
LDPC Kodlarında Artık Veri Kullanımı
Residual Data Usage in LDPC Codes

Erdi Kaya
Ankara University

Computer Engineering
Ankara, Turkey

erdik@ankara.edu.tr

Massoud Pourmandi
Boğaziçi University

Electrical Electronics Engineering
Istanbul, Turkey

massoud.pourmandi@boun.edu.tr

Elif Haytaoglu
Pamukkale University

Computer Engineering
Denizli, Turkey

eacar@pau.edu.tr

Suayb S. Arslan
MEF University

Computer Engineering
Istanbul, Turkey

arslans@mef.edu.tr

Özetçe —Dağıtık sistemlerde ve dağıtık ön-bellekleme sistem-
lerinde, kodlanmış veri boyutu depolama düğümü sayısına tam
olarak bölünemediğinde genel olarak fazladan veri depolama
işlemi gerçekleştirilmektedir. Bu çalışmada, baz istasyonunun ve
düğümlerin kodlanmış veriyi depoladığı bir ön-bellekleme sistemi
için, fazladan veri eklenmeden kodlanmış sembollerin depolama
düğümlerine dağıtılması konusu incelenmiştir. Silinti kodları ola-
rak zaman açısından yüksek kodlama verimliliğine sahip LDPC
kodları kullanılmış olup düğüm tamir zamanı açısından fazladan
verinin kaydedildiği kodlanmış veri paylaştırımı yaklaşımı ile
fazladan verinin kullanılmadığı (artık veri paylaştırımı) kodlanmış
veri paylaştırımı yaklaşımlarının performansı karşılaştırılmıştır.
Bu kapsamda düğüm tamiri zamanı ile toplamda depolanması
gereken verinin miktarı ile ilgili sonuçlar elde edilmiştir.

Anahtar Kelimeler—Dağıtık sistemler, önbellekleme, cihazlar
arası iletişim, silinti kodları.

Abstract—In distributed storage systems/coded caching sys-
tems, padding operations should be performed when the encoded
data cannot be divided by the number of storage nodes evenly.
Thus, extra zero values are stored in one of the nodes to balance
each node’s storage content. In this study, distribution of data to
storage nodes with no padding was investigated for distributed
caching context in which a base station and devices both store
the coded data. In other words, no redundancy (no-padding)
is included into the encoded data. This approach is named as
residual data distribution. LDPC codes are selected as the erasure
code due to their low complexity encode/decode operations.
Moreover, performance comparisons were conducted between
using traditional data distribution approach (with padding) and
using residual data (use of no-padding) (standard) in terms of
repair time. In our work, the effect of no-padding data usage on
the repair time and the ratios of storage savings have been also
demonstrated.

Keywords—distributed systems, caching, device-to-device com-
munication, erasure codes.

I. INTRODUCTION

The device-to-device communication model can be explo-
ited by keeping the data in the caches of the cellular devices
and by communicating directly with each other when needed
[1]. This form of communication, which is established directly
without using a base station, is different from the traditional
communication model and can be utilized to decrease overall
base station communication. In other words, the data kept in

the caches of the devices can be shared directly between the
devices with no central authority. By using this communication
model devices can download the desired content from nearby
devices if exist, otherwise they can use base station as the last
alternative. This approach constitutes the base of the coded
caching systems.

In distributed data storage systems, inherently in coded
caching systems, padding operations should be performed
when the encoded data can not be divided evenly by the
number of storage nodes. In this study, unlike other stu-
dies, residual data (data that cannot be evenly divided by
the number of storage nodes) was investigated in distributed
coded caching scenario without introducing any redundancy.
In general, caching strategies can be divided into uncoded and
coded caching. Erasure correcting codes are generally used in
coded caching paradigm and these codes have the potential
to reduce the amount of storage space required relative to
that of the uncoded caching [2]–[4]. One of the options to
fulfill the requirements of the coded caching is presented as
low density parity check (LPDC) codes in [5]. Several studies
considered LDPC codes for distributed systems as well [6]–
[10]. Similarly, in this study, as for the erasure code, LDPC
codes are used and performance comparisons were conducted
between using traditional data distribution and residual data
distribution approaches in terms of repair time/latency. Thus,
the effect of residual data (no padding) distribution on repair
time has been also demonstrated. According to the obtained
results, the residual data distribution method can save storage
space up to %5.78, whereas it deteriorates the repair time as
expected.

