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Abstract: The phase pure synthesis of Ti3 AlC2 MAX phase is quite difficult and some additives are required to get a
phase pure Ti3 AlC2 such as Sn. In this study, Sn doped Ti3 AlC2 MAX phase has been investigated taking into account
the experimental synthesis conditions where some Sn atoms could replace Al atoms in the structure. For this purpose,
Ti3 Al1−x Snx C2 with x ranging from 0 to 1 with 0.1 interval has been studied using the first principles method and
the results show that all compositions are thermodynamically stable. The electronic properties of these compositions
have been studied using band filling theory in detail. Also, the mechanical properties of these compounds such as shear
modulus, Poisson’s ratio, Young’s modulus, sound wave velocities, polarization of the sound waves, enhancement factor,
the power flow angle and etc. have been obtained with the varying directions and the three-dimensional mechanical
properties have been visualized.

Key words: MAX phases, nanolaminated ternary carbides, electronic stability, anisotropic elastic, density functional
theory

1. Introduction
The MAX phases belong to the nanolaminated ternaries, having the general formula Mn+1AXn (n=1-3) where
M is an early transition metal, A is an A group element, and X is either carbon or nitrogen [1]. They are
also known as 211 (n = 1), 312 (n = 2) and 413 (n = 3) MAX phases due to the n values. Each of three
phases crystallizes in a hexagonal P63/mmc lattice structure and they consist of edge-sharing [M6X] octahedra
interleaved with A layers. Hence, their unique structure, combining both strong covalent M-X bonds and
weaker M-A bonds, makes MAX phase having magnificent properties. They are stiff, lightweight, chemically
stable, and oxidation resistant. On the other hand, they are relatively soft, machinable, resistant to thermal
shock, and they exhibit good electric and thermal conductivity as well as good damage tolerance. Therefore,
they exhibit both ceramic and metallic nature [1–4]. Among these MAX phases, Ti3AlC2 has the desirable
attention owing to their unique combination of electrical, thermal, chemical and mechanical properties [5–8].
To synthesize Ti3AlC2 many experimental techniques such as sintering [9–11], combustion synthesis [12], hot
pressing [8,13,14] have been used from various mixtures with different molarities. Whereas, obtaining Ti3AlC2

in a single-phase is quite difficult due to the narrow phase domain in the Ti–Al–C phase diagram [15]. The
earlier studies revealed that secondary phases such as TiC, TixAly , Al2O3 , or the 211 MAX phase (Ti2AlC)
are commonly detected in the end products [16–18]. In addition, there are two main problems for the large-
∗Correspondence: aysenurgencer@gmail.com

This work is licensed under a Creative Commons Attribution 4.0 International License.
105

https://orcid.org/0000-0003-2574-3516
https://orcid.org/0000-0001-7995-7590


GENCER and ERKİŞİ/Turk J Phys

scale production of highly pure Ti3AlC2 powders. These challenges are the evaporative loss of Al and the
thermal explosion in the reaction process of Ti–Al–C. In order to prevent these problems some additives such
as B2O3 , Si and Sn were introduced to Ti–Al–C system [5,9,19,20]. It was observed that evaporative loss of
Al could be supplemented by the Sn additions. Hence, Sn addition would solve the evaporative loss of Al and
the thermal explosion simultaneously, and does not remain as impurities in the product of Ti3AlC2 powders
[5]. Moreover, the experimental studies have considered the Ti3Al0.8Sn0.2C2 compound for the hardness [15],
oxidation resistance [18], and compressive behavior [21] as well as with Ti3AlC2 . However, there is a lack for
the detailed properties of Sn doped Ti3AlC2 in the literature. Therefore, Ti3Al1−xSnxC2 compounds were
considered where x starts from 0 and increases to 1 with 0.1 interval and the detailed structural, electronic and
mechanic properties of Ti3Al1−xSnxC2 compounds are presented in this study.

