main tumor biomarker is necessary for digestive tract associated cancers. In this 
study, 1D-MoS2 nanorods/LiNb3O8 (1D-MoS2 NRs/LNO) as signal amplification and polyoxometalate- 
incorporated gold nanoparticles (AuNPs@POM) as sensor platform were prepared and the electrochemical 
immunosensor application was conducted based on 1D-MoS2 NRs/LNO and AuNPs@POM for CA 19-9 detection. 
After the preparation of AuNPs@POM nanocomposite, primer antibody immobilization was conducted via 
amino-gold affinity between primer antibody and AuNPs@POM nanocomposite. After that, strong π-π and 
electrostatic interactions between seconder antibody and 1D-MoS2 NRs/LNO provided the successful conjugation 
of seconder antibody. The physicochemical characterizations including scanning electron microscopy (SEM), 
transmission electron microscopy (TEM), x-ray photoelectron spectroscopy (XPS), x-ray diffraction (XRD) were 
performed for electrochemical CA 19-9 immunosensor. Furhermore, to asses the electrochemical performance of 
the immunosensor, cyclic voltammetry (CV), differential pulse voltammetry (DPV) and electrochemical 
impedance spectrospcopy (EIS) techniques were performed. The quantification limit (LOQ) and the detection 
limit (LOD) values were obtained as 0.10 µU mL− 1 and 0.030 µU mL− 1, respectively. This immunosensor having 
high selectivity, stability and reusability creates a novel chance for clinical immunoassays.   

1. Introduction 

CA 19-9 was found using monoclonal antibody against human 
colorectal carcinoma cell line as a tumor-associated carbohydrate anti
gen [1]. It is widely accepted as a useful tumor marker in the diagnosis 
and treatment of cancer patients. This antigen has a carbohydrate 
structure as a sialyl derivative of Lacto-N-fucopentaose II, which is the 
hapten of human blood group Lewis antigen. This antigen is found in 
small amounts in human epithelium [2]. However, this antigen is pro
duced more and begins to appear in blood and secretions with the for
mation of carcinoma. CA 19-9 is usually found in the serum of patients 
with gastrointestinal carcinoma. Especially, it is seen in pancreatic and 
biliary tract carcinomas. It is frequently shown in many adenocarcinoma 
tissues in immunohistochemical studies. Although it is known that there 
may be an increase in CA 19-9 level in benign diseases, values higher 
than 1000 U mL− 1 are indicative of a 99% malignant condition [3]. CA 

19-9’s existence is known in normal kidney, renal tubules and pelvic 
mucosa. In addition, it is reported that its level increases in patients with 
pancreatic cancer. Thereby, CA 19-9’s selective determination in low 
levels can be favorable to clinical diagnoses in patients. Up to now, 
several methods have been presented for the determination of CA 19-9 
such as chromatography and photoelectrochemical immunoassays [4]. 
However, these techniques are not useful owing to the time-consuming 
sample preparation procedures. 

Early diagnosis of cancer increases the chance of treatment. Today, 
many types of cancer can be diagnosed after the whole body has 
metastasized. There is an urgent diagnosis method need for cancer 
determination. Biosensor technology plays an important role at this 
point. They are devices designed to identify a specific biological ana
lyte/biomarker and convert it into a signal that can be analyzed [5-10]. 
Immunosensors, which are a kind of biosensor, are produced by 
immobilizing antigens or antibodies to the sensor surface. Direct 

* Corresponding author. 
E-mail address: mlutfi.yola@hku.edu.tr (M.L. Yola).  

Contents lists available at ScienceDirect 

Microchemical Journal 

journal homepage: www.elsevier.com/locate/microc 

https://doi.org/10.1016/j.microc.2021.106643 
Received 11 May 2021; Received in revised form 9 July 2021; Accepted 12 July 2021   

mailto:mlutfi.yola@hku.edu.tr
www.sciencedirect.com/science/journal/0026265X
https://www.elsevier.com/locate/microc
https://doi.org/10.1016/j.microc.2021.106643
https://doi.org/10.1016/j.microc.2021.106643
https://doi.org/10.1016/j.microc.2021.106643
http://crossmark.crossref.org/dialog/?doi=10.1016/j.microc.2021.106643&domain=pdf


Microchemical Journal 170 (2021) 106643

2

immunosensors are designed to generate an antibody-antigen complex 
that causes physical change in signal. Electrodes, membranes, piezo
electric materials or optically active surface materials are sufficiently 
sensitive for direct immunosensor construction [10,11]. For example, 
ZnO quantum dot labeled immunosensor was prepared for CA 19-9 
detection [12]. The immobilization process was performed by electro
static forces based on ZnO’ isoelectric point and a linearity of 0.1–180.0 
U mL− 1 with LOD of 0.04 U mL− 1 was obtained. In addition, fluores
cence immunoassay based on carbon quantum dots/AuNPs nano
composite was developed and a linearity of 0.01–350.0 U mL− 1 with 
LOD of 0.007 U mL− 1 was obtained [13]. Finally, bimetallic CeO2/ 
FeOx@mC500 based electrochemical immunosensor for sensitive detec
tion of CA 19-9 was prepared. The antibody was incorporated to CeO2/ 
FeOx@mC500 by chemical absorption and the immunosensor showed a 
low LOD of 10.0 μU mL− 1 [3]. 

