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1. Introduction
Phthalocyanines (Pcs) and their metal complexes have been studied for a long time, and they are still the matters of intense 
investigation. They show various exceptional properties and they havepotential applications in different scientific and 
innovative areas like nonlinear optics [1], electrochromic imaging systems [2], chemical detectors [3–5], solar cells [6], 
photovoltaic optics, molecular electronics [7], liquid crystals [8], semiconductors [9], laser dyes [10], optical storage devices 
[11], catalyst [12] and photodynamic therapy (PDT) [13].  The developing utilization of phthalocyanines as cutting edge 
materials in the recent decade and they have empowered the blend of new materials which vary as far as the central metal 
ion and peripheral substituents [14].

Electrochemical properties of phthalocyanines in the electrolytic solution, are dependent ontheir energy values of 
the HOMOs and LUMOs of the frontier orbitals [15]. Electrochemical properties of the proposed compounds may have 
the possible potential usage in electrocatalysis, electrosensing, and electrochromic devices. Electron donating alkylthio 
substituted phthalocyanines are also inherently electron-rich p-type semiconductors [16,17]. 

The numerous applications of zinc(II) phthalocyanines in the field of medicine, molecular electronics, magnetic devices, 
chemical sensors depend on their photophysical and photochemical properties. The photochemical properties of these 
compounds, especially, singlet oxygen quantum yield and photostability were also investigated for photodynamic therapy 
applications [18]. Therefore, they are widely used in cancer treatment as novel generation photosensitizers. Photosensitizers 
are desirable to have a long wavelength. In this manner, they have an effective curing performance over deep skin cancer 
types. However, due to having low energy, photosensitizers decrease the possible harmful effect of light irradiation. [19,20]. 
Phthalocyanines were known as second-generation photosensitizers in PDT of cancer. They have long-wavelength absorption 
and highly effective singlet oxygen generation abilities. For this reason, they are suitable for use in cancer treatment [21].
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In this study, the novel metallo-phthalocyanines wherein the 3-hydroxypropylthio groups connected to nonperipheral 
positions of the Pc macrocycle were synthesized. Electron donating sulfur groups are known to shift the Q-band to the long 
wavelength in nonperipheral positions that is desirable for potential PDT applications. The newly synthesized compounds 
have been characterized by 1H, 13C NMR, UV-Vis, FT-IR, micrOTOF mass, electrochemical and computational studies 
as well as elemental analysis. The photochemical properties such as singlet oxygen generation and photodegradation of 
zinc(II) phthalocyanine was also investigated to determine possible usage of this compound as a photosensitizer for cancer 
treatment by photodynamic therapy technique. The theoretical 1H and 13C NMR data of the optimized geometry were also 
compared with the experimental chemical shift values.

2.  Experimental
All information about the used materials, equipment, synthesis, electrochemical measurements singlet oxygen 
and photodegradation quantum yields as photophysical properties and theoretical calculations were showed in the 
“Supplementary materials”. 

3. Results and discussion
3.1. Synthesis and characterization
3,6-bis(3-hydroxypropylthio)phthalonitrile (3) was synthesized via a condensation reaction of 3,6-dibromophthalonitrile 
[22] with 3-mercapto propanol under very convenient conditions with a better yield than the first synthesis result (38%) 
(Scheme 1) [23]. This compound was prepared previously by the SNAr reaction of 3,6-(4’-methylphenyl-sulfanyloxy) 
phthalonitrile with 3-mercapto-propanole. In the 1H NMR spectrum of this compound, resonances at δ = 3.49, 1.73, 3.17, 
and 4.67 ppm should be related to OCH2, CH2, SCH2, and –OH protons, respectively. The aromatic protons appeared as a 
dublet at δ = 7.81–7.78 ppm as expected (Figure S1). 13C NMR spectrum of 3 showed the presence of characteristic carbon 

Scheme 1. The synthesis route of the phthalonitrile and metallophthalocyanines.
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resonances of C≡N groups at δ = 116.95 ppm, that can be attributed to the formation of 3,6-disubstituted phthalonitrile. 
The other chemical shifts at δ = 132.9, 141.2, 145.3, 59.6, 31.9, and 29.7 ppm could be related CN-ArC, ArC, S-ArC, OCH2, 
SCH2, and CH2 moieties, respectively (Figure S2). These NMR signals (Table 1) are in accordance with the published 
results [23]. In the FT-IR spectrum of this molecule showed the characteristic vibrations for the C≡N groups at 2220 cm–1 

(Figure S3).
Metallo-phthalocyanines (MPc) (4–7) were synthesized by the reaction of 3 with anhydrous metal salts (CoCl2, NiCl2, 

CuCl2, and Zn(OAc)2) in n-pentanol in the presence of catalytic amounts of DBU under an argon atmosphere (Scheme 1). 
The shared features of all new products were performed by spectroscopic methods and elemental analysis such as UV-Vis, 
FT-IR, 1H NMR (for compounds 3, 6, and 7), 13C NMR (for compounds 3 and 7) and MS (micrOTOF).