2. Computational details

Ti3Al1−xSnxC2 compounds were investigated using Cambridge Serial Total Energy Package (CASTEP)
[22] based on the density functional theory (DFT). The exchange correlation energy was considered using
the Perdew–Burke–Ernzerhof (PBE) [23] functional within the generalized gradient approximation (GGA)
[24]. Also, the self-consistent field calculations were performed using the Broyden–Fletcher–Goldfarb–Shannon
(BFGS) method [25]. The electron and ion interactions were considered using the norm-conserving pseudopo-
tentials [26]. The optimizations were performed with an energy cut off as 770 eV and with 14 ×14 × 2 k-points.
The electron configurations within the virtual crystal approximation (VCA) [27] were used as 4d2 4s2 , 3s2 3p1 ,
5s2 5p2 , and 2s2 2p2 for Ti, Al, Sn, and C atoms, respectively. For the structural optimization, the energy and
force criteria were taken as 5 × 10− 7 eV per atom and 0.001 eV/Å, respectively. The three-dimensional and
two-dimensional elastic properties were modeled using ELATE [28]. Also, the Christoffel tool [29] were used to
obtain the three-dimensional sound wave velocities with solving the Christoffel equation [30].

3. Results and discussion
3.1. Structural and electronic properties

Titanium aluminum carbides Ti3Al1−xSnxC2 (where x is ranging from 0 to 1 with interval 0.1) in which
tin element (Sn) is doped in different proportions were modelled according to the hexagonal symmetry. The
crystallized structure conforming to P63 /mmc space group is illustrated in Figure 1.

The relaxation process of each composition having different stoichiometry was carried out to obtain the
optimized lattice parameters and ground state energies. The obtained lattice constants (a and c in Å), bond
lengths (d in Å) and also formation energies (∆EFor in eV/atom) for each composition were tabulated in Table
1. As can be concluded from Table 1, the total unit cell volume of each composition having various Sn addition
changes due to the doping rate. Once compared the obtained lattice parameters in the present study with the
previous experimental and theoretical studies for Ti3AlC2 , Ti3Al0.8Sn0.1C2 and Ti3SnC2 compositions, the
results are coherent and only about 1% gap is found between them [15,18]. Moreover, the general trend for the
a and c lattice parameters is raising with the x ratios changes from 0 to 1 and Ti3SnC2 has the highest lattice
parameter among these compositions. This result is due to the higher atomic radius of Sn atom than Al atom.
In addition, the formation energies were calculated for each composition of Ti3Al1−xSnxC2 with the help of
internal energy changes [4,31] and they were found to be negative values which point the structural stability of
compositions.
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Figure 1. The three-dimensional crystal structure of Sn-doped Ti3 Al1−x Snx C2 .

Table 1. The obtained lattice constants (a and c in Å), bond lengths (d in Å) and formation energies (∆EFor in
eV/atom) for each composition.

Composition a c ∆EFor dTi−C dTi−Ti dTi−TM

Ti3AlC2 3.079 18.595 –0.840 2.079 2.967 2.886
3.075[18] 18.572[18]
3.079[15] 18.589[15]
3.081∗ 18.679∗ –0.763∗

Ti3Al0.9Sn0.1C2 3.083 18.525 –0.792 2.077 2.955 2.887
Ti3Al0.8Sn0.2C2 3.088 18.546 –0.765 2.078 2.954 2.895

3.084[18] 18.587[18]
3.084[15] 18.621[15]

Ti3Al0.7Sn0.3C2 3.092 18.557 –0.682 2.079 2.953 2.901
Ti3Al0.6Sn0.4C2 3.097 18.563 –0.649 2.081 2.952 2.907
Ti3Al0.5Sn0.5C2 3.102 18.567 –0.643 2.090 2.972 2.892
Ti3Al0.4Sn0.6C2 3.107 18.567 –0.655 2.085 2.950 2.917
Ti3Al0.3Sn0.7C2 3.123 18.571 –0.684 2.091 2.953 2.926
Ti3Al0.2Sn0.8C2 3.118 18.573 –0.713 2.089 2.950 2.926
Ti3Al0.1Sn0.9C2 3.123 18.567 –0.748 2.092 2.951 2.928
Ti3SnC2 3.142 18.695 –0.841 2.097 2.960 2.957

3.150∗ 18.733∗ –0.785∗

*Materials Project (2020). mp-3747: Ti3 [online].
Website https://materialsproject.org/materials/mp-3747/ and mp-21023: Ti3[online].
Website https://materialsproject.org/materials/mp-21023/ [accessed 29 December 2020].