POMs as an inorganic compound have significant applications such 
as biochemistry [14] and sensor [15]. Especially, POMs can be used as 
reducing and stabilizing agents in aqueous solutions, suggesting the 
development of eco-friendly material synthesis [16]. Moreover, POMs’ 
multi-electron redox ability provided the synthesis of noble metal 
nanoparticles [17,18]. Up to now, common UV irradiation method was 
applied to POM-incorporated metal NPs sysnthesis [19]. In addition, 
extra several approaches were presented for reduction of the metal 
precursor. Ultrasonication synthesis has attracted attention as scalable 
method for metal NPs sysnthesis, whereby the chemical effects of ul
trasonic irradiation are tailored owing to the acoustic cavitation [20]. In 
this process, high temperature, pressure and cooling rates are significant 
conditions for metal NPs@POM [21]. 

Molybdenum sulfide (MoS2) as layered transition metal dichalcoge
nide facilitates electron transfer owing to its abundant active edge sites 
[22]. Only few studies were presented about one-dimensional MoS2 (1D- 
MoS2) in comparison with two-dimensional MoS2 for catalytic or pho
tocatalytic applications [23]. For example, 1D-MoS2 nanosheet incor
porated Ag2Mo2O7 microrods were prepared for catalytic oxidation of 
levofloxacin [24]. Recently, the excellent electrochemical performance 
of niobium was investigated [25]. Because of this, novel niobium based 
compounds were prepared [26,27]. Especially, niobium based oxides 
have been used frequently due to its improved electrochemical perfor
mances [28]. 

Herein, it was aimed to develop a novel sandwich-type electro
chemical immunosensor based on 1D-MoS2 nanorods/LiNb3O8 as signal 
amplification and polyoxometalate-incorporated gold nanoparticles as 
sensor platform to be utilized for CA 19-9 detection. Ultrasonication 
synthesis of AuNPs@POM nanocomposite was successfully performed 
and primer antibody immobilized to AuNPs@POM nanocomposite was 
conducted via amino-gold affinity. Then, 1D-MoS2 NS/LNO was syn
thesized with high yield without waste formation. After the conjugation 
of seconder antibody to 1D-MoS2 NS/LNO via π-π and electrostatic in
teractions, the sandwich-type electrochemical immunosensor was pre
pared by antibody-antigen interactions. Finally, electrochemical CA 19- 
9 immunosensor with fast, sensitive, environmentally friendly and low- 
cost suggests a pathway for clinical applications. 

2. Experimental 

2.1. Materials 

CA 19-9, CA 19-9 primary antibody (anti-CA 19-9-Ab1), CA 19-9 
secondary antibody (anti-CA 19-9-Ab2), carbohydrate antigen 24-2 
(CA 242), carbohydrate antigen 125 (CA 125), prostate-specific anti
gen (PSA), bovine serum albumin (BSA), sodium molybdate dihydrate 
(Na2MoO4⋅2H2O), thioacetamide (CH3CSNH2), lithium hydroxide 
monohydrate (LiOH⋅H2O), niobium pentoxide (Nb2O5), poly
oxometalate (H3PMo12O40, POM), gold(III) chloride trihydrate 
(HAuCl4⋅3H2O), sodium citrate (Na3C6H5O7) were purchased from 
Sigma-Aldrich. As supporting electrolyte and dilution buffer, 0.1 M 

phosphate-buffered saline (PBS) solution at pH of 7.0 was preferred. 

2.2. Instruments 

The surface morphologies of samples were investigated both by 
ZEISS EVO 50 SEM and JEOL 2100 TEM. The XRD patterns were 
recorded via Rigaku X-ray diffractometer using Cu-Kα radiation at λ =

0.154 nm. The XPS analysis was performend by PHI 5000 Versa Probe 
spectrometer. Furthermore, Gamry Reference 600 work-station (Gamry, 
USA) was used to perform electrochemical characterization techniques 
including CV, EIS and DPV. 

2.3. Ultrasonication synthesis of AuNPs and AuNPs@POM 
nanocomposite 

AuNPs was prepared by using HAuCl4⋅3H2O and Na3C6H5O7 as 
reducing agent according our previous paper [29]. 