In the 1H NMR spectra of nickel(II) (6) and zinc(II) (7) phthalocyanines in DMSO-d6, the characteristic resonances of 
aromatic protons were observed at δ = 7.74–7.58 or 7.98 ppm, respectively. The other signals of compound 6 and 7 due to 
hydroxypropyl groups as multiplets at δ = 1.95 (6) or singlet at 2.11 ppm (7) for -CH2- protons, broad chemical shift at δ 
= 3.66 (6) and dublet at 3.77 ppm (7) for OCH2 protons, broad singlet at δ = 3.33 (6) ppm as superimposed H2O proton, 
and singlet δ = 3.45 (7) ppm for SCH2 protons and broad peaks at δ =   4.70 (6), 4.75 (7) ppm concerning OH (Figures S4 
and S5). 13C NMR spectra concerning C≡N signals at δ = 116.9 ppm belonging to precursor compound (3) disappeared 
in the case of NiPc and ZnPc formations. In addition to that, the appearance of novel signals at δ = 145.5 ppm and δ = 
152.7 related to the inner core of phthalocyanines also indicated the formulation of metallo-phthalocyanine structures 
(Figures S6 and S7). The other 13C NMR data of these molecules were almost identical to those of the precursor molecule 
(3) as anticipated. In the MS spectra of NiPc and ZnPc measured by the micrOTOF technique proved proposed structure 
due to the molecular ion peaks which observed at m/z = 1291.9 [M]+ and 1298.9 [M]+, respectively (Figures S8 and S9). In 
the FT-IR spectra of the compounds (4–7) (Figures S10–S13), the stretching vibrations concerning C≡N groups at 2221 
cm–1 belong to phthalonitrile (3) disappear after the cyclotetramerization reaction. The deformation of these vibrations 
confirmed the formation of phthalocyanines. The rest of the FT-IR spectra showed very close similarity to the starting 
compound. The mass spectra of compounds 4 and 5 recorded by micrOTOF technique also confirmed the molecular ion 
peaks at m/z = 1291.0 [M+H]+ and 1297.2 [M]+, respectively (Figures S14 and S15).

Theoretical 1H and 13C NMR chemical shifts of the compound 3 and ZnPc were calculated from B3LYP/6–31G (d,p) 
(see in the optimized molecular structure of the ZnPc in the ground state, Figure 1). The calculated NMR resonances 
concerning phthalonitrile compound 3 and ZnPc were given in Tables 1 and 2, respectively. The optimized geometric 
parameters of the ZnPc compound (bond lengths, bond angles, and dihedral angles) by B3LYP methods with 6–31G(d,p) 
as the basis set were presented in Tables S1 and S2. The correlations (Figure 2) between the experimental and calculation of 

Table 1. 1H and 13C chemical shifts of compound 3 (experimental and theoretical values).

Atoms Exp. Gas phase DMSO

C1 145.27 141.99 143.74

C2 31.87 32.06 32.31

C3 29.74 32.13 32.39

C4 59.55 62.29 61.59

C6 132.99 119.57 123.10

C7 141.15 113.72 111.04

C8 116.05 105.13 108.02

H2 3.17 2.08 3.08

H3 1.73 2.74 1.98

H4 3.49 4.01 4.02

H5 4.67 0.19 0.80

H6 7.81 7.11 7.63
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the chemical shift values of the compounds are described by the equations of dcal (ppm) = 0,953 dexp + 0,6972 (R2 = 0,983) 
for compound 3 (Table 1) and dcal(ppm) = 0,9738 dexp + 0,6852 (R2 = 0,9915) for ZnPc (Table 2), respectively.
3.2. Ground state electronic absorption spectra
Phthalocyanine compounds show two strong absorption bands in their electronic absorption spectroscopy that correlate to 
π → π* transitions. One of them is the so-called Q-band and seen at around 600–800 nm, and the other is called as B band and 

Figure 1. Optimized geometry of the ZnPc in the ground state.

Table 2.1H and 13C chemical shift of ZnPc (experimental and theoretical values).

Atoms Exp. Gas phase DMSO

C1 133.66 135.07 134.94
C2 32.26 32.36 32.78
C3 28.23 33.48 34.10
C4 60.41 63.14 62.96
C6 125.57 117.07 119.32
C7 132.69 132.46 130.59
C8 152.68 148.46 149.21
H2 3.45 3.07 3.19
H3 2.11 2.46 2.19
H4 3.77 4.07 4.08
H5 4.75 0.19 0.75
H6 7.98 7.79 7.99
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arise approximately 300–450 nm [24]. The ground-state electronic absorption spectra of Ni(II), Co(II), Cu(II) and Zn(II) 
phthalocyanines were measured in DMSO (Figure 3). The most of phthalocyanines show characteristic absorption band in 
the visible region approximately at around 600–750 nm named the Q-band and in the UV region at around 300–400 nm 
named B or Soret band [25]. The Q-band absorption in DMSO of the four metallated phthalocyanine can be aligned in the 
sequence Ni(II) > Cu(II) > Zn(II) > Co(II).  The Q-bands were seen at 811, 797, 792, and 767 nm for compounds 6, 5, 7, and 
4, respectively.  These single absorptions in lower energy regions should be related π→π* transitions of the phthalocyanine 
cores.   The Q-bands of compounds are significantly red-shifted among the metallo-phthalocyanines. It is well known 
that the electron-releasing groups such as alkylthio are bound to eight α-benzo positions of the phthalocyanine skeleton, 

Figure 2.The correlation graphs between the experimental and theoretical 1H and 13C chemical shift values of the molecules in 
DMSO.

Figure 3. The UV-Vis spectra of MPc (1 × 10-5 M in DMSO).
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the Q-band absorptions shift to longer wavelength. The transition metal ions have been settled in the phthalocyanine 
core may be expected they greatly affect absorption properties. Ni(II), Cu(II) and Co(II) have a similar electronegativity 
[26], so that the effect of electronegativity on the red-shifted is inferred to be similar [27].  The absorption maxima of 4 
and 7 shifts to the shorter wavelength in the order of Co(II) and Zn(II) as central metals in the phthalocyanine core [28]. 
Ni(II) phthalocyanines have maximum red as an unusual shift among the metallatedphthalocyanines can be attributed the 
perfect planarity of the d8 electronic configuration of this metal [14].