This paper is organized as follows: in Section II system
model and data distribution methods are given, in Section III
the simulation results are presented and the discussions related
the advantages and disadvantages of these two data distribution
methods are made.

II. SYSTEM MODEL AND METHOD

In the system model, it is assumed that there are a total of
T nodes and a single base station serving a cellular network. It
is also assumed that these nodes can communicate with each
other through a device-to-device communication protocol. The
simulation model, in which different residual data usages are
tested, was created according to the M/M/∞ queuing model.
The probabilities of the nodes entering into and exiting out

978-1-6654-5092-8/22/$31.00 ©2022 IEEE

20
22

 3
0t

h
Si

gn
al

 P
ro

ce
ss

in
g

an
d

C
om

m
un

ic
at

io
ns

 A
pp

lic
at

io
ns

 C
on

fe
re

nc
e

(S
IU

) |
 9

78
-1

-6
65

4-
50

92
-8

/2
2/

$3
1.

00
 ©

20
22

 IE
EE

 |
D

O
I:

10
.1

10
9/

SI
U

55
56

5.
20

22
.9

86
47

89

Authorized licensed use limited to: ULAKBIM UASL - Pamukkale University. Downloaded on January 16,2024 at 11:09:20 UTC from IEEE Xplore. Restrictions apply.

of the cell, i.e., the possibilities of entering and leaving the
coverage area of the base station, are assumed to be Poisson
as assumed in [2], [4].

In this system, a single file of size B bytes is partitioned
into k blocks and these blocks are encoded into n > k blocks
all of which are equal size. The encoded data is distributed in
the caches of s distinct nodes, where s < T . LDPC erasure
codes are used for encoding the data where the base station
is assumed to have a copy of the encoded data. In this study,
similar to the previous studies [10], [11], we have considered
a device-to-device communication protocol for the distributed
caching system in which base stations are acting as helpers.
Each storage node stores t ≤ ⌈n

s ⌉ symbols, with ⌈n
s ⌉ < k. If

a data catching node leaves the cell, an empty node is selected
from the cell instead. A lazy repair process as applied in [4]
is adopted at certain time intervals for recovering these lost
nodes.

The main motivation of this study is to investigate two
symbol distribution approaches, namely standard symbol dist-
ribution and residual data distribution method on the aspect of
repair time and storage usage. In the fist one, if the condition
s|n is not satisfied, one of the storage node stores extra zero
valued data to equalize its encoded data size with that of
the other storage nodes. On the other hand, in the second
approach, no extra padding symbols are used, hence this
approach requires less storage space in total.

In this paper, we use array LDPC erasure codes [12]. A
node repair algorithm [10], based on a greedy approach is used
to minimize the use of base stations in the selection and repair
process of the relevant recovery equation. Using this approach,
the symbols of the lost node are repaired. According to this
method, recovery equations for the lost symbols are determined
and one of them is selected.

A. LDPC Codes

In the (n− k × n) parity check matrix of an (n, k) LDPC
code, the number of ones in rows and columns are expressed
as wr and wc, respectively. This matrix consists of 0 and 1
values, and the number of 1’s is usually much less than 0’s.
If wc is a constant for each column, then wr = wc(

n
k). An

LDPC code is called regular if wr and wc are both constant.
After generating parity check matrix, (k × n) generator matrix
can be constructed through elementary row/column operations,
which then can be used to encode the data.

The symbols in the recovery equation used to repair a
lost symbol are called helper symbols. These helper symbols
are cached in storage nodes within the cellular network. In
addition, if more than one symbol is stored in the lost node,
some of these helper symbols can be one of the other lost
symbols in this node. If these helper symbols are located in
other nodes, they are first downloaded from these nodes. If any
one of the helper symbols in the recovery equation cannot be
found in other local nodes, local repair ceases entirely and the
lost symbol/s are downloaded directly from the base station
instead.

In Fig. 1, an example scenario of the repair process of
one of the nodes is shown in which the original message
symbols are encoded based on a regular (18, 9) LDPC code.

Fig. 1: Repair approach for regular (18,9) LDPC code.