The ultrasonic synthesis method was applied to the preparation of 
AuNPs@POM nanocomposite with mol ratio of AuNPs:POM (1:1) during 
45 min. After the preparation of HAuCl4⋅3H2O aqueous solution (2.0 
mM, 20.0 mL), HAuCl4⋅3H2O aqueous solution was tranferred into 
H3PMo12O40 (POM) aqueous solution (2.0 mM, 40.0 mL) at 25 ◦C. After 
vigorous stirring, n-propanol (2.0 mL) was added into the dispersion. 
Then, the dispersion was transferred into Dewar cell (50.0 mL) and 
subjected to ultrasonication at acoustic power of 20 W. After sono
reaction, the colour of the solution converted into red, providing the 
formation of AuNPs. Thus, AuNPs@POM nanocomposite was stored at 
25 ◦C [30]. 

2.4. AuNPs@POM/GCE as electrochemical sensor platform with anti-CA 
19-9-Ab1 and antigen CA 19-9 immobilizations 

After the cleaning process of glassy carbon electrodes (GCEs) with 
0.1 µm and 0.05 µm alumina slurries, respectively for 30 min, the 
alumina remains were eliminated by using acetonitrile and GCEs were 
dried at 25 ◦C under argon gas. After the dropping of AuNPs@POM 
dispersion (20.0 μL) on GCE, infrared heat lamp was applied to remove 
the solvent. Hence, GCE modified with AuNPs@POM electrode was 
tagged as AuNPs@POM/GCE. 

After 100.0 µU mL− 1 anti-CA 19-9-Ab1 dispersion (30.0 μL) was 
prepared in 0.1 M PBS (pH 7.0), the prepared primer antibody disper
sion was dropped on AuNPs@POM/GCE and left at 37.0 ◦C for 25 min. 
anti-CA 19-9-Ab1/AuNPs@POM/GCE was developed thanks to amino- 
gold affinity between primer antibody and AuNPs [31]. After that, BSA 
(2.0% w/v) was incubated on anti-CA 19-9-Ab1/AuNPs@POM/GCE at 
37.0 ◦C for 25 min to remove non-specific interactions (BSA/anti-CA 
19-9-Ab1/AuNPs@POM/GCE). The CA 19-9 immobilizations were 
carried out on BSA/anti-CA 19-9-Ab1/AuNPs@POM/GCE by dropping 
of each CA 19-9 with different concentration on electrode surfaces for 
25 min at 37.0 ◦C and the antibody-antigen affinity provided CA 19-9/ 
BSA/anti-CA 19-9-Ab1/AuNPs@POM/GCE. Lastly, CA 19-9/BSA/anti- 
CA 19-9-Ab1/AuNPs@POM/GCE was incubated in 0.1 M PBS (pH 7.0) 
to remove non-interacting antigen proteins. 

2.5. Preparation of LNO, 1D-MoS2 nanorods/LiNb3O8 (1D-MoS2 NRs/ 
LNO) and 1D-MoS2 nanosheets/LiNb3O8 (1D-MoS2 NS/LNO) composites 

LNO powders were prepared by a calcination process. Nb2O5 (4.0 
mmol) was dispered in LiOH⋅H2O (40.0 mL) (the mole ratio of Li:Nb =
8:1) under vigirous stirring for 90 min. Then, the dispersion was trans
ferred into a Teflon stainless autoclave at 200 ◦C for 20 h. After the 
centirifugation at 10000 rpm, the product was calcined from 400 to 
850 ◦C for 90 min with a rate of 10 ◦C/min. After cooling up to 25 ◦C, 
LNO powders were collected. 

Na2MoO4⋅2H2O (25.0 mg) and CH3CSNH2 (15.0 mg) were dissolved 
in ultra-pure water (100.0 mL) under vigirous stirring. Then, the 
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dispersion was diluted with ultra-pure water to 50.0 mL. After the 
addition of LNO (75.0 mg) into this dispersion, the suspension was 
transferred into a Teflon stainless autoclave at 200 ◦C for 20 h. After the 
washing of the prepared material with ultra-pure water:ethanol (1:1), 
the product was dried at 50 ◦C under vacuum. Thus, 0.5 wt%1D-MoS2 
nanorods/LNO was tagged as 0.5 wt%1D-MoS2 NRs/LNO. In addition, 
1D-MoS2 NRs/LNO including different amounts of 1D-MoS2 (1.0, 1.5, 
2.0 and 2.5 wt% of 1D-MoS2 NRs) were prepared with the change of 
Na2MoO4⋅2H2O’s amount. 

For 1D-MoS2 NS preparation, Na2MoO4⋅2H2O (0.50 g) and 
CH3CSNH2 (1.0 g) were firstly dissolved in ultra-pure water (100.0 mL) 
under vigirous stirring. Then, the suspension was transferred into a 
Teflon stainless autoclave at 200 ◦C for 20 h. After washing treatment, 

1D-MoS2 NS powders were obtained. After that, 1D-MoS2 NS powder 
(1.0 mg) and LNO (100.0 mg) were together grinded for 2 h in mortar 
including ethanol (1.0 mL). After ethanol evaporation, 1.0 wt%1D- 
MoS2 NS/LNO was prepared as a reference in comparison with 1D-MoS2 
NRs/LNO samples. 