Aggregation is usually portrayed as a coplanar association of rings proceeding from monomer to dimer and higher 
order complexes. There are lots of parameters for aggregation in phthalocyanines; concentration, the nature of the solvent, 
nature of the substituents, complexed metal ions, and temperature [29]. The Q-band absorption maximum was independent 
of concentration and followed the Beer–Lambert law with a constant extinction coefficient in the studied concentration 
range [Figure 4 as an example for ZnPc(7)] for all studied metallo-phthalocyanines and these phthalocyanines did not 
exhibit any aggregation in the studied concentration range. 
3.3 Electrochemical studies
Voltammetric analyses of metallo-phthalocyanines have been performed with cyclic voltammetry (CV) as mentioned 
above. Figure 5 demonstrates the CV responses of the synthesized metallo-phthalocyanines recorded in the cathodic and 
anodic potential side in DCM:DMF (0.8:0.2)/TBP6 electrolyte system on an ITO working electrode. 

CoPc gives nonquasi-reversible metal-based reduction at 0.25 V (R1). Also, it is thought that nonquasi-reversible Pc 
based oxidation and reduction reactions were observed at 0.1 V(O1) and –0.25 V(R2). Most of the studies in the literature 
on reduction properties of the MPc complexes including that such complexes have two reduction processes as one metal- 
and one ring-based [30,31].

Cyclic voltammetry graph of NiPc showed two oxidation peaks at 1.14 and 0.62 V and consecutive reduction peaks 
at 1.00 V and 0.38 V. When the electrochemical behavior of CuPc is examined, oxidation and reduction peak values have 
found to be lower than those of NiPc. In terms of CuPc, these values are 1.0 V and 0.56 V for oxidation and 0.18 V and 
0.88 V for reduction. ZnPc had the lowest oxidation and reduction peak potential values among those of the other studied 
phthalocyanine derivatives. Compared to NiPc which has the oxidation peak values at 1.14 V and 0.62 V, ZnPc had lower 
redox peak values at 0.98 V and 0.49V. This result may be due to the smaller atomic radius of Zn metal comparing to the 
other metals’ atomic radii.

The speed of the applied potential can be changed by changing the scan rate in cyclic voltammetry experiments. 
Higher peak current values were obtained at high scan rates due to a reduction in the size of the diffusion layer [32]. 
Figure 6 shows a series of cyclic voltammograms recorded at different scan rates for an electrolyte solution containing 
metallo-phthalocyanine. The linearity of the peak current values with the square root of the scan rates proved that the 
electrochemical reaction on the electrode surfaces was diffusion controlled as expected [32].

Figure 4. Electronic absorption spectral changes for complex 7 in DMSO at different concentrations 
(Inset: Plot of absorbance versus concentration).
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3.4. HOMO-LUMO studies
The electrostatic potential map of a molecule supply knowledge about the electron acceptor and electron donor regions. 
This knowledge may help us to see the relationships between the atoms regarding intramolecular and intermolecular 

Figure 5. CV responses of synthesized metallo-phthalocyanines a) CoPc, b) NiPc, c) CuPc, d) ZnPc recorded in the cathodic and anodic 
potential side in DCM:DMF (0.8:0.2)/ TBP6 electrolyte system on an ITO working electrode.



KABAY et al. / Turk J Chem

150

hydrogen bonds. The distinctive values of the electrostatic potential at the area of the map are referred to by varied colours: 
blue refers to the most positive electrostatic potential, red refers to the most electronegative electrostatic potential site and 
green refers to the zero potential sites.

The electronic properties of a molecule can be calculated depending on HOMO and LUMO energies. In the calculations, 
the electron affinity (A=–LUMO) and the ionization potential (I=–HOMO) are the basic parameters. The other parameters 
such as absolute electronegativity (c=(I+A)/2), softness (S =(I-A)/2), and absolute hardness (h=(I-A)/2) can be calculated 
accordingly. 

Figure 6. CV responses of synthesized metallo-phthalocyanines at different scan rates a) CoPc, b) NiPc, c) 
CuPc, d) ZnPc recorded in DCM:DMF (0.8:0.2)/TBP6 electrolyte system.

Figure 7. The HOMO and LUMO energies of the compound 3 with B3LYP/6–31G(d,p) basis set in gas phase.
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The dispersions of the HOMO and LUMO orbitals calculated for the B3LYP/6–31G(d, p) level for the compounds 
3 and ZnPc were shown in Figures 7 and 8, respectively. In our calculations, ZnPc had a total of 1588 orbitals out of 
which 339 were filled and the rest were 1249 empty orbitals. The orbital numbered as 339 accounted for HOMO and 340 
accounted for LUMO orbitals. The corresponding energy values were calculated as –4.29 eV for the HOMO and –2.42 eV 
for the LUMO energies with B3LYP/6–31G(d, p) level. The parameters for the 3,6-bis-(3-hydroxypropylthio)phthalonitrile 
were calculated at the same levels and the results were presented in Table 3.

As shown in Figure 9, the red region was localized on the nitrogen atoms and vicinity of the sulphur atoms in both 
the phthalonitrile and the ZnPc, whereas the blue region was delocalized on the OH groups. Hence, it was found that the 

Figure 8. The HOMO-LUMO energies of the ZnPc.

Table 3. Electronic properties for the phthalonitrile (3) and ZnPc compounds.

Phthalonitrile (3) ZnPc

Electronic parameters 6–31g(d) 6–31g(d,p) 6–31g+(d,p) 6–31g(d) 6–31g(d,p) 6–31g+(d,p)