The electronic stability of the crystals can be deduced with the density of states (DOS) plots which are
obtained by using the band filling theory [32–36]. Therefore, after the optimization process, the electronic band
structures and the total density of states (DOS) were investigated in order to determine the electronic properties
of each Ti3Al1−xSnxC2 compounds and get the best structural stoichiometry among them.
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According to the theory in question, the structural stability is related to the ratio of the width of occupied
states (Wocc ) to the width of the bonding states (Wb ) and when the mentioned ratio (Wocc/Wb ) is close to
1, it can be said that the examined solid crystal has structural stability. In this study, it can be deduced
from Table 2 that the calculated Wocc /Wb is much close to 1.00 value when the doping ratio of tin element
inside of titanium aluminum carbides Ti3Al1−xSnxC2 is 0.2. It means that this composition has better
structural stability than the other compositions. Also, Table 2 lists the number of electrons at the Fermi
level for each composition and Ti3Al0.8Sn0.2C2 has the lowest number of electrons among them. Therefore,
Ti3Al0.8Sn0.2C2 is electronically more stable. These numbers of electrons could be visualized with the total
DOS and Figure 2 shows the total DOS of these compounds where the inset shows that the lowest numbers of
electrons are belongs to Ti3Al0.8Sn0.2C2 compound.

Table 2. Number of electrons at the Fermi level (n), the width of pseudo-gap (Wp ), the width of occupied states
(Wocc ), the width of the bonding states (W b ), and the ratio of the width of the occupied states to the width of the
bonding states (Wocc /W b ) for Ti3 Al1−x Snx C2 compositions.

Compositions n Wp Wocc Wb Wocc /Wb

Ti3AlC2 3.566 0.059 12.672 –12.613 –1.005
Ti3Al0.9Sn0.1C2 3.481 0.032 12.663 –12.630 –1.003
Ti3Al0.8Sn0.2C2 3.340 –0.030 12.045 –12.075 –0.998
Ti3Al0.7Sn0.3C2 3.386 –0.136 12.564 –12.700 –0.989
Ti3Al0.6Sn0.4C2 3.378 –0.187 12.533 –12.720 –0.985
Ti3Al0.5Sn0.5C2 3.427 –0.276 12.470 –12.746 –0.978
Ti3Al0.4Sn0.6C2 3.421 –0.374 12.406 –12.780 –0.971
Ti3Al0.3Sn0.7C2 3.632 –0.479 12.363 –12.841 –0.963
Ti3Al0.2Sn0.8C2 3.946 –0.577 12.309 –12.887 –0.955

Figure 2. The calculated total density of states (TDOS) for Ti3 Al1−x Snx C2 (where x is ranging from 0 to 1 with
interval 0.1) compositions.

The observed electronic band structure and the total density of states can be utilized to decide the
electronic behavior of a solid crystal. In this view, to determine the electronic nature of the Ti3Al1−xSnxC2
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compounds, the energy band structures and the total density of electronic states were calculated and plotted
along the high symmetry lines in the first Brillouin zone. The plotted electronic band structure was presented
in Figure 3 for Ti3Al0.8Sn0.2C2 composition since it has same electronic behavior with other compositions.
This similar electronic behavior could be seen from Figure 2. Also, it is concluded from Figure 3 that
Ti3Al0.8Sn0.2C2 as well as these nanolaminated compositions are metals since there are no gaps between
band branches around the Fermi level.

Furthermore, to understand the orbital dominancy on electronic nature for Ti3Al0.8Sn0.2C2 composi-
tion, the partial density of states (PDOS) and total density of states (TDOS) were given in Figure 4. It can be
clearly seen in the figure that, especially in the conduction band which is above the Fermi energy level (EF ),
there is a dominant contribution of the d-orbitals of titanium element (Ti) to the total density of states in these
compositions. It can be said that, for the valence band below the Fermi energy level (EF ), the contribution
from the p-orbitals of C atoms of Ti3Al0.8Sn0.2C2 is slightly more than the contributions from other orbitals
of the other elements. In addition, s-orbitals of the atoms in these compositions have no significant effect on
bonding properties and metallic character of these materials. This means that especially d-orbitals of titanium
element (Ti) play a remarkable role on the electronic natures of the Ti3Al0.8Sn0.2C2 composition.