2.6. 1D-MoS2 NRs/LNO as signal amplification with anti-CA 19-9-Ab2 
conjugation 

After 100.0 µU mL− 1 anti-CA 19-9-Ab2 dispersion (30.0 μL) was 
prepared in 0.1 M PBS (pH 7.0), this dispersion was interacted with 1D- 
MoS2 NRs/LNO (30.0 μL, 50.0 mg mL− 1) dispersion under magnetic 
stirring at 37.0 ◦C for 25 min. The centrifugation was performed at 5000 

Scheme 1. Preparation procedure of electrochemical CA 19-9 immunosensor.  
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rpm during 20 min and the obtained 1D-MoS2 NRs/LNO/anti-CA 19-9- 
Ab2 was preserved in pH 7.0, 0.1 M PBS. 

2.7. Electrochemical characterizations 

The sandwich-type electrochemical immunosensor was prepared by 
antibody-antigen affinity between 1D-MoS2 NRs/LNO/anti-CA 19-9-Ab2 
and CA 19-9/BSA/anti-CA 19-9-Ab1/AuNPs@POM/GCE. 1D-MoS2 NRs/ 
LNO/anti-CA 19-9-Ab2 dispersion (30.0 μL, 25.0 mg mL− 1) was dropped 
on CA 19-9/BSA/anti-CA 19-9-Ab1/AuNPs@POM/GCE at 37.0 ◦C for 
the immune reaction time of 25 min. Thus, the developed sandwich-type 
electrochemical immunosensor was tagged as 1D-MoS2 NRs/LNO/anti- 
CA 19-9-Ab2/CA 19-9/BSA/anti-CA 19-9-Ab1/AuNPs@POM/GCE. 
The prepared sandwich-type immunosensor for CA 19-9′s recognition 
was stored in pH 7.0, 0.1 M PBS (2.0 mL). 0.1 M PBS (pH 7.0, 2.0 mL) 
containing 1.0 mM H2O2 as a redox probe was used for electrochemical 
performance measurements. Differential pulse voltammograms (DPVs) 
were recorded at + 0.30 V in an enclosed cabinet. Briefly, the prepa
ration procedures were shown on Scheme 1, including in 1D-MoS2 NRs/ 
LNO, AuNPs@POM/GCE, the immobilizations of proteins and the final 
electrochemical immunosensor development. 

2.8. Sample preparation 

CA 19-9 free plasma samples were supplied from Blood Bank in 
TURKEY. Sample preparation protocol was explained in detail on Sup
plemantary Data [5]. 

3. Results and discussion 

3.1. Principle of electrochemical CA 19-9 immunosensor based on 1D- 
MoS2 NRs/LNO and AuNPs@POM 

In this study, 1D-MoS2 NRs/LNO as signal amplification and AuNP
s@POM as sensor platform/surface were prepared for immunosensor 
application. Especially, the sensor platform having high stability was 
developed owing to negative surface charge thanks to PMo12 polyanions 
on AuNPs. Thus, obvious electrostatic repulsions result in less coagula
tion, providing stable sensor surface development [32]. Another reason 
for this high stability was the formation of stable hydrogen bonding 
between hydroxyl groups on H2O and PMo12 polyanions on AuNPs. In 
addition, there are two important factors corresponding to PMo12 pol
yanions’ formation on AuNPs surface. (i) the increase of mass transfer 
because of acoustic shock waves and (ii) surface corrosion. Thus, the 
dominant factor can adjust PMo12 polyanions’ formation on AuNPs. In 
generally, the first factor enables the formation of PMo12 polyanions, 
however, second factor determines the desorption of PMo12 polyanions 
from AuNPs surface. We can say that there is equal effect between the 
two factors in this study. Hence, AuNPs@POM as sensor platform/sur
face generally had two aims including the obtainment of the binding 
sites for primer antibody via amino-gold affinity and the increase of 
surface conductivity. 

The porous LNO formation was corresponded to Li element’s local 
enrichment, providing the connections of LNO particles [33]. Li 
enrichment area as LNO particles’ junction site was composed of low 
formation energy, causing the direct growth of 1D-MoS2 NRs. During 
direct growth of 1D-MoS2 NRs, the incorporation of oxygen into sulfur 
sites on 1D-MoS2 NRs and crystal defects occured as a result of lattice 
fringes (0.67 nm) of 1D-MoS2 NRs in comparison with bulk MoS2 (0.61 
nm) [34,35]. After that, the easy incorporation of seconder CA 19-9 
antibody was conducted by strong π-π and electrostatic interactions 
between seconder antibody and 1D-MoS2 NRs [36]. 