eV 4.3009 4.2996 4.1644 1.6878 1.6857 1.6504
l(Å) 288.28 288.36 297.72 734.6 735.51 751.25
Oscillator strengths 0.1665 0.1458 0.2951 0.4347 0.4356 0.4374
HOMO (au) –0.22186 –0.22195 –0.23012 –0.15748 –0.15774 –0.16678
LUMO (au) –0.07989 –0.08017 –0.09137 –0.08906 –0.08939 –0.09940
ΔE=LUMO-HOMO 3.86 3.86 3.78 1.86 1.86 1.83
TD/LUMO-HOMO 4.30 4.30 4.16 1.69 1.69 1.65
I (eV) 6.04 6.04 6.26 4.29 4.29 4.54
A (eV) 2.17 2.18 2.49 2.42 2.43 2.70
χ (eV) 4.11 4.11 4.37 3.35 3.36 3.62
Hardness(η) 1.93 1.93 1.89 0.93 0.93 0.92
Softness(s) 0.52 0.52 0.53 1.07 1.08 1.09
µ = -(I + A)/2 = - χ  –1.93 –1.93 –1.89 –0.93 –0.93 –0.92
ω = µ2 / (2η) 0.966 0.965 0.944 0.465 0.465 0.458
Dipole moment (debye) 12.084518 12.036222 12.379576 6.017804 5.869903 7.233204
Polarizability (α) (a.u) 211.008667 212.453118 237.359667 724.789333 729.525000 792.483000
Hyperpolarizability (β) (a.u) 214.054379 215.011406 574.413256 387.135619 394.940022 1518.758510
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ZnPc was useful to both bond metallically, and it has intermolecularly interacted. This result also supports the evidence of 
the charge analyses part.

NBO analysis is a tool for the determination of intramolecular interactions. The NBO analysis is used to specify the 
interactions between filled and empty orbitals of a molecule with the help of DFT method [33–35]. The NBO analysis, 
especially charge transfer, indicates the role of intermolecular orbital interaction in the compound. In tandem with this, 
the stabilization energy E(2) linked with electron delocalization between donor and acceptor is predicted for each donor 
NBO (i) and acceptor NBO (j) as follows:

Figure 9. The MAP surface obtained at B3LYP/6–31G(d,p) level for phthalonitrile and ZnPc compounds.

Figure 10. Electronic absorption spectral changes during singlet oxygen determination. This 
determination was for compound 7 in DMSO at a concentration of 1.0 × 10–5 M using DPBF at a 
concentration of 1.0 × 10–4 M (Inset: Plot of DPBF absorbance versus time).
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E(2)=∆Eij=qi

F(i,j)
2

Ej-Ei
 

where qi is the orbital occupancy of the ith donor, Ej and Ei are the diagonal elements (orbital energies) and F(i,j) is the 
off-diagonal NBO Fock matrix element. The hyper conjugative σ→σ* interactions play an extremely significant role in 
the molecule represent the weak departures from a strictly localized natural Lewis structure that constitutes the primary 
“noncovalent” effects [36]. The results of the NBO analysis of the ZnPc collected with B3LYP/6–31G(d,p) basis set 
presented in Table S3.

The interactions between C25-C26 (π*) and π*(C1-C2), C27-C28 (π*) and π*(C1-C2), the stabilization of 275.24 kcal/
mol, which denotes larger delocalization. According to Table S3, C25-C26 is rich in electrons since close to the electron 
release group. That is why it is a donor. In contrast, C1-C2 is acceptor because the electron is poor. The interaction between 
the C8-N10 (σ *)   π*(C19-N21), C3-N5 (π*) π*(C23-C31), C4-N7 (π*)   π*(N6-C14), C13-N16 (π*)   π*(C9-N15), C19-N21 
(π*) π*(C17-C29), C20-N22(π*)   π*(C3-N5) also represent the larger delocalization. The E(2) value is essential chemically 
and may be exploited as a measure of the intramolecular delocalization.

The calculated visible absorption maxima at TD–B3LYP/6–31G(d,p) of λ which are a function of the electron availability 
were displayed in Table 3. The most likely transition for the molecule is the HOMO-LUMO transition at 339→340 because 
the maximum f = 0.4356 (oscillator strength) value is in the excited state-1 at 735.51 nm. HOMO-LUMO+1 transition was 
calculated at 339→341 molecular orbital, excited state-2: 735.21 nm. Typically, the energy bandgap in inorganic materials 
is ~ 1.5 eV, in organic materials is in the range of 1.5–3.5 eV. In accordance with this, the compound is capable of being a 
potential molecule for inorganic semiconductor materials [37]. Additionally, according to ligand, this value reveals that 
the compound becomes more conductive electrically.
3.5. Singlet oxygen generation properties
PDT is a treatment for cancer where light, molecular oxygen, and photosensitizer are used in combination to produce 
cytotoxic forms of oxygen such as singlet oxygen. The generation of singlet oxygen is the key to show PDT potential of the 
compounds [38]. The singlet oxygen production of studied zinc(II) phthalocyanine (7) was determined with the chemical 
method in DMSO. 1,3-diphenylisobenzofuran (DPBF) was used as a singlet oxygen scavenger which causes the formation 
of endoperoxide species. A time-dependent decrease of DPBF absorbance at 417 nm was observed for phthalocyanine 
photosensitizer 7. There was no change in the Q-band intensity during the ΦΔdeterminations and it supports that studied 
phthalocyanine did not show any degradation by used light irradiation (Figure 10). The singlet oxygen production of 
studied zinc(II) phthalocyanine (7) was found higher compared to unsubstituted zinc(II) phthalocyanine in DMSO 
(Figure 10, inset). The singlet oxygen generation properties of other metallo-phthalocyanines (4, 5, and 6) studied in 

Figure 11. The electronic absorption spectral changes of zinc(II) phthalocyanine (7) in DMSO 
under light irradiation revealing the vanishing of the Q-band at 5 min intervals (Inset: Plot of 
absorbance vs. time).
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this work did not investigate due to paramagnetic behavior of the used Co, Ni, and Cu metal ions the cavities of these 
phthalocyanines because paramagnetic metal ions reduce the photoactivity of the molecules.