In the parity check matrix of this code, the weights of the
ones in the columns and rows are assumed to be wc = 3 and
wr = 6, respectively. Moreover, in this scenario, six storage
nodes are used in total. Hence, three encoded symbols are
stored in each storage node. Now, let us consider the case that
the node named D3 is lost and thus the repair process needs
to be initiated for 3 encoded symbols stored in D3. We name
the node NEW D3 as the “newcomer" and it is selected from
the empty nodes in the cell. Let us assume the lost symbols to
be s7, s8 and s9, respectively. Note that there are 3 candidate
recovery equations due to the value of wc for each lost symbol.
While choosing the recovery equation, we attempt to minimize
the use of the base station as in [10]. In other words, the helper
symbols that appear in the recovery equations are downloaded
directly from the other 5 local storage nodes without using the
base station. Accordingly, one of the three candidate recovery
equations is selected for each lost symbol. After selecting a
recovery equation for each symbol, the algorithm given in
[10] is applied. The recovery equations chosen for this repair
scenario are shown in Eq. (1), Eq. (2), and Eq. (3).

s7 = s6⊕ s10⊕ s14⊕ s16⊕ s17 (1)
s8 = s1⊕ s9⊕ s11⊕ s13⊕ s15 (2)

s9 = s2⊕ s4⊕ s5⊕ s7⊕ s8 (3)

It is seen that the number of helper symbols in each
equation is equal and wr − 1 = 5 due to the use of regular
LDPC code. At this point, initially, the related lost symbols are
repaired by using the recovery equations that do not require the
use of a base station. After the completing the repair process
of each lost symbol, all candidate recovery equations for the
remaining lost symbols are re-organized by checking the base
station use cases. First, the symbol s7 and then s8 are repaired
by downloading symbols from the helper nodes.

The symbols s7 and s8 in Eq. (3) were lost symbols. But
they can be used for this equation since these symbols were
repaired in the previous process. By using this approach, the
number of symbols downloaded from the base station is redu-
ced. During this repair process, one symbol was downloaded
from the base station while a total of 8 symbols was taken
from other nodes.

2

Authorized licensed use limited to: ULAKBIM UASL - Pamukkale University. Downloaded on January 16,2024 at 11:09:20 UTC from IEEE Xplore. Restrictions apply.

Fig. 2: Symbol distribution methods: Standard symbol distri-
bution method (left), Symbol distribution method with residual
data (right).

B. Standard Symbol Distribution Method

In the standard symbol distribution method, while the
encoded symbols are distributed to the storage nodes, the
objective is to keep an equal number of symbols in each one
of these storage nodes. Thus, an equal number of symbols
are stored in each storage node after the symbol distribution.
For this purpose, if necessary, extra zero symbols may be
stored. A scenario of a standard symbol distribution method
is shown in Fig. 2 (left). In this scenario, 11 encoded symbols
are distributed to 4 storage nodes. Since it is desired to keep
an equal number of encoded symbols in each node, 3 symbols
are stored in any storage node. Accordingly, the 12th symbol
is not actually an encoded symbol and is given a value of
zero to ensure the desired balance. Despite the use of extra
storage space, the main motivation of this method is to save
time in repair operations. The iterations in the figure represent
loop states related to encoding process i.e., the file is divided
into partitions and each partition is encoded separately. More
specifically during the encoding process, each partition is
encoded with an (n, k) LDPC code, and resulting n symbols
are distributed according to the mapping shown in Fig. 2 (left).
Equation (4) shows the range of symbol indices that symbol
i held in storage node j can take. In other words, the symbol
indices that storage node j can take are represented by this
equation. n comes from the parameter of LDPC code, while
the variable s refers to the number of storage nodes.

(j − 1)
⌈n
s

⌉
+ 1 ≤ i ≤ (j − 1)

⌈n
s

⌉
+
⌈n
s

⌉
(4)

C. Symbol Distribution Method with Residual Data

The concept of no-padding or residual data is related to the
storage of irregular number of symbols in the storage nodes. In
other words, it is a method of distribution of encoded symbols
to storage nodes. In Fig. 2 (right), a sample scenario for
the symbol distribution method with residual data distribution
is presented. In this example, the first 8 symbols of the 11
encoded symbols are distributed in pairs to 4 storage nodes.