H2O2 as a redox probe was used in electrochemical immunosensor 
application to monitor its conversion into O2 at about + 0.30 V [31]. 

3.2. Characterizations of LNO, 1D-MoS2 NRs/LNO and 1D-MoS2 NS/ 
LNO 

Fig. 1 indicated XRD patterns of LNO and 1D-MoS2 NRs/LNO 
including different amounts of 1D-MoS2. According to Fig. 1, the char
acteristic diffraction peaks at 2Θ = 21.57◦, 24.29◦, 29.95◦, 30.94◦, 
35.77◦, 51.37◦ and 53.15◦ on the whole samples were corresponded to 
(011), (400), (410), (202), (212) and (14) crystalline planes of LNO, 
respectively. However, XRD patterns of 1D-MoS2 NRs/LNO could not 
show the characteristic peaks of MoS2 owing to low concentration of 
MoS2 on LNO’s surface [37,38]. Hence, HRTEM and XPS methods were 
used to show the presence of MoS2 on the samples. Raman spectra 
(Fig. S1A) were obtained for LNO, pristine MoS2 nanosheets (1D-MoS2 
NS), 1.0 wt%1D-MoS2 NRs/LNO and 1.0 wt%1D-MoS2 NS/LNO. Raman 
peaks at 381 and 404 cm− 1 were corresponded to low-energy E1

2g and 
high-energy A1g modes of 2H-MoS2 phase, respectively. In addition, the 
small peak at 335 cm− 1 was attributed to photon mode (J3) of metallic 
1T-MoS2 phase [39]. Thus, 1D-MoS2 NS was composed of 1T and 
dominant 2H phases [39]. Nonetheless, after the preparation of 1.0 wt% 
1D-MoS2 NS/LNO, no evident MoS2 phase was obtained for 1.0 wt%1D- 
MoS2 NS/LNO such as 1.0 wt%1D-MoS2 NRs/LNO with small MoS2 
loading. Furthermore, Raman peaks of LNO were overlapped with that 
of MoS2. The characteristic layered structure of 1D-MoS2 NS was also 
verified by SEM image (Fig. S1B). 

Chemical states and surface compositions of 1.0 wt%1D-MoS2 NRs/ 
LNO were also shown by XPS measurements (Fig. S2). XPS survey 
demonstrated S2p, Nb3d, Mo3d and O1s peaks (Fig. S2A). Especially, 
XPS intensities of of Mo and S elements were low owing to the low 
amounts. In addition, the peaks at 210.1 and 206.8 eV (Fig. S2B) were 
corresponded to Nb3d1/2 and Nb3d3/2, respectively and the peaks at 
530.2 and 532.3 eV (Fig. S2C) were attributed to Nb-O binding and non- 
lattice oxygen, respectively on XPS spectrum of O1s [40]. Finally, the 
peaks at 232.9 and 163.8 eV were attributed to Mo3d3/2 and S2p1/2 of 
MoS2, respectively (Fig. S2D and Fig. S2E) [41]. Thus, the succesful 
preparation of 1.0 wt%1D-MoS2 NRs/LNO with the presence of mo
lybdenum, sülfür, niobium and oxygen elements was confirmed. 

In addition, the morphological and microstructural properties of 
LNO and 1.0 wt%1D-MoS2 NRs/LNO were investigated. According to 
Fig. 2A, LNO particles were aggregated to form a porous structure. Then, 
1D-MoS2 NRs was grown on junction sites of LNO particles (Fig. 2B and 
light blue circles on Fig. 2C). The average sizes of 1D-MoS2 NRs changed 
from several nanometers to 50 nm and the length of 1D-MoS2 NRs 
changed from 100 nm to 220 nm (Fig. 2D). According to HRTEM image 

Fig. 1. XRD patterns of LNO and 1D-MoS2 NRs/LNO including different 
amounts of 1D-MoS2. 
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of 1.0 wt%1D-MoS2 NRs/LNO (Fig. 2E), the lattice fringes of 1D-MoS2 
NRs was evaluated as 0.67 nm, indicating (002) plane of hexagonal 
MoS2. Finally, the interplanar spacing (0.297 nm) of LNO particle was 
attributed to d-spacing of (410) crystal plane (Fig. 2F) [42]. 

UV–vis spectroscopy (Fig. S3A) was utilized to evaluate the optical 
properties of the prepared samples. LNO showed an absorption band 
below 400 nm and the absorption increased with loading with 1D-MoS2 
NRs. According to these results, 1D-MoS2 NRs/LNO can increase ab
sorption ability with increase of 1D-MoS2 NRs amount. In addition, PL 
spectra of LNO and 1.0 wt%1D-MoS2 NRs/LNO were recorded at 250 nm 
excitation (Fig. S3B). LNO having high recombination of photo
generated charges showed the highest emission. However, the emission 
was quenched on 1.0 wt%1D-MoS2 NRs/LNO, suggesting the easy 
electron transfer from LNO to 1D-MoS2 NRs. Thus, this easy electron 
transfer could provide the enhancement of catalytic activity. 