The synthesis of the phthalocyanine compounds bearing different alkylthio groups on the phthalocyanine ring were 
given in the literature but the photochemical properties of these derivatives were studied limitedly.  On the other hand, the 
phthalocyanine derivatives substituted at the nonperipheral octa positions of the phthalocyanine macrocycle are very rare 
in the literature. The studied zinc(II) phthalocyanine (7) showed higher singlet oxygen production in comparison with 
other octa nonperipheral substituted photosensitizers containing different alkylthio groups such as 2-propoxy, benzyloxy 
or 3,5 bis(benzyloxy)benzyloxy groups [39]. Similarly, the studied zinc(II) phthalocyanine (7) showed higher singlet 
oxygen production in comparison with alkylthio substituted pyridoporphyrazines [40]. Additionally, the phthalocyanine 
7 exhibited similar singlet oxygen generation when compared to the nonperipherally octa-sulfanyl substituted zinc 
phthalocyanine [41].
3.6. Photodegradation studies
Photodegradation quantum yield can be used to study the stability of photosensitizer during the photocatalytic reaction 
in PDT [42]. The current study shows that photodegradation properties of studied zinc(II) phthalocyanine (7) were 
determined in DMSO by monitoring the collapse of their absorption bands underused light irradiation with increasing 
time (Figure 11). The Φd value of zinc(II) phthalocyanine was found the order of  3.79 × 10–5 (between 10–3 and 10–6 for 
ideal photosensitizer) in DMSO [21]. The Φd value of the investigated zinc(II) phthalocyanine (7) was found slightly 
higher than unsubstituted zinc(II) phthalocyanine (Φd = 2.61 × 10–5) [18]. On the other hand, the phthalocyanine 7 
exhibited lower photodegredation quantum yield value when compared to the non-peripherally octa-sulfanyl substituted 
zinc phthalocyanine [41] which means that the studied zinc(II) phthalocyanine (7) exhibited higher stability to light 
irradiation.
4. Conclusion
In this study, the phthalonitrile derivative substituted with 3-hydroxypropylthio groups at 3 and 6 positions as ligand and 
its non-peripheral octa substituted metallo-phthalociyanines [M =Zn(II), Ni(II), Cu(II) and Co(II)] were synthesized 
and characterized. Electrochemical properties of the proposed compounds also investigated because of these kinds of 
compounds show the possible potential usage in electro-catalysis, electrosensing, and electrochromic devices. When the 
ΔE values   in Table 3 are compared, the ZnPc compound is electrically more conductive than phthalonitrile. In this electrical 
conductivity, zinc(II) plays an important role. Besides, the molecular geometry and GIAO 1H and 13C NMR chemical shift 
values of the molecule in the ground state had been estimated by applying B3LYP with 6–31G(d,p) basis set. Also, the 
photochemical properties such as singlet oxygen generation and photodegradation under light irradiations were studied 
for the determination of possible photosensitizer ability of zinc(II) phthalocyanine derivative 7. These properties of the 
other studied metallo-phthalocyanines did not investigate because of the paramagnetic behavior of metal ions (Co, Ni, and 
Cu) in the cavities of these phthalocyanines. The absorbance of the new zinc(II) phthalocyanine (7) was studied in DMSO 
solutions at different concentrations for determination of the most suitable concentration for further photochemical 
properties. The singlet oxygen production of this phthalocyanine (7) was determined in DMSO using a chemical method. 
The singlet oxygen production of studied zinc(II) phthalocyanine (7) was found higher compared to unsubstituted zinc(II) 
phthalocyanine in DMSO. In this study, the photodegradation behavior of the zinc(II) phthalocyanine (7) was determined 
in DMSO. The Φd value of zinc(II) phthalocyanine was found in the order of 3.79 × 10–5 in DMSO. This value is slightly 
higher than unsubstituted zinc(II) phthalocyanine [37,43].
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Supplementary materials
1. Materials and methods
1.1. Experimental
All reagents were supplied from commercial suppliers. All reactions were carried out under the argon atmosphere. All 
solvents were dried and purified according to standard methods [S1]. 1H NMR and 13C NMR spectra were measured by 
a Varian Mercury 300 NMR spectrometer. FT-IR and mass spectra were recorded on a Perkin-Elmer Spectrum One FT-
IR spectrometer and  on a micrOTOF mass spectrometer. UV-Vis spectral measurements were performed by Shimadzu 
UV-1601 spectrometer at room temperature. Melting points were measured by an electrothermal apparatus and are 
uncorrected. 3,6-dibromo phthalonitrile was synthesized according to the literature procedures [S2]. 