The 9th, 10th and 11th symbol indexes are the symbol indexes
where the residual data will be kept. The symbols kept in
these symbol indexes are defined as residual data. Starting
from the 9th symbol index, each symbol is sent to a node
in turn from the first storage node. Symbols corresponding to
the same symbol index in each cycle are stored in the same
storage node. In this study, like in the scenario of Fig. 2 (right),
the symbol indexes of residual data are always matched with
the same nodes in each loop. By this distribution based on
residual data usage, storing extra symbols are avoided in the
nodes. In this distribution method, it is aimed to save storage
space instead of saving time in repair operations. Equation (5)
shows the relationship between j. storage node and i. symbol
that is non-residual, while equation (6) shows the relationship
between j. storage node and i. symbol that is residual.

i ≤ s
⌊n
s

⌋
⇒ j =

⌊
i

⌊n
s ⌋

⌋
+
(
i mod

⌊n
s

⌋)
(5)

i > s
⌊n
s

⌋
⇒ j = i− s

⌊n
s

⌋
(6)

III. RESULTS

Initially, raw data file having the size 128KB is encoded
according to the LDPC code design in [12] and then this
encoded data is distributed to 30 storage nodes using both
distribution approaches. Then the node repair operations are
realized in time intervals according to M/M/∞ queuing
model.

Both standard and residual data distribution methods were
tested for the codes (388,194), (424,318), (908,454) and
(2056,1542) LDPC codes, respectively. The repair times for
these approaches can be seen in Fig 3 and 4. The green
lines in the figures point out the codes using the symbol
distribution method with residual data distribution, while the
orange lines represent the codes using the standard symbol
distribution method. In these figures, r refers to the number
of residual symbol indices for each LDPC code. According to
the results, the repair times of codes with symbol distribution
method based on residual data are longer than the repair
times of codes based on the standard distribution method as
expected. For (388,194) LDPC code, it was observed that the
distribution method based on residual data has %64.04, %34.57
and %28.24 higher repair times per node than the standard
distribution method at 0.1, 0.5 and 0.9 of ∆ values that are
repair intervals, respectively. For (424,318) LDPC code, the
distribution method based on residual data has %30.57, %0.86
and %7.37 higher repair times per node than the standard dist-
ribution method at 0.1, 0.5 and 0.9 of ∆ values, respectively.
For (908,454) LDPC code, the distribution method based on
residual data has %54.03, %12.53 and %12.15 higher repair
times per node than the standard distribution method at 0.1,
0.5 and 0.9 of ∆ values, respectively. Also, for (2056,1542)
LDPC code, the distribution method based on residual data
has %16.94, %8.81 and %8.69 higher repair times per node
than the standard distribution method at 0.1, 0.5 and 0.9 of ∆
values, respectively.

Apart from the repair time comparisons, the symbol distri-
bution method with residual data is compared with the standard
symbol distribution method in terms of data storage. In this

3

Authorized licensed use limited to: ULAKBIM UASL - Pamukkale University. Downloaded on January 16,2024 at 11:09:20 UTC from IEEE Xplore. Restrictions apply.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

∆

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

R
ep

a
ir

T
im

e
p
er

N
o
d
e
(s
ec
on

d
s)

(388,194) LDPC with residual data (r=28)

(388,194) LDPC standard

(424,318) LDPC with residual data (r=4)

(424,318) LDPC standard

(908,454) LDPC with residual data (r=8)

(908,454) LDPC standard

(2056,1542) LDPC with residual data (r=16)

(2056,1542) LDPC standard

Fig. 3: Comparison of symbol distribution methods in terms
of repair time of a single node.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

∆

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

R
ep

ai
r
T
im

e
p
er

S
y
m
b
ol

(s
ec
on

d
s)

×10-5

(388,194) LDPC with residual data (r=28)

(388,194) LDPC standard

(424,318) LDPC with residual data (r=4)

(424,318) LDPC standard

(908,454) LDPC with residual data (r=8)

(908,454) LDPC standard

(2056,1542) LDPC with residual data (r=16)

(2056,1542) LDPC standard

Fig. 4: Comparison of symbol distribution methods in terms
of repair time of a single symbol.

comparison, the raw data file of 128 KB was used as before.
After this file data was expanded according to the code rate
of the relevant LDPC code, this extended (encoded) data was
distributed to 30 storage nodes. Table 1 shows the amount
of encoded symbols stored in the storage nodes according
to the LDPC codes. These results are also presented in Fig.
5. As can be seen from the results, residual data usage
saves almost %0.51 storage space for (388,194) LDPC code,
%5.78 storage space for (424,318) LDPC code, %2.37 storage
space for (908,454) LDPC code and %0.68 storage space for
(2056,1542) LDPC code. It is seen that the use of residual
symbols saves a little in terms of storage space.