3.3. Characterizations of AuNPs@POM composite 

XRD pattern (Fig. 3A) of AuNPs@POM composite demonstrated face- 
centered cubic structure of metallic gold nanoparticles and the peaks at 
37.93◦, 44.28◦, 64.47◦ and 77.68◦ were corresponded to (111), (200), 
(220) and (311) planes [43,44]. According to Fig. 3A, the peak 
attributing to (111) plane was sharper than that of the other planes, 

suggesting predominant orientation of Au (111). In addition, the 
absence of XRD peaks corresponding to POM means the adsorption of 
POM on AuNPs surface without agglomeration [45]. FTIR spectra 
(Fig. 3B) were recorded to confirm the presence of AuNPs@POM com
posite. The absorption bands at 1065 cm− 1 and 965 cm− 1 were resulted 
from P–O and Mo–Od groups of pure polyoxometalate whereas these 
absorption peaks were observed on longer wavelengths at 1090 cm− 1 

and 1022 cm− 1 on FTIR spectrum of AuNPs@POM composite. This sit
uation showed the obvious interaction between POM and gold nano
particles. The vibration peak at 880 cm− 1 corresponding to Mo–Ob–Mo 
group on FTIR spectrum of POM disappeared on AuNPs@POM com
posite [46]. In addition, the vibration peak at 800 cm− 1 attributing to 
Mo–Oc–Mo group on POM was observed at 620 cm− 1 on AuNPs@POM 
composite. Finally, the succesful synthesis of AuNPs@POM composite 
was confirmed by FTIR measurements. 

Cyclic voltammograms (Fig. S4) were recorded for the electro
chemical comparison of POM and AuNPs@POM composite. According 
to Fig. S4, a multi-electron reversible redox reaction was observed in 
DMF solution containing 1.0 M H2SO4. The electrochemical peaks at 
− 0.02, +0.16 and + 0.38 V were corresponded to POM’s redox 
behavior. Hence, the successful adsorption of POM on AuNPs surface 
without agglomeration was verified by CV. 

Finally, TEM and SEM measurements were performed for 

Fig. 2. SEM images of (A) LNO powder, (B) and (C) 1.0 wt%1D-MoS2 NRs/LNO, TEM image of (D) 1.0 wt%1D-MoS2 NRs/LNO and HRTEM images of (E) and (F) 1.0 
wt%1D-MoS2 NRs/LNO. 

Fig. 3. (A) XRD pattern of AuNPs@POM composite and (B) FTIR spectra of POM and AuNPs@POM composite.  
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AuNPs@POM composite. According to Fig. 4A, irregular AuNPs on POM 
had a narrow size distribution. The average particle diameters of AuNPs 
were obtained as about 30–35 nm and the whole AuNPs was well 
dispersed owing to electrostatic repulsion thanks to PMo12 polyanions 
on AuNPs. In addition, Fig. 4B showed the uniform distribution of 
AuNPs in two-dimensional monolayer manner. 

3.4. Electrochemical characterizations of sensor platform and signal 
amplification 

First of all, CV measurements (Fig. 5A) were conducted in 1.0 mM 
[Fe(CN)6]3- solution containing 0.1 M KCl to characterize the sensor 
plaform. The unmodified GCE demonstrated small anodic and cathodic 
electrochemical signals (curve a). Due to AuNPs’ optical properties, a 
large surface area and electrical conductivity [47,48], the increase on 
electrochemical signals was observed (curve b). Lastly, more electro
chemical signals were observed because of POMs’ multi-electron redox 
ability and synergistic effect between POM and AuNPs (curve c) [30]. 
Then, the immobilizations of anti-CA 19-9-Ab1, BSA and CA 19-9 on 
AuNPs@POM/GCE decreased the electrochemical immunosensor’s 
performance owing to electron transfer blocking (curve d, curve e and 
curve f). Hence, the incubations of primer antibody, BSA and CA 19-9 on 
immunosensor platform were succesfully conducted. 

In addition, EIS measurements (Fig. 5B) were conducted by using 
different electrochemical sensor platform as CV measurements. Ac
cording to EIS graphs of AuNPs/GCE (curve b) and AuNPs@POM/GCE 
(curve c), mass transfer resistances on the electrode surface decreased 
when bare GCE (curve a) was modified with AuNPs and AuNPs@POM. 
As in the CV experiments, when primer antibody (curve d), BSA (curve 
e) and CA 19-9 (curve f) were immobilized to the sensor platform, the 
electron transfer rate decreased. 