2. Synthesis
2.1. 3,6-bis-(3-hydroxypropylthio)phthalonitrile (3)
A mixture of 3,6-dibromo phthalonitrile (1) (1.43 g, 5 mmol), excess amount of anhydrous Na2CO3 (2.65 g, 25 mmol) 
and 3-mercapto-1-propanol (2) (1.15 g, 12.5 mmol) in dry DMF (25 mL) were placed in a round-bottom two flask under 
argon atmosphere. This suspension was stirred at 50 °C for 10 h. The reaction mixture was monitored by TLC [silica 
gel (chloroform:methanol)(95:5)]. At the end of this period, the reaction mixture was cooled to room temperature and 
filtered. The filtrate was evaporated under reduced pressure to dryness and then the solid product purified by column 
chromatography on silica gel using the mixture of chloroform:methanol (95:5) as eluent to give a pale yellow solid. Yield: 
0.58 g (38%); m.p. 143 °C (140 °C in reference [S3]). FT-IR (ν, cm–1): 3236 (O-H), 3067 (Ar-H), 2929–2848 CH2), 2220 
(C≡N), 1527, 1471, 1434, 1284, 1143, 1035, 822; 1H NMR (300 MHz, DMSO-d6): δ 7.81–7.78 (d, 2H, Ar-H), 3.49 (m, 4H, 
OCH2), 4.67 (s, 2H, OH), 3.17 (m, 4H, S-CH2), 1.73 (m, 4H, CH2). 13C NMR (75 MHz, DMSO-d6): δ 145.3, 141.2, 132.9, 
116.9, 59.6, 31.9, 29.7. Anal. calcd. for C14H16N2S2O2: C, 54.52; H, 5.23; N, 9.08. Found: C, 54.33; H, 5.40; N, 9.23.  
2.2. 1,4,8,11,15,18,22,25-octakis(3-hydroxypropylthio)phthalocyaninato metal complexes (4 ̶ 7)
A mixture of 0.5 mmol (0.154 g) 3,6-bis-(3-hydroxypropylthio)phthalonitrile and 0.182 mmol anhydrous metal salt (23.7 
mg cobalt chloride, 23.7 mg nickel chloride, 24.5 mg copper (II) chloride or 33.3 mg zinc acetate) in 3 mL of n-pentanol and 
3 drops 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) was heated and stirred at 155 °C for 24 h under an argon atmosphere 
in a Schlenk tube. After this time, the mixture was chilled out to room temperature and the precipitate was filtered off 
and then washed subsequently with chloroform, water, and acetone. After that, the products were purified by Soxhlet 
extraction with chloroform and then dried in vacuo over dried MgSO4.
2.2.1. Cobalt (II) phthalocyanine(4)
Yield: 0.105 g (65%); m.p. > 300 °C. FT-IR (ν, cm–1): 3238 (-OH), 3057 (Ar-H), 2923–2868 (alkyl-CH), 1690 (C=N), 1567, 
1434, 1281, 1153, 1041, 928; UV-Vis λmax (nm) (log ε) in DMSO: 767 (4.54), 701 (4.24), 377 (4.33), 283 (4.59). MS: m/z 
1291.03 [M]+ (calculated MS: 1291.2) . Anal. calcd. for C56H64N8O8S8Co; C, 52.03; H, 4.99; N, 8.67. Found: C, 51.86; H, 
4.69; N, 8.40%.
2.2.2. Copper (II) phthalocyanine(5)
Yield: 0.102 g (63%); m.p. > 300 °C. FT-IR ν (cm–1): 3290 (-OH), 3057 (Ar-H), 2923–2868 (alkyl-CH), 1644, 1585, 1427, 
1280, 1154, 1036; UV-Vis λmax (nm) (log ε) in DMSO: 797 (4.79), 713 (4.27), 503 (3.88), 349 (4.49), 283 (4.88). MS: m/z 
1297.2 [M+2]+, 1358.1 [M+K+Na+H]+ (calculated MS: 1295.2) . Anal. calcd. for C56H64N8O8S8Cu; C, 51.85; H, 4.97; N, 
8.64; found: C, 51.34; H, 4.72; N, 8.36%.
2.2.3. Nickel (II) phthalocyanine(6)
Yield: 0.115 g (71%); m.p. > 300 °C. FT-IR ν (cm–1): 3241 (-OH), 3048 (Ar-H), 2929– 2875 (alkyl-CH), 1690, 1567, 1434, 
1281, 1153, 1041; 1H NMR (300 MHz, DMSO-d6): 7.74–7.58 (br s, 8H, ArH), 4.70 (br s, 8H, OH), 3.66 (m, 16H, OCH2), 
3.33 (m, 16H, SCH2, with d-DMSO proton), 1.95 (m, 16H, CH2CH2). 13C NMR (75 MHz, DMSO-d6): 145.5, 133.1, 131.7, 
124.7, 60.4, 32.0, 28.1. UV-Vis λmax (nm) (log ε) in DMSO: 811 (4.56), 736 (4.14), 525 (3.62), 363 (4.27), 300 (4.85). MS: 
m/z 1291.9 [M+2]+, 1309.6 [M+H2O]+ (calculated MS: 1290.2). Anal. calcd. for C56H64N8O8S8Ni; C,52.04; H, 4.99; N, 8.67; 
found: C, 51.65; H, 4.74; N, 8.38%.
2.2.4. Zinc (II) phthalocyanine(7)
Yield: 0.125 g (77%); m.p. > 300 °C. FT-IR ν (cm–1): 3254 (-OH), 3052 (Ar-H), 2924– 2868 (alkyl-CH), 1644, 1557, 1435, 
1280, 1142, 1041, 919; 1H NMR (300 MHz, DMSO-d6): 7.98 (s, 8H, ArH), 4.75 (s, 8H, OH), 3.77–3.76 (d, 16H, OCH2), 
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3.45 (br s, 16H, SCH2), 2.11 (m, 16H, CH2CH2).  13C NMR (75 MHz, DMSO-d6): 152.7, 133.7, 132.7, 125.57, 60.4, 32.3, 
28.2. UV-Vis λmax (nm) (log ε) in DMSO: 792 (4.88), 711 (4.34), 503 (3.75), 346 (4.46), 296 (4.85). MS: m/z 1298.9 [M+3]+ 
(calculated MS: 1296.2). Anal. calcd. for C56H64N8O8S8Zn; C, 51.78; H, 4.97; N, 8.63; found: C, 52.24; H, 4.77; N, 8.52%. 
2.3. Electrochemical measurements
All electrochemical measurements were actualized with Ivium potentiostat using the three-electrode system at room 
temperature. The Pt and Ag wires were used as counter and reference electrodes, respectively. Optically transparent indium 
tin oxide (ITO) coated glass slides from Delta Technologies (7 × 50 × 0.5 mm thickness and 8 – 12 ohm.sq−1) were used as 
a working electrode. Electrochemical characterizations of the materials were carried out in DCM/DMF (0.8 / 0.2) solution 
containing 0.1 M tetrabutylammonium hexafluorophosphate (TBP6). The cyclic voltammetry technique was applied for 
the electrochemical characterization of materials. The ITO-coated glass electrode, Ag wire, and Pt wire have been plunged 
into the electrochemical cell. Different voltage has been applied on the working electrode through the potentiodynamic 
method and has been controlled using the Ivium Compact stat. The Ag wire electrode was calibrated versus Ag/AgCl (3M 
KCl) electrode. 
2.4. Photochemical studies
2.4.1. Singlet oxygen quantum yields 
Singlet oxygen production determinations were carried out using the experimental set-up described in the literature [S4]. 
Typically, a 3 mL portion of the respectively substituted zinc(II) phthalocyanine (7) solution (concentration = 1 × 10−5 M) 
containing the singlet oxygen quencher was irradiated in the Q band region with the photo-irradiation set-up described 
in the reference [S4]. Singlet oxygen production was determined in the air using the relative method using unsubstituted 
ZnPc as a standard. 1,3-diphenylisobenzofuran (DPBF) was used as a chemical quencher for singlet oxygen in DMSO.  To 
avoid chain reactions induced by DPBFin the presence of singlet oxygen [S5],the concentration of quenchers (DPBF) was 
lowered to ~ 3 × 10−5 M. Solutions of sensitizer (1 × 10–5 M) containing DPBF was prepared in the dark and irradiated in 
the Q-band region using the setup described and degradation of DPBF at 417 nm was monitored.
2.4.2. Photodegradation quantum yields
Photodegradation quantum yield (Φd) determinations were carried out using the experimental set-up described in the 
literature [S4]. Photodegradation quantum yields were determined using Equation (1), 