Figure 3. The calculated energy band structure for Ti3 Al0.8 Sn0.2 C2 compositions.

Figure 4. The total density of states (TDOS) and the orbital projected partial density of electronic states (PDOS) for
Ti3 Al0.8 Sn0.2 C2 compositions.
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4. Mechanical properties

The elastic constants of solid crystals establish a strong connection between their mechanical properties and
their dynamic nature. They can also provide much information about the plastic deformation that can occur
in their structures when an external force is applied. By using the optimized unit cells of these compositions,
six independent elastic constants (C ij ) were calculated using the stress-strain method [37], and the calculated
elastic constants for each composition having different Sn and Al-ratios are tabulated in Table 3. In technological
applications, the mechanical stability of a solid, which is a desirable property for the sustainability, is defined as
the resistance of the investigated crystal against external forces. Therefore, to be mechanically stable materials,
their elastic constants should satisfy the Born-Huang criteria which are given below [38,39].

C11 − C12 > 0; C11 + 2C12 > 0; C33 (C11 + 2C12) > 2C2
13; C44 > 0

It can be concluded from Table 3 that Ti3Al1−xSnxC2 compositions have mechanical stability due to satisfying
the Born–Huang criteria. Moreover, some mechanical properties of the Ti3Al1−xSnxC2 compositions were
obtained using these constants.

Table 3. The calculated elastic constants (C ij in GPa) and Cauchy pressures (Cp in GPa) of Ti3 Al1−x Snx C2

compositions.

Compositions C11 C12 C13 C33 C44 C66 Cp

Ti3AlC2 354.11 75.78 70.05 296.52 122.80 139.16 –47.02
354∗ 76∗ 69∗ 296∗ 115∗ 139∗

Ti3Al0.9Sn0.1C2 354.80 76.26 70.97 299.94 120.68 139.27 –44.42
Ti3Al0.8Sn0.2C2 354.40 77.81 74.77 305.07 118.80 138.30 –40.99
Ti3Al0.7Sn0.3C2 352.05 79.63 75.89 305.67 120.98 136.21 –41.35
Ti3Al0.6Sn0.4C2 351.08 79.14 76.73 315.65 133.59 135.97 –54.45
Ti3Al0.5Sn0.5C2 349.11 81.96 77.35 314.20 124.70 133.58 –42.73
Ti3Al0.4Sn0.6C2 351.70 82.05 79.39 318.24 114.90 134.82 –32.85
Ti3Al0.3Sn0.7C2 349.35 82.50 79.78 314.11 105.73 133.43 –23.23
Ti3Al0.2Sn0.8C2 361.02 92.03 80.91 310.21 107.23 134.50 –15.20
Ti3Al0.1Sn0.9C2 335.13 92.54 80.40 307.41 102.70 121.30 –10.16
Ti3SnC2 326.63 89.16 80.30 300.20 103.27 118.73 –14.10

328∗ 90∗ 76∗ 289∗ 103∗ 119∗

The resistance of a crystal with hexagonal symmetry against the changes in the main strain in the[
0 1 1 0

]
and [0 0 0 1] directions can be deduced from the calculated C11 and C33 constants, respectively. For

all compositions in this study, the calculated C11 constants are higher than C33 constants as listed in Table 3.
This means that the incompressibility in the

[
0 1 1 0

]
direction is stronger than in the [0 0 0 1] direction [40].

Among the elastic constants, C66 and C44 can be defined as resistance to shear of the {1 0 0} plane in the
<1 1 0> direction, and the resistance to shear of the {0 1 0} or {1 0 0} planes in the <0 0 1> directions,
respectively [41]. The C66 constants are higher than C44 , therefore these compounds are resistant to shear
deformations of the {1 0 0} plane in the <1 1 0> direction. Moreover, the calculated elastic constants are
consistent with the results obtained in previous studies.1

1*Materials Project (2020). mp-3747: Ti3 AlC2 [online]. Website https://materialsproject.org/materials/mp-3747/ and mp-
21023: Ti3 SnC2 [online]. Website https://materialsproject.org/materials/mp-21023/ [accessed 29 December 2020].
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The ductility or brittleness of a solid crystal could be determined with the Cauchy pressure (Cp ) that
can be calculated as Cp= C12 − C44 . The negative value of Cauchy pressure asserts that the brittleness of the
interested solid [42]. As seen from Table 3, Ti3Al1−xSnxC2 compounds are brittle materials.