EIS graphs (Fig. 5C) of various immunosensors including different 
signal amplification such as (a) LNO, (b) 1.0 wt%1D-MoS2 NS/LNO and 
(c) 1.0 wt%1D-MoS2 NRs/LNO were obtained. Thus, electron transfer 
rate at 1.0 wt%1D-MoS2 NS/LNO was faster than that of LNO owing to 
1.0 wt%1D-MoS2 NS’ abundant active edge sites [22]. Due to the direct 
growth of 1D-MoS2 NRs on LNO, 1.0 wt%1D-MoS2 NRs/LNO (curve c) 
facilitated the electron transfer from LNO to 1D-MoS2 NRs in short 
distance in comparison with curve b. In addition, because of efficient 
separation of electrons and contact interface between LNO and 1D-MoS2 
NRs, the electrochemical activity for CA 19-9 detection increased. 

Finally, DPV responses of various immunosensors based on 1D-MoS2 
NRs/LNO including different amounts of 1D-MoS2 were recorded. Ac
cording to Fig. 5D, the electrochemical currents increased with the 
amounts of 1D-MoS2 NRs. Hence, as expected, the highest electro
chemical currents were observed by using CA 19-9 electrochemical 
immunosensor based on 2.5 wt%1D-MoS2 NRs/LNO. AuNPs@POM/ 
GCE as electrochemical sensor platform and 2.5 wt%1D-MoS2 NRs/LNO 

as signal amplification were used for subsequent immunosensor 
applications. 

3.5. Optimization for electrochemical measurements 

Detailed investigation was implemented for lighting up the effect of 
pH, immune reaction time, H2O2 and 2.5 wt%1D-MoS2 NRs/LNO/anti- 
CA 19-9-Ab2 solution concentration (Fig. S5). 

3.6. Linearity range 

The sensitivity and linearity range studies of the prepared immu
nosensor for CA 19-9 analysis were evaluated. According to Fig. 6, the 
electrochemical currents increased with CA 19-9 amounts. The cali
bration plot demonstrated a linearity between immunosensor responses 
and CA 19-9 concentration in the range of 0.10–10.0 µU mL− 1 (R2 =

0.9989). The regression equation was obtained as y (I, µA) = 0.4725x 
(CA 19-9 concentration, µU mL− 1) + 0.0089 (inset of Fig. 6). The 
quantification limit (LOQ) and LOD values were obtained as 0.10 µU 
mL− 1 and 0.030 µU mL− 1, respectively, by the Eqs. (1) and (2): 

LOQ = 10.0 S/m (1)  

LOD = 3.3 S/m (2)  

where S is the standard deviation of the intercept and m is the slope of 
the regression line. Table 1 showed the comparison features between the 
prepared immunosensor and the other analytical methods. Owing to 1D- 
MoS2 NRs’ active sites and porous LNO’s high surface area, LOD of the 
prepared immunosensor for CA 19-9 demonstrated a relatively low 
detection limit in comparison with the other materials/methods. 
Furthermore, the ultrasonic synthesis of AuNPs@POM nanocomposite 
and the hydrothermal synthesis of 1D-MoS2 NRs/LNO caused little 
waste generation, suggesting environmentally friendly immunosensor 
construction. Hence, this CA 19-9 immunosensor has potential practical 
applications for early diagnosis. 

3.7. Recovery 

Recovery values of CA 19-9 in the presence of 0.1 M PBS (pH 7.0) 
containing 1.0 mM H2O2 were listed on Table S1. These values were 
calculated by the Eq. (3) below: 

Recovery = Found CA 19 − 9, μU mL− 1/Real CA 19 − 9, μU mL− 1 (3) 

According to Table S1, the close values to 100.00% showed that 
potential interferences had no important effects on CA 19-9 detection by 
the prepared immunosensor. In addition, the standard addition method 
(SAM) was applied the plasma samples and the calibration equation of 
SAM was obtained as y (I, µA) = 0.4794x (CA 19-9 concentration, µU 

Fig. 4. (A) TEM and (B) SEM images of AuNPs@POM composite.  
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mL− 1) + 0.1073. Especially, the close slopes between SAM and linear 
regression method confirmed successful analysis of CA 19-9 without the 
effect of other agents. 

3.8. Selectivity, stability and reusability 

For selectivity studies (Fig. S6A) of electrochemical CA 19-9 immu
nosensor, five solution mixtures were separately prepared such as (i) 1.0 
µU mL− 1 CA 19-9, (ii) 1.0 µU mL− 1 CA 19-9 + 10.0 µU mL− 1 CA 242, (iii) 
1.0 µU mL− 1 CA 19-9 + 10.0 µU mL− 1 CA 125, (iv) 1.0 µU mL− 1 CA 19-9 
+ 10.0 µU mL− 1 PSA, (v) 1.0 µU mL− 1 CA 19-9 + 10.0 µU mL− 1 BSA. 
Then, the five electrochemical CA 19-9 immunosensors were separately 
prepared by using these solution mixtures. After that, these five elec
trochemical CA 19-9 immunosensors were applied to 1.0 mM H2O2 so
lution including in pH 7.0, 0.1 M PBS (2.0 mL) and 0.38% of relative 
standard deviation (RSD) was obtained, providing the high selectivity of 
electrochemical CA 19-9 immunosensor. 