Φd=
(C0- Ct). V . NA

Iabs . S . t
  (1)

where C0 and Ct are the sample (7) concentration before and after irradiation respectively, V is the reaction volume, NA is 
the Avogadro’s constant, S is the irradiated cell area, it is the irradiation time and Iabs is the overlap integral of the radiation 
source light intensity and the absorption of the sample (7). A light intensity of 2.17 × 1016 photons s–1 cm–2 was employed 
for Φd determinations.
2.5. Theoretical calculations
Density functional theory (DFT) is one of the most useful quantum chemistry tools in calculating the ground state 
properties of compounds. In the modeling, the initial guess of the compound was provided from the X-ray coordinates. 
The molecular structures were optimized to get the global minima by using DFT/B3LYP/6-31G (d,p) level in the gas 
phase. The electronic properties were also calculated using 6-31G(d,p) and 6-31G+(d, p) levels. All the calculations were 
carried out with the Gaussian 16 B.01 [S6] package program and GaussView 6.0.16 [S7] was used for the visualization of 
the structure. The 1H and 13C NMR chemical shielding constants were calculated using GIAO-B3LYP in the gas phase 
and DMSO. For the NBO analysis, the same calculation procedure in the gas phase was also used. The 1H and 13C-NMR 
chemical shifts were converted to the TMS scale by subtracting the calculated absolute chemical shielding of TMS (d = ∑0 - 
∑), where d is the chemical shift, ∑ is the absolute shielding and ∑0 is the absolute shielding of TMS, whose values (reference 
shielding for 1H and 13C)  are at 31.883 ppm and 191.80 ppm, respectively, for B3LYP/6-31G(d,p). Besides, molecular 
electrostatic potential (MEP) of the title molecules were investigated by B3LYP/6-31G(d,p). The energy difference between 
HOMO and LUMO levels was described as the optical bandgap for the HOMO to LUMO excitation energy (TDDFT) and 
the electronic band gap for excitation energy difference (ΔE = LUMO-HOMO). The visible absorption maxima of the 
molecule were corresponded to the electron transition from HOMO to LUMO by using calculations of molecular orbital 
geometry.
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3. 1H NMR, 13C NMR, FT-IR, MS spectra and optimize geometric parameters of the ZnPc

Figure S1. 1H-NMR spectrum of 3,6-bis-(3-hydroxypropylthio)phthalonitrile (3) in DMSO-d6.

Figure S2. 13C-NMR spectrum of 3,6-bis-(3-hydroxypropylthio)phthalonitrile (3) in DMSO-d6.
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Figure S3. FT-IR spectrum of 3,6-bis-(3-hydroxypropylthio)phthalonitrile (3).

Figure S4. 1H-NMR spectrum of NiPc in DMSO-d6.
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Figure S5. 1H-NMR spectrum of ZnPc in DMSO-d6.

Figure S6. 13C-NMR spectrum of NiPc in DMSO-d6.
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Figure S7. 13C-NMR spectrum of ZnPc in DMSO-d6.

Figure S8. Mass spectrum of NiPc (MALDI-TOF).
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Figure S9. Mass spectrum of ZnPc (MALDI-TOF).

Figure S10. FT-IR spectrum of CoPc.
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Figure S11. FT-IR spectrum of CuPc.

Figure S12. FT-IR spectrum of NiPc.
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Figure S13. FT-IR spectrum of ZnPc.

Figure S14. Mass spectrum of CoPc (MALDI-TOF).
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Figure S15. Mass spectrum of CuPc (MALDI-TOF).
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Table S1. Selected optimized geometric parameters of the ZnPc in the ground state.

Bond lengths (Å) Bond Angles (º) Dihedral angles (º)

C3-N5 1.33 C3-N7-Zn145 124.35 C14-N16-Zn145-N10 –173.72
N5-C20 1.33 C4-N7-Zn145 124.38 C19-N22-Zn145-N7 –173.71
C4-N6 1.33 C8-N10-Zn145 124.39 C8-N10-Zn145-N16 –171.47
C13-N15 1.33 C9-N10-Zn145 124.36 C4-N7-Zn145-N22 –171.45
C8-N21 1.33 C13-N16-Zn145 124.16 C2-C9-N10-Zn145 –162.30
N6-C14 1.33 C14-N16-Zn145 124.33 C2N3-N3-N7-Zn145 –162.25
C9-N15 1.33 C19-N22-Zn145 124.33 C11-C13-N16-Zn145 –160.86
C19-N21 1.33 C20-N22-Zn145 124.16 C18-C20-N22-Zn145 –160.84
C3-N7 1.37 N7-Zn145-N16 89.96 N21-C19-N22-Zn145 –22.14
C8-N10 1.37 N7-Zn145-N22 90.03 N6-C14-N16-Zn145 –22.14
C4-N7 1.37 N10-Zn145-N16 90.04 N6-C4-N7-Zn145 –20.43
C19-N22 1.37 N10-Zn145-N22 89.96 N21-C8-N10-Zn145 –20.40
C20-N22 1.37 C20-N22-Zn145-N7 –11.15
C13-N16 1.37 C13-N16-Zn145-N10 –11.14
C14-N16 1.37 N3-N7-Zn145-N22 –7.85
C9-N10 1.37 C9-N10-Zn145-N16 –7.82
N22-Zn145 1.99 C8-N10-Zn145-N22 8.44
N7-Zn145 1.99 C4-N7-Zn145-N16 8.46
N10-Zn145 1.99 C14-N16-Zn145-N7 10.41
N16-Zn145 1.99 C19-N22-Zn145-N10 10.42