Some mechanical properties as listed in Table 4 can be predicted from the calculated elastic constants.
Generally, the bulk modulus (B) of a crystal is defined as its resistance against change in its volume when
a hydrostatic pressure is occurred on it while the resistance against its shape change is defined as the shear
modulus (G). These properties could be predicted using the Voigt [43], Reuss [44] and Hill [45] approximations.
The Voight approximation gives the upper limit for these properties while the Reuss approximation gives the
lower limit. The Hill approximation takes the averages as listed in Table 4 and it provides to obtain these
properties closer to the experimental results. As seen in this table, the predicted moduli (B and G) of Ti3AlC2

and Ti3SnC2 compositions are so close to the results in previous studies and also, the differences are only less
than 5% between the obtained results and the previous studies. Furthermore, it is clear that as the doping rate
of the tin (Sn) element in Ti3Al1−xSnxC2 compositions increases, the bulk modulus (B) tends to increase,
while the shear modulus (G) decreases.

Table 4. The predicted bulk (B in GPa), shear (G in GPa) and Young’s (E in GPa) moduli, G/B and B/G ratios,
Poisson’s ratio (ν ) and Vickers hardness (HV in GPa) for Ti3 Al1−x Snx C2 compositions.

Compositions B E G ν G/B B/G HV

Ti3AlC2 159.01 305.01 129.21 0.18 0.81 1.23 14.28
260[15] 11.40[15]

159∗ 125∗ 0.19∗

Ti3Al0.9Sn0.1C2 160.12 304.16 128.51 0.18 0.80 1.25 14.14
Ti3Al0.8Sn0.2C2 162.76 302.82 127.24 0.19 0.78 1.28 14.05

250[15] 10.20[15]
Ti3Al0.7Sn0.3C2 154.08 337.78 148.85 0.18 0.97 1.03 13.82
Ti3Al0.6Sn0.4C2 164.57 314.11 132.89 0.18 0.81 1.24 13.70
Ti3Al0.5Sn0.5C2 164.85 305.43 128.20 0.19 0.78 1.29 13.72
Ti3Al0.4Sn0.6C2 166.84 299.35 124.63 0.20 0.75 1.34 12.85
Ti3Al0.3Sn0.7C2 166.11 289.49 119.67 0.21 0.72 1.39 12.57
Ti3Al0.2Sn0.8C2 170.54 293.51 120.97 0.21 0.71 1.41 12.68
Ti3Al0.1Sn0.9C2 164.68 276.36 113.23 0.22 0.69 1.45 12.61
Ti3SnC2 161.24 272.24 111.70 0.22 0.69 1.44 12.23

158∗ 112∗ 0.21∗

*Materials Project (2020). mp-3747: Ti3AlC2 [online].
Website https://materialsproject.org/materials/mp-3747/ and mp-21023: Ti3 SnC2 [online].
Website https://materialsproject.org/materials/mp-21023/ [accessed 29 December 2020].

Among the estimated some mechanical parameters, Young’s modulus (E) calculated as the ratio of stress
and strain can be used to define the linear strain along edges [46]. These compositions have high stiffness due to
the high Young’s modulus (E) as listed in Table 4. Furthermore, B/G values which are known as Pugh ratios
[47] can be used to estimate the ductility or brittleness behavior of solids. Accordingly, if the calculated B/G
value is greater than the critical number as 1.75 [48], a solid crystal with this value may be expected to exhibit
ductile behavior, otherwise brittle. In this regard, the presented compositions in this study are brittle materials
and this result is coherent with the Cauchy pressures. The G/B ratio is a crucial parameter to establish the
dominant bonding type of a crystal and it can be said that, if the obtained value is about 1.1, the dominancy of
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the covalent bonding in a crystal is greater than the other bonding types. On the other hand, it can be estimated
that, if the mentioned value of a solid is around 0.6, the atomic bonding character is ionic [46]. As a result,
the G/B ratios theoretically calculated in the present study support the ionic contribution in Ti3Al1−xSnxC2

compositions.
The compressibility or incompressibility of the material can be determined using the calculated Poisson’s

ratio (ν ) [49] and according to this view, if this ratio of any crystal approaches to value of 0.5, the mentioned
material shows incompressible character. In this study, it is obvious from the Table 4 that the calculated
Poisson’s ratios for the present compositions are close to 0.2 value indicating their compressibility nature.
Additionally, this ratio can be an indicator for the characteristics of the bonding types in solids and the known
typical value to verify ionic character is 0.25 whereas 0.1 value shows covalent type [35,50]. In this respect, the
types of bonding of these compounds are ionic, in accordance with the G/B ratios previously presented.