The stability tests (Fig. S6B) of electrochemical CA 19-9 immuno
sensor were performed at 25.0 ◦C during 6 weeks in the presence of 1.0 
mM H2O2. According to Fig. S6B, the electrochemical current values 
were about 98.83% of first current signal and 0.81% of RSD for current 
signals was observed. Thereby, stable CA 19-9 immunosensor can be 
applied for clinical samples for a long time. 

Finally, reusability of electrochemical CA 19-9 immunosensor was 
evaluated in 1.0 mM H2O2 solution (Fig. S6C). 0.18% of RSD for current 
signals was obtained during 50 times usage of electrochemical CA 19-9 
immunosensor. Hence, high reusability of electrochemical CA 19-9 
immunosensor can be mentioned for subsequent clinical applications. 

4. Conclusions 

In conclusion, a novel electrochemical immunosensor based on 1D- 
MoS2 nanorods/LiNb3O8 and AuNPs@POM was presented for carbo
hydrate antigen 19-9 (CA 19-9) detection. This developed immuno
sensor has some advantages such as simplicity, fast analysis, high 
selectivity, stability, accuracy and precision and showed a low sensi
tivity (LOD of 0.030 µU mL− 1). In addition, the close recovery values to 

Fig. 5. (A) Cyclic voltammograms, (B) EIS graphs at 
(a) bare GCE, (b) AuNPs/GCE, (c) AuNPs@POM/GCE, 
(d) anti-CA 19-9-Ab1/AuNPs@POM/GCE, (e) BSA/ 
anti-CA 19-9-Ab1/AuNPs@POM/GCE, (f) CA 19-9/ 
BSA/anti-CA 19-9-Ab1/AuNPs@POM/GCE (scan rate 
of 50 mV s− 1) in 1.0 mM [Fe(CN)6]3− containing 0.1 
M KCl, (C) EIS graphs of various immunosensors 
including different signal amplification such as (a) 
LNO, (b) 1.0 wt%1D-MoS2 NS/LNO and (c) 1.0 wt% 
1D-MoS2 NRs/LNO) in 1.0 mM [Fe(CN)6]3− contain
ing 0.1 M KCl (the presence of 1.0 µU mL− 1 CA 19-9), 
(D) DPV responses of various immunosensors 
including different signal amplification such as (b) 
0.5 wt%1D-MoS2 NRs/LNO, (c) 1.0 wt%1D-MoS2 
NRs/LNO, (d) 1.5 wt%1D-MoS2 NRs/LNO, (e) 2.0 wt 
%1D-MoS2 NRs/LNO and (f) 2.5 wt%1D-MoS2 NRs/ 
LNO in absence of H2O2 (curve a) and in presence of 
1.0 mM H2O2 (the presence of 1.0 µU mL− 1 CA 19-9).   

Fig. 6. Concentration effect (from 0.10 to 10.0 µU mL− 1 CA 19-9) on immu
nosensor signals, Inset: Calibration curve for electrochemical CA 19-9 
immunosensor. 

Table 1 
The comparison of electrochemical CA 19-9 immunosensor with other reported 
techniques.  

Material/Method Linear Range LOD Ref. 

Au@Pd-Gra/Thi 0.015–150.0 U 
mL− 1 

0.006 U mL− 1 [49] 

PDA-Ag NPs 0.0001–100.0 U 
mL− 1 

0.000032 U 
mL− 1 

[50] 

nanoFe3O4@GO 0.001–5.0 U mL− 1 0.0005 U mL− 1 [1] 
CNOs/GO 0.3–100.0 U mL− 1 0.12 U mL− 1 [51] 
TiO2NWs/Au/CdSe@ZnS 0.01–200 U mL− 1 0.0039 U mL− 1 [4] 
AgNPs@ZIF-67 0.0001–10 U mL− 1 31.0 µU mL− 1 [52] 
CQDs/Au 0.01–350 U mL− 1 0.0070 U mL− 1 [13] 
CeO2/FeOx@mC500 0.0001–10.0 U 

mL− 1 
10.0 µU mL− 1 [3] 

Sandwich type 
immunosensor 

0.1–10.0 µU mL− 1 0.030 µU mL− 1 This 
study  
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100.00% in plasma samples provided a important bioanalytical method 
development for CA 19-9 determination. Hence, this study firstly indi
cated the application of a novel immunosensor for cancer disease 
diagnosis. Furthermore, low-cost and environmentally friendly immu
nosensor was prepared as an alternative detection method for the 
determination of malignant tumors. 
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