LDPC Codes Encoded Data (in bytes)

(388,194) LDPC code residual 262288
(388,194) LDPC code standard 263640
(424,318) LDPC code residual 175112
(424,318) LDPC code standard 185850
(908,454) LDPC code residual 262412
(908,454) LDPC code standard 268770

(2056,1542) LDPC code residual 176816
(2056,1542) LDPC code standard 178020

Table I: Comparison of encoded data in 30 storage nodes in
terms of LDPC codes

Comparison of Symbol Distribution Methods in terms of Encoded Data

LDPC Codes
0

0.5

1

1.5

2

2.5

3

T
o

ta
l

E
n

co
d

ed
 D

at
a

in

3
0

 S
to

ra
g

e
N

o
d

es
 (

in
 B

y
te

s) 10
5

LDPC (194,388) with residual data

LDPC (194,388) standard

LDPC (318,424) with residual data

LDPC (318,424) standard

LDPC (454,908) with residual data

LDPC (454,908) standard

LDPC (1542,2056) with residual data

LDPC (1542,2056) standard

Fig. 5: Total number of symbols in bytes distributed across 30
storage nodes.

REFERENCES

[1] A. Asadi, Q. Wang, and V. Mancuso, “A survey on device-to-device
communication in cellular networks,” IEEE Communications Surveys
& Tutorials, vol. 16, no. 4, pp. 1801–1819, 2014.

[2] J. Pääkkönen, C. Hollanti, and O. Tirkkonen, “Device-to-device data
storage for mobile cellular systems,” in 2013 IEEE Globecom Works-
hops (GC Wkshps). IEEE, 2013, pp. 671–676.

[3] J. Paakkonen, C. Hollanti, and O. Tirkkonen, “Device-to-device data
storage with regenerating codes,” in Multiple Access Communications.
Cham: Springer International Publishing, 2015, pp. 57–69.

[4] J. Pedersen, A. G. i Amat, I. Andriyanova, and F. Brännström, “Distri-
buted storage in mobile wireless networks with device-to-device com-
munication,” IEEE Transactions on Communications, vol. 64, no. 11,
pp. 4862–4878, 2016.

[5] E. Haytaoglu, E. Kaya, and S. S. Arslan, “On the fault tolerant
distributed data caching using ldpc codes in cellular networks,” arXiv
preprint arXiv:2010.14781, 2020.

[6] J. S. Plank and M. G. Thomason, “A practical analysis of low-
density parity-check erasure codes for wide-area storage applications,”
in International Conference on Dependable Systems and Networks,
2004. IEEE, 2004, pp. 115–124.

[7] Y. Wei, Y. W. Foo, K. C. Lim, and F. Chen, “The auto-configurable
ldpc codes for distributed storage,” in 2014 IEEE 17th international
conference on computational science and engineering. IEEE, 2014,
pp. 1332–1338.

[8] H. Park, D. Lee, and J. Moon, “Ldpc code design for distributed storage:
Balancing repair bandwidth, reliability, and storage overhead,” IEEE
Transactions on Communications, vol. 66, no. 2, pp. 507–520, 2017.

[9] W. Yongmei and C. Fengmin, “Guided systematic random ldpc for
distributed storage system,” in Proceedings of the 2017 International
Conference on Information Technology, 2017, pp. 355–359.

[10] E. Haytaoglu, E. Kaya, and S. S. Arslan, “Data repair-efficient fault
tolerance for cellular networks using ldpc codes,” IEEE Transactions
on Communications, vol. 70, no. 1, pp. 19–31, 2022.

[11] E. Kaya, E. Haytaoglu, and S. S. Arslan, “Data repair in bs-assisted
distributed data caching,” in 2020 28th Signal Processing and Commu-
nications Applications Conference (SIU). IEEE, 2020, pp. 1–4.

[12] E. Eleftheriou and S. Olcer, “Low-density parity-check codes for digital
subscriber lines,” in 2002 IEEE International Conference on Commu-
nications. Conference Proceedings. ICC 2002 (Cat. No. 02CH37333),
vol. 3. IEEE, 2002, pp. 1752–1757.

ACKNOWLEDGEMENT

This study is supported by TUBITAK under grant no
119E235.

4

Authorized licensed use limited to: ULAKBIM UASL - Pamukkale University. Downloaded on January 16,2024 at 11:09:20 UTC from IEEE Xplore. Restrictions apply.