Moreover, the Vickers hardness (HV ) from the semiempirical method [51] were used to define the hardness
of the compositions and the calculated values were tabulated in Table 4. As seen in the table, the obtained
hardness values for Ti3AlC2 and Ti3Al0.8Sn0.2C2 compositions are consistent with the literature [15]. In
addition, the Ti3Al1−xSnxC2 compositions can be defined as hard material since the calculated hardness
values are in between 10 GPa and 40 GPa.

The three-dimensional and two-dimensional Young’s modulus, linear compressibility, shear modulus and
Poisson’s ratio of Ti3Al0.8Sn0.2C2 composition were visualized as seen in Figures 5a–5d (to save space in this
paper, the figures of Ti3Al0.8Sn0.2C2 composition are presented which is a focal point of this study, since other
compositions show similar behaviors). In these figures, the green shapes show the minimum values whereas the
blue ones show the maximum values. As seen in Figure 5, these properties are isotropic in xy plane while the
anisotropic character could be observed in yz and xz planes.

Additionally, the sound wave velocities depended on direction and the related phase polarization and
power flow angle were plotted with the help of Christoffel tool in which the elastic stiffness constants and the
density of material are used, as presented in Figures 6a–6d. The fast and slow secondary modes correspond
to the transverse wave velocities while the primary mode corresponds to the longitudinal wave velocity. In the
figures, it is clearly seen that the observed group and phase velocities have relatively smaller values in z-axis.
However, in x- and y-axes, the fast and the primary modes have higher values whereas the slow secondary
mode has lower values in the same axes. In Figure 6c, similar behaviors for x-, y- and z-axes are seen in phase
polarization too. Also, the primary mode has transverse polarization in all planes while the slow secondary
mode has transverse polarization in all directions and the fast secondary mode has longitudinal polarization in
x and y directions and transverse in z directions. The power flow angle being the angle between the group wave
velocity and the phase wave velocity has lowest values in all axes, as seen in Figure 6d.

5. Conclusion
Ti3Al1−xSnxC2 with x ranging from 0 to 1 with 0.1 interval was studied using CASTEP program package.
The structural optimizations were revealed that these compositions are thermodynamically stable. Also, the
general trend of the lattice constants with the Sn addition was rising. Also, it was found that these compositions
have metallic character and the band filling theory was revealed that the most stable structure among these
compounds is Ti3Al0.8Sn0.2C2 . The mechanical stability of these compositions was determined with the elastic
stiffness matrix. Moreover, the calculated elastic constants were used to obtain the mechanical properties such
as bulk modulus, Poisson’s ratio, etc. As the Sn doping increases, the bulk modulus increases while the shear
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Figure 5. (a) Young’s modulus, (b) linear compressibility, (c) shear modulus, and (d) Poisson’s ratio for
Ti3 Al0.8 Sn0.2 C2 composition in 3-D and 2-D.
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Figure 6. The directional dependent (a) group velocity, (b) phase velocity, (c) phase polarization, and (d) power flow
angle for Ti3 Al0.8 Sn0.2 C2 composition.
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modulus decreases. Also, all these compositions are brittle materials. In addition, the isotropic nature of
Young’s modulus, linear compressibility, shear modulus and Poisson’s ratio in xy plane is found while these
properties are anisotropic in yz and xz planes. The sound wave velocities in 3D were obtained and it was found
that the observed group and phase velocities have relatively smaller values in z-axis. This study presents the
detailed electronic and mechanic properties of Sn doped Ti3Al1−xSnxC2 compounds where Sn atoms could
result from the experimental synthesis procedure and it could have a potential to lead the future studies.
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