N15-C9-N10-Zn145 20.17
N5-N3-N7-Zn145 20.22
N15-C13-N16-Zn145 22.62
N5-C20-N22-Zn145 22.65
C17-C19-N22-Zn145 160.99
C12-C14-N16-Zn145 161.01
C24-C4-N7-Zn145 162.19
C1-C8-N10-Zn145 162.23
N3-N7- n145-N16 172.07
C9-N10-Zn145-N22 172.10
C20-N22-Zn145-N10 172.99
C13-N16-Zn145-N7 172.99
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Table S2. 1H and 13C chemical shift values of the ZnPc compound.

Atoms Exp Gas-phase DMSO

C73, C74, C75, C72, C76, C77, C78, C79, 28.23 33.48 34.1

C57, C58, C61, C62, C63, C64, C59, C60 32.26 32.36 32.78

C97, C98, C99, C102, C103, C104 60,41 63.14 62.96

C1, C2, C11, C12, C17, C18, C23, C24 125.57 130.46 130.59

C25, C28, C29, C30, C31, C32, C33, C34 132.69 135.07 134.94

C26, C27, C35, C36, C37, C38, C39, C40 133.66 117.07 119.32

C3, C4, C13, C14, C8, C9, C19, C20 152.68 148.46 149.21

H81, H114, H82, H113, H83, H120, H96, H119, H95, H118, H94, H117, H84, H116, H80, H115 2.11 2.46 2.19

H122, H124, H126, H128, H130, H132, H134, H136 4.75 0.19 0.75

H66, H85, H86, H87, H65, H88, H89, H71, H70, H90, H69, H91, H68, H92, H67, H93 3.45 3.07 3.19

H107, H139, H106, H140, H109, H141, H105, H142, H110, H143, H111, H144, H108, H137, H112, H138 3.77 4.07 4.08

H41, H42, H43, H44, H45, H46, H47, H48 7.98 7.79 7.99
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Table S3. Second order perturbation theory analysis of Fock matrix in NBO for the ZnPc in gas phase at B3LYP/6-31G(d,p).

Bond Occupancy Hybrid
(p % ch.) Acceptor (j) Occupancy Hybrid

(p %ch.)
E(2)a

(kcal/mol)
E(j)-E(i)b

(a.u.)
F(i.j)c

(a.u.)

C1-C2( π) 1.62025 p
π *(C9-N15) 0.45979 p 4.26 1.21    0.064
σ *( C28-S49) 0.03155 Sp2.66 4.05 0.87    0.053
σ * (C8-N10) 0.04379 Sp2.24 28.39 0.22    0.075

C8-N10 ( σ *) 0.04379 Sp2.24

π* (C1-C 2) 0.46887 p 68.90 0.05    0.073
π* (C9-N15 ) 0.45979 p 91.22 0.03    0.060
π*(C19-N21)          0.45985 p 190.70 0.03    0.087

C9-N15( π) 1.70502 p π*( C13-N16) 0.58427 p 35.59 0.28    0.097
C20-N22( π) 1.76914 p π*(C20-N22) 0.58427 p 32.10 0.32    0.096
C3-N5 ( π*) 0.45979 p π*(C23-C31) 0.46530 p 219.59 0.02    0.078

C 4-N7 ( π*) 0.58474 p
π*(C3-N5) 0.45979 p 91.22 0.03    0.060
π*(N6-C14)          0.45985 p 190.70 0.03    0.087
π*(C24-C32) 0.46530 p 99.63 0.04    0.080

C9-N15( π*) 0.45979 p π*(C1-C2)          0.46887 p 118.85 0.02    0.070

C13-N16 (π*) 0.58427 p
π*(N6-C 14) 0.45985 p 91.52 0.03    0.060
π*(C9-N15) 0.45979 p 191.05 0.03    0.087
π*(C11-C34) 0.46132 p 97.65 0.04    0.080

C19-N21 (π*) 0.45985 p π*(C17-C29) 0.46132 p 209.25 0.02    0.078

C20-N22( π*) 0.58427 p
π*(C3-N5) 0.45979 p 191.04 0.03    0.087
π*(C18-C30) 0.46132 p 97.65 0.04    0.080
π*(C19-N21) 0.45985 p 91.52 0.03    0.060

C25-C26 ( π*) 0.40404 p π*(C1-C2) 0.46887 p 275.24 0.01    0.079
C27-C28 ( π*) 0.40404 p π*(C1-C2)          0.46887 p 275.24 0.01    0.079

N6  (LP1) 1.86832 Sp3.13
σ*(C4-N7) 0.04379 Sp2.24 14.48 0.80    0.098
σ*(C14-N16) 0.04373 Sp2.25 14.55 0.80    0.099

S 49  (LP2) 1.82989 p π*(C 27-C28) 0.40404 p 20.52 0.25    0.068
S 56   (LP2) 1.83354 p π* (C12-C33) 0.46132 p 18.28 0.25    0.066

E(2) a means energy of hyperconjugative interaction;  benergy difference between donor and acceptor i and j NBO orbital; F(i,j)c is 
the Fock matrix element between i and j NBO orbitals.